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ABSTRACT

This paper proposes an algorithm to generate random numbers from any member of the truncated
multivariate elliptical family of distributions with a strictly decreasing density generating function.
Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a
slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate
the first and the second moment for the truncated multivariate elliptical distributions where Monte
Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated
part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its
usefulness. Methods are available for free in the new R library relliptical.

Keywords Elliptical distributions · Slice sampling algorithm · Truncated distributions · Truncated moments

1 Introduction

The use of truncated distributions arises in a wide variety of statistical models as survival analysis, censored data models,
Bayesian models with truncated parameters space, and abound in such fields as agronomy, biology, environmental
monitoring, medicine, and economics. Algorithms like Expectation-Maximization (EM) (Dempster et al., 1977) are
employed frequently in multivariate censored data analysis under a likelihood-based perspective for its facility to deal
with missing and partially observed data. This algorithm requires the computation of conditional truncated moments,
commonly the first two moments. For example, Matos et al. (2013) and Matos et al. (2016) estimated the parameters of
a censored mixed-effects model for irregularly repeated measures via the EM algorithm, which needed to compute the
first two moments of a truncated multivariate t (TMVT) and a truncated multivariate normal (TMVN) distributions,
respectively.

In this context, there are a few libraries in R (R Core Team, 2021) which provide truncated multivariate moments. For
instance, the package tmvtnorm (Wilhelm, 2015) computes the mean and the variance of the TMVN distribution by
deriving its moment generating function, while the MomTrunc library (Galarza et al., 2021) uses a recursive approach
method proposed by Kan and Robotti (2017) to compute arbitrary higher-order moments. On the other hand, for
the TMVT distribution, the packages TTmoment (Ho et al., 2015) and MomTrunc compute its two first moments.
Moreover, the first library only handles integer degrees of freedom greater than 4, while the latter can compute even
high-order moments for any degrees of freedom (Galarza et al., 2021).

Variations of the EM algorithm such as Stochastic Approximation EM (SAEM) (Delyon et al., 1999) and Monte
Carlo EM (MCEM) (Wei and Tanner, 1990) replace the conditional expectations by an approximation that requires to
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Truncated Elliptical Family of Distributions

draw independent random observations from a truncated distribution. For instance, Lachos et al. (2017) estimated the
parameters of a linear spatial model for censored data using the SAEM algorithm, which needed to generate random
samples from the TMVN distribution to perform the stochastic approximation step. More recently, also using the SAEM
algorithm, Lachos et al. (2019) proposed a robust multivariate linear mixed model for multiple censored responses
based on the scale mixtures of normal (SMN) distributions. Moreover, generating random numbers from truncated
distributions is also required in Bayesian models, Gelfand et al. (1992) showed how to perform Bayesian analysis for
constrained parameters or truncated data problems by using Gibbs sampling.

There are several methods to generate random samples from a truncated distribution in the literature, and the common
one is the rejection sampling technique. This method draws samples from the non-truncated distribution and retains
only the samples inside the support region. However, the procedure may be inefficient, especially when the truncation
interval is too small or it is located at a less probable area of the probability density function (pdf). Neal (2003) proposed
proposed the Slice sampling method, a procedure that turns sampling from a truncated density into sampling repeatedly
from uniform distributions instead. This algorithm is easy to code, fast and does not reject samples, making it more
efficient than the conventional rejection method.

To the best of our knowledge, there are no proposals in the literature to generate samples from other multivariate
truncated distributions in the elliptical class other than the TMVN and TMVT distributions (available in the tmvtnorm
and TTmoment packages). Hence, motivated by the slice sampling algorithm, we propose a general method to obtain
samples from any truncated multivariate elliptical distribution with strictly decreasing density generating function
(dgf). Using conditional expectation properties, we also propose an efficient algorithm to approximate the moments of
the most common distribution of this class: the truncated multivariate normal, Student-t, slash, contaminated normal,
and Pearson VII distributions. This method requires less running time when compared with the existing ones, since
it deals with the truncated and non-truncated part of the vector separately. Our proposal can be reached through
the R package relliptical. Finally, it is worth mentioning that moments of truncated elliptical distributions can be
used to compute truncated moments for the selection elliptical family of distributions, a wide family which includes
complex multivariate asymmetric versions of the elliptical distributions as the extended skew-normal, the unified skew-t
distributions, among others. Therefore, our proposal opens the doors for the calculation of truncated moments of
complex elliptical asymmetric distributions, which are of particular interest for the development of robust censored
models with asymmetry, heavy tails and missingness (see for instance Galarza et al., 2021; de Alencar et al., 2021).

The paper is organized as follows. Section 2 shows some results related to the elliptical and truncated elliptical family
of distributions and a brief description of the slice sampling algorithm. Section 3 is devoted to the formulation of the
sampling algorithm for the truncated elliptical distributions, whereas Section 4 focuses on our proposed method to
approximate the first and the second moment. For the last two sections, we present a brief introduction to its respective
R function. A simulation study that compares the mean and covariance matrix for the TMVT distribution estimated
through different methods in R is presented as well. Section 5 displays an application on censored Gaussian spatial
models throughout the analysis of the Missouri dioxin contamination dataset. Finally, Section 6 concludes with a
discussion.

2 Preliminaries

2.1 Elliptical Family of Distributions

As defined in Muirhead (2009) and Fang (2018), a random vector X ∈ Rp is said to follow an elliptical distribution
with location parameter µ ∈ Rp, positive-definite scale matrix Σ ∈ Rp×p, and density generating function g, if its pdf
is given by

fX(x) = cp|Σ|−1/2g
(
(x− µ)>Σ−1(x− µ)

)
, x ∈ Rp, (1)

where g(t) is a non-negative Lebesgue measurable function on [0,∞) such that
∫∞
0
tp/2−1g(t)dt <∞ and |Σ| denotes

the determinant of matrix Σ. Moreover,

cp =
Γ(p/2)

πp/2

(∫ ∞
0

tp/2−1g(t)dt

)−1
is the normalizing constant, with Γ(·) representing the complete gamma function. We will use the notation X ∼
E`p(µ,Σ; g).

Members of the elliptical family of distributions are characterized by their density generating function g. Some examples
of the elliptical family of distributions are:

• The multivariate normal distribution, X ∼ Np(µ,Σ), with mean µ and variance-covariance matrix Σ, arises when
the dgf takes the form g(t) = exp(−t/2), t ≥ 0.
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Truncated Elliptical Family of Distributions

• The multivariate Student-t distribution, X ∼ tp(µ,Σ, ν), where µ is the location parameter, Σ is the scale matrix,
and ν is called the degrees of freedom, is obtained when g(t) = (1 + t/ν)−(ν+p)/2, t ≥ 0.

• The multivariate power exponential, X ∼ PEp(µ,Σ, β), with kurtosis parameter β > 0. In this case, g(t) =
exp(−tβ/2), t ≥ 0. A particular case of the power exponential distribution is the normal distribution, which arises
when β = 1.

• The multivariate slash, X ∼ SLp(µ,Σ, ν), we get a random variable with multivariate slash distribution when
g(t) =

∫ 1

0
uν+p/2−1 exp{−ut/2}du, t ≥ 0, ν > 0.

• The multivariate Pearson VII distribution, X ∼ PVIIp(µ,Σ,m, ν), with parameters µ ∈ Rp, Σ ∈ Rp×p, m > p/2,
and ν > 0 is obtained when g(t) = (1 + t/ν)−m, t ≥ 0.

For more distributions belonging to this family, please see Fang (2018).

2.2 Truncated Elliptical Family of Distributions

Let A ⊆ Rp be a measurable set. We say that a random vector Y ∈ Rp has truncated elliptical distribution with support
A, location parameter µ ∈ Rp, scale parameter Σ ∈ Rp×p and dgf g, if its pdf is given by

fY(y) =
g
(
(y− µ)>Σ−1(y− µ)

)∫
A
g
(
(y− µ)>Σ−1(y− µ)

)
dy

=
fX(y)

Pr(X ∈ A)
, y ∈ A, (2)

where X ∼ E`p(µ,Σ; g). We use the notation Y ∼ TE`(µ,Σ; g,A). Notice that the pdf of Y is written as the ratio
between the pdf of X ∼ E`p(µ,Σ; g) and Pr(X ∈ A), so the pdf of Y exists if the pdf of X does, which occurs if Σ is a
positive-definite (see, Morán-Vásquez and Ferrari, 2019). The variable Y is also said to be an elliptical distribution
truncated on A, being represented by Y = X| (X ∈ A).

As in the elliptical family of distributions, the dgf g determines any distribution within the truncated elliptical class
of distributions, for example, if g(t) = (1 + t/ν)−(ν+p)/2, t ≥ 0, ν > 0, then Y has TMVT distribution. We will
denote the different members of the truncated elliptical family defined in the subsection before as Y ∼ TNp(µ,Σ;A)
for the TMVN distribution, Y ∼ Ttp(µ,Σ, ν;A) for the TMVT distribution, Y ∼ TPEp(µ,Σ, β;A) for the truncated
multivariate power exponential, Y ∼ TSLp(µ,Σ, ν;A) for the truncated multivariate slash distribution, and Y ∼
TPVIIp(µ,Σ,m, ν;A) for the truncated multivariate Pearson VII distribution.

