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Abstract
One of the major challenges in Bayesian optimal design is to approximate the expected utility function in an accurate and
computationally efficient manner. We focus on Shannon information gain, one of the most widely used utilities when the
experimental goal is parameter inference. We compare the performance of various methods for approximating expected
Shannon information gain in common nonlinear models from the statistics literature, with a particular emphasis on Laplace
importance sampling (LIS) and approximate Laplace importance sampling (ALIS), a new method that aims to reduce the
computational cost of LIS. Specifically, in order to centre the importance distributions LIS requires computation of the
posterior mode for each of a large number of simulated possibilities for the response vector. ALIS substantially reduces the
amount of numerical optimization that is required, in some cases eliminating all optimization, by centering the importance
distributions on the data-generating parameter values wherever possible. Bothmethods are thoroughly compared with existing
approximations including Double Loop Monte Carlo, nested importance sampling, and Laplace approximation. It is found
that LIS and ALIS both give an efficient trade-off between mean squared error and computational cost for utility estimation,
and ALIS can be up to 70% cheaper than LIS. Usually ALIS gives an approximation that is cheaper but less accurate than LIS,
while still being efficient, giving a useful addition to the suite of efficient methods. However, we observed one case where
ALIS is both cheaper and more accurate. In addition, for the first time we show that LIS and ALIS yield superior designs
to existing methods in problems with large numbers of model parameters when combined with the approximate co-ordinate
exchange algorithm for design optimization.

Keywords Optimal design · Monte Carlo · Importance sampling

1 Introduction

When designing experiments for nonlinear models there is
usually uncertainty about the model parameters, ψ ∈ Ψ ,
and often also in the structural form of the model itself. A
Bayesian approach enables this uncertainty to be taken into
account coherently when choosing the variable settings to be
applied in the experiment.
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In contrast, frequentist optimal designs such as locally
optimal designs (Chernoff 1953) and minimax designs have
a less satisfactory approach to a priori parameter uncertainty.
Locally optimal designs are tailored for a specific set of
assumed parameter values and may perform poorly if the
assumed values differ from the truth. Minimax designs opti-
mize worst-case performance, potentially at the expense of
reduced efficiency in the most likely parameter scenarios.

Suppose that the design is denoted by ξ = (x1, . . . , xn),
where xi = (xi1, . . . , xiq)T ∈ R

q is a vector that defines the
settings of the q controllable variables to be applied to the
i th experimental unit, with corresponding response yi (i =
1, . . . , n). A design ξ∗ is Bayesian optimal if it maximizes
the expected utility,

U (ξ) =
∫
Rn

∫
Ψ

u(ξ ,ψ, y) fR(y|ψ, ξ) fB(ψ)dψdy, (1)
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with respect to ξ ∈ Ξ , where Ξ denotes the set of possible
designs. Above y = (y1, . . . , yn)T, with fB(ψ) denoting the
prior probability density of the parameters and fR(y|ψ, ξ)

denoting the conditional probability density of the response
vector under the assumed model.

The utility function u is chosen to reflect the goal of the
experiment, such as point estimation ofψ or hypothesis test-
ing. We will focus on the case where the goal is to report
all knowledge about the parameters via the full posterior
distribution, with density f A(ψ |y, ξ) ∝ fR(y|ψ, ξ) fB(ψ),
ensuring that this is as concentrated as possible. Here a com-
monly recommended utility is

u(ξ ,ψ, y) = log
f A(ψ |y, ξ)

fB(ψ)

= log fR(y|ψ, ξ) − log fE (y|ξ) , (2)

involving the model evidence, defined via fE (y|ξ) =∫
Ψ

fR(y|ψ, ξ) fB(ψ)dψ . The above is the unique utility cor-
responding to a local proper scoring rule. ABayesian optimal
design for utility (2) maximizes the expected Kullback–
Leibler divergence, or equivalently the expected Shannon
information gain (SIG), between the prior and posterior
distributions (Lindley 1956; Bernardo 1979; Chaloner and
Verdinelli 1995).

Note that the role of the subscripts above is to ensure that
different functions have different names, e.g. f A(·|·, ·) is the
posterior of ψ and fB(·) is the prior for ψ . This is more
precise than the simpler notation more commonly used in
Bayesian statistics in which both density functions would be
denoted by f and distinguished purely by their arguments;
it is also shorter than the more formal probabilistic notation
in which the two functions would be denoted fΘ|Y ,Ξ (·|·, ·)
and fΘ(·). The more precise notation will be important later,
when we wish to substitute other quantities, e.g. one denoted
μ̂, into the posterior density of ψ . The simpler notation is
considered an ‘abuse of notation’ by mathematicians (e.g.
Gelman et al. 2013, p.6), though it is often expedient.

Despite the apparent simplicity of the above theory, until
recently it was all but impossible to compute a Bayesian opti-
mal design in practice for realistically complex experiments.
This is due to the presence of two main challenges. Firstly,
the (potentially high-dimensional) integrals involved in (1)
and (2) are analytically intractable except for linear mod-
els with normally-distributed response. Thus, in general the
expected utility can only be evaluated approximately using
numerical integration. Typically the outer integral in (1) is
estimated via Monte Carlo. The inner integral in the model
evidence in (2) can be estimated stochastically, giving Dou-
ble Loop Monte Carlo (Ryan 2003) or nested Importance
Sampling (Feng 2015).Alternatively, deterministic estimates
such as Laplace approximations can be used (Long et al.
2013; Overstall et al. 2018). Earlier approaches such as

Bayesian D-optimality relied more heavily on asympototic
approximations (Chaloner and Verdinelli 1995).

The second challenge is numerical maximization of the
approximately evaluated utility. This is difficult as a result
of the high dimension of the design space. In addition,
due to the use of Monte Carlo, the approximate evalua-
tions of the objective function are computationally expensive,
noisy, and non-smooth. This precludes the use of standard
optimization algorithms such as quasi-Newton methods or
co-ordinate exchange algorithms. Instead, more sophisti-
cated optimization techniques have been developed, one of
the most promising being approximate co-ordinate exchange
(ACE; Overstall and Woods 2017). Alternative methods
include stochastic approximation (Huan and Marzouk 2013)
and sampling-based methods (Müller et al. 2004).

The idea of the ACE algorithm is to optimize one co-
ordinate of the design at a time using a Gaussian process
emulator to form a smooth estimate of the expected utility
as a function of the current co-ordinate. To ensure robust-
ness to the quality of the emulator, each proposed change
to a co-ordinate is subject to an independent emulator-
free acceptance-rejection step. After making several passes
through the design matrix using this process, the design
points are consolidated using a point exchange procedure.
An implementation is available in the R package acebayes
(Overstall et al. 2019).

