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Abstract

Predictive recursion (PR) is a fast, recursive algorithm that gives a smooth
estimate of the mixing distribution under the general mixture model. However, the
PR algorithm requires evaluation of a normalizing constant at each iteration. When
the support of the mixing distribution is of relatively low dimension, this is not a
problem since quadrature methods can be used and are very efficient. But when the
support is of higher dimension, quadrature methods are inefficient and there is no
obvious Monte Carlo-based alternative. In this paper, we propose a new strategy,
which we refer to as PRticle filter, wherein we augment the basic PR algorithm with
a filtering mechanism that adaptively reweights an initial set of particles along the
updating sequence which are used to obtain Monte Carlo approximations of the
normalizing constants. Convergence properties of the PRticle filter approximation
are established and its empirical accuracy is demonstrated with simulation studies
and a marked spatial point process data analysis.

Keywords and phrases: importance sampling; marked point process; mixture
model; Monte Carlo; predictive recursion.

1 Introduction

Suppose we have independent and identically distributed (iid) data X1, . . . , Xn having
common density m supported on X. Furthermore, suppose that we believe this density
has the mixture form m = mP , where

mP (x) =

∫
U
k(x | u)P (du), x ∈ X, (1)

with k(x | u) a known kernel density and P an unknown mixing distribution supported
on U. The family in (1) indexed by P is commonly referred to as a mixture model. One
interpretation of the mixture model is that there is a set of underlying latent variables
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driving the data-generating process. That is, suppose the Xi’s are obtained through the
two-step process:

U1, . . . , Un
iid∼ P

(Xi | Ui)
ind∼ k(x | Ui), i = 1, . . . , n.

It is easy to check that X1, . . . , Xn from this hierarchical model formulation are iid with
density mP . This sort of hierarchical, latent variable modeling is common when hetero-
geneity is present in the observed data. This also covers the class of problems where U
represents an unobservable “signal” of interest and X the corresponding noise-corrupted
signal, i.e., the “signal plus noise.” One also might adopt (1) simply for the flexibility the
mixture model affords (e.g., DasGupta 2008, Chapter 33). In any case, the distribution of
the latent variables, or signals, may be of some practical interest, in which case the goal
becomes estimation of the unknown mixing distribution P based on iid data X1, . . . , Xn

from the mixture mP in (1). This is our focus in the present paper.
Estimation of the mixing distribution P is a notoriously difficult problem. Aside

from methods tailored to specific mixture model forms, e.g., deconvolution (Fan 1991;
Stefanski and Carroll 1990), there are a few general estimation methods available: the
two “standard” approaches are nonparametric maximum likelihood and nonparametric
Bayes. The former maximizes the likelihood based on observations X1, . . . , Xn from mP ,
with respect to P . Given the nonparametric nature of P , the resulting estimate is almost
surely discrete and the points of support are no greater than n (Lindsay 1983). The latter
approach assigns a prior distribution to P , typically a Dirichlet process (Ferguson 1974;
Ghosal and Van der Vaart 2017; Ghosh and Ramamoorthi 2003; Hjort et al. 2010), and
evaluate the corresponding posterior mean, given (X1, . . . , Xn). Even though there is no
direct imposition of discreteness in the posterior, draws from the posterior distribution of
P have atoms (e.g., Blackwell and MacQueen 1973) and the corresponding posterior mean
is spiky, “effectively discrete.” Hence, neither the likelihood nor Bayesian approaches give
satisfactory solutions to the problem of estimating a mixing distribution P in (1). The
point is that, in these traditional approaches, the focus is on identifying candidate P such
that resulting mixture density mP is compatible with the empirical distribution of data,
not specifically estimating the mixing distribution.

A third general approach is available, which is the primary focus of this paper, called
predictive recursion (PR). Unlike the previous two methods, which are likelihood-based,
the PR estimator is based on a stochastic, recursive algorithm that aims specifically to
estimating the mixing distribution P based on data from the mixture model (1). This
strategy was first proposed in Newton et al. (1998) as a fast and smooth approximation to
the posterior mean of P under a Dirichlet process mixture model; see Martin (2021). The
idea behind PR is to start with a initial guess, P0, and then update that guess recursively
based on each individual observation Xi for i = 1, . . . , n. PR has a number of desirable
computational and statistical properties. First, PR is computationally efficient—its com-
plexity is O(n). Second, the PR estimator, Pn, is absolutely continuous with respect to
P0, so if P0 has a smooth density, then so does Pn. Third, the PR estimator has also
been shown to consistently estimate the true mixing distribution P in a series of papers:
Tokdar et al. (2009), Martin and Tokdar (2009), and Dixit and Martin (2021).

Applications of the PR algorithm have appeared in Newton (2002), Martin and Tokdar
(2011), Martin and Tokdar (2012), Martin and Han (2016), Tansey et al. (2018), Woody
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et al. (2022), and Dixit and Martin (2022). In each of these applications, however,
the mixing distribution support U is a relatively low-dimensional space, e.g., one- or
two-dimensional. The reason for this constraint is that, while the algorithm itself is
completely general, computation of the normalizing constant in Equation (2) below can
be a challenge when U is more than two- or three-dimensional. In particular, the required
integration can only be done numerically, but efficient quadrature methods are available
only when the domain of integration, in this case U, is low-dimensional. A Monte Carlo-
based strategy would be less sensitive to the dimension of U and, in that sense, would have
an advantage. Unfortunately, no such Monte Carlo-based strategy is currently available
in the literature, and this paper aims to fill this gap.

Following a brief review in Section 2 of the PR algorithm and importance sampling
techniques, we propose in Section 3 below the PRticle filter approximation. As the name
suggests, this consists of an augmentation of the original PR algorithm with a filtering
step that adaptively reweights an initial set of particles along the PR updating sequence.
The idea is that, at the ith step, the weighted set of particles resembles a sample from
the PR estimate Pi−1 based on data X1, . . . , Xi−1. Hence, the nth step gives a particle
approximation of the PR estimate Pn and Theorem 1 below establishes that, for fixed
data X1, . . . , Xn, this approximation converges almost surely in total variation distance
to Pn as the number of sampled particles approaches infinity.