2.3 Slice Sampling Algorithm

Introduced by Neal (2003), the slice sampling algorithm is a Markov Chain Monte Carlo (MCMC) method for
drawing random samples from a given distribution. The algorithm’s idea is to sample uniformly from the (p + 1)-
dimensional region under the graph of f(x), a non-negative function proportional to the pdf of X. Hence, let Y be an
auxiliary variable such that the joint pdf of X and Y is uniform over the region U = {(x, y) : 0 < y < f(x)}, i.e.,
fX,Y (x, y) ∝ I (0 < y < f(x)), with I(·) being the indicator function. Therefore, we can obtain samples from the
distribution of X by sampling jointly (x, y) and then ignoring y values.

Figure 1: Slice sampling algorithm for univariate random variables.

x0

y1
Slice

f(x0)

Y|(X = x0) ~ U(0, f(x0))

Step 1

x0x1

y1

Slice

X|(Y = y1) ~ U({ x : y1 < f(x) })

Step 2

Note that generating independent random points uniformly distributed on U may not be easy. To overcome this problem,
Neal (2003) defined a Markov Chain that converges to an uniform distribution, in the same manner than the Gibbs
sampling or Metropolis-Hastings algorithms. Then, considering Gibbs sampler steps, the slice sampling algorithm at
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iteration k works as follows: given the current value of xk−1 sample yk from Y |(X = xk−1) ∼ U (0, f(xk−1)), then
draw xk from the conditional distribution of X given yk, which is uniform over the region Sk = {x : yk < f(x)}, i.e.,
X|(Y = yk) ∼ U({x : yk < f(x)}), for all k = 1, 2, . . . , n, where n is the desired sample size.

Figure 1 shows the steps of the slice sampling algorithm forX being a univariate random variable. Given an initial value
X = x0, we draw y1 uniformly over the interval (0, f(x0)) and then we sample x1 from the conditional distribution of
X|(Y = y1), i.e., uniformly over the interval S1 = {x : y1 < f(x)}. These two steps are repeated n times.

3 Sampling from the Truncated Elliptical Family of Distributions

Next, we describe the proposed slice sampling algorithm with Gibbs sampler steps to generate samples from a
multivariate elliptical distribution with strictly decreasing dgf. Without loss of generality, we first consider a p-variate
truncated elliptical distribution with zero location parameter, positive-definite scale matrix R ∈ Rp×p, dgf g, and
truncation region A = {x : a < x < b}, a < b ∈ Rp, in other words, we will consider X ∼ TE`p(0,R; g,A). Here
R is a correlation matrix, such that the scale matrix can be written as Σ = ΛRΛ, where Λ = diag(σ11, . . . , σpp). The
pdf of X is given by

fX(x) ∝ g
(
x>R−1x

)
I (x ∈ A) , (3)

Now, in order to sample uniformly from the (p + 1)-dimensional region under the plot of fX(x), we introduce an
auxiliary variable Y , such that the joint pdf of X and Y is

fX,Y (x, y) ∝ I
(
0 < y < g

(
x>R−1x

))
I (a < x < b) . (4)

It is enough to calculate the conditional distributions of Y |X and X|Y in order to established our slice sampling
algorithm with Gibbs steps to generate independent random observations from the pdf in (4). These are given by:

fY |X(y|x) ∝ I
(
0 < y < g

(
x>R−1x

))
and

fX|Y (x|y) ∝ I
({

x : y < g
(
x>R−1x

) }
∩ {a < x < b}

)
.

Note that sampling y from the distribution of Y |(X = x) is straightforward, but sampling from X|(Y = y) is not trivial.
Thus, we use the idea of Ho et al. (2012), that consists in sampling each element of X given the remaining elements,
i.e., sampling Xj given x−j = (x1, . . . , xj−1, xj+1, . . . , xp)

> and y, for all j = 1, . . . , p. Hence, the following steps
are performed to draw a random number from the distribution of Xj |x−j , y.

1. Let κy = g−1(y). Since g is a strictly decreasing function, it follows that y < g(x>R−1x) is equivalent to
κy > x>R−1x.

2. Write x>R−1x = ρjj (xj − λj)2 − ρjjλ2j + ηj , where ρij is the (i, j)th element of the inverse of R, ηj =∑
t 6=j
∑
r 6=j xtxrρ

tr and λj = − 1
ρjj

∑
r 6=j xrρ

jr.

3. Combining items 1 and 2, we obtain that λj − τj < xj < λj + τj , where τj =
(
λ2j + 1

ρjj (κy − ηj)
)1/2

4. Because xj ∈ (aj , bj), thereby a∗j = max(aj , λj − τj) < xj < min(bj , λj + τj) = b∗j .

Therefore, the steps to draw n samples from a p-variate truncated elliptical distribution X ∼ TE`p(0,R; g,A) are
summarized in Algorithm 1. As seen, only univariate uniform simulations are involved in the algorithm which are fast
to compute. Note also that the assumption that the dgf g is strictly decreasing has been used in step 1. A general case
can be easily considered by studying the extrema points of g.

Moreover, members of the truncated elliptical family of distributions are closed under affine transformations (Fang,
2018). Hence drawing samples from Y ∼ TE`p(µ,Σ; g, (a,b)) may be readily done by sampling first from X ∼
TE`p(0,R; g, (a∗,b∗)), and then recovery Y by the following transformation Y = µ + ΛX, such that Σ = ΛRΛ,
a∗ = Λ−1 (a− µ), and b∗ = Λ−1 (b− µ).

3.1 R function and Examples

Algorithm 1 and the transformation described previously were implemented in the R package relliptical. Its main
function for random number generation is called rtelliptical, whose signature is the following.
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Algorithm 1: Slice sampling algorithm
Input: Sample size n ≥ 1, initial value x0 ∈ Rp, scale matrix R ∈ Rp×p, lower bound a ∈ Rp, upper bound

b ∈ Rp and strictly decreasing dgf g(t), t ≥ 0.
Initialization;
for i← 1 to n do

Sample yi from Y |xi−1 ∼ U(0, g(x>i−1R−1xi−1));
κy ← g−1(yi);
for j ← 1 to p do

ηj ←
∑
t 6=j

∑
r 6=j

xtxrρ
tr; λj ← −

1

ρjj

∑
r 6=j

xrρ
jr; τj ←

(
λ2j +

1

ρjj
(κy − ηj)

)1/2

;

Draw xj from Xj |x−j , y ∼ U(max(aj , λj − τj),min(bj , λj + τj));
xi[j]← xj ; X[i, j]← xj ;

end
end
Result: X

rtelliptical(n=1e4 , mu=rep(0,length(lower)), Sigma=diag(length(lower)), lower ,
upper=rep(Inf ,length(lower)), dist="Normal", nu=NULL , expr=NULL ,
gFun=NULL , ginvFun=NULL , burn.in=0, thinning =1)

In this function, n ≥ 1 is the number of observations to be sampled, nu is the additional parameter or vector of
parameters depending on the distribution of X, mu is the location parameter, Sigma is the positive-definite scale matrix,
and lower and upper are the lower and upper truncation points, respectively. The truncated normal, Student-t, power
exponential, Pearson VII, slash, and contaminated normal distributions can be specified through the argument dist.

The following examples illustrate the function rtelliptical, for drawing samples from truncated bivariate distri-
butions with location parameter µ = (0, 0)>, scale matrix elements σ11 = σ22 = 1, and σ12 = σ21 = 0.70, and
truncation region A = {x : a < x < b}, with a = (−2,−2)> and b = (3, 2)>. The distributions considered are the
predefined ones in the package.

• Truncated normal

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), dist="Normal")

• Truncated Student-t with ν = 3 degrees of freedom

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), dist="t", nu=3)

• Truncated power exponential with kurtosis β = 2

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), dist="PE", nu=2)

• Truncated Pearson VII with parameters m = 5/2 and ν = 3

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), dist="PVII", nu=c(2.50 , 3.0))

• Truncated slash with 3/2 degrees of freedom

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), dist="Slash", nu =1.50)

• Truncated contaminated normal with ν = 0.70 and ρ = 0.20

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), dist="CN", nu=c(0.70 , 0.20))

5
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Note that, no additional arguments are passed for the TMVN distribution. In the opposite way, for the truncated
contaminated normal and Pearson VII distributions, nu is a vector of length two, and for the remaining distributions, this
parameter is a non-negative scalar. An important remark is that exists closed form expressions to compute κy = g−1(y)
for the normal, Student-t, power exponential, and Pearson VII distributions, however, the contaminated normal and
slash distributions require numerical methods for this purpose. This value is calculated as the root of the function
g(t)− y = 0, t ≥ 0, through the Newton-Raphson algorithm for the contaminated normal, and using Brent’s method
(Brent, 2013), for the slash distribution, a mixture of linear interpolation, inverse quadratic interpolation, and the
bisection method.