This paper makes several contributions. First, we intro-
duce a newmethod for the approximation of the expectedSIG
utility, called Approximate Laplace Importance Sampling
(ALIS). Our method is computationally cheaper (in some
cases up to 70%) than the Laplace Importance Sampling
(LIS) method used by Beck et al. (2018) to find low-
dimensional designs for partial differential equation models,
and by Senarathne et al. (2020) for sequential design. Sec-
ond, we conduct a thorough comparison of ALIS and LIS
with a number of other algorithms in the context of non-
linear models familiar from the statistics literature. Third,
we discuss approximations to the expected SIG utility in the
common case where there are nuisance parameters (cf. Feng
and Marzouk 2019). Finally, we demonstrate that the use
of ALIS and LIS in conjunction with the ACE optimization
algorithm gives better designs than previous approximations
in some models with a large number of parameters.

2 Existing approximations for expected
Shannon information gain

All of the methods considered in this paper use Monte Carlo
integration to estimate the (outer) integral in (1), giving an
approximation of the form
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Ũ (ξ) = 1

M1

M1∑
h=1

[
log fR(yh | ψh, ξ) − log f̃ h

E

]
, (3)

where (ψh, yh), h = 1, . . . , M1, are independent random
samples from the joint prior density, i.e. f J (ψ, y | ξ) =
fB(ψ) fR(y | ψ, ξ), and f̃ h

E is an estimate of the evidence
fE (yh |ξ) in (2).
Themain difference between the various methods is in the

choice of the estimate of the evidence in (3), which affects
both accuracy and computational expense. The primary dis-
tinction is whether a second Monte Carlo estimate is used,
giving a ‘Nested Monte Carlo’ method, or a deterministic
estimate such as the Laplace approximation. We detail these
different methods below.

2.1 Naïve Monte Carlo

The simplest way to approximate the evidence in (3) is via
f̃ h
E = 1

M2

∑M2
k=1 fR(yh | ψ̃hk, ξ) , where the ‘inner sample’

ψ̃hk , k = 1, . . . , M2, is another independent random sample
from the prior density, fB(ψ). The inner sample is chosen
independently of the ‘outer sample’, (ψh, yh). This gives an
overall approximation

ŨnMC(ξ)

= 1

M1

M1∑
h=1

[
log fR(yh | ψh, ξ)

− log

(
1

M2

M2∑
k=1

fR(yh | ψ̃hk, ξ)

) ]
.

We refer to the above approximation as naïve Monte Carlo
(nMC); it is known elsewhere in the literature asDoubleLoop
Monte Carlo (DLMC). The estimator ŨnMC(ξ) has variance
of asymptotic order O(1/M1) and positive asymptotic bias
C(ξ)/M2, where

C(ξ) = 1

2
E

[
Var

(
fR(y | ψ, ξ)

fE (y | ξ)

∣∣∣ y
)

/ fE (y | ξ)2
]

(Ryan 2003). Thus, the variance can be reduced by increas-
ing the outer sample size, and the bias can be reduced by
increasing the inner sample size.

Despite its good asymptotic properties, for practical inner
sample sizes the naïveMonte Carlo estimator commonly suf-
fers from problems with numerical underflow. When this
happens one obtains a numerically negligible estimate for
the evidence and a numerical estimate of infinity for the
expected utility. The latter is clearly unreasonable, making it
questionablewhether themethod can be reliably used to com-
pare designs when M1 and M2 are small. This zero evidence
problem is particularly acute when the posterior is highly

concentrated relative to the prior. In this case the likelihood
fR(y|ψ, ξ) is numerically negligible throughout themajority
of the parameter space, except on a very small neighbourhood
around the maximum likelihood estimate. It is thus highly
likely that all of the ψ̃hk , which are sampled from the prior,
will lie outside of this neighbourhood, giving a numerically
negligible estimate of the evidence.

2.2 Reuse estimator

To alleviate the numerical stability problems of the Naïve
Monte Carlo estimator, Huan and Marzouk (2013) proposed
the reuse approximation,

Ũreuse(ξ) = 1

M1

M1∑
h=1

[
log fR(yh | ψh, ξ)

− log

(
1

M1

M1∑
k=1

fR(yh | ψk, ξ)

) ]
,

which uses the same parameter sample in both the inner and
outer summation. The asymptotic bias of the reuse estimator
has the same order of magnitude as that of the naïve Monte
Carlo method. However the reuse estimator is more numeri-
cally stable for smallMonte Carlo sample sizes. In particular,
it will usually give a finite estimate of the expected utility gain
because each inner sum contains the term fR(yh | ψh, ξ),
which is non-negligible as ψh is the parameter vector used
to generate yh in the simulation.

2.3 Laplace approximations

The literature contains two methods for using Laplace
approximations to avoid nestedMonte Carlo integration. For
the first method, considered by Overstall et al. (2018) and
denoted LA1 here, equation (3) is used with the standard
Laplace approximation to the evidence, giving

ŨLA1(ξ) = 1

M1

M1∑
h=1

[
log fR(yh | ψh, ξ)

− log f̃ A(ψ̂h |yh, ξ) − p

2
log 2π + 1

2
log |Hh |

]
,

where f̃ A(ψ |y, ξ) = fR(y|ψ, ξ) fB(ψ) = f J (ψ, y|ξ)

denotes the unnormalized posterior. In addition ψ̂h =
argmaxψ f̃ A(ψ |yh, ξ) denotes the posterior mode for the hth
response realization, while

Hh = −∂2 log f̃ A(ψ |yh, ξ)

∂ψ∂ψT

∣∣
ψ=ψ̂h

123



82 Page 4 of 15 Statistics and Computing (2022) 32 :82

denotes theHessian of the negative log-posterior at themode.
This asymptotic approximation should be accurate provided
n is large enough for the posterior to be approximately nor-
mal, and can be used to find efficient designs for a wide range
of sample sizes.

A second method, denoted LA2 here, was considered by
Long et al. (2013). This requires additionally that the sample
size is large enough for the posterior to behighly concentrated
around the posteriormode. In this case, both the log-posterior
and the log-prior can be approximated within the region of
highest posterior density by a second-orderTaylor expansion,
giving

EyEψ |y
[
log f A(ψ |y) − log fB(ψ)

]

≈EyEψ |y
[1
2
log |Hy| − p

2
log 2π

− 1

2
(ψ − ψ̂y)

THy(ψ − ψ̂y) − log fB(ψ̂y)

− ∇ψ log fB(ψ̂y)(ψ − ψ̂y)

− 1

2
(ψ − ψ̂y)

T∇2
ψ log fB(ψ̂y)(ψ − ψ̂y)

]

≈ Ey

[1
2
log |Hy| − p

2
(log 2π + 1)

− log fB(ψ̂y) − 1

2
tr(∇2

ψ log fB(ψ̂y)H
−1
y )

]
,

where ψ̂y denotes the posterior mode given response vector
y and Hy the corresponding Hessian of the negative log-
posterior. Above, the last line has been obtained using the
elementary fact that ifψ ∼ N (μ,V) thenE[(ψ−μ)TQ(ψ−
μ)] = trQV. Monte Carlo estimation of the above gives

ŨLA2(ξ) = 1

M1

M1∑
h=1

[1
2
log |Hh | − p

2
(log 2π + 1)

− log fB(ψ̂h) − 1

2
tr(∇2

ψ log fB(ψ̂h)H−1
h )

]
.