In Section 4, we evaluate performance of the proposed PRticle filter approximation
on both real and simulated data sets. For the simulated data sets, the evaluation is split
into two types. First, to judge the accuracy of the proposed PRticle filter approxima-
tion, we compare it to the original PR estimator in cases where a quadrature scheme
is feasible. In our comparisons, the PRticle filter accurately approximates the PR es-
timate for simulations from mixtures corresponding to univariate and bivariate mixing
distributions. Second, when the dimension of the mixing distribution support is too large
for a quadrature scheme to be practical, we compare our PRticle filter approximation
to a Dirichlet process mixture model-based estimator. The PRticle filter approximation
is faster to compute and of comparable quality compared to the nonparametric Bayes
estimator, which is one of the best known solutions.

For a real data illustration, we consider an application where data consists of a marked
spatial point process. That is, the observed data consists of spatial locations at which
specific events take place, along with some other relevant feature of the events, called
marks. As is common in spatial point process models, the relevant quantity is the inten-
sity function. Here we follow Taddy and Kottas (2012) and model this intensity function
as a mixture, with a multivariate mixing distribution support, and apply the PRticle
filter approximation to estimate the mixing distribution and, in turn, the intensity func-
tion. This naturally leads to estimates of other relevant features, including conditional
distribution of the marks given the spatial locations. We argue that the results obtained
through our use of the PRticle approximation are consistent with patterns seen in the
data and with those presented elsewhere in the literature. This application simply would
have been impossible using the basic PR algorithm. Some concluding remarks are given
in Section 5 and the proof of Theorem 1 is presented in Appendix A.
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2 Background

2.1 Predictive recursion

Suppose we have data X1, . . . , Xn from mP in (1), where the goal is estimation of the
mixing distribution P . With a user-defined initial guess P0 and weight sequence {wi :
i ≥ 1} ⊂ (0, 1), the ith step in the PR algorithm is given by,

Pi(du) = (1− wi)Pi−1(du) + wi
k(Xi | u)Pi−1(du)∫
k(Xi | u)Pi−1(du)

, i = 1, . . . , n (2)

For theoretical reasons, the weights must satisfy
∑∞

i=1wi =∞ and
∑∞

i=1w
2
i <∞; this can

be achieved by taking, e.g., wi = (i+ 1)−γ for some γ ∈ (0.5, 1]. The algorithm processes
the n data points sequentially and returns the final update Pn as the PR estimator of
the mixing distribution. The corresponding PR mixture density estimate is mn = mPn ,
where the mapping P 7→ mP is given in (1). It is clear that the PR estimator Pn depends
on the ordering of the observations X1, . . . , Xn. If this dependence is undesirable, then it
can be removed—or at least mitigated—by calculating Pn over multiple permutations of
the data and averaging over the estimates (Newton 2002; Tokdar et al. 2009). With the
superior computational efficiency of PR, this permutation-averaging can still be carried
in a fraction of the run-time of its competitors.

Key features of the PR algorithm/estimator include its ability to estimate a mixing
density and its computational efficiency. By the former, we mean that if the user-defined
initial guess P0 has a smooth density with respect to a particular dominating measure,
then the final PR estimator Pn will too. Compare this to the maximum likelihood and
Bayes estimators, which are necessarily (or “effectively”) discrete. By the latter compu-
tational efficiency claim, we mean that each PR step requires a fixed number of compu-
tations, so the overall computational complexity of PR algorithm is O(n).

As mentioned in Section 1, the key step in each iteration of the PR algorithm is calcu-
lation of the normalizing constant

∫
k(xi | u)Pi−1(du). Since Pi−1 is data-driven and fully

nonparametric, we cannot expect there to be a closed-form expression for the normalizing
constant. Often it can be approximated numerically using a quadrature scheme; this is
especially easy to do so when the mixing distribution support U is univariate. However,
for as the dimension of U increases, computation of the normalizing constant becomes
more and more challenging. For example, the number of grid points required for accurate
quadrature grows exponentially in the dimension of U and becomes infeasible or at least
inefficient even for moderate dim(U). This creates a computational bottleneck.

In previous work, this challenge was side-stepped by treating some of the latent vari-
ables as mixing variables and the others as non-mixing/structural parameters. For ex-
ample, instead of mixing the kernel k(x | u1, u2) over both the location u1 and scale u2,
the proposal in Martin and Tokdar (2011) was to treat, say, the scale parameter u2 as a
fixed unknown, so that mixing is required only over the univariate u1-space. Then they
developed a PR-based marginal likelihood for u2 that could be used for simultaneous
estimation of the scale u2 and the corresponding mixing distribution over u1. This ef-
fectively reduces the dimension of the mixing distribution support, thus making it easy
to side-step the challenges in computing the normalizing constant. For various reasons,
however, it would be preferable to deal with the computational challenges directly, as op-
posed to using a “hack” to reduce the dimension artificially. This requires new ideas for
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evaluating the normalizing constant in (2) and, for this, here we develop a novel strategy
based on the same ideas behind sequential importance sampling.

