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Abstract

Some classical uncertainty quantification problems require the estimation of
multiple expectations. Estimating all of them accurately is crucial and can have
a major impact on the analysis to perform, and standard existing Monte Carlo
methods can be costly to do so. We propose here a new procedure based on im-
portance sampling and control variates for estimating more efficiently multiple
expectations with the same sample. We first show that there exists a family of
optimal estimators combining both importance sampling and control variates,
which however cannot be used in practice because they require the knowledge
of the values of the expectations to estimate. Motivated by the form of these
optimal estimators and some interesting properties, we therefore propose an
adaptive algorithm. The general idea is to adaptively update the parameters
of the estimators for approaching the optimal ones. We suggest then a quanti-
tative stopping criterion that exploits the trade-off between approaching these
optimal parameters and having a sufficient budget left. This left budget is then
used to draw a new independent sample from the final sampling distribution,
allowing to get unbiased estimators of the expectations. We show how to apply
our procedure to sensitivity analysis, by estimating Sobol’ indices and quan-
tifying the impact of the input distributions. Finally, realistic test cases show
the practical interest of the proposed algorithm, and its significant improvement
over estimating the expectations separately.
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1. Introduction

Some classical uncertainty quantification problems require the estimation of
multiple expectations, and estimating all of them accurately is crucial. The gen-
eralized method of moments [1], which is massively used in finance for example
[2], is a common illustration of a such problem. Another classical illustration
of this problematic is global sensitivity analysis [3], which aims at studying the
impact of the input variables on the output behaviour of a computer model. Per-
forming a such study consists in estimating some sensitivity indices associated
to each input variable, such as the Sobol’ indices [4] or the Shapley effects [5]
for example, and requires in each case the estimation of multiple expectations.

The usual quadrature methods [6] tend not to be appropriate in these un-
certainty quantification contexts, as the expectations then involve a numerical
model which computational cost is usually high (from several minutes to sev-
eral days CPU), and which number of input variables is not small. Standard
existing Monte Carlo methods [7] for estimating multiple expectations consist in
drawing a unique sample according to a given input distribution and to estimate
all of them with it. However, this sample can be ill-suited for estimating accu-
rately some of the expectations, so having accurate estimations of all of them
can be costly with this method. As a consequence, the resulting error can have
a major impact on the final goal of the analysis, as illustrated in our numeri-
cal experiments in Section 4. Importance sampling [8] and control variates [9]
are two well-known and deeply investigated variance-reduction techniques for
improving the estimation of a single expectation. However, to the best of our
knowledge, these methods have not been adapted for jointly estimating multiple
expectations with the same sample.

In this article, we first propose a criterion to quantify the quality of the
common estimation of multiple expectations with the same sample. We show
then that there exists a family of optimal estimators combining both impor-
tance sampling and control variates. However, these optimal estimators cannot
be used in practice because they require the knowledge of the values of the ex-
pectations to estimate. Motivated by the form of these optimal estimators and
some interesting properties [10, 11], we therefore propose an adaptive algorithm
called ME-aISCV combining both importance sampling and control variates
for estimating multiple expectations with the same sample. Not only can we
address different functions across the expectations, but also different input dis-
tributions. In the same way as other adaptive algorithms [12, 13], the general
idea is to sequentially update the parameters of the estimators for approaching
the optimal ones until a stopping criterion is reached. We suggest a quantitative
stopping criterion that exploits the trade-off between approaching these optimal
parameters and having a sufficient budget left. At last, the left budget is used
to draw a new independent sample according to the final sampling distribution
which allows to get unbiased estimators of the expectations to estimate.

The remainder of this paper is organized as follows. First, Section 2 for-
mally presents the problem and provides a review on importance sampling and
control variates. Then, Section 3 introduces and describes the proposed ME-
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aISCV algorithm for estimating multiple expectations with the same sample. In
addition, Section 4 illustrates the practical interest of this new algorithm on the
estimation of several moments of the standard Gaussian distribution. It then
shows that the ME-aISCV algorithm can be applied to the estimation of first
order Sobol’ indices and to sensitivity analysis w.r.t. parameters of the input
distribution. Both applications are illustrated on a real structural engineering
example: the cantilever beam problem. In all cases, the improvement of our
methodology over estimating the expectations separately is significant. Finally,
Section 5 concludes the present article and gives future research perspectives
stemming from it.