This function also allows generating random numbers from other truncated elliptical distributions not specified in
the dist argument, by supplying the dgf through arguments either expr or gFun. The easiest way is to provide
the dgf expression to argument expr as a character. The notation used in expr needs to be understood by package
Ryacas0 (Andersen et al., 2020), and the R environment. For instance, for the dgf g(t) = e−t, the user must provide
expr = "exp(1)^(-t)". For this case, when a character expression is provided to expr, the algorithm tries to
compute a closed-form expression for the inverse function of g(t), however, this is not always possible (a warning
message is returned). On the other hand, if it is no possible to pass an expression to expr, due to the complexity
of the expression, the user may provide a custom R function to the gFun argument. By default, its inverse function
is approximated numerically, however, the user may also provide its inverse to the ginvFun argument to gain some
computational time. When gFun is provided, arguments dist and expr are ignored.

For example, to generate samples from the bivariate truncated logistic distribution with same parameters as before, and
which has dgf g(t) = e−t/(1 + e−t)2, t ≥ 0, we can run the following code.

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), expr="exp(1)^(-t)/(1+exp(1)^(-t))^2")

Another distribution that belongs to the elliptical family is the Kotz-type distribution with parameters r > 0, s > 0, and
2N + p > 2, whose dgf is g(t) = tN−1e−rt

s

, t ≥ 0 (Fang, 2018). For this distribution, g(t) is not strictly decreasing,
however, for (2 − p)/2 < N ≤ 1, it holds. Hence, our proposal works for r > 0, s > 0, and (2 − p)/2 < N ≤ 1.
For this type of more complex dgf, it is advisable to pass it through the gFun argument as an R function (with other
parameters as fixed values). In the following example, we draw samples from a bivariate Kotz-type distribution with
settings as before, and extra parameters r = 2, s = 1/4, and N = 1/2.

rtelliptical(n=1e4 , mu=c(0,0), Sigma=matrix(c(1 ,0.7 ,0.7 ,1) ,2,2), lower=c(-2,-2),
upper=c(3,2), gFun=function(t){t^(-1/2)*exp(-2*t^(1/4))})

Figure 2 shows the scatterplot and marginal histograms for the n = 104 observations sampled from each of the truncated
bivariate distributions referred above.

Figure 2: Scatterplot and marginal histograms for the n = 104 observations sampled for some bivariate truncated
elliptical distributions.
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As mentioned by Robert and Casella (2010) and Ho et al. (2012), the slice sampling algorithm with Gibbs steps generates
random samples conditioned on previous values, resulting in a sequence of correlated samples. Thus, it is essential to
analyze the dependence effect of the proposed algorithm. Figure 6 in Section A.1 displays the autocorrelation plots for
each one of the distributions, where we notice that the autocorrelation drops quickly and becomes negligibly small
when lags become large, evidencing well mixing and quickly converging for these examples. If necessary, initial
observations can be discarded by means of the burn.in argument. Finally, autocorrelation can be decimated by
setting the thinning argument. Thinning consists in picking separated points from the sample, at each kth step. The
thinning factor reduces the autocorrelation of the random points in the Gibbs sampling process. As natural, this value
must be an integer greater than or equal to 1.

4 Moments of Truncated Multivariate Elliptical Distributions

This section describes an algorithm to compute the first two moments and the variance-covariance matrix of a random
vector, whose distribution belongs to the elliptical family. Furthermore, we are going to apply this algorithm to
some well-known distributions. Let X be a p-variate random vector that follows a truncated multivariate elliptical
distribution with location parameter µ ∈ Rp, positive-definite scale matrix Σ ∈ Rp×p, dgf g, and support A ⊆ Rp,
i.e., X ∼ TE`p(µ,Σ; g,A). The more straightforward approach for this problem is to use Monte Carlo integration.
Following this approach, the estimates are given by

Ê(X) =
1

n

n∑
i=1

xi, ̂E(XX>) =
1

n

n∑
i=1

xix>i , Ĉov(X) = ̂E(XX>)− Ê(X)Ê(X)
>
, (5)

where xi is the ith sample of the random vector X draws from TE`p(µ,Σ; g,A). However, it is well-known that the
execution time needed to perform Monte Carlo integration depends on the algorithm employed to draw samples, the
number of random points (n) used in the approximation, and the length of the random vector (p). Then, it depends
on some variables that might represent a considerable computational effort. Nevertheless, we can save time when
the random vector X has non-truncated components following the idea of Galarza et al. (2020). They proposed to
decompose X into two vectors, X1 and X2, in such a way that X1 is the random vector of truncated variables and X2 is
the non-truncated part, and then compute the moments for the truncated variables using any method and the remaining
moments using properties of the conditional expectation. Before showing our algorithm, we state an extremely important
result.

Proposition 4.1 (Marginal and conditional distribution of the Elliptical family) Let X ∈ Rp be partitioned into two
vectors, X1 ∈ Rp1 and X2 ∈ Rp2 , such that p = p1 + p2 and X = (X>1 ,X

>
2 )> has joint multivariate elliptical

distribution as follows

X =

(
X1

X2

)
∼ E`p1+p2

(
µ =

(
µ1
µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
; g(p1+p2)

)
,

where µ1 ∈ Rp1 , µ2 ∈ Rp2 are location vectors, Σ11 ∈ Rp1×p1 ,Σ22 ∈ Rp2×p2 ,Σ12 ∈ Rp1×p2 ,Σ21 ∈ Rp2×p1 are
dispersion matrices, and g(p1+p2) is the dgf. Fang (2018) demonstrated that the elliptical family of distributions is
closed under marginalization and conditioning. Hence, the distribution of X1 and X2|(X1 = x) are also elliptical, with

X1 ∼ E`p1
(
µ1,Σ11; g

(p1)
1

)
,

X2|(X1 = x) ∼ E`p2
(
µ2 + Σ21Σ

−1
11 (x− µ1),Σ22 −Σ21Σ

−1
11 Σ12; g

(p2)
x

)
.

Therefore, considering that X1 is the vector of truncated variables with truncation region A1 and X2 is the vector of
non-truncated variables, by Proposition 4.1 we have that

X1 ∼ TE`p1(µ1,Σ11; g
(p1)
1 , A1) and

X2|(X1 = x) ∼ E`p2
(
µ2 + Σ21Σ

−1
11 (x− µ1),Σ22 −Σ21Σ

−1
11 Σ12; g

(p2)
x

)
.

Let ξ1 = E(X1|X1 ∈ A1) and Ω11 = Cov(X1|X1 ∈ A1). Then, it follows that E(X|X ∈ A) = E(E(X|X1)|X1 ∈ A1),
that is

E(X|X ∈ A) = E
(

X1

µ2 + Σ21Σ
−1
11 (X1 − µ1)

∣∣∣X1 ∈ A1

)
=

(
ξ1

µ2 + Σ21Σ
−1
11 (ξ1 − µ1)

)
. (6)

On the other hand, we have that Cov(X|X ∈ A) = Cov(E(X|X1)|X1 ∈ A1) + E(Cov(X|X1)|X1 ∈ A1), with

7
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• Cov(X1,E(X2|X1)|X1 ∈ A1) = Cov(X1,Σ21Σ
−1
11 X1|X1 ∈ A1) = Ω11Σ

−1
11 Σ12,

• Cov(E(X2|X1)|X1 ∈ A1) = Cov(Σ21Σ
−1
11 X1|X1 ∈ A1) = Σ21Σ

−1
11 Ω11Σ

−1
11 Σ12,

• E(Cov(X2|X1)|X1 ∈ A1) = ω2.1(Σ22 −Σ21Σ
−1
11 Σ12),

where ω2.1 = E (h(X1)|X1 ∈ A1) is the expected value of a function h of X1 depending on the conditional dgf g(p2)x1 .
So, the variance-covariance matrix of X is given by

Cov(X|X ∈ A) =

(
Ω11 Ω11Σ

−1
11 Σ12

Σ21Σ
−1
11 Ω11 ω2.1Σ22 −Σ21Σ

−1
11

(
ω2.1Ip1 −Ω11Σ

−1
11

)
Σ12

)
, (7)

Thereby, we just need Monte Carlo integration to approximate ξ1, Ω11, and ω2.1 (if necessary). A brief summary of
how our algorithm works is given in Algorithm 2.

Algorithm 2: Mean and variance approximation
Input: Sample size n ≥ 1, location parameter µ ∈ Rp, scale matrix Σ ∈ Rp×p, lower bound a ∈ Rp, upper bound

b ∈ Rp and dgf g(t), t ≥ 0.
Identify: µ1,µ2,Σ11,Σ22,Σ12, A1 = {x1 : a1 < x1 < b1};
Draw x1i from X1 ∼ TE`p1(µ1,Σ11; gp1 , A1), i = 1, . . . , n;

ξ̂1 ←
1

n

n∑
i=1

x1i; Ω̂11 ←
1

n

n∑
i=1

x1ix>1i − ξ̂1ξ̂
>
1 ; ω̂2.1 ←

1

n

n∑
i=1

h(x1i);

Ê(X)←
(

ξ̂1
µ2 + Σ21Σ

−1
11 (ξ̂1 − µ1)

)
;

Ĉov(X)←

(
Ω̂11 Ω̂11Σ

−1
11 Σ12

Σ21Σ
−1
11 Ω̂11 ω̂2.1Σ22 −Σ21Σ

−1
11

(
ω̂2.1Ip1 − Ω̂11Σ

−1
11

)
Σ12

)
;

̂E(XX>)← Ĉov(X) + Ê(X)Ê(X)
>

;

Result: Ê(X), ̂E(XX>), Ĉov(X)

4.1 Mean and Variance for the Truncated Elliptical Distributions

Now, in this subsection, we analyze how Algorithm 2 works for some specific distributions considering all the conditions
used previously.