2.2 Importance sampling and filtering

The approximation we propose in Section 3 uses the principles behind importance sam-
pling and particle filters in general. Before stating our algorithm, we first review these
basic principles. Consider the general problem of integrating a function h with respect
to a probability density p, where U ∈ U ⊂ Rd, for d ≥ 1. In cases where numerical
integration is infeasible, e.g., if d is too large or if either h or p is too rough, it is common
to use a Monte Carlo approximation by averaging over a random set of observations from
probability density p. However, a problem arises if p cannot be efficiently sampled from.
In such cases, an importance sampling approach can be employed. This amounts to gen-
erating samples from a different distribution, say with density q, and then reweighting
those samples so that they resemble samples from p. In particular, the expected value of
h with respect to p can be written as∫

U
h(u) p(u) du =

∫
U
h(u)

p(u)

q(u)
q(u) du,

and this immediately suggests the Monte Carlo approximation

1

T

T∑
t=1

αt h(Ut),

where {Ut : t = 1, . . . , T} are iid samples from q and αt = p(Ut)/q(Ut) are the weight
adjustment factors. If the normalizing constant for p is unknown, then the T−1 factor
can be replaced by (

∑T
t=1 αt)

−1.
The ratio αt = p(Ut)/q(Ut) helps to effectively filter out points in low p-density re-

gions while increasing the weight put on particles in high p-density regions. Agapiou
et al. (2017) unify the existing literature on importance sampling with a special focus on
determining the size of T such that error in approximation is minimized. The choice of
T , the Monte Carlo sample size, is important, both in terms of accuracy and efficiency. A
practical measure of efficiency used for importance sampling is the effective sample size
(ESS), i.e., the effective number of particles. Following Kong (1992), a commonly used
expression for ESS is

ESS =
(
∑T

t=1 αt)
2∑T

t=1 α
2
t

, (3)

where αt = p(Ut)/q(Ut) as before. By Cauchy–Schwartz, ESS is bounded above by T ,
and the closer it is to T the more efficient the importance sampler. So the goal is to
choose the proposal density q such that ESS is as close to T as possible.

These basics behind importance sampling can be connected to more sophisticated
Monte Carlo methods with the following interpretation. The procedure above essentially
starts with a collection of tentative sample points from p, which are commonly referred
to as particles. Particles which have small importance ratios, p/q, are given small weight,
and effectively filtered out. In this sense, importance sampling is a (basic) form of particle
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filtering. This idea can then be extended in different directions. In particular, it would be
possible for the target distribution, p, to be changing over some “time” index. In hidden
Markov models, for example, the dimension of the target distribution’s support is increas-
ing with time; also, in Bayesian inference, the target p is the posterior distribution which
is evolving with the sample size n. Sequential Monte Carlo methods have proved useful
in these problems (e.g., Del Moral et al. 2006; Doucet et al. 2001; Doucet and Johansen
2011). Sequential importance sampling, in particular, is a powerful tool for particle fil-
tering (Agapiou et al. 2017; Tokdar and Kass 2010). In the context of mixture models,
sequential importance sampling (eg. MacEachern et al. 1999) and particle learning al-
gorithms (eg. Carvalho et al. 2010b) have been suggested for analyzing mixture models
in the Bayesian setting. In our present case, sequential updating is required because we
need particles that represent the PR estimate Pi as i = 1, 2, . . . , n. This problem is due
to the unique recursive structure inherent in the PR sequence of target distributions and,
therefore, calls for different or at least more specialized techniques compared to what is
currently available in the sequential Monte Carlo literature.

3 PRticle filter approximation

3.1 Algorithm

In this section we propose a particle filter algorithm designed specifically to approximation
the PR estimator. For simplicity, and without any real loss of generality, assume that P0

has a density with respect to Lebesgue measure on U ⊂ Rd, denote by p0. Then all the
subsequent PR updates Pi have such a density, denoted by pi. At each iteration of PR,
one needs to calculate a normalizing constant

mi−1(Xi) =

∫
U
k(Xi | u) pi−1(u) du, i = 1, . . . , n.

The analytical form of pi−1 is unknown so clearly we cannot evaluate this in closed form.
Likewise, we cannot directly generate observations from it to get a Monte Carlo approxi-
mation. However, we know that it is a function of the previous updates p0, . . . , pi−2, so the
idea is to leverage the PR algorithm’s recursive formulation and those core importance
sampling principles to design an efficient Monte Carlo/particle filter approximation.

Recall that p0 is a user-specified density on U and we will assume that sampling from
p0 is feasible. Generate an iid sample U1, . . . , UT of size T � 1 from p0. Then, a simple
Monte Carlo average gives us an approximation of the first normalizing constant,

m̂0(X1) =
1

T

T∑
t=1

k(X1 | Ut)

where each point Ut is equally weighted by T−1. Next, we do not know the form of p1
but we know that it can be expressed in terms of p0 and the data point X1 as

p1(u) = (1− w1)p0(u) + w1
k(X1 | u)p0(u)

m0(X1)

=
{

1 + w1

(k(X1 | u)

m0(X1)
− 1
)}
p0(u).
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This implies the ratio of consecutive PR density estimates is

p1(u)

p0(u)
= δ0(u) :=

{
1 + w1

(k(X1 | u)

m0(X1)
− 1
)}
.

Now, since

m1(X2) =

∫
k(X2 | u) p1(u) du =

∫
k(X2 | u) δ0(u) p0(u) du,

we have a very natural Monte Carlo approximation of m1(X2), namely,

m̂1(X2) =
1

T

T∑
t=1

k(X2 | Ut) δ̂0(Ut),

where δ̂0(u) is based on plugging in m̂0(X1) for m0(X1) in the definition of δ0 above. Here
δ̂0(·) acts as a mesh that effectively filters out those particles that are not compatible with
the updated distribution p1. Continuing with the same logic, for the ith iteration, we get

m̂i−1(Xi) =
1

T

T∑
t=1

k(Xi | Ut) ∆̂i(Ut), i ≥ 1,

where ∆̂1(u) ≡ 1 and

∆̂i(u) = ∆̂i−1(u) δ̂i−2(u)

=
i∏

j=2

{
1 + wj−1

(
k(Xj−1 | u)

m̂j−2(Xj−1)
− 1

)}
, i ≥ 2.