2. Exposition of the problem and review on variance-reduction meth-
ods

In this section, we first expose the problem of estimating multiple expec-
tations with the same sample and we recall the main principles of importance
sampling and control variates to address it.

First of all, let us begin by introducing the notations that will be used
throughout the paper. For any probability density h from the input domain X =⊗d

i=1 Xi ⊆ Rd to R+, we let Eh and Vh denote respectively the expectation and
the variance operators of a random variable distributed according to h. Then,
for J ≥ 2, we consider a family of non-negative functions (φj)j∈[[1,J]] from X to

R+. Moreover, for any j ∈ [[1, J ]], the random input vector X = (X1, . . . , Xd)
of the function φj on X follows the distribution of joint PDF fj . No regularity
assumption on the functions is required, but the random output of each function
is supposed to be integrable, i.e. Efj (φj (X)) < +∞.

2.1. Estimating multiple expectations with the same sample

As discussed and motivated in the introduction, the main goal of this article
is to efficiently estimate multiple expectations while minimising the number of
calls to the functions (φj)j∈[[1,J]] using a unique N -sample. More precisely, the

family of expectations to estimate is
(
Ij = Efj [φj (X)]

)
j∈[[1,J]]

, the N -sample is(
X(n)

)
n∈[[1,N ]]

and it is drawn from a distribution of PDF g.

In practice, two specific cases can occur:

• Case 1: estimating the expectation of J different functions under the
same input distribution, or formally ∀i, j ∈ [[1, J ]], i 6= j =⇒ φi 6= φj and
∀j ∈ [[1, J ]], fj = f , see Section 4.2 for a numerical example,

• Case 2: estimating the expectation of the same function φ under J different
input distributions, or formally ∀j ∈ [[1, J ]], φj = φ and ∀i, j ∈ [[1, J ]],
i 6= j =⇒ fi 6= fj , see Section 4.3 for a numerical example.

The quality of the estimation of one expectation can be evaluated with the
variance for unbiased estimators. When estimating J expectations, a natural
criterion is the weighted sum of the individual variance of each estimator, which

3



is briefly mentioned in [11]. To define this criterion, let us consider a family of

positive weights (wj)j∈[[1,J]] ∈ RJ+. Then, for any j ∈ [[1, J ]], let us denote Îj

an estimator of the expectation Ij such that all the estimators Î1, . . . , ÎJ are
based on the same N -sample distributed according to g. The criterion we want
to minimize is:

J∑
j=1

wjVg
(
Îj

)
. (1)

The positive weights (wj)j∈[[1,J]] can be used to adjust the importance given to

each expectation to estimate.

2.2. Importance sampling

2.2.1. General presentation

Importance sampling (IS) is a very usual variance-reduction technique which
was introduced in [8]. In the case of the estimation of an expectation I =
Ef (φ (X)), it consists in rewriting the expectation according to an auxiliary
density g : X −→ R+ as Eg (φ (X)wg (X)), where wg (x) = f(x)/g(x) is the
likelihood ratio. To get an unbiased estimate, the support of g must contain the
support of x ∈ X 7→ φ (x) f(x). The corresponding estimator is then given by:

ÎIS
g,N =

1

N

N∑
n=1

φ
(
X(n)

)
wg
(
X(n)

)
, (2)

where
(
X(n)

)
n∈[[1,N ]]

is an i.i.d. sample distributed according to the IS auxiliary

distribution g. It is consistent and unbiased, and it has zero-variance if and
only if g = g∗ with ∀x ∈ X, g∗ (x) ∝ φ (x) f(x) [14] on the condition that φ is
non-negative. This optimal density cannot be used in practice because the nor-
malizing constant is I, which is the quantity to estimate, but many techniques
exist to approach g∗ by a near-optimal auxiliary density: non-parametric meth-
ods [15] or parametric methods such that the cross-entropy method [16, 17].