• Normal: If X ∼ Np(µ,Σ), the marginal distribution is X1 ∼ Np1(µ1,Σ11) and the conditional distribution is
X2|(X1 = x) ∼ Np2(µ2.1,Σ2.1), with µ2.1 = µ2 + Σ21Σ

−1
11 (x − µ1) and Σ2.1 = Σ22 − Σ21Σ

−1
11 Σ12. Then,

With the above conditions, Algorithm 2 firstly sample X1 from the truncated multivariate normal distribution with
mean µ1, covariance matrix Σ11, truncation region A1 and ω2.1 equal to 1.

• Student-t: If X ∼ tp(µ,Σ, ν), ν > 0, the marginal and conditional distributions are X1 ∼ tp1(µ1,Σ11, ν)

and X2|(X1 = x) ∼ tp2(µ2.1, λΣ2.1, ν + p1), respectively, such that µ2.1 = µ2 + Σ21Σ
−1
11 (x − µ1), λ =

(ν + δ1(x))/(ν + p1), Σ2.1 = Σ22 − Σ21Σ
−1
11 Σ12 and δ1(x) = (x − µ1)>Σ−111 (x − µ1). For this distribution

E(X) < ∞, if ν > 1 and Cov(X) < ∞, if ν > 2. Therefore, the algorithm samples X1 from the truncated t
distribution with location parameter µ1, scale matrix Σ11, ν degrees of freedom, truncation region A1, and ω2.1

computed by

ω2.1 =
ν + E(δ1(X1)|X1 ∈ A1)

ν + p1 − 2
,

with E(δ1(X1)|X1 ∈ A1) = tr(Ω11Σ
−1
11 )+(ξ1−µ1)>Σ−111 (ξ1−µ1). It is worth mention that for doubly truncated

variables, the mean and the variance exist for all ν > 0. Then, if X has at least two doubly truncated variables, the
mean and the variance-covariance matrix exist for all ν > 0. For more details about the existences of the moments
see Galarza et al. (2020).

• Pearson VII: If X ∼ PVIIp(µ,Σ,m, ν),m > p/2, ν > 0, then E(X) = µ and Cov(X) = ν
2m−p−2Σ. In this case,

E(X) <∞, if m > (p+ 1)/2 and Cov(X) <∞, if m > (p+ 2)/2. The marginal and the conditional distributions
are X1 ∼ PVIIp1(µ1,Σ11,m− p2/2, ν) and X2|(X1 = x) ∼ PVIIp2(µ2.1,Σ2.1,m, ν + δ1(x)), respectively, such

8
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that µ2.1 = µ2 + Σ21Σ
−1
11 (x − µ1), Σ2.1 = Σ22 −Σ21Σ

−1
11 Σ12 and δ1(x) = (x − µ1)>Σ−111 (x − µ1). So, the

proposed algorithm was implemented by sampling X1 from the truncated multivariate Pearson VII distribution with
location parameter µ1, scale matrix Σ11, additional parameters m− p2/2 > p1/2, ν > 0, and truncation region A1.
The constant ω2.1 is

ω2.1 =
ν + E(δ1(X1)|X1 ∈ A1)

2m− p2 − 2
,

where E(δ1(X1)|X1 ∈ A1) is given as in the Student-t distribution. For this distribution, first and second moments
for doubly truncated variables exist for all m > p/2. Then, if X has at least two doubly truncated variables, the mean
and the variance exist for all m > p/2. For more details about the existence of the moments, see Appendix B.

• Slash: If X ∼ SLp(µ,Σ, ν), ν > 0, then E(X) = µ and Cov(X) = ν
ν−1Σ. In this case, Cov(X) < ∞,

if ν > 1. The marginal distribution is X1 ∼ SLp1(µ1,Σ11, ν) and the conditional distribution is X2|(X1 =

x) ∼ E`p2(µ2.1,Σ2.1; g(p2)), such that µ2.1 = µ2 + Σ21Σ
−1
11 (x − µ1), Σ2.1 = Σ22 −Σ21Σ

−1
11 Σ12, g(p2)(t) =∫ 1

0
uν+p/2−1 exp{−u(t + δ1(x))/2}du and δ1(x) = (x − µ1)>Σ−111 (x − µ1). Note that X2|X1 does not follow

slash distribution, but its distribution belongs to the elliptical family (see Appendix C). So, X1 is sampled from the
truncated multivariate slash distribution with location parameter µ1, scale matrix Σ11, ν degrees of freedom and
truncation region A1. The constant ω2.1 is given by

ω2.1 =
ν

ν − 1
E
(

SLp1(X1;µ1,Σ11, ν − 1)

SLp1(X1;µ1,Σ11, ν)

∣∣∣X1 ∈ A1

)
.

This constant can be also approximated via Monte Carlo integration.
• Contaminated Normal: If X ∼ CNp(µ,Σ, ν, ρ), 0 < ν, ρ < 1, then the distributions of X1 and X2|(X1 = x)

are CNp1(µ1,Σ11, ν, ρ) and CNp2(µ2.1,Σ2.1, ν2.1, ρ), respectively, such that µ2.1 = µ2 + Σ21Σ
−1
11 (x − µ1),

Σ2.1 = Σ22 −Σ21Σ
−1
11 Σ12, ν2.1 = νφp1(x;µ1, ρ

−1Σ11)/(νφp1(x;µ1, ρ
−1Σ11) + (1− ν)φp1(x;µ1,Σ11)) and

φp(x;µ,Σ) denotes the pdf of a p-variate normal distribution with mean µ, variance matrix Σ evaluated at point
x ∈ Rp1 . Thus, X1 is sampled from the truncated contaminated normal distribution with parameters µ1, Σ11, ν and
ρ. The constant is ω2.1 is ω2.1 = ν∗2.1/ρ+ 1− ν∗2.1, where ν∗2.1 = E(ν2.1|X1 ∈ A1), this value is also approximated
via Monte Carlo integration.

• Power exponential: If X ∼ PEp(µ,Σ, β), β > 0, then E(X) = µ and Cov(X) = ωΣ, with ω =

21/βΓ(n+2
2β )/(nΓ( n2β )). The marginal distribution of X1 belongs to the elliptical family of distributions with dgf

g(p1)(t) = t
p−p1

2

∫ 1

0
w
p1−p

2 (1−w)
p−p1

2 −1 exp{− tβ

2wβ
}dw, X1 ∼ E`p1(µ1,Σ11; g(p1)), and the conditional distribu-

tion is X2|(X1 = x) ∼ E`p2(µ2.1,Σ2.1; g(p2)) where µ2.1 = µ2 + Σ21Σ
−1
11 (x−µ1), Σ2.1 = Σ22−Σ21Σ

−1
11 Σ12,

g(p2)(t) = exp{− 1
2 (t+δ1(x))β} and δ1(x) = (x−µ1)>Σ−111 (x−µ1) is the squared Mahalanobis distance (Gómez

et al., 1998). Since sampling directly from the marginal distribution of X1 could be really complicated, we will use a
different approach that consists of drawing points from the whole random vector of length p and then approximate
the moments using Monte Carlo integration.

4.2 R function and Examples

The Algorithm 2 for the distributions mentioned in subsection 4.1 has been implemented in the R function
mvtelliptical, whose signature together with default values is the following.

mvtelliptical(lower , upper=rep(Inf ,length(lower)), mu=rep(0,length(lower)),
Sigma=diag(length(lower)), dist="Normal", nu=NULL , n=1e4, burn.in=0,
thinning =3)

The arguments lower and upper are the lower and upper truncation points of length p, respectively, mu is the location
parameter of length p, Sigma is the p × p positive-definite scale matrix, nu is the additional parameter or vector
of parameters depending on the dgf g. The argument dist indicates the distribution to be used. The parameters
n, burn.in, and thinning are related to the Monte Carlo approximation, where n is the number of samples to be
generated, burn.in is the number of samples to be discarded as burn-in phase, and thinning is a factor for reducing
autocorrelation between observations.

Example 1

We illustrate how the method works considering a random vector of length 4 with truncated Student-t distribution.
In this example, the second variable is not truncated, and the others are doubly truncated. The objective is to study
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the performance of the estimates for the mean and the variance-covariance elements obtained through Algorithm 2,
considering a different number of samples and thinning. After that, we compare those results with the estimates from
the R functions meanvarTMD available in package MomTrunc and TT.moment from package TTmoment.