The above steps make up the PRticle filter approximation and these are summarized in
Algorithm 1. In the end, the algorithm returns the pairs {(Ut, ∆̂n(Ut)) : t = 1, . . . , T}
that collectively represent an approximate sample from the PR estimator Pn. From this
sample, any features of Pn can be approximated as usual. If an estimate of the density
pn were required, then the weighted collection of particles can be smoothed using, e.g.,
a kernel density estimator. Just like the PR estimator, the PRticle filter approximation
depends on the ordering of observations, and same permutation-averaging can be used
here to mitigate the order-dependence, if desired.

3.2 Convergence

A relevant question would be of the convergence of the PRticle filter approximation
p̂n = p̂n,T to the corresponding PR estimate pn, as the Monte Carlo sample size T goes to
∞. If we had just one data point X1, then p̂1,T → p1 simply by the law of large numbers
as this only involves the simple Monte Carlo approximation of m0(X1). However, as
we include more observations, the ith approximation of pi consists of the previous i − 1
approximations and the law of large numbers argument is not immediately clear. But
it turns out that the law of large numbers can be applied to show that PRticle filter
approximation, p̂n,T , converges to its target pn in a very strong sense as T →∞.
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Algorithm 1: PRticle filter approximation

Initialize: Data X1, . . . , Xn, initial guess p0, random sample U1, . . . , UT from p0,
and weight sequence {wi : i ≥ 1} ⊂ (0, 1);

Set ∆̂t = 1 for t = 1, . . . , T ;
for i = 1, . . . , n do

set Nt,i = k(Xi | Ut) pi−1(Ut) for each t, and Di = T−1
∑T

t=1 k(Xi | Ut) ∆̂t;
update pi(Ut) = (1− wi)pi−1(Ut) + wiNt,i/Di for each t;

evaluate ∆̂t = ∆̂t[1 + wi{k(Xi | Ut)/Di − 1}] for each t;

end

return Ut and weights ∆̂t, for t = 1, . . . , T .

Theorem 1. For a fixed data set X1, . . . , Xn, let pn and p̂n,T denote the PR estimator
and its PRticle filter approximation, respectively, both based on the same initial guess
with distribution P0. If the kernel is such that∫

U

{∏
i∈S

k(Xi | u)
}
P0(du) <∞, for all S ⊆ {1, . . . , n}, (4)

then ∫
U
|p̂n,T (u)− pn(u)| du→ 0, with P0-probability 1 as T →∞.

Proof. See Appendix A.

Theorem 1 establishes that, with a sufficiently large Monte Carlo sample size T , the
PRticle filter approximation, p̂n,T , of the PR mixing density estimator pn will be quite
accurate. Note that L1/total variation convergence implies weak convergence, so virtu-
ally any relevant functional of pn can be accurately approximated by the corresponding
functional of p̂n,T . The condition (4) on the kernel is rather mild, e.g., it is satisfied if
u 7→ k(x | u) is bounded for almost all x. Beyond the fixed-data approximation, the
result in Theorem 1, together with the general results in Martin and Tokdar (2009) and
Dixit and Martin (2021) on the consistency properties of pn as n → ∞, suggests that
p̂n,T would also be a good estimator of p when both n and T are large.

3.3 Adaptation to handle attrition

The final estimate pn will depend on the initial p0, not just through the default PR
mechanism but also through the dependence on the choice of particles U1, . . . , UT from
p0. To ensure that pn captures the true mixing density p, it is generally recommended
to choose a relatively diffuse p0 in the PR algorithm. However, the true p is likely to
be more concentrated in certain regions of U than in others. So those chosen particles
U1, . . . , UT from p0 that happen to fall in those p-low-density regions of U should be
assigned relatively low weights. The concern is that too many of the particles end up in
these low-density regions, hence affecting the effective number of particles. Recall that,
an efficiency measure of the particle filter is given by the effective sample size (ESS) in
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(3). For our case this can be calculated as,

ESS =

{∑T
t=1 ∆n(Ut)

}2∑T
t=1 ∆n(Ut)2

.

If too many particles end up with negligible weights, i.e., if ∆n(Ut) ≈ 0 for t’, then
ESS becomes significantly smaller than T . This loss-of-information, called attrition, is a
common problem in importance sampling or particle filtering (eg. Doucet and Johansen
2011); and it cannot be ignored because the effective sample size is what controls the
accuracy of the Monte Carlo approximations. To account for this, the general strategy
is to resample points from the region of importance such that ESS does not reduce
tragically (e.g., Carvalho et al. 2010b; Doucet et al. 2001). The strategy we propose here
is in the same spirit as adaptive importance sampling (eg. Bugallo et al. 2017). Below
we describe our approach that accounts for attrition, specific to the PRticle filter. We
start by summarizing the characteristics of the final PR estimate pn to improve upon the
initial filter Ut. This summary can then be used to construct a new informed p0 so that
an updated filter has more points in the more dense regions of p.

Given points U1, . . . , UT and the final weights ∆n(Ut) representing the PR estimate
pn we can easily obtain Monte Carlo approximations of

µn =

∫
u pn(u) du and Σn =

∫
(u− µn)(u− µn)> pn(u) du,

the mean vector and covariance matrix associated with pn, respectively, given by

µ̂n =
1

T

T∑
t=1

Ut ∆n(Ut) and Σ̂n =
1

T

T∑
t=1

(Ut − µ̂n)(Ut − µ̂n)>∆n(Ut).

This helps us to identify a region where pn—and likely p as well— has high concentration.
This information can then be incorporated in a new updated p0. A reasonable strategy,
therefore, is to redefine the initial estimate p0 to be, e.g., a multivariate Student-t distri-
bution with location µ̂n and scale matrix Σ̂n. An iid sample is then generated from this
new p0 and the PRticle procedure is carried out as before.