3 Approximate Laplace importance
sampling

3.1 Importance sampling

Another Monte Carlo method for estimating the evidence is
importance sampling, i.e.

f̃ h
E = 1

M2

M2∑
k=1

fR(yh | ψ̃hk, ξ) fB(ψ̃hk)

qh(ψ̃hk)
, (4)

where ψ̃hk , k = 1, . . . , M2 is an independent sample from
the importance density qh . Note that nMC corresponds to the

special case where the prior is chosen as the importance den-
sity. By standard theory (e.g. Lemieux 2009, p.114) the opti-
mal importance density is q∗

h (ψ) ∝ fR(yh | ψ, ξ) fB(ψhk),
i.e. q∗

h is the posterior density ofψ given yh . This gives a zero
variance unbiased (i.e. error-free) estimator; unfortunately
the optimal importance density cannot be used in practice as
it requires knowledge of the evidence, the quantity we are
trying to estimate.

The above discussion suggests that a good choice of
importance density would be a computationally cheap
approximation to the posterior, such as N (ψ; μ̂h, �̂h) or
tν(ψ; μ̂h, �̂h), where μ̂h and �̂h are approximations to
the mean vector and variance matrix of f A(ψ |yh, ξ). Here
N (·;μ,�) and tν(·;μ,�) denote respectively the probabil-
ity density function of a multivariate normal andmultivariate
t distributionwithmeanμ, variancematrix�, and degrees of
freedom ν for the latter. Below we discuss different methods
for choosing μ̂h and �̂h .

3.2 Laplace-type Importance SamplingMethods

Laplace-type importance sampling methods set the vari-
ance of the importance distribution as �̂h = Hh(μ̂h)−1

where Hh(μ̂h) = − ∂2 log f̃ A(ψ | yh ,ξ)

∂ψ∂ψT

∣∣
ψ=μ̂h

. The two vari-

ants, Laplace Importance Sampling (LIS), and Approximate
Laplace Importance Sampling (ALIS), are distinguished via
the choice of mean μ̂h .

3.2.1 LIS

With LIS, the mean is approximated using μ̂h = ψ̂h =
argmaxψ∈Ψ f̃ A(ψ | yh, ξ). This necessitates a total of M1

potential costly numerical optimizations to find themode, ψ̂h
(h = 1, . . . , M1), of the posterior distribution: one for each
the M1 simulated response vectors, y1, . . . , yM1 , in the outer
sample. However, provided the search for ψ̂h is initialized
at the data-generating parameter values ψh , it typically con-
verges in a small number of iterations. We performed these
optimizations using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method. Algorithm 1 gives a detailed description
of the LIS method and our proposed new variant, ALIS. See
Ryan et al. (2015) andBeck et al. (2018) for low-dimensional
examples of design selection with LIS.

3.2.2 ALIS

The key observation underpinning ALIS is that the posterior
mode used to center the importance distribution in LIS is
frequently close to the data-generating values, i.e. it is often
the case that ψ̂h ≈ ψh . Given this, an obvious question is
whether it is possible to reduce the computational cost of the
LISmethod by removing some of the optimization steps, set-
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Algorithm 1: ALIS/LIS Algorithm

Generate a sample ψh , h = 1, . . . , M1, from fB(ψ);
for h = 1, . . . , M1 do

Generate a response yh from fR(y|ψh, ξ);
Compute mean and variance of importance distribution qh(ψ):
if method==‘ALIS’ and Hh(ψh) is positive-definite then

Set μ̂h = ψh and �̂h = Hh(ψh)−1

else
Calculate the posterior mode ψ̂h of f J (ψ, yh |ξ) = fR(yh |ψ, ξ) fB(ψ), e.g. via BFGS
Set μ̂h = ψ̂h and �̂h = Hh(μ̂h)−1

Generate a sample {ψ̃hk}M2
k=1, from the importance density qh(ψ);

for k = 1, . . . , M2 do

Calculate ũhk = fR (yh |ψ̃hk ,ξ) fB (ψ̃hk )

qh (ψ̃hk )
;

Estimate the evidence fE (yh |ξ) via f̃ h
E = 1

M2

∑M2
k=1 ũhk ;

Calculate ũh = log fR(yh |ψh, ξ) − log f̃ h
E ;

Estimate the expected Shannon information gain utility via Ũ (ξ) = 1
M1

∑M1
h=1 ũh ;

ting μ̂h = ψh for some h. For this choice to work we require
at a minimum thatHh(ψh) is positive definite, since without
this �̂h would not be a valid covariance matrix and it would
be impossible to sample from the importance distribution qh .
The ALIS importance distribution is thus centred at

μ̂h =

⎧⎪⎨
⎪⎩

ψh if Hh(μ̂h) is numerically

positive-definite,

ψ̂h otherwise.

We show in Sect. 4.2 that this choice gives a method with
comparable accuracy but lower computational cost.

3.3 Nested importance sampling

In nested importance sampling (nIS; Feng 2015), the pos-
terior mean μh and variance �h are approximated via
self-normalized importance sampling using the outer sam-
ple. This gives

μ̂h =
M1∑

k=1

w̄hkψk,

�̂h =
M1∑

k=1

w̄hk(ψh − μ̂h)(ψh − μ̂h)T,

where w̄hk = fR(yh | ψk, ξ)/
∑M1

l=1 fR(yh | ψ l , ξ). This
approach has the potential to suffer from low effective sample
size. To counter this, Feng proposed to revert to the origi-
nal naïve Monte Carlo estimate of the evidence if ESSh =
1/(

∑M1
k=1 w̄2

hk) drops below a prespecified minimum effec-
tive sample size.

4 Performance comparison

4.1 Models for performance assessment

In this section we compare the performance of the meth-
ods from Sects. 2 and 3. Results are given for two tasks: (i)
evaluation of the utility function and (ii) design selection,
in Sects. 4.2 and 4.3 respectively. Three different nonlinear
models are considered, all of the form

yi = η(xi , θ) + εi , (5)

with εi
i.i.d.∼ N (0, σ 2

ε ) for i = 1, . . . , n. The models differ
with respect to theirmean functionsη, parameters, and priors,
with details given below.