Figure 3 displays the boxplot for each element of the mean vector based on 100 estimates obtained through our proposal
considering n = 104 with thinning=1 and =3, n = 105 with thinning=3, n = 3× 105 with thinning=1, and 106 samples
with no thinning (=1). Also displays the results came from the function meanvarTMD and the function TT.moment. The
red dashed line represents the median of the estimates achieved from the TT.moment function. It is possible to observe
that for the case of n = 104, the estimates obtained with no thinning have more variability than those with thinning=3
(observations with lower autocorrelation). The median of TT.moment estimates is closer to the median of our method
in most cases, except for n = 104 with thinning=1. As expected, the variability in the estimates was reduced when the
sample size was increased. The distribution of the estimates from our algorithm with 105 samples and thinning=3 was
similar to the distribution considering n = 3× 105 and no thinning. Recall that both methods needed to generate the
same number of samples; the only difference here is that the first one (thinning=3) will need less memory space than
the other one. The best results were obtained throughout TT.moment and meanvarTMD functions. Those results are
comparable with the estimates achieved from our proposal with n = 106 and no thinning.

Figure 3: Boxplot based on 100 estimates of the truncated mean. The red dashed line represents the median of the
estimates obtained from function TT.moment.
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Figure 4: Boxplot based on 100 estimates of the variance-covariance elements. The red dashed line represents the
median of the estimates obtained from function TT.moment.
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Figure 4 shows the boxplot for the variance-covariance elements of the truncated random vector considering each
method described above. We noticed a slight reduction in the variability of the estimates when considering a thinning
equal to 3. Another interesting fact is observed when we set n = 105 and thinning=3; in this case, it returned similar
results than estimate the covariances from MC with 3× 105 samples and no thinning. The estimates achieved through
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our proposal considering n = 106 are comparable with the results from TT.moment. The estimates obtained from
meanvarTMD are similar to those from MC with n = 105 and thinning=3 in most cases, except for σ11, σ33, and σ13.
For these parameters, our method showed better performance.

Example 2

In the previous example, it was observed that the estimates obtained from Algorithm 2 with n = 105 and thinning=3 are
good enough to estimate the mean and variance of a multivariate (p = 4) variable with TMVT distribution, even though
the best results were gotten through the TT.moment function. In this example, our goal is to analyze the execution
time required for our method and the functions meanvarTMD and TT.moment to estimate the first two moments and the
variance-covariance matrix of a p-variate random vector with TMVT distribution considering p = 50, 100, 150. In each
case, we set 10%, 20%, and 40% of the variables doubly truncated. The methods were run in a Windows 10 machine
using R 4.0.3 on an Intel Core i7-7700 Processor with 3.60 GHz, and 32 GB of RAM.

Table 1 displays the median of the running time (in seconds) required for our algorithm and functions meanvarTMD and
TT.moment. For our proposal were considered three scenarios n = 104 with no thinning, n = 104 with thinning=3, and
n = 105 with thinning=3. The results are based on 100 simulations, and they were computed through the R function
microbenchmark. This table also shows the relative time computed, taking the time used by our method with n = 105

and thinning=3 as reference. We are going to refer to this configuration as the “reference method". For our algorithm,
we observed that the time required to estimate the moments depends only on the number of random observations
sampled. Note that estimating the moments with n = 104 took 3.50% of the time required for the reference method,
and it is worth mention that the number of samples needed for the first method is 3.33% the number of samples used
for the reference one. Our proposal with n = 104 and thinning=3 already needed 10% of the execution time used by
the reference method. Observe that the only case where meanvarTMD was faster than the reference one is when the
number of doubly truncated variables is equal to 5. It also seems that the time needed by the meanvarTMD function
depends only on the number of doubly truncated variables. In all scenarios, the TT.moment function is much more
time-consuming, e.g., for a random vector of length p = 100 and 40 doubly truncated variables, it needed 28 times
longer than the reference method. An additional example can be found in Appendix A.2.

Table 1: Median of the execution time (in seconds) based on 100 simulations.

Method Measure p = 50 p = 100 p = 150

10% 20% 40% 10% 20% 40% 10% 20% 40%
n = 104 Median 0.011 0.030 0.139 0.030 0.140 0.952 0.071 0.382 2.842

thinning = 1 R.Time 0.035 0.035 0.034 0.036 0.035 0.034 0.036 0.034 0.034

n = 104 Median 0.031 0.084 0.404 0.085 0.405 2.820 0.199 1.118 8.461
thinning = 3 R.Time 0.100 0.100 0.100 0.100 0.100 0.100 0.101 0.100 0.100

n = 105 Median 0.314 0.844 4.042 0.846 4.044 28.217 1.974 11.182 84.619
thinning = 3 R.Time - - - - - - - - -

meanvarTMD Median 0.118 4.102 49.189 3.781 48.681 367.243 21.209 157.179 1215.630
R.Time 0.375 4.861 12.170 4.467 12.037 13.015 10.746 14.056 14.366

TT.moment Median 7.452 24.027 94.408 62.026 202.704 789.641 242.701 800.360 3081.367
R.Time 23.767 28.0473 23.358 73.279 50.122 27.984 122.974 71.574 36.414

5 Application on Spatial Model for Censored Data

In this application we will consider the Gaussian spatial censored linear (SCL) model defined by Lachos et al.
(2017) and Ordoñez et al. (2018). In this model, the data is generated from Z = Xβ + ξ, with ξ ∼ Np(0,Σ) and
Σ = [Cov(si, sj)] = σ2R(φ) + τ2Ip. It also has the particularity that the response variable Z is not fully observed.
Instead, it is observed Vi and Ci at each location, for i = 1, . . . , p, where Ci = 0 and Vi = Zi for an uncensored
observation Zi, and if Ci = 1 and Vi = [V1i, V2i] if Zi is censored or missing. Because of the difficulties in working
directly with the observed likelihood function, Lachos et al. (2017) suggested using an EM-type algorithm to obtain the
ML estimates of θ considering a parameterization Σ = σ2Ψ, with Ψ = R(φ) + ν2In and ν2 = τ2/σ2, to help with
the identifiability of the parameters. See also Diggle and Ribeiro (2007). Hence, the EM algorithm works as it follows:
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• E-step: Let θ̂
(k)

be the current estimate of θ, then the conditional expectation of the complete-data log-likelihood
without the constant is

Qk(θ) = E
(
`(θ|Zc)|V,C, θ̂

(k)
)

= −1

2

[
log |Ψ|+ n log σ2 +

1

σ2
Â(k)

]
,

where Â(k) = tr(ẐZ>
(k)

Ψ−1) − 2Ẑ
(k)>

Ψ−1Xβ + β>X>Ψ−1Xβ. Therefore, the E-step reduces only to the

computation of ẐZ>
(k)

= E
(

ZZ>|V,C, θ̂
(k)
)

and Ẑ
(k)

= E
(

Z|V,C, θ̂
(k)
)

. In the traditional EM algorithm,

we should now evaluate the conditional expectations, which is possible through the R packages tmvtnorm or
MomTrunc, but it is computationally expensive when the proportion of censored observations is non-negligible. An
alternative is to use the MCEM algorithm, which approximates the conditional expectations by using MC integration.

For the SCL model, the MCE-step is performed by estimating ẐZ
>

and Ẑ through Algorithm 2.

• M-step: The conditional maximization step is carried out, and θ̂
(k)

is updated by maximizing Q̂k(θ) over θ to

obtain a new estimate θ̂
(k+1)

, which leads to the expressions:

β̂
(k+1)

=

(
X>Ψ̂

−1(k)
X
)−1

X>Ψ̂
−1(k)

Ẑ
(k)
,

σ̂2(k+1) =
1

n

[
tr

(
ẐZ>

(k)

Ψ̂
−1(k)

)
− 2Ẑ>

(k)

Ψ̂
−1(k)

Xβ̂
(k+1)

+ β̂
>(k+1)

X>Ψ̂
−1(k)

Xβ̂
(k+1)

]
,

α̂(k+1) = argmax
α∈R+×R+

(
−1

2
log |Ψ| − 1

2σ̂2(k+1)

[
tr

(
ẐZ>

(k)

Ψ−1
)
− 2Ẑ>

(k)

Ψ−1Xβ̂
(k+1)

+β̂
>(k+1)

X>Ψ−1Xβ̂
(k+1)

])
,

with α = (φ, ν2)>. Note that τ̂2 can be recovered by τ̂2(k+1) = ν̂2(k+1)σ̂2(k+1). An efficient M-step can be easily
accomplished by using, for instance, the roptim package (Pan and Pan, 2020). In general, the estimates of θ may
vary slightly around the maximum, with a variability depending on the sample size used in the approximation. Hence,
one possible final estimate of the parameters may be computed as the mean of the estimates after applying a burn-in
and a thinning process.

5.1 Missouri Dioxin Contamination Data

The proposed MCEM algorithm will be applied to analyze the Missouri dioxin contamination dataset available in
CensSpatial package. The dataset contains 127 observations distributed in an area of 3600× 65 m2 on the shoulders
of a country road located in Missouri, U.S.A. The observations correspond to the level of contamination by dioxin
(2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD) at sampled points along the road, where 43% of the observations (55
sites) were censored, falling below some limit of detection, which ranges from 0.10 to 0.79 mg/kg. The spatial directions
are the x-direction (measured in 1/100 ft) and the y-direction (in ft). Please, refer to Fridley and Dixon (2007) for
more details.