This idea of updating the PRticle filter can be extended in various ways. One way
is to repeat the aforementioned process more than once. However, in our experience,
this can lead to shrinkage of the region of interest beyond of what is needed resulting
into points from only a highly dense region and no points elsewhere. Alternatively, one
could identify several particles having relatively large weight following the initial pass of
PRticle filter; use these as locations around which a multivariate Gaussian or Student-t
distribution could be centered; and then take the updated p0 to be a mixture of these
few distributions and sample particles from there. Yet another strategy is to resample
particles from p0 after one run of PR and rerun the algorithm by replacing the low-weight
particles by the new particles. This allows for identifying new regions of interest while
removing any low-probability regions. This is a classical strategy of resampling used in
particle filters for Bayesian problems (Carvalho et al. 2010a). Any of the approaches
suggested above would be useful in reducing attrition of particles, but more deliberation
is needed to conclude which of these strategies would be most efficient. For our purposes
here, we use the strategy mentioned before and our simulation results in Section 4 show
that this is effective in reducing attrition.
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T ESS K(mn, m̂n)

100 33.6 0.0063

300 105.3 0.0001

500 162.9 0.0003

1000 330.7 0.0002

T ESS K(mn, m̂n)

100 10.5 0.0600

300 44.8 0.0326

500 81.7 0.0260

1000 140.7 0.0200

Table 1: Numerical results for Example 1: comparisons between mn and m̂n with d = 1
(left) and d = 2 (right). Comparisons are made in terms of effective sample size (ESS)
and Kullback–Leibler divergence K(mn, m̂n).

4 Numerical results

4.1 Density estimation

Here we show three density estimation examples. Examples 1–2, involving Euclidean
data and data on a sphere, respectively, compare the PRticle filter approximation to
the original PR estimator in low-dimensional cases where the latter can be computed
efficiently. Example 3 considers cases where the mixing distribution support is too high-
dimensional to compute the original PR estimator, so we compare the PRticle filter
approximation results to those of the Dirichlet process mixture model fit.

Example 1. For d-dimensional data X, consider a normal mixture model of the form (1)
with k(x | u) = Nd(x | u, σ2Id) the multivariate normal density with mean vector u, where
Id is the d-dimensional identity matrix. Throughout, σ2 = 0.5 will be taken as fixed. So
that we can compare the PRticle filter approximation directly to the original PR estima-
tor, we consider only the cases d = 1 and d = 2 here. For the d = 1 case, we take the true
mixing distribution to be P = Beta[0,10](10, 5), a beta distribution scaled to U = [0, 10];
for the d = 2 case, we take P = Beta[0,10](10, 5) × Beta[0,10](5, 10), a joint distribution
supported on U = [0, 10]2 corresponding to independent scaled beta marginals. In both
cases, samples of size n = 500 are generated and we compare the PRticle filter approxima-
tion to the original PR estimator in terms of the Kullback–Leibler divergence K(mn, m̂n),
where mn is the PR estimator of the mixture density and m̂n is the corresponding PRticle
filter approximation. Both are based on weight sequence wi = (i+ 1)−1 and initial guess
P0 = Unif(U). The PRticle filter approximation relies on samples U1, . . . , UT taken from
P0 and here we consider four samples sizes, T ∈ {100, 300, 500, 1000}. Table 1 summa-
rizes both the Kullback–Leibler divergence and the ESS for both the d = 1 and d = 2
cases. As expected, the ESS tends to be smaller for d = 2 than for d = 1, with the former
retaining about 15% of the original sample while the latter retains about 33%. However,
the Kullback–Leibler divergence tends to be small across the board and does not vary
much as a function of T for both cases.

Example 2. Next, following Dixit and Martin (2022), we compare the PRticle filter ap-
proximation to the original PR estimate for mixture models on the unit sphere S ⊂ R3

commonly used for directional data. The particular mixture model we consider is one
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with a so-called angular Gaussian distribution (Tyler 1987) kernel

k(x | µ, β) ∝ |Σµ,β|−1/2(x>Σ−1µ,β x)−3/2, x ∈ S, (µ, β) ∈ S× (0,∞),

where Σµ,β = Q>µDβQµ, with Dβ = diag(1, 1, β−2) and Qu is the rotation matrix mapping
(0, 0, 1)> onto the unit vector µ ∈ S, given by

Qµ =


cos θµ cosφµ − sinφµ sin θµ cosφµ

cos θµ sinφµ cosφµ sin θµ sinφµ

− sin θµ 0 cos θµ

 ,

and (θµ, φµ) is the spherical coordinate representation of µ. For the original PR estimator,
Dixit and Martin (2022) treated β as a fixed unknown structural parameter, not a latent
variable being mixed over. That is, they treated the kernel as kβ(x | u), depending on
the unknown β, where u = µ is the only latent variable mixed over. Then they employed
the PR marginal likelihood strategy to estimate the fixed unknown β. Here, using the
added flexibility of the PRticle filter approximation, we fit the model that mixes over
latent variable u = (µ, β), so that there are no unknown structural parameters to be
estimated separately. Here we generate n = 2000 samples from the above mixture model
where the true mixing distribution P has a smooth bimodal density in µ and a point
mass at β = 0.1—this means that PR’s mixture model, that takes β fixed and unknown,
is correctly specified while the PRticle filter’s mixture model is misspecified. For the
PR estimator, we take wi = (i + 1)−1 and P0 to be uniform on S. For the PRticle filter
approximation, which mixes over both µ and β, the initial guess P0 is a product of uniform
distributions on S and a uniform distribution on (0, 0.5]. Plots of the PR estimate mn and
PRticle approximation m̂n, based on T = 1000 initial particles, are provided in Figure
1. The approximation based on PRticle filter clearly captures all the relevant features of
the PR estimate, and in much less time thanks to not needing to employ the marginal
likelihood strategy to estimate a fixed β.