Michaelis-Mentenmodel

The Michaelis-Menten model has mean function

η(x, θ) = θ1x/(θ2 + x),

with unknownparameters θ1, θ2, both positive. It is assumed a
priori that log θ1 ∼ N (4.38, 0.072), log θ2 ∼ N (1.19, 0.842),
and σ 2

ε ∼ Inverse-Gamma(3, 2) independently.
The prior on θ2 is relatively diffuse, implying a wide range

of possible shapes of the response curve. The prior on σ 2
ε

was chosen to imply a low noise-to-signal ratio as this leads
to a relatively concentrated posterior, the most demanding
scenario for methods such as naïve Monte Carlo and nested
importance sampling. Specifically, the 10% and 90% quan-
tiles of σε/η(400, θ) are 0.009 and 0.02 respectively, where
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Table 1 Prior means and
standard deviations for the
lubricant kinematic viscosity
model

Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

Mean 1054.54 206.55 1.46 −0.26 0.02 0.40 0.04 57.40 −0.48 −1.50

SD 24.63 5.29 0.04 0.01 0.002 0.03 0.001 2.37 0.075 0.10

Fig. 1 Distribution of the
estimator of expected utility
from different methods, using
the Michaelis-Menten model
and a space-filling design with
n = 5 runs. Empirical
distributions of the estimator are
based on 100 evaluations for
each method. The ‘true’
expected Shannon information
gain given by the reference
approximation is indicated by
the red line. Numbers after the
method name indicate the outer
Monte Carlo sample size M1.
The pairs (M1, M2)

= (300, 300) and (2000, 10000)
were used
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Table 2 Percentage RRMSE of
the estimator of expected
Shannon information gain, for
different combinations of model,
sample size, and approximation
method. Methods are ordered
according to the average
RRMSE across all examples

BOD Michaelis-Menten Average

Method/M1 n = 6 n = 10 n = 20 n = 5 n = 10 n = 20 RRMSE

LIS,2000 1.2 0.6 0.4 0.6 0.5 0.5 0.6

ALIS,2000 1.0 0.6 0.5 1.2 0.5 0.6 0.7

LIS,300 2.3 1.5 1.0 1.7 1.1 1.2 1.5

ALIS,300 2.1 1.7 0.9 3.3 1.5 1.5 1.8

nMC,2000 2.1 2.6 5.7 1.7 3.8 6.4 3.7

nIS,2000 1.4 2.4 7.5 1.8 4.7 8.5 4.4

LA1,2000 7.9 4.1 1.6 8.5 3.7 3.5 4.9

LA1,300 8.3 4.5 1.8 8.5 4.0 3.7 5.1

reuse,2000 3.1 4.8 9.4 3.6 7.3 9.2 6.2

LA2,2000 15.2 7.8 2.8 11.2 5.3 4.4 7.8

LA2,300 15.5 8.1 2.9 11.2 5.3 4.5 7.9

reuse,300 13.8 17.7 31.4 13.3 22.7 25.9 20.8

nIS,300 22.7 39.3 99.1 27.7 71.2 109.1 61.5

nMC,300 25.5 39.9 99.1 30.0 72.0 110.5 62.8

the denominator is the maximum value of η over the design
region [0, 400].

In order to preserve the positivity constraint on θ1 and θ2,
we reparameterize the model in terms of ϑ1 = log θ1 and
ϑ2 = log θ2. The resulting normal ALIS/LIS importance
distribution on the ϑ scale effectively implies a log-normal
importance distribution on the θ scale. Note that reparame-

terization does not change the value of the expected Shannon
information gain, but it does change our numerical estimate
thereof due to themodified importance distributions.Here the
noise variance σ 2

ε can be integrated out analytically owing to
its conjugate prior. See the appendix for full technical details
of the calculations for the marginal likelihood and its deriva-
tives.
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Table 3 ALIS method: long-run
percentage of outer loop
iterations for which the
data-generating values of ψ are
used to centre the importance
distribution, i.e. the percentage
of outer loop iterations for
which numerical optimization to
find the posterior mode is
avoided. Percentages were
estimated by simulating 10,000
outer loop iterations. For smaller
values of M1 the actual number
of outer loop iterations for
which numerical optimization is
avoided will follow a Binomial
distribution with success
probabilities approximately
equal to the above percentages

Example BOD Michaelis-Menten

n = 6 n = 10 n = 20 n = 5 n = 10 n = 20

% optimizations avoided 75.9 91.8 99.3 98.0 99.7 100.0

Table 4 Computational expense
and accuracy of different
methods. The left part of the
table shows, for each method,
the mean rRMSE and mean time
to produce one evaluation of the
utility function. The mean is an
average across ten repeats of all
examples for the
Michaelis-Menten and BOD
models. Methods are sorted
from least expensive to most
expensive. The right part of the
table shows a detailed
breakdown of the mean
evaluation time of the utility
function for each example,
averaged across 10 repeats

Method Mean performance Detailed timings (s)

BOD Michaelis-Menten

rRMSE(%) Time(s) n = 6 n = 10 n = 20 n = 5 n = 10 n = 20

LA1,300 5.1 0.007 0.002 0.003 0.007 0.005 0.005 0.019

LA2,300 7.9 0.009 0.005 0.005 0.012 0.006 0.005 0.019

LA1,2000 4.9 0.050 0.021 0.022 0.049 0.038 0.038 0.130

LA2,2000 7.8 0.059 0.035 0.036 0.080 0.040 0.038 0.127

reuse,300 20.8 0.062 0.040 0.042 0.136 0.023 0.026 0.103

nMC,300 62.8 0.062 0.040 0.042 0.135 0.028 0.025 0.103

ALIS,300 1.8 0.116 0.089 0.092 0.144 0.103 0.092 0.178

LIS,300 1.5 0.122 0.092 0.094 0.152 0.099 0.102 0.192

nIS,300 61.5 0.137 0.090 0.077 0.201 0.103 0.062 0.290

reuse,2000 6.2 2.687 1.671 1.825 5.949 1.109 1.136 4.434

nMC,2000 3.7 13.790 8.425 9.278 30.423 5.488 5.656 23.470

ALIS,2000 0.7 25.295 19.375 20.490 31.864 20.200 20.855 38.988

LIS,2000 0.6 25.632 19.805 20.878 32.563 20.463 21.143 38.939

nIS,2000 4.4 33.159 24.298 24.801 44.066 24.868 23.232 57.686

Biochemical oxygen demand (BOD) model

Bates&Watts (1988, Chap. 2)modelled biochemical oxygen
demand y (mg/L) with the mean function

η(x, θ) = θ1{1 − exp(−θ2x)},

where x is time (in days).Weadopt the following independent
priors:

log θ1 ∼ N (3.38, 0.202),

log θ2 ∼ N (1.098, 1.122),

πb(σε) ∝ σ−1
ε .

The prior means for θ1, θ2 were chosen to match the means
given byDiCiccio et al. (1997), while the varianceswere cho-
sen to illustrate the differences between themethods (smaller
and larger variances resulted in more similar performance).
Similar to the Michaelis-Menten model, we reparameterize
in terms of ϑ j = log θ j when carrying out utility approxima-
tions, and σ 2

ε is integrated out analytically. The design region
is [0, 7].