This dataset was firstly analyzed by Zirschky and Harris (1986), who concluded that data appeared to be log-normally
distributed. Hence, we fit the model log(Zi) = β0 +ξi, i = 1, . . . , 127. The model parameters were estimated using the
MCEM algorithm and compared with the estimates from the SAEM and EM algorithm. All methods were performed
using 500 iterations and an exponential correlation function to take into account the variation between spatial points.
For the MCEM algorithm, we evaluated four cases; in one of those scenarios, it was considered linearly increasing
sample sizes between 100 and 1000. Other scenarios considered constant sample sizes of 20, 5000, and 105. In order to
use the SAEM algorithm, we set two configurations; one draws points using the rmvtnorm function (from package
tmvtnorm), and the optimization procedure via optimx function (Nash et al., 2020). This method is available in the
CensSpatial package, and from now on, we refer to this algorithm by SAEM. The second one draws points using the
proposed slice sampler, while the R function roptim executes the optimization procedure. We will refer to the latter as
SAEM-SS. Lastly, moments were computed using the MomTrunc package for the EM algorithm. The functions used
to estimate the parameters via MCEM, SAEM-SS, and EM are available in the RcppCensSpatial package.

The results of the ML estimates are shown in Table 2, where n is the number of samples considered to approximate
the conditional mean, and c indicates the percentage of iterations without memory in the SAEM algorithm (Lachos
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Table 2: Missouri data - ML estimates and information criteria (AIC and BIC) obtained through MCEM, SAEM and
EM algorithms considering the exponential correlation function.

Algorithm n c β0 σ2 φ τ2 Log-likelihood AIC BIC Time (min)

MCEM

20 -2.355 6.577 14.702 0.213 -143.128 294.257 305.633 0.936
102 - 103 - -2.402 6.808 15.095 0.207 -143.108 294.216 305.592 1.819
5000 - -2.410 6.847 15.076 0.206 -143.095 294.191 305.568 10.206
105 - -2.408 6.845 15.053 0.205 -143.136 294.272 305.649 185.341

SAEM-SS 20 0.25 -2.332 6.312 15.109 0.214 -143.153 294.307 305.683 0.676

SAEM 20 0.25 -2.014 4.858 14.206 0.245 -143.840 295.681 307.057 6.079
105 1.00 -2.010 4.829 14.136 0.245 -143.865 295.729 307.106 9151.149

EM - - -2.417 6.888 15.092 0.206 -143.122 294.244 305.620 1661.472

et al., 2017; Ordoñez et al., 2018). Final estimates for the MCEM and EM methods were computed as the mean
of the estimates at each iteration after applying a burn-in of 250 and thinning of 3 observations, while the SAEM
and SAEM-SS estimates we only considered the estimates at the last iteration. We see that estimates obtained from
SAEM-SS are similar to MCEM estimates for n = 20, while the estimates for the EM algorithm are similar to MCEM
estimates with n = 5000. The estimates obtained through MCEM and EM for the regression coefficient β0 were
-2.400, while the SAEM algorithm estimated this parameter equal to -2.010. Regarding to the spatial scaling parameter
φ, it was around 15.05 and 14.10 for the MCEM and SAEM algorithms, respectively. These values imply that for
distances greater than 45 and 42 feet, respectively, the correlation between two observations falls to less than 0.05. The
estimates achieved from MCEM and SAEM methods for the partial sill σ2 and the nugget effect τ2 suggest that 97%
and 95% of the variability in data is explained by the spatial process, respectively. This table also shows the maximized
log-likelihood value, information criteria AIC and BIC, and the running time in minutes. Based on information criteria,
we can conclude that MCEM with n = 5000 best fits the Missouri dioxin contamination data. Furthermore, it does not
seem necessary to consider sample sizes as large as n = 105 because that configuration does not gain the precision of
the estimates and is more time-consuming.

Figure 5 shows the convergence graphs of the parameter estimates achieved from MCEM, SAEM-SS, SAEM, and EM
algorithms. Notice that the variability in the estimates for MCEM decreases when the sample size increases from 100
to 1000 (aquamarine line). As expected, the estimates obtained from MCEM with n = 20 (gray line) present more
variability than the other three scenarios in which we considered larger sample sizes, while MCEM with n = 105

(black line) reported the lowest variability in the estimates. The estimates of the parameters computed through the
EM algorithm present more variability than the estimates from MCEM with n = 5000 (red line), probably due to
computational stability of the numerical methods involved in the MomTrunc package; this is why we decided to
consider a burn-in and thinning procedure to compute the EM final estimates.

6 Conclusions

This work describes an algorithm to generate random numbers from members of the truncated elliptical family of
distributions with a strictly decreasing density generating function through a slice sampling algorithm and a Gibbs
sampler step. In addition, we presented an efficient approach to approximate the first and the second moment for these
distributions. We briefly introduce the functions available in our R package relliptical in order to perform sample
generating and estimation of the first two moments. Simulation studies were performed to investigate the properties
of estimates and the robustness of our algorithm. Moreover, we compared our approach with others available in the
R software (only for the normal and Student-t case), where we showed that our approach over-performed others in
terms of precision and computational time. We illustrate the usefulness of truncated moments on the Missouri dioxin
contamination dataset, where a spatial model for censored data was fitted.

Future extensions of the work include the extension of this method to the context of asymmetric multivariate elliptical
distributions, so the fast computation of their truncated moments may lead the way to proposed more flexible and robust
models relating censored models for mixed-effects models, longitudinal data, spatial models, among others. Finally,
results presented in this paper can be reproduced through the R package relliptical, which is available at CRAN for
download.
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Figure 5: Missouri data - Convergence of the parameter estimates via EM, MCEM, and SAEM algorithm.
a. EM algorithm

−3.0

−2.5

−2.0

−1.5

0 100 200 300 400 500
Iteration

β̂ 0

2

4

6

8

0 100 200 300 400 500
Iteration

σ̂2

7.5

10.0

12.5

15.0

0 100 200 300 400 500
Iteration

φ̂

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500
Iteration

τ̂2

b. MCEM algorithm

−3.0

−2.5

−2.0

−1.5

0 100 200 300 400 500
Iteration

β̂ 0

2

4

6

8

0 100 200 300 400 500
Iteration

σ̂2

7.5

10.0

12.5

15.0

0 100 200 300 400 500
Iteration

φ̂

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500
Iteration

τ̂2

n = 20 102 − 103 5000 105

c. SAEM algorithm

−3.0

−2.5

−2.0

−1.5

0 100 200 300 400 500
Iteration

β̂ 0

2

4

6

8

0 100 200 300 400 500
Iteration

σ̂2

7.5

10.0

12.5

15.0

0 100 200 300 400 500
Iteration

φ̂

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500
Iteration

τ̂2

SAEM−SS (n=20, c=0.25) SAEM (n=20, c=0.25) SAEM (n= 105 , c=1)

Acknowledgements

The research of Katherine A. L. Valeriano was supported by CAPES. Larissa A. Matos acknowledges support from
FAPESP-Brazil (Grant 2020/16713-0).

References
Andersen, M., R. Goedman, G. Grothendieck, S. Højsgaard, A. Pinkus, and G. Mazur (2020). Ryacas: R interface to

the YACAS Computer Algebra System.
Brent, R. P. (2013). Algorithms for minimization without derivatives. Courier Corporation.
de Alencar, F. H., C. E. Galarza, L. A. Matos, and V. H. Lachos (2021). Finite mixture modeling of censored and

missing data using the multivariate skew-normal distribution. Advances in Data Analysis and Classification, 1–37.
Delyon, B., M. Lavielle, E. Moulines, et al. (1999). Convergence of a stochastic approximation version of the EM

algorithm. The Annals of Statistics 27(1), 94–128.
Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society: Series B (Methodological) 39(1), 1–22.
Diggle, P. and P. Ribeiro (2007). Model-based Geostatistics. Springer.
Fang, K. W. (2018). Symmetric multivariate and related distributions. CRC Press.
Fridley, B. L. and P. Dixon (2007). Data augmentation for a bayesian spatial model involving censored observations.

Environmetrics: The official journal of the International Environmetrics Society 18(2), 107–123.

14



Truncated Elliptical Family of Distributions

Galarza, C. E., R. Kan, and V. H. Lachos (2021). Package ‘MomTrunc’. R package version.
Galarza, C. E., V. H. Lachos, and M. Bourguignon (2021). A skew-t quantile regression for censored and missing data.

Stat 10(1), e379.
Galarza, C. E., T.-I. Lin, W.-L. Wang, and V. H. Lachos (2021). On moments of folded and truncated multivariate

student-t distributions based on recurrence relations. Metrika, 1–26.
Galarza, C. E., L. A. Matos, and V. H. Lachos (2020). Moments of the doubly truncated selection elliptical distributions

with emphasis on the unified multivariate skew-t distribution. arXiv preprint arXiv:2007.14980.
Gelfand, A. E., A. F. Smith, and T.-M. Lee (1992). Bayesian analysis of constrained parameter and truncated data

problems using Gibbs sampling. Journal of the American Statistical Association 87(418), 523–532.
Gómez, E., M. Gomez-Viilegas, and J. M. Marín (1998). A multivariate generalization of the power exponential family

of distributions. Communications in Statistics-Theory and Methods 27(3), 589–600.
Ho, H., T. Lin, W. Wang, A. Garay, V. Lachos, and M. Castro (2015). R TTmoment package: sampling and calculating

the first and second moments for the doubly truncated multivariate t distribution.
Ho, H. J., T.-I. Lin, H.-Y. Chen, and W.-L. Wang (2012). Some results on the truncated multivariate t distribution.