Example 3. For the third part of the simulation study, we mix a bivariate normal ker-
nel over all mean (µ1, µ2) and covariance (σ2

1, σ
2
2, ρ) parameters. This means that the

mixing distribution P is defined over five variables. Using PR with numerical integra-
tion is not possible in this situation as a quadrature scheme is infeasible. The PRticle
filter approximation can instead be used to fit this mixture density. For comparison,
we consider a Dirichlet process mixture model fit, where the prior for the mixing dis-
tribution is P ∼ DP(α, P0), a Dirichlet process with precision parameter α > 0 and
base measure P0, which we take to be the same as PR’s initialization (see below). The
Dirichlet process mixture model estimate of the mixture density is the corresponding
posterior mean, which is calculated using the DirichletProcessMvnormal function in
the R package dirichletprocess (Ross and Markwick 2019) with 1000 iterations. To
compare the two approaches we take U = (µ1, µ2, σ

2
1, σ

2
2, ρ) with the true mixing distri-

bution P corresponding to independent µ1 ∼ N(5, 32), µ2 ∼ N(10, 32), σ2
1 ∼ Gamma(1, 1),

σ2 ∼ Gamma(5, 1), and ρ ∼ Beta(10, 5). In this, we generate n = 500 observations from
the true mixture density and fit a multivariate normal mixture density using the PRticle
filter approximation and the Dirichlet process mixture model machinery. As before we
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(a) PRticle estimate, north pole (b) PRticle estimate, south pole

(c) PR estimate, north pole (d) PR estimate, south pole

Figure 1: Estimated mixture density on the sphere based on the PR algorithm and the
PRticle filter approximation for bimodal continuous mixing distribution, views from north
and south poles.

initialize the PRticle filter with a uniform distribution P0 over all parameters and a weight
sequence wi = (i + 1)−1. However, to avoid possible attrition we improve the filter by
using the strategy proposed in Section 3.3 and rerun the algorithm with an updated P0.
Contour plots of the estimated mixture densities are given in Figure 2. The PRticle filter
approximation plots are able to capture the structure of the true mixture density, m, just
like the Dirichlet process mixture model fit. For a numerical comparison we calculate the
Monte Carlo approximation of the Kullback–Leibler divergence between the true mixture
density and the estimated density. This is 0.024 for a comparison between m and m̂PR

while it is 0.006 for a comparison between m and m̂DP . The Dirichlet process estimate
performs slightly better than PR for mixture density estimation, but it is important to
note that PR is solving the harder problem of estimating a multivariate mixing density,
which the Dirichlet process mixture formulation struggles with because the resulting es-
timator is effectively discrete. To illustrate this, we draw independent samples of U from
the true mixing distribution P and both the PRticle filter and Bayes estimates of P ,
and display quantile–quantile plots for comparison in Figure 3. The PR quantiles match
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(c) PRticle estimate with updated p0

Figure 2: Mixture density estimates for a multivariate normal mixture with the observed
data overlaid.

the true distribution quantiles much more closely compared to the Dirichlet process-based
Bayes estimator quantiles. Computationally, fitting of the Dirichlet process mixture takes
almost four minutes on our machine, while the PRticle filter approximation is calculated
in about one minute.

4.2 Marked point process modeling

Here we showcase an interesting application of multivariate mixture modeling using PR,
which is made possible by the PRticle filter approximation. Suppose our data consists of
spatial locations s of an interesting occurrence possibly accompanied by some attributes
x at those locations. Typically, when only location observations s1, . . . , sn are available,
there is interest in the intensity of the incident occurrence. These are typically modeled
as realizations from a non-homogeneous Poisson process with intensity function λ(s),
s ∈ S ⊆ Rd (e.g. Liang et al. 2008). For example, in an epidemiological study, si might
be the geographic location of the ith individual showing symptoms of a particular disease
and hence there is interest in modeling the intensity of the disease occurrences. For such
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Figure 3: Quantile–quantile plots for each component of U = (µ1, µ2, σ
2
1, σ

2
2, ρ) of the

mixing distribution corresponding to the multivariate normal mixture. Black line cor-
responds to quantiles from the PRticle filter estimate, while the red line corresponds to
quantiles from the Dirichlet process-based Bayes estimate.

a non-homogeneous Poisson process, a likelihood function can be written as,

L(λ | s1, . . . , sn) = Λn exp{−Λ}
n∏
i=1

m(si)

where m is the normalized intensity function, i.e., m(s) = λ(s)/Λ, and Λ =
∫
λ(t) dt.

Given the separable nature of the likelihood above, Λ and m can be estimated separately.
A regression approach is to model λ by a log Gaussian Cox process ( e.g. Liang et al.
2008). However given the nonparametric nature of the problem it is desirable to use
a robust model for λ to capture all the shape/scale features of the function. Mixture
models offer this flexibility and an approach to modeling λ or m by a Dirichlet process
mixture was proposed in Kottas and Sansó (2007).

Additionally, there could be other attributes X1, . . . , Xn present with the location
data, for example, indicator variable for type of disease, when there is interest in the
association between disease locations. Then to account for this association and its effect
on the model, a joint intensity function ψ(s, x) can be defined. The resulting process is
known as the marked point process, where the attributes are called marks. The nonpara-
metric mixture density in (1) offers the required flexibility to model a fully nonparametric
function ψ(s, x). Taddy and Kottas (2012) propose mixture models for such marked point
processes using conditionally conjugate Dirichlet process mixture models. The idea is to
model the joint intensity ψ(s, x) of the locations s and marks x as,

ψ(s, x) = λ(s) g(x | s) = Λm(s) g(x | s) = Λm(s, x), (5)

where g(x | s) represents the conditional density of mark X, given location s. Features
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of this joint intensity can be identified by modeling m(s, x) with a mixture model. The
flexibility and computational efficiency offered by PR means that it is tailor-made to fit
such a mixture model. However, given the multivariate nature of the problem we need
the PRticle filter approximation to actually implement PR.