Lubricant kinematic viscosity model

Bates & Watts (1988, Chap. 3) modelled the kinematic vis-
cosity of a lubricant using the following mean function,
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Table 5 Comparison between ALIS and LIS for smaller inner loop
sample sizes. Cost reduction is shown as a percentage, while rRMSE
increase is shown as the absolute increase (which is a difference in per-

centage points). The table is ordered according to the magnitude of the
cost reduction from ALIS

Model n M1 M2 Time (LIS, s) Reduction (ALIS, %) rRMSE (LIS) Increase (ALIS)

BOD 6 2000 50 0.110 10.0 2.15 −0.06

BOD 10 2000 50 0.113 11.4 0.91 0.28

BOD 6 300 30 0.011 14.1 2.69 0.07

BOD 10 300 30 0.011 16.8 1.69 0.22

BOD 20 2000 50 0.189 19.0 0.41 0.18

MM 5 2000 50 0.128 19.3 0.65 0.19

MM 10 2000 50 0.128 22.7 0.49 0.07

BOD 20 300 30 0.019 24.3 1.05 0.18

BOD 6 300 10 0.005 26.2 3.27 0.41

MM 5 300 30 0.014 30.5 1.69 0.13

BOD 10 300 10 0.005 32.5 1.79 1.07

MM 10 300 30 0.014 33.5 1.18 0.17

MM 20 2000 50 0.287 33.9 0.46 0.20

BOD 20 300 10 0.010 45.3 1.07 1.00

MM 20 300 30 0.032 45.6 1.19 0.17

MM 5 300 10 0.008 53.8 1.67 0.99

MM 10 300 10 0.008 54.8 1.22 0.90

MM 20 300 10 0.022 69.5 1.17 1.24

depending on temperature, x1 (◦C) and pressure, x2 (atm):

η(x, θ) = θ1

θ2 + x1
+ θ3x2 + θ4x22 + θ5x32

+ (θ6 + θ7x22 )x2 exp

{
− x1

θ8 + θ9x22

}
.

Defining θ10 = log σε , we adopt independent normal priors
on θ j , j = 1, . . . , 10, with means and standard deviations
equal to themaximum likelihood estimates and their standard
errors based on the data from Bates and Watts (1988) (see
Table 1). Unlike the previous models, no reparameterization
is used for the θ j . Moreover the noise variance is treated
as an interest parameter. The design region for (x1, x2) is
[0, 100] × [0, 7].

4.2 Utility evaluation results

For utility evaluation, we compare the methods in terms of
accuracy and computational expense. To assess accuracy, we
need an approximation with negligible error to serve as a ref-
erence. For theMichaelis-Menten and BODmodels we were
able to obtain such a reference approximation by using naïve
Monte Carlo with M1 = M2 = 106, though this approx-
imation is too computationally expensive for routine use.
However for the lubricant model, whose parameter space is
of substantially larger dimension, nMC yields unstable esti-

mates even with such a large Monte Carlo sample size. Thus
we restrict our attention to the Michaelis-Menten and BOD
models in this section, though our results will suggest that
expected utility can be reliably estimated for the lubricant
model using the LIS and ALIS approximations.

To investigate how performance depends on the number
of experimental runs, results are obtained for a variety of
experiment sizes. For the Michaelis-Menten model space-
filling designs with n = 5, 10, and 20 are considered, while
for the BOD model the design from Bates and Watts (1988)
with n = 6 is considered alongside space-filling designswith
n = 10 and 20. The type of space-filling design used through-
out is a random Latin Hypercube design. For consistency the
same specific design realisation was used throughout, so that
differences between different sampled designs of the same
size are not a factor in the results.

Figure1 shows how the distribution of the estimator of
expected Shannon information varies across different meth-
ods and different combinations of inner and outer Monte
Carlo sample sizes. The results shown are for the Michaelis-
Menten model and a space-filling design with n = 5 runs.
The reference value of the expected utility is indicated by the
red horizontal line. It is seen that ALIS and LIS have small
bias and variance compared to all other methods with simi-
lar Monte Carlo sample size, even for small M1 and M2. The
nMC, nIS, and reusemethods give highly biased and variable
estimators for small Monte Carlo sample size, but increas-
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ing M1 and M2 reduces both the variance and bias, and with
(M1, M2) = (2000, 10000) both the nMC and nIS methods
give comparable utility values to LIS and ALIS. In contrast,
for the Laplace approximations, increasing the Monte Carlo
sample size only reduces the variance, not the bias, as these
methods are intrinsically biased due to the poor quality of the
asymptotic approximation when n = 5. This figure is quite
representative of the general picture, but further insight can
be obtained by combining results across several examples.

Table 2 shows the accuracy of the methods across models,
MonteCarlo sample sizes, andnumbers of experimental runs.
Accuracy is measured by the percentage relative root mean

squared error (RRMSE), i.e. 100 ×
√
MSE[Ũ (ξ)]/U (ξ). It

is seen that the most accurate methods overall are LIS and
ALIS; these have excellent performance evenwith lowMonte
Carlo sample size (M1 = M2 = 300). Moreover, the accu-
racy of LIS and ALIS remains stable or even improves as
the number of experimental runs increases. nMC is the next
most accurate methodwhenMonte Carlo sample size is large
but it performs poorly when Monte Carlo sample size is
small, i.e. when (M1, M2) = (2000, 10000) and (300, 300)
respectively. Moreover, the performance of nMC degrades
as the number of experimental runs increases. This result is
intuitive: as the number of experimental runs increases, the
posterior will become more concentrated and the prior will
become a worse importance distribution. nIS has similar per-
formance and caveats to nMC. The accuracy of LA1 is good
when n is large, poor when n is small, and fairly insensitive
to M1. Similar comments apply to LA2, but with slightly
worse accuracy overall. The reuse estimator has relatively
poor performance even with large Monte Carlo sample sizes
and is not recommended.

The left part of Table 4 shows the relationship between
the accuracy of the different methods and their computa-
tional cost. The timings show that the most efficient methods
are LA1, ALIS, and LIS: all other methods have worse accu-
racy than another method with lower computational cost.
In particular LIS and ALIS with M1 = M2 = 300 give a
good trade-off between accuracy and computational expense.
Increasing the Monte Carlo sample size to (M1, M2) =
(2000, 10000) gives only a small increase in accuracy for
a very large increase in cost. The right part of Table 4 shows
how the utility evaluation time varies across methods, mod-
els and experiment sizes. It is clear that larger n results in
increased evaluation time, though the relative timings of the
different methods are similar for all examples.

The difference between LIS and ALIS can be considered
in more detail. Table 3 shows that a high percentage of the
numerical optimizations required in the LIS method can be
avoided through ALIS. The percentage is higher for large n,
which is intuitive since we would expect in that case that the
posteriormodewould be closer to the data-generating values.

The percentage of avoided optimizations is also higher for the
Michaelis-Menten examples than for those using the BOD
model. This is consistent with the fact that the priors for the
Michaelis-Menten example were chosen to have a low noise-
to-signal ratio, which is anticipated to give a posterior that
is relatively highly concentrated around the data-generating
values.

Although ALIS greatly reduces the amount of optimiza-
tion required compared to LIS, the computational cost saving
in Table 4 is modest: approximately 5% for (M1, M2) =
(300, 300) and 1.4% for (M1, M2) = (2000, 10000). This
is due to the values of M2, which are large enough that the
optimization cost is relatively small compared to the cost of
the inner loop sampling and averaging. However, for smaller
inner loop sample sizes the cost savings due to ALIS are
much larger; Table 5 shows cost savings of 10–70% from
ALIS compared to LIS when M2 ranges from 10 to 50. The
computational cost saving for ALIS usually comes at the
expense of a small decrease in accuracy, though in one case
(BOD, n = 6, M1 = 2000, M2 = 50) ALIS is both cheaper
and more accurate than LIS.