Journal of Statistical Planning and Inference 142(1), 25–40.
Kan, R. and C. Robotti (2017). On moments of folded and truncated multivariate normal distributions. Journal of

Computational and Graphical Statistics 26(4), 930–934.
Lachos, V. H., L. A. Matos, L. M. Castro, and M.-H. Chen (2019). Flexible longitudinal linear mixed models for

multiple censored responses data. Statistics in medicine 38(6), 1074–1102.
Lachos, V. H., L. A. Matos, T. S. Barbosa, A. M. Garay, and D. K. Dey (2017). Influence diagnostics in spatial models

with censored response. Environmetrics 28(7).
Matos, L. A., L. M. Castro, and V. H. Lachos (2016). Censored mixed-effects models for irregularly observed repeated

measures with applications to HIV viral loads. Test 25(4), 627–653.
Matos, L. A., M. O. Prates, M.-H. Chen, and V. H. Lachos (2013). Likelihood-based inference for mixed-effects models

with censored response using the multivariate-t distribution. Statistica Sinica 23(3), 1323–1345.
Morán-Vásquez, R. A. and S. L. Ferrari (2019). New results on truncated elliptical distributions. Communications in

Mathematics and Statistics, 1–15.
Muirhead, R. J. (2009). Aspects of multivariate statistical theory, Volume 197. John Wiley & Sons.
Nash, J. C., R. Varadhan, and G. Grothendieck (2020). Package ‘optimx’.
Neal, R. M. (2003). Slice sampling. Annals of statistics, 705–741.
Ordoñez, J. A., D. Bandyopadhyay, V. H. Lachos, and C. R. Cabral (2018). Geostatistical estimation and prediction for

censored responses. Spatial statistics 23, 109–123.
Pan, Y. and J. Pan (2020). roptim: An R Package for General Purpose Optimization with C+. R package version.
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for

Statistical Computing.
Robert, C. P. and G. Casella (2010). Introducing Monte Carlo Methods with R, Volume 18. Springer.
Wei, G. C. and M. A. Tanner (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data

augmentation algorithms. Journal of the American Statistical Association 85(411), 699–704.
Wilhelm, S. (2015). Package ‘tmvtnorm’. R journal.
Zirschky, J. H. and D. J. Harris (1986). Geostatistical analysis of hazardous waste site data. Journal of Environmental

Engineering 112(4), 770–784.

15



Truncated Elliptical Family of Distributions

A Extra simulation results

This appendix contains additional information about the simulation results.

A.1 Sample autocorrelation

Figure 6: Sample autocorrelation plots of X1 and X2 sampled from the bivariate truncated elliptical distributions in
Figure 2.
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A.2 Running Time to Compute Moments from Truncated Distributions

In this section, a complementary study of Example 2 (Section 4.1) was conducted to examine the execution time
required for our method in order to estimate the first two moments and the variance-covariance matrix of a p-variate
random vector considering different distributions of the truncated elliptical family, with p = 50 and 100. As in Example
2, for each case we consider a 10%, 20%, and 40% of doubly truncated variables.
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Table 3 shows the median of the execution time (in seconds) needed for function mvtelliptical to compute the first
two moments and the covariance matrix. We considered a TMVN, a truncated contaminated normal with ν = 1/2
and ρ = 1/5, a truncated Pearson VII with parameters m = 55 and ν = 3, a truncated slash with ν = 2 degrees
of freedom, and a truncated power exponential distribution with kurtosis β = 1/2. For each case, our method was
applied setting n = 104 and 105 with a thinning= 3. Notice that the time needed by the algorithm for TMVN, TMVT,
and truncated Pearson VII distributions are similar and depend only on the number truncated variables and samples
used in the approximation. Our method requires more time to compute moments from the truncated contaminated
normal distribution when compared to the latter results. This is because the algorithm uses a numerical method to
calculate the inverse of the dgf. Besides, it is interesting noting that there is no time difference between computing the
moments for a truncated slash distribution with five or ten doubly truncated variables. This occurs since the function
used to approximate the integral on the dgf is more time-consuming when ν + p/2− 1 is not an integer. Finally, the
computation of the moments for the truncated power exponential distribution required approximately the same time
for random vectors of equal length regardless of the number of doubly truncated variables. For this case, the method
samples values for the whole vector, leading to no time difference.

Table 3: Median of the execution time (in seconds) based on 100 simulations.

Distribution (ν) Sample size p = 50 p = 100

10% 20% 40% 10% 20% 40%

Normal 104 0.028 0.083 0.399 0.081 0.400 2.888
105 0.285 0.840 3.999 0.805 4.003 28.892

Contaminated 104 0.071 0.118 0.440 0.120 0.442 2.928
Normal (1/2, 1/5) 105 0.706 1.180 4.405 1.192 4.415 29.286

Pearson VII (55, 3) 104 0.031 0.083 0.403 0.084 0.403 2.891
105 0.309 0.838 4.030 0.839 4.036 28.944

Slash (2) 104 0.202 0.202 0.548 0.200 0.549 3.113
105 2.020 2.026 5.481 1.997 5.489 31.160

Power 104 5.101 5.095 5.096 41.870 41.858 41.864
Exponential (1/2) 105 51.038 51.013 50.999 418.675 418.604 418.651

B The Multivariate Pearson VII Distribution

B.1 Marginal and conditional distributions

A random variable X ∈ Rp is said to have a multivariate Pearson VII distribution with location parameter µ ∈ Rp,
positive-definite scale matrix Σ ∈ Rp×p, extra parameters m > p/2 and ν > 0, if its pdf is given by

fX(x) =
Γ(m)

(πν)p/2Γ(m− p/2)
|Σ|−1/2

(
1 +

1

ν
(x− µ)>Σ−1(x− µ)

)−m
, x ∈ Rp.

The random vector X can also be represented as a scale mixture of normal (SMN) distributions, i.e., X = µ + U−1/2Z,
where Z has a p-variate normal distribution with mean 0 ∈ Rp and variance-covariance matrix Σ ∈ Rp×p. Here, U
follows Gamma distribution with scale parameter m− p/2 and rate parameter ν/2, where Z is independent of U . This
implies that

X|(U = u) ∼ Np(µ, u−1Σ) and U ∼ G(m− p/2, ν/2).

Therefore, the mean and the variance-covariance matrix of X are

E(X) = E(E(X|U)) = E(µ) = µ, m >
p+ 1

2
.

Cov(X) = Cov(E(X|U)) + E(Cov(X|U)) = E(U−1)Σ =
ν

2m− p− 2
Σ, m >

p+ 2

2
.

Now suppose that the vector X is partitioned into two random vectors X1 ∈ Rp1 and X2 ∈ Rp2 , such that p = p1 + p2,
and consider the partition of µ and Σ used in Proposition 4.1, i.e.,

X =

(
X1

X2

)
, µ =

(
µ1
µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.
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First, notice that (X − µ)>Σ−1(X − µ) = δ1(X1) + δ2.1(X2.1), where δ1(X1) = (X1 − µ1)>Σ−111 (X1 − µ1),
δ2.1(X2.1) = (X2 − µ2.1)>Σ−12.1(X2 − µ2.1), µ2.1 = µ2 + Σ21Σ

−1
11 (X1 − µ1) and Σ2.1 = Σ22 −Σ21Σ

−1
11 Σ12. By

the results above, the marginal pdf of X1 is given by

fX1(x1) =

∫
Rp2

fX(X)dx2 =
Γ(m)

(πν)p/2Γ(m− p/2)
|Σ|−1/2

∫
Rp2

(
1 +

δ1(x1)

ν
+
δ2.1(x2.1)

ν

)−m
dx2

=
Γ(m)

(πν)p/2Γ(m− p/2)
|Σ|−1/2

(
1 +

δ1(x1)

ν

)−m ∫
Rp2

(
1 +

δ2.1(x2.1)

ν + δ1(x1)

)−m
dx2

=
Γ(m− p2/2)

(πν)p1/2Γ(m− p/2)
|Σ11|−1/2

(
1 +

δ1(x1)

ν

)−(m−p2/2)
, x1 ∈ Rp1 .

Hence, the marginal distribution of X1 is also Pearson VII distributed with parameters µ1, Σ11, m− p2/2 and ν, i.e.,
X1 ∼ PVIIp1(µ1,Σ11,m− p2/2, ν). On the other hand, the conditional pdf of X2|(X1 = x1) is given by

fX2|X1
(x2|x1) =

fX(x1, x2)

fX1(x1)

=
Γ(m)|Σ2.1|−1/2

(π(ν + δ1(x1)))p2/2Γ(m− p2/2)

(
1 +

δ2.1(x2.1)

ν + δ1(x1)

)−m
, x1 ∈ Rp1 , x2 ∈ Rp2 .