We illustrate the above on a real dataset as suggested in Example 5.3 of Taddy and
Kottas (2012). The suggested dataset, longleaf is part of the R package spatstat

(Baddeley and Turner 2005) and a detailed space-time survival analysis based on this
was developed in Rathbun and Cressie (1994). The observations are locations of 584 pine
trees in a 200×200 square and the marks are diameters of the trees at breast height (only
for trees having this diameter greater than 2 cm). A scatter plot of the data is given in
Figure 4. One can clearly see that the distribution of trees is not uniform, i.e., mature
(larger diameter) trees are more evenly distributed than younger (smaller diameter) trees,
which appear in clusters. Hence, the goal is to model the joint intensity of the locations
and marks of these trees. Taddy and Kottas (2012) model m(s, x) as a mixture model
with a trivariate normal kernel and a mixing distribution defined over all the parameters
of this multivariate normal distribution, i.e,

m(s, x) =

∫
N3

(
logit (s1/200, s2/200), log(x− 2) | µ,Σ

)
(x− 2)

∏2
i=1(si/200)(1− si/200)

P (dµ, dΣ) (6)

With the model in (6), we can estimate the conditional distribution of the marks at
different locations to capture the varying distribution of trees, which in essence is an
indication of the survival. We propose using the PR approach to fit this joint intensity
function and estimate P . Of course, that this is a mixture of a nine-dimensional latent
variable space—three mean parameters and six covariance matrix parameters—makes it
impossible to fit with the PR algorithm directly, so the PRticle filter approximation is
necessary. Assuming a mixing distribution over all nine dimensions is possible using the
PRticle filter approximation, but for model comparison we actually fit two models: the
nine-dimensional model above and a reduced model that assumes the covariance terms
in Σ are fixed at 0. The mixing distribution is then estimated by PR with the PRticle
filter approximation. From this fitted mixture model m(s, x) we extract the conditional
density g(x | s) at specific locations to see how the diameter distribution varies with
s as displayed in Figure 5. As we can see in the scatter plot, each chosen location
has unique characteristics in terms of diameter distribution. Locations s = (81, 120)
and s = (100, 100) have higher concentrations of mature, large-diameter trees, which is
correctly captured by both models (nine-dimensional and six-dimensional) in Figure 5.
On the other hand, locations s = (105, 140) and s = (185, 87) have clusters of younger,
smaller-diameter trees which, again, is correctly captured in Figure 5. Each plot in
Figure 5 is overlaid with an empirical probability density of marks using the density

function in R based on observations that are within a radius of 30 units from the chosen
location. The fitted model retains these local features while being globally smoother than
the empirical density. In terms of model comparison, both the six and nine-dimensional
model reasonably capture the varying diameter distribution at all locations. A difference
between the two estimates is that the full model estimate is smoother than the reduced
model one. This is because the kernel density in the former inherently contains an average
over the covariance parameters, while the latter fixes these at zero. The full model also
appears to capture certain features better than the reduced model. For example, consider
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Figure 4: Tree locations on a 200× 200 grid (longleaf dataset), where the size of each
point is proportional to the respective tree diameter; gray coloring is to make different
points easier to distinguish. Yellow triangles indicate locations at which the conditional
mark density is estimated in Figure 5.

the locations s = (105, 140) and s = (185, 87), whose conditional mark density is shown
in Panels (c) and (d) of Figure 5, respectively. These two points have relatively high
concentration of small-diameter trees, as seen in Figure 4; but upon closer inspection,
the concentration at s = (105, 140) seems higher than at s = (185, 87), and we see that
the conditional density estimates based on the full model capture these differing features
better than those based on the reduced mode. Similar results were obtained in Taddy and
Kottas (2012) via their proposed Dirichlet process mixture fit. An interesting difference
between our results and those of Taddy and Kottas is that their plot at s = (100, 100)
shows a sharp spike in the conditional density near x = 0, whereas ours does not. Since
there is no evidence in the scatter plot for a high concentration of small-diameter trees,
our guess is that their spike is actually a boundary effect, commonly seen in density
estimation on bounded domains, and not an inherent feature in the data. That the PR
estimate does not suffer from a boundary effect in this case is another benefit.

5 Conclusion

In this paper we proposed a new filtering mechanism, a PRticle filter, for fitting non-
parametric mixture models using the PR algorithm in multivariate problems. This new
development is an important addition because, previously, the PR algorithm could only
handle mixtures over relatively low-dimensional spaces. This contribution creates new
opportunities for PR-based methodology in non-trivial problems like marked spatial point
process modelling in Section 4.2. Theoretically, we show that the PRticle filter approxi-
mation of the mixing distribution converges to the PR estimate in a strong sense as the
number of particles T goes to infinity, when the data X1, . . . , Xn of size n remains fixed.
This holds for the primary PR run only, an analysis of the attrition-handling embellish-
ments in Section 3.3 would require more sophisticated techniques. Coupling this with
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(b) s = (100, 100)
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(c) s = (105, 140)
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(d) s = (185, 87)

Figure 5: Conditional density estimates for the marks, i.e., the diameter of trees in
the longleaf dataset at four specific locations, s, in the 200 × 200 grid with full nine-
dimensional (black), reduced six-dimensional (red) mixture model overlayed with an em-
pirical distribution of marks in the neighborhood (dashed)

results in literature on consistency (as n→∞) of the PR estimator strengthens both the
theoretical and practical aspects of PR. Our numerical results show that the PRticle filter
approximation gives as accurate results as the traditional PR approach for univariate and
bivariate mixtures and is also effective in estimating a multivariate mixture density.

One might also be interested in quantifying uncertainty about the mixing distribution
and its features, like in Section 4.2. Capturing the variability in the PR estimate is a
difficult problem, but suggestions have been made in Fortini and Petrone (2020) and
Dixit and Martin (2019). The former uses a quasi-Bayes strategy to construct credible
intervals for the PR estimate, while in the latter we leverage the order dependence of the
PR estimator for uncertainty quantification. This strategy, which constructs multiple PR
estimates based on distinct permutation of the data sequence, would be applicable for
the PRticle filter approximation. There are some theoretical gaps that need to be filled,
however, so remains an ongoing work.