The smaller values of M2 in Table 5 aremore than an intel-
lectual curiosity; there is empirical and theoretical evidence
that smaller values may sometimes be amore efficient choice
than setting M1 = M2. E.g. for naïve Monte Carlo asymp-
totic results suggest it is optimal to take M2 = O(

√
M1)

(Beck et al. 2018). Empirically, taking as an example the
BOD model with n = 20, we find that ALIS and LIS with
(M1, M2) = (300, 30) are both cheaper and more accurate
than the Laplace approximation with M1 = 2000.

Clearly such timings will depend on the implementation
language and hardware involved, but they nonetheless give
a useful idea of the relative cost of the different methods.
We used C++ in R via the Rcpp and RcppArmadillo libraries
(Eddelbuettel et al. 2011; Eddelbuettel and Sanderson 2014)
to obtain high-performance code. Timings were carried out
on a 2018 Mac Mini with a 3GHz 6-core Intel i5 processor
and 8GB RAM; the calculations took place on a single core.

A common technique to gain better estimates in impor-
tance sampling is to inflate the tails of the importance dis-
tribution, e.g. by using a t-distribution. We obtained results
for t importance distributions, but for brevity the results are
omitted here as there was not a substantial difference in
performance from the multivariate normal importance dis-
tributions. For full details see the first author’s PhD thesis
(Englezou 2018).

4.3 Design optimization results

In this section we compare the performance of the differ-
ent expected utility approximation methods for the purpose
of design optimization. To enable the comparison we found
(near-)optimal designs for each of the different methods
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Fig. 2 Comparison of
(near-)optimal designs found
from the different utility
approximation methods for the
BOD model with n = 20. Each
boxplot corresponds to the best
design found from 10 random
starts of the ACE algorithm
using a particular method, and
shows the distribution of 100
independent evaluations of the
ALIS estimator of expected
Shannon information gain,
obtained with M1 = M2 = 300.
ξ20 refers to a 20-run space
filling design

Fig. 3 Comparison of
(near-)optimal designs found
from the different utility
approximation methods for the
lubricant model with n = 20.
Each boxplot corresponds to the
best design found from 10
random starts of the ACE
algorithm using a particular
method, and shows the
distribution of 100 independent
evaluations of the ALIS
estimator of expected Shannon
information gain, obtained with
M1 = M2 = 300. ξ20 refers to a
20-run space filling design

discussed in Sects. 2 and 3. This was done for the Michaelis-
Menten, BOD, and lubricant models discussed in Sect. 4.1
using the ACE algorithm to perform utility optimization. The
experiment sizes considered were as follows: n = 5, 10, and
20 for theMichaelis-Menten; n = 6, 10, and 20 forBOD; and
n = 20 and n = 53 for the lubricant model. The cases n = 6
for BOD and n = 53 for the lubricant model correspond to
designs in the literature.

Different runs of the ACE algorithm may result in multi-
ple different near-optimal designs being found for the same
design problem. This can arise due to different starting
designs being used and also the stochastic nature of the
expected utility estimates. To obtain more stable results we
therefore ran the ACE algorithm 10 times with a different
random starting design for each problem, i.e. each combina-
tion of approximation method, model, and design size. The
best design resulting from these random starts, judged via
an independent estimate of the expected utility, was chosen

as our estimate of the overall (near-)optimal design for that
problem.

The designs obtained from each method were compared
using an independent estimate of the expected utility calcu-
lated using ALIS with M1 = M2 = 300. This calculation
was repeated 100 times for each design to form an empirical
distribution for the estimator, thereby giving an indication of
the variability of the expected utility estimate. Comparisons
with a ‘naïve’ (i.e. non-optimal) design were also included
for each example. This naïve design was taken from the lit-
erature where available, that is when n = 6 for BOD and
n = 53 for the lubricant model. For other cases a space-
filling design was used as the naïve design, namely a random
Latin Hypercube design. Figures2 and 3 show typical figures
resulting from this process for the BOD and lubricant models
with n = 20. Similar figures for other examples are given in
the first author’s PhD thesis (Englezou 2018).

Within ACE, separate Monte Carlo sample sizes must be
specified for the emulator-building and accept-reject steps.
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These were chosen as follows. In the accept-reject step B =
M1 = M2 = 10000 was used throughout. For the emulator-
building step, in the Michaelis-Menten and BOD models we
used M1 = 2000 for the ‘single-loop’ methods LA1 and
LA2; M1 = M2 = 2000 was used for all other ‘double loop’
methods. For the lubricant model, we used M1 = M2 = 300
for LIS and ALIS, M1 = 300 for LA1 and LA2, and a larger
sample size of M1 = 2000, M2 = 10000 for nMC and nIS.
The latter was needed to avoid failure of the evaluation due
to the zero evidence problem discussed in Sect. 2.1.

Combining results from across the different examples
several observations can be made. First, as anticipated, the
optimized designs are better than naïve comparator designs in
all but one case. The single exception is that, as seen in Fig. 2,
the design from the reuse estimator is worse than a space-
filling design for the BOD model when n = 20. Second, for
the two-parameter models, in most cases designs from the
different approximations have similar expected utility, aside
from the reuse and LA2 designs which appear somewhat
worse for n = 10 and 20. Aside from these special cases
for two-parameter models the utility differences between the
designs from different methods are usually smaller than the
variability of the utility estimator for a fixed design.

Bigger differences in the performance of the designs from
different methods are seen for the lubricant model, which
is of substantially higher dimension. In particular, the ALIS
and LIS designs substantially outperform the designs from
all other methods when n = 20 (see Fig. 3), and all meth-
ods except LA1 when n = 53. This improved performance
for LA1 for large experiment sizes is expected due to the
asymptotic nature of the Laplace approximation.

We did not record computational times for finding (near-
)optimal designs. However, ACE is usually performed with a
fixed number of iterations, and the dominant computational
cost is that of the expected utility evaluations. Thus the rela-
tive cost for the different utility approximation methods will
be similar to Sect. 4.2.

5 Nuisance parameters

In this section we discuss the case where the model con-
tains nuisance parameters, meaning parameters that are not
of direct interest but which must nonetheless be considered
when making inference about the parameters of interest.
Laplace approximations for this case have been developed by
Overstall et al. (2018), and a Layered Multiple Importance
Sampling approximation has been developed by Feng and
Marzouk (2019), who refer to the resulting optimal designs
as ‘focused’. Both of these approaches used the idea of condi-
tioning a multivariate normal approximation to the posterior.
Similar ideas can be applied in the ALIS/LIS context, as fol-
lows.