Therefore, the conditional distribution has also a Pearson VII distribution with parameters µ2.1, Σ2.1, m and ν+ δ1(x1),
i.e., X2|(X1 = x1) ∼ PVIIp2(µ2.1,Σ2.1,m, ν + δ1(x1)).

B.2 Existence of its truncated moments

Let X ∼ PVIIp(µ,Σ,m, ν),m > p/2, ν > 0, and let A ⊆ Rp be a truncation region of interest. Then, the expectation
and the variance-covariance matrix of X given X ∈ A exist in the following cases:

• If A = Rp or A is unbounded, the vector is not truncated at all, so the expectation exists for m > (p+ 1)/2 and the
covariance matrix exists for m > (p+ 2)/2, as usual.

• If A is bounded (all truncation points are finite), then E(X|X ∈ A) <∞ and Cov(X|X ∈ A) <∞ for all m > p/2,
since the distribution is bounded.

• If X can be partitioned into two random variables X1 ∈ Rp1 and X2 ∈ Rp2 such that the truncation region associated
to X1 (say, A1) is bounded, from the last item we have E(X1|X ∈ A) and Cov(X1|X ∈ A) exist for all m > p/2
and ν > 0. On the other hand, it follow from Fubini’s theorem that E(X2|X ∈ A) will exist if and only if E(X2|X1)
exists; this occurs for all m > (p2 + 1)/2. Note that E(X2|X1) <∞ also implies that Cov(X1,X2|X ∈ A) <∞.
Additionally, Cov(X2|X ∈ A) exists if and only if Cov(X2|X1) <∞, which holds for all m > (p2 + 2)/2.

Remark B.1 It is equivalent to say that E(X|X ∈ A) exists for all m, if at least one dimension containing a finite
limit exists. Besides, if at least two dimensions containing finite limits exist, we have that Cov(X|X ∈ A) exists for all
m > p/2.

In order to illustrate the result, consider X ∼ PVII2(µ,Σ,m, ν), with ν = 1, µ = 0, and Σ =

(
1 0.20

0.20 1

)
. We

are interesting to observe what happens with the elements of E(X|X ∈ A) and Cov(X|X ∈ A) for A = {x ∈ R2 : a <
x < b} in the following three scenarios:

a) m = 2, a = (−0.80,−0.60)>, b = (∞,∞)>;

b) m = 1.40, a = (−0.80,−0.60)>, b = (0.80,∞)>;

c) m = 2, a = (−0.80,−0.60)>, b = (0.80,∞)>.

Figure 7 displays the trace evolution of the MC estimates for the mean and variance-covariance elements µ1, µ2, σ11,
σ12 and σ22 for each case. The red dashed line represents the value for the parameter estimated via MC with 106

samples, and we refer to this value as the “real value".

For the first case, we have that (p+ 1)/2 = 3/2 < 2 = m, then only the first moment exists, i.e., E(X|X ∈ A) <∞.
Therefore, we observe in the first row of Figure 7 that only the estimates of µ1 and µ2 converge to their real values as
the sample size increase. In the second scenario (middle row), we have that all elements converge except σ22. This
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happens because the truncation limits for the first variable are finite and m > (p2 + 1)/2 = 1. In the last case, scenario
c), convergence is attained for all parameters, since the condition m > (p2 + 2)/2 = 3/2 holds. Note that even with
2000 MC simulations there exists a significant variability in the chains.

Figure 7: Trace plots of the evolution of the MC estimates for the mean and variance-covariance elements of X | (X ∈ A)
under scenarios a), b) and c). The red dashed line represents the true estimated value computed using numerical methods

a. Two non-truncated variables, parameters m = 2 and ν = 1.
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b. One doubly truncated variable, parameters m = 1.40 and ν = 1.
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c. One doubly truncated variable, parameters m = 2 and ν = 1.
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C The Multivariate Slash Distribution

A random vector X ∈ Rp has multivariate slash distribution with location parameter µ ∈ Rp, positive-definite scale
matrix Σ ∈ Rp×p and ν > 0 degrees of freedom, denoted by X ∼ SLp(µ,Σ, ν), if its pdf is given by

fX(x) = ν

∫ 1

0

uν−1φp
(
x;µ, u−1Σ

)
du, x ∈ Rp,

where φp(x;µ,Σ) is the pdf of a p-variate normal distribution with mean µ and covariance matrix Σ. The pdf of a
slash distribution can be evaluated through numerical methods, e.g., using the R function integrate. The random
vector X can also be represented in the family of the SMN distributions, this is, X = µ + U−1/2Z, where the random
variables U and Z are both independent and have Beta(ν, 1) and Np(0,Σ) distributions, respectively. Therefore, the
mean and variance-covariance matrix of the random vector X are given by

E(X) = E (E(X|U)) = E(µ) = µ.

Cov(X) = Cov(E(X|U)) + E(Cov(X|U)) = E(U−1)Σ =
ν

ν − 1
Σ, ν > 1.

Considering a partition in the same manner as used for the Pearson VII distribution, the marginal pdf of X1 is given by

fX1
(x1) =

∫
Rp2

fX(x)dx2 =

∫
Rp2

ν

∫ 1

0

uν−1φp
(
x;µ, u−1Σ

)
du dx2

= ν

∫
Rp2

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

)
φp2

(
x2;µ2.1, u

−1Σ2.1

)
dudx2
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Fubini
= ν

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

) ∫
Rp2

φp2
(
x2;µ2.1, u

−1Σ2.1

)
dx2 du

⇒ fX1(x1) = ν

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

)
du.

Thus, X1 ∈ Rp1 follows a slash distribution with location parameter µ1 ∈ Rp1 , scale matrix Σ11 ∈ Rp1×p1 and ν > 0
degrees of freedom. On the other hand, the conditional pdf of X2|(X1 = x1) is given by

fX2|X1
(x2|x1) =

fX(x1, x2)

fX1
(x1)

=
ν

fX1
(x1)

∫ 1

0

uν−1φp
(
x;µ, u−1Σ

)
du

=
ν

fX1
(x1)

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

)
φp2

(
x2;µ2.1, u

−1Σ2.1

)
du.

Then, it is possible to notice that the Slash distribution is not closed under conditioning. Furthermore, the pdf of
X2|(X1 = x1) belongs to the elliptical family of distributions with dgf g(t) =

∫ 1

0
uν+p/2−1 exp{−u(t+ δ1(x1))/2}du,

i.e., X2|(X1 = x1) ∼ E`(µ2.1,Σ2.1, ν; g). To determine the mean of the random vector X2|(X1 = x1), we compute
the conditional expected value of the ith element of X2 as follows

E(X2i|X1 = x1) =

∫
Rp2

x2ifX2|X1
(x2|x1)dx2

=
ν

fX1
(x1)

∫
Rp2

x2i

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

)
φp2

(
x2;µ2.1, u

−1Σ2.1

)
dudx2

Fubini
=

ν

fX1(x1)

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

) ∫
Rp2

x2iφp2
(
x2;µ2.1, u

−1Σ2.1

)
dx2 du

=
µ
(i)
2.1ν

fX1
(x1)

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

)
du = µ

(i)
2.1, ∀i, ν > 0

where µ(i)
2.1 represents the ith element of the vector µ2.1, and E(X2|X1 = x1) = µ2.1. Now, to compute the elements

of the variance-covariance matrix of the conditional random vector, we first determine E(X2iX2j |X1 = x1) for all
i, j = 1, . . . , p2, as

E(X2iX2j |X1 = x1) =

∫
Rp2

x2ix2jfX2|X1
(x2|x1)dx2

=
ν

fX1
(x1)

∫
Rp2

x2ix2j

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

)
φp2

(
x2;µ2.1, u

−1Σ2.1

)
dudx2

Fubini
=

ν

fX1
(x1)

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

) ∫
Rp2

x2ix2jφp2
(
x2;µ2.1, u

−1Σ2.1

)
dx2 du

=
ν

fX1(x1)

∫ 1

0

uν−1φp1
(
x1;µ1, u

−1Σ11

) (
u−1σ

(ij)
2.1 + µ

(i)
2.1µ

(j)
2.1

)
du

=
σ
(ij)
2.1 ν

fX1(x1)

∫ 1

0

uν−2φp1
(
x1;µ1, u

−1Σ11

)
du+ µ

(i)
2.1µ

(j)
2.1

=
ν

ν − 1

(
SLp1(x1;µ1,Σ11, ν − 1)

SLp1(x1;µ1,Σ11, ν)

)
σ
(ij)
2.1 + µ

(i)
2.1µ

(j)
2.1, ν > 1,

where σ(ij)
2.1 is the (i, j)th element of the matrix Σ2.1. From these results, we have that

Cov(X2i, X2j |X1 = x1) =
ν

ν − 1

(
SLp1(x1;µ1,Σ11, ν − 1)

SLp1(x1;µ1,Σ11, ν)

)
σ
(ij)
2.1 , ν > 1.

Therefore, the covariance matrix of the random vector X2|(X1 = x1) will be given by

Cov(X2|X1 = x1) =
ν

ν − 1

(
SLp1(x1;µ1,Σ11, ν − 1)

SLp1(x1;µ1,Σ11, ν)

)
Σ2.1, ν > 1.
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