One of our numerical illustrations considered nonparametric estimation of mixing
distributions supported on the sphere in three-dimensions. A natural question is if this
approach could be extended to other cases involving mixture defined on more general
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compact manifolds, e.g., higher-dimensional spheres, tori, etc. All that would be needed
to extend the proposed strategy in such cases is a map from the surface of the manifold
to an underlying Euclidean space where the comptutations can be carried out. In the
special case of the sphere, there is a “global” Euclidean-space representation but, for more
general manifolds, the corresponding Euclidean spaces would be “local,” which creates
some new and interesting conceptual and computational challenges.

An interesting theoretical question is if consistency of the PRticle filter approximation
could be established. That is, if P̂n,T is the PRticle filter approximation of the PR

estimator Pn, then the goal would be to show that P̂n,T → P as both n and T go to
infinity. Of course, this would require T = Tn to be increasing sufficiently fast with
n. Direct extension of the argument used in the proof of Theorem 1 may be possible
using some naive techniques, e.g., the classical union bound, but, if successful, this would
require T to be exponentially large with n. Our gut feeling is that such a large number
of particles would not be necessary, so some important insights are still missing. We save
this as a topic for future work.

A remaining practical challenge is the handling of attrition when the dimension of the
mixing distribution support is relatively high. What we proposed in Section 3.3 is able
to adequately control attrition rates for mixtures over at least nine-dimensional spaces.
We have not thoroughly tested the performance of the PRticle filter approximation in
dimensions higher than this, but we fully expect that controlling the attrition rate will
be more and more difficult as the dimension increases. This is not a limitation of the
proposed method, it is a challenge that any importance sampling-based method will face
in high-dimensional applications. New insights would be needed to make this leap to
high-dimensional mixtures but it may be possible to take advantage of the PR-specific
recursive structure that we used to develop the PRticle filter approximation here.
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A Proof of Theorem 1

Recall that,

m̂i−1(Xi) =
1

T

T∑
t=1

k(Xi | Ut) ∆̂i(Ut), i ≥ 1,

where ∆̂1(u) ≡ 1 and

∆̂i(u) = ∆̂i−1(u) δ̂i−2(u)

=
i∏

j=2

{
1 + wj−1

(
k(Xj−1 | u)

m̂j−2(Xj−1)
− 1

)}
, i ≥ 2.
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By the strong law of large numbers, we have that

m̂0,T (X1) =
1

T

T∑
t=1

k(X1 | Ut)→ m0(X1), with P0-probability 1 as T →∞.

To prove a similar claim for all m̂`,T (X`+1), we proceed by induction. That is, we start
by assuming that

m̂i−1,T (Xi)→ mi−1(Xi) with P0-probability 1, for all i ≤ `, (7)

and then use that assumption, along with the structure of the algorithm, to prove

m̂`,T (X`+1)→ m`(X`+1), with P0-probability 1, as T →∞.

Towards this, we have

m̂`,T (X`+1) =
1

T

T∑
t=1

k(X`+1 | Ut) ∆̂`+1(Ut)

=
1

T

T∑
t=1

k(X`+1 | Ut)
∏̀
i=1

{
(1− wi) + wi

k(Xi | Ut)
m̂i−1,T (Xi)

}
.

The product above can be expanded as

∏̀
i=1

{
(1− wi) + wi

k(Xi | Ut)
m̂i−1,T (Xi)

}
=
∑
S(`)

∏
j∈S(`)

(1− wj)
∏
i 6∈S(`)

wi
k(Xi | Ut)
m̂i−1,T (Xi)

,

where S(`) is a generic subset of {1, . . . , `} and the sums and products are over all 2`

such subsets. Going back the formula for m̂`,T (X`+1), we can distribute the average over
t through the product, which gives

m̂`,T (X`+1) =
∑
S(`)

∏
j∈S(`)(1− wj)

∏
i 6∈S(`)wi∏

i 6∈S(`) m̂i−1,T (Xi)

{ 1

T

T∑
t=1

k(X`+1 | Ut)
∏
i 6∈S(`)

k(Xi | Ut)
}
.

By the induction hypothesis (7), we have that∏
i 6∈S(`)

m̂i−1,T (Xi)→
∏
i 6∈S(`)

mi−1(Xi), with P0-probability 1, uniformly in S(`).

Moreover, by the assumption (4), the strong law of large numbers gives

1

T

T∑
t=1

k(X`+1 | Ut)
∏
i 6∈S(`)

k(Xi | Ut)→
∫
k(X`+1 | u)

∏
i 6∈S(`)

k(Xi | u)P0(du),

with P0-probability 1, as T →∞, again uniformly in S(`). The two “uniformly in S(`)”
claims above follow because there are only finitely many such S(`). Putting everything
together, we have that m̂`,T (X`+1) converges with P0-probability 1, as T →∞, to∑

S(`)

∏
j∈S(`)(1− wj)

∏
i 6∈S(`)wi∏

i 6∈S(`)mi−1(Xi)

{∫
k(X`+1 | u)

∏
i 6∈S(`)

k(Xi | u)P0(du)
}
.
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Moving the integration over u to the outside of the sum over S(`) and undoing the product
expansion above eventually leads to m̂`,T (X`+1)→ m`(X`+1) with P0-probability 1.

We showed above that

m̂i−1,T (Xi)→ mi−1(Xi) with P0-probability 1 as T →∞,

uniformly in i = 1, . . . , n without any assumptions on the convergence of the mixing
distribution approximation. Since the final mixing density estimator p̂n,T is a continuous
function of {m̂i−1,T (Xi) : i = 1, . . . , n}, it follows that

p̂n,T (u)→ pn(u), with P0-probability 1, as T →∞, for all u.

Since these are density functions, it follows from Scheffé’s theorem that p̂n,T converges in
L1(du) to pn, with P0-probability 1, as T →∞.
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