First we partition the overall parameter vector as ψ =
(θT, γ T)T, where θ ∈ Θ ⊆ R

pθ is the vector of interest
parameters, and γ ∈ Γ ⊆ R

pγ is the vector of nuisance
parameters. The expected Shannon information gain for the
interest parameters now takes the form

U (ξ) =
∫

Θ

∫
Rn

log
fM (y|θ , ξ)

fE (y|ξ)
f (y, θ)dydθ , (6)

where fM (y|θ , ξ) = ∫
Γ

fR(y|θ , γ , ξ) fB(γ |θ)dγ denotes
the marginal density of the response after integrating out the
nuisance parameters. The expected utility (6) can be esti-
mated via

Ũ(A)LIS(ξ) = 1

M1

M1∑
h=1

log
f̃ h
M

f̃ h
E

,

where as before f̃ h
E = 1

M2

∑M2
k=1 fR(yh |ψ̃hk, ξ)

fB (ψ̃hk )

qh(ψ̃hk )
is a

LIS/ALIS estimate of the evidence. In addition, now we also
require a second importance sampling approximation, f̃ h

M , to
estimate the marginal likelihood, fM (y|θ, ξ), of the interest
parameters after integrating out the nuisance parameters.

In particular we suggest using the following approxima-
tion for the marginal likelihood:

f̃ h
M = 1

M3

M3∑
s=1

fR(yh |θh, ˜̃γ hs, ξ)
fB( ˜̃γ hs |θh)

qγ |θh (
˜̃γ hs)

, (7)

where { ˜̃γ hs}M3
s=1 is an i.i.d. sample from the importance den-

sity qγ |θh . To minimize the variance of the estimator, the
importance distribution qγ |θh should approximate the condi-
tional posterior f A(γ |yh, θh, ξ) for the nuisance parameters.
To obtain such an approximation we suggest closed-form
conditioning of the ALIS/LIS approximation to the joint pos-

terior, ψ |yh
approx∼ N (μ̂h, �̂h), giving

qγ |θh ∼ N
[
μ̂

h
γ + �̂

h
γ θ (�̂

h
θθ )

−1(θh − μ̂
h
θ ),

�̂
h
γ γ − �̂

h
γ θ (�̂

h
θθ )

−1�̂
h
θγ

]
,

where μ̂
h
θ , μ̂

h
γ , �̂

h
θθ , �̂

h
θγ , �̂

h
γ θ , �̂

h
γ γ denote the appropriate

subcomponents of μ̂h and �̂h .
Note that we already gave some examples of models with

nuisance parameters in Sect. 4. Approximation (7) was not
needed in these cases, as the nuisance parameters could
be integrated out analytically. Approximation (7) will be
more useful when the nuisance parameters are analytically
intractable.
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6 Discussion

Given the results here, our overall recommendation would be
to use ALIS or LIS when finding (near)-optimal designs if
the computational budget allows. If a smaller cost is required
then LA1 may give a competitive design if the experiment
size is sufficiently large relative to the number of parameters
in the model. We would discourage the use of other methods,
especially the reuse estimator, due to their potential for poor
performance.

Uptake of the ALIS and LIS methods would likely be
enhanced by their inclusion in software such as the acebayes
package. A major barrier to this is that to obtain acceptable
computation times we found it necessary to hard-code var-
ious model-specific functions in C++, including the mean
function η(x, θ), the likelihood and prior, and their deriva-
tives. A non-specialist user is unlikely to have the time or
inclination to implement such functions in C++ for their
models, even with the benefit of high level linear algebra
packages. One potential solution to this quandry may be to
leverage recent probabilistic programming languages such
as STAN (Stan Development Team 2021) or Turing.jl (Ge
et al. 2018), a package for the Julia language (Bezanson
et al. 2017). Both of these frameworks allow user-friendly
high-level specification of Bayesian models but achieve per-
formance comparable to compiled code. In addition these
frameworks allow automatic differentiation, avoiding the
need for detailed manual calculation of derivatives.

The results in this paper are limited to the expected Shan-
non information gain criterion. This is the most common
choice in the literature, and it is a good one when the goal is
inference and uncertainty quantification about the parameters
using the full posterior distribution for reasons discussed in
Sect. 1. In other situations, such as point estimation, a differ-
ent utility functionmay be preferable.We believe that similar
numerical approximations to LIS/ALIS could be developed
for other utility functions. The idea of approximating the opti-
mal importance distribution could again be used, though this
would no longer be the posterior distribution. However, such
methods are outside the scope of the present paper. While
of interest, comparisons with other recent approaches such
as amortized variational inference (Foster et al. 2019) and
layered multiple importance sampling (Feng and Marzouk
2019) are also outside of scope.
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Appendix: Derivative calculations

The ALIS and LIS methods require the (marginal) likeli-
hood and the gradient and Hessian of the log unnormalized
posterior. In this appendix we report the details of these cal-
culations for the models in Sect. 4.

Nonlinear models with�2 treated as nuisance

Here we assume that the model is a general nonlinear regres-
sion (5) where the noise variance is a nuisance parameter and
has the conjugate prior σ 2

ε ∼ IG(a, b), where a and b denote
the shape and scale hyperparameters. In this case the nuisance
parameter can be integrated out analytically. We work on
the scale ϑ j = log θ j on which the parameters are assumed
to follow independent normal priors, ϑ j ∼ N (ϑ̄ j , v j ). The
Michaelis-Menten and BOD examples from Sect. 4 both fit
into this framework.

The marginal likelihood is

fR(y|ϑ, ξ) =
∫ ∞
0

fR(y|ϑ, σ 2
ε , ξ) fB(ϑ)dσ 2

ε

= const. ×
⎧⎨
⎩1 + 1

2b

n∑
i=1

(yi − η(xi , ϑ))2

⎫⎬
⎭

−(a+n/2)

.

The unnormalized log-posterior for ϑ is

log f J (ϑ, y|ξ)

= const. −
(

a + n

2

)
log

(
1 + 1

2b

n∑
i=1

(yi − η(xi ;ϑ))2

)

− 1

2

2∑
j=1

log(2πv j ) −
2∑

j=1

(ϑ j − ϑ̄ j )
2

2v j
.

Its gradient and Hessian are given by

∂

∂ϑk
log f J (ϑ, y|ξ)

= (2a + n)
∑n

i=1(yi − η(xi ,ϑ))
∂η
∂ϑk

(xi ,ϑ)

2b + ∑n
i=1(yi − η(xi ,ϑ))2

− ϑk − ϑ̄k

vk
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∂2

∂ϑk∂ϑl
log f J (ϑ, y|ξ )

= − δkl

vk
+ (2a + n)

(∑n
i=1(yi − η(xi ,ϑ))

∂2η(xi ,ϑ)
∂ϑk∂ϑl

2b + ∑n
i=1(yi − η(xi ,ϑ))2

−
∑n

i=1
∂η
∂ϑk

(xi ,ϑ)
∂η
∂ϑl

(xi ,ϑ)

2b + ∑n
i=1(yi − η(xi ,ϑ))2

+ 2

∑n
i=1(yi − η(xi ,ϑ))

∂η
∂ϑk

(xi ,ϑ)
∑n

i=1(yi − η(xi ,ϑ))
∂η
∂ϑl

(xi ,ϑ)

(2b + ∑n
i=1(yi − η(xi ,ϑ))2)2

)
,

where δkl denotes the Kronecker delta, i.e. δkl = 1 if k =
l, and 0 otherwise. These expressions can be evaluated for
a particular nonlinear model by substituting in appropriate
expressions for the mean function and its partial derivatives.