2.2.2. The cross-entropy method

In this article, we will seek an approximation of g∗ in parametric families
of distribution DΛ = {gλ;λ ∈ Λ}. As a first option, one could aim for the
parameter λ∗V which minimizes the variance of the estimator:

λ∗V = argmin
λ∈Λ

Vgλ
(
ÎIS
gλ,N

)
. (3)

However, this optimisation problem is not convex w.r.t. λ ∈ Λ, does not have
an analytical solution and needs to be solved numerically [7], even for classical
families DΛ (like the Gaussian family defined below), which can be extremely
costly. Therefore, one typically prefers to use the cross-entropy method. It
consists in minimizing the Kullback-Leibler divergence [18] between g∗ and gλ
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for λ ∈ Λ in order to find the best representative of g∗ in DΛ. The Kullback-
Leibler divergence between two distributions of PDF g1 and g2 is given by:

DKL (g1, g2) = Eg1
(

log

(
g1 (X)

g2 (X)

))
=

∫
X

log

(
g1 (x)

g2 (x)

)
g1 (x) dx. (4)

The quantityDKL (g1, g2) is always non-negative and is zero if and only if g1 = g2

almost everywhere. It measures the gap between two distributions, even if it is
not a distance because it is not symmetric. The cross-entropy method consists
then in finding the solution λ∗ of the optimization problem:

λ∗ = argmin
λ∈Λ

DKL (g∗, gλ) . (5)

Under this form, this optimization cannot be solved because it depends explicitly
on g∗ which is unknown. However, it can be shown [16] that the optimization
problem in (5) is equivalent to solve:

λ∗ = argmax
λ∈Λ

Ef [log (gλ (X))φ (X)] . (6)

In opposition to the variance-minimization problem in (3), the cross-entropy
problem in (6) is generally concave and differentiable w.r.t. λ ∈ Λ [17]. Another
significant advantage of the problem in (6) is that it has an analytical solution
when DΛ belongs to the exponential family of distributions [17].

2.2.3. Classical families of distributions for the auxiliary distribution

One of the most famous family of distributions is the Gaussian familyDGauss ={
gm,Σ;m ∈ Rd,Σ ∈ S+

d

}
, which belongs to the exponential family. Each Gaus-

sian distribution is fully determined by λ = (m,Σ), with m ∈ Rd the mean
vector and Σ ∈ S+

d the covariance matrix, where S+
d denotes the set of sym-

metric positive-definite real-valued matrices of size d × d. This family is well-
suited when g∗ is unimodal. Since DGauss belongs to the exponential family,
the cross-entropy problem in (6) has an analytical solution and it is given by
λ∗ = (m∗,Σ∗):

m∗ =
Ef [φ (X) X]

Ef [φ (X)]
and Σ∗ =

Ef
[
φ (X) (X−m∗) (X−m∗)>

]
Ef [φ (X)]

. (7)

In practice, these optimal parameters are estimated with a sample, which is
called the stochastic counterpart [16].

The optimal density g∗ can also be multimodal. In that case, a well-suited
family of distributions is the Gaussian mixture family [19]. Let us first define,
for any K ≥ 1, the set of convex combinations of size K:

SK =

{
(αj)j∈[[1,K]] ;

K∑
k=1

αk = 1 and ∀k ∈ [[1,K]], αk ≥ 0

}
. (8)
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Then, the Gaussian mixture family with K ≥ 1 components is given by D(K)
Mix ={∑K

k=1 αkgmk,Σk
; (mk)k∈[[1,K]] ∈

(
Rd
)K

, (Σk)k∈[[1,K]] ∈
(
S+
d

)K
, (αk)k∈[[1,K]] ∈ SK

}
.

The Gaussian mixture family does not belong to the exponential family, but
since solving the cross-entropy problem is equivalent to obtaining the maximum
likelihood estimate of the parameters [7], it is possible to use the Expectation-
Maximisation algorithm [20] to estimate them efficiently thanks to the procedure
described in [21, 22].

2.3. Control variates

2.3.1. General presentation

Control variates (CV) is another variance-reduction technique [9]. It consists
in exploiting known values of some integrals of control functions in order to im-
prove the quality of the estimation of an expectation. CV has been first defined
as a straightforward extension of the Monte Carlo estimate of the expectation
[9, 23], but it can be paired with IS [24, 10]. For the sake of conciseness, we will
describe CV with only one control function, but it can be easily generalized to
the case of multiple control functions. More precisely, let us consider a control
function h : X −→ R such that

∫
X h (x) dx = θ ∈ R is known, and a real value

β ∈ R called control parameter. Then,

ÎCV
g,h,β,N =

1

N

N∑
n=1

φ
(
X(n)

)
f
(
X(n)

)
− βh

(
X(n)

)
g
(
X(n)

) + βθ, (9)

where
(
X(n)

)
[[1,N ]]

is an i.i.d. sample drawn according to g, is an unbiased

estimator with CV and IS of I. Its variance is then given by:

NVg
(
ÎCV
g,h,β,N

)
= Vg

(
φ (X) f (X)− βh (X)

g (X)

)
(10)

= Vg
(
φ (X) f (X)

g (X)

)
− 2βCovg

(
φ (X) f (X)

g (X)
,
h (X)

g (X)

)
+ β2Vg

(
h (X)

g (X)

)
.

(11)

By minimising Equation (11) according to the real parameter β, it can be shown
that the optimal value of β is:

β∗ = Vg
(
h (X)

g (X)

)−1

Covg

(
φ (X) f (X)

g (X)
,
h (X)

g (X)

)
. (12)

This optimal value β∗ satisfies Vg
(
ÎCV
g,h,β∗,N

)
≤ Vg

(
ÎIS
g,N

)
, which means that it

is possible to improve the quality of the estimation of I with CV if the parameter
β is chosen carefully. In practice, the optimal parameter β∗ is estimated either
directly through Equation (12) [25] or by a least square regression by minimising
Equation (10) [24, 26].

At last, note that if we use the same sample to compute an estimator β̂ of
β∗ and the expectation I by plugging β̂ in (9), the estimator ÎCV

g,h,β̂,N
is biased.
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However, this bias can be eliminated if we use two different samples to compute
β̂ and ÎCV

g,h,β̂,N
.

2.3.2. Mixture importance sampling with control variates

A mixture of K ≥ 1 distributions g1, . . . , gK is a distribution of the form
gα =

∑K
k=1 αkgk, where the sequence of real numbers α = (αk)k∈[[1,K]] belongs

to SK . For example, an element of the family D(K)
Mix is a mixture of K Gaus-

sian distributions. The use of mixture distributions as IS auxiliary distributions
without and with CV can be beneficial in order to deal with multimodal prob-
lems and satisfies as well some interesting properties [10, 27, 11], some of which
are described below.

Assume that for all k ∈ [[1,K]], the support of gk contains the support of
x ∈ X 7→ φ (x) f(x). This assumption implies that for all α ∈ SK , for all β ∈ R
and for all k ∈ [[1,K]], the support of the mixture distribution gα contains the
support of x ∈ X 7→ φ (x) f (x)− βgk (x). Then, the authors of [10, 11] proved
the following theorem.

Theorem 2.1. For any k ∈ [[1,K]] and α ∈ SK , we have:

NVgα
(
ÎCV
gα,gk,β∗,N

)
= Vgα

(
φ (X) f (X)− β∗gk (X)

gα (X)

)
≤ α−1

k Vgk
(
φ (X) f (X)

gk (X)

)
.

(13)

This theorem ensures that if one component gk0 of the mixture distribution

gα =
∑K
k=1 αkgk is well-suited to the problem of estimating the expectation

I = Ef (φ (X)), then the variance of the estimator ÎCV
gα,gk0

,β∗,N using gk0 as

control function would be small.
Moreover, the choice of the coefficients α ∈ SK of the mixture gα can have

a major impact on the variance of the CV estimator. The authors of [10, 11]
proved as well the following theorem.

Theorem 2.2. For any β ∈ R and k ∈ [[1,K]], the optimisation problem

α∗ = argmin
α∈SK

Vgα
(
φ (X) f (X)− βgk (X)

gα (X)

)
(14)

is convex on SK .

This theorem ensures then that simple optimisation algorithms can be per-
formed in order to find a sequence of real coefficients α ∈ SK which gives a
small variance for the IS-CV estimator.

3. New adaptive algorithm for estimating multiple expectations with
the same sample

In this section, we first provide the theoretical motivations leading to a
new procedure for estimating J expectations with a unique N -sample which

7



minimizes the criterion in Equation (1). Second, we describe more precisely the
proposed ME-aISCV algorithm itself.

Recall that the optimal IS auxiliary distribution for estimating an expec-
tation I = Ef (φ (X)) is given for all x ∈ X by g∗ (x) = I−1φ (x) f (x). For
j ∈ [[1, J ]], let us then denote g∗j the optimal IS auxiliary distribution for esti-
mating Ij = Efj (φj (X)).

3.1. Theoretical motivation

Let us begin with the following proposition.

Proposition 3.1. For any IS auxiliary distribution g and any i.i.d. sample(
X(n)

)
n∈[[1,N ]]

drawn according to g, and for any j ∈ [[1, J ]], the estimator

ÎCV
g,g∗j ,Ij ,N

=
1

N

N∑
n=1

φj
(
X(n)

)
fj
(
X(n)

)
− Ijg