For the Michaelis-Menten the appropriate formulae are

η(x,ϑ) = xeϑ1

eϑ2 + x
,

∂η

∂ϑ1
(x,ϑ) = xeϑ1

eϑ2 + x
,

∂η

∂ϑ2
(x,ϑ) = − xeϑ1eϑ2

(eϑ2 + x)2
,

∂2η

∂θ21
(x,ϑ) = xeϑ1

eϑ2 + x
,

∂2η(x,ϑ)

∂θ1∂θ2
= − xeϑ1eϑ2

(eϑ2 + x)2
,

∂2η

∂ϑ2
2

(x,ϑ) = 2xeϑ1e2ϑ2

(eϑ2 + x)3
− xeθ1eθ2

(eϑ2 + x)2
,

while for BOD they are

η(x,ϑ) = eϑ1(1 − exp(−xeϑ2)),

∂η

∂ϑ1
(x,ϑ) = eϑ1(1 − exp(−xeϑ2)),

∂η

∂ϑ2
(x,ϑ) = xeϑ1 exp(−xeϑ2)eϑ2 ,

∂2η(x,ϑ)

∂ϑ2
1

= eϑ1(1 − exp(−xeϑ2)),

∂2η(x,ϑ)

∂ϑ1∂ϑ2
= xeϑ1 exp(−xeϑ2)eϑ2 ,

∂2η(x,ϑ)

∂ϑ2
2

= xeϑ1 exp(−xeϑ2)(−xe2ϑ2 + eϑ2).

Note that the approach of Englezou (2018) was to repa-
rameterize only when finding the importance distribution
inside the ALIS/LIS algorithm, which requires the introduc-
tion of Jacobian terms. Here we instead take the more direct
approach of reparameterizing the model before finding any
derivatives. This leads to expressions that are more general
and easier to check, but the two approaches ultimately yield
equivalent answers after appropriate simplification.

Nonlinear models with�2
� treated as an interest

parameter

In this section the interest parameter isψ = (θ1, . . . , θp, ς)T

where the nonlinear model parameters have prior distribu-
tions θ j ∼ N (θ̄ j , v j ) and ς = log(σε) ∼ N (ς̄ , vς ). The
unnormalized log posterior is

log f J (ψ, y|ξ) = − n

2
log 2π − nς

− 1

2e2ς

n∑
i=1

(yi − η(xi , θ))2

− 1

2

p∑
j=1

log(2πv j ) −
p∑

j=1

(θ j − θ̄ j )
2

2v j

− 1

2
log(2πvς) − (ς − ς̄ )2

2vς

,

with gradient given by

∂

∂θk
log f J (ψ, y|ξ)

= e−2ς
n∑

i=1

(yi − η(xi , θ))
∂η

∂θk
(xi , θ) − θk − θ̄k

vk

∂

∂ς
log f J (ψ, y|ξ)

= −n + e−2ς
n∑

i=1

(yi − η(xi , θ))2 − ς − ς̄

vς

,

and Hessian given by

∂2 log f J (ψ, y|ξ)

∂θk∂θl
=e−2ς

n∑
i=1

(yi − η(xi , θ))
∂2η(xi , θ)

∂θk∂θl

− e−2ς
n∑

i=1

∂η

∂θk
(xi , θ)

∂η

∂θl
(xi , θ) − δkl

vk

∂2 log f J (ψ, y|ξ)

∂θk∂ς
= − 2e−2ς

n∑
i=1

(yi − η(xi , θ))
∂η

∂θk
(xi , θ)

∂2 log f J (ψ, y|ξ)

∂ς2 = − 2e−2ς
n∑

i=1

(yi − η(xi , θ))2 − 1

vς

.

For a given nonlinear model the above can be evaluated by
substituting in appropriate expressions for the mean function
η and its partial derivatives. For the lubricant model we have

η(x, θ) = θ1

θ2 + x1
+ θ3x2 + θ4x22 + θ5x32

+ (θ6 + θ7x22 )x2 exp

(
− x1

θ8 + θ9x22

)
,
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∂η

∂θ1
= 1

θ2 + x1
,

∂η

∂θ2
= − θ1

(θ2 + x1)2
,

∂η

∂θ3
= x2 ,

∂η

∂θ4
= x22 ,

∂η

∂θ5
= x32 ,

∂η

∂θ6
= x2 exp

(
− x1

θ8 + θ9x22

)
,

∂η

∂θ7
= x32 exp

(
− x1

θ8 + θ9x22

)
,

∂η

∂θ8
= x1x2(θ6 + θ7x22 ) exp

(
− x1

θ8 + θ9x22

)
1

(θ8 + θ9x22 )
2

,

∂η

∂θ9
= x1x32(θ6 + θ7x22 ) exp

(
− x1

θ8 + θ9x22

)
1

(θ8 + θ9x22 )
2

.

Among the ∂2η
∂θk∂θl

, (k ≤ l), the non-zero terms are

∂2η

∂θ1∂θ2
= − 1

(θ2 + x1)2
,

∂2η

∂θ2∂θ2
= 2θ1

(θ2 + x1)3
,

∂2η

∂θ6∂θ8
= x1x2 exp

(
− x1

θ8 + θ9x22

)
1

(θ8 + θ9x22 )
2

,

∂2η

∂θ6∂θ9
= x1x32 exp

(
− x1

θ8 + θ9x22

)
1

(θ8 + θ9x22 )
2

,

∂2η

∂θ7∂θ8
= x1x32 exp

(
− x1

θ8 + θ9x22

)
1

(θ8 + θ9x22 )
2

,

∂2η

∂θ7∂θ9
= x1x52 exp

(
− x1

θ8 + θ9x22

)
1

(θ8 + θ9x22 )
2

,

∂2η

∂θ8∂θ8
= x1x2(θ6 + θ7x22 )

× exp

(
− x1

θ8 + θ9x22

){
x1

(θ8 + θ9x22 )
4

− 2

(θ8 + θ9x22 )
3

}
,

∂2η

∂θ8∂θ9
= x1x32(θ6 + θ7x22 )

× exp

(
− x1

θ8 + θ9x22

){
x1

(θ8 + θ9x22 )
4

− 2

(θ8 + θ9x22 )
3

}
,

∂2η

∂θ9∂θ9
= x1x52(θ6 + θ7x22 )

× exp

(
− x1

θ8 + θ9x22

){
x1

(θ8 + θ9x22 )
4

− 2

(θ8 + θ9x22 )
3

}
.

All other second-order derivatives are either zero or can be
obtained from the above by symmetry.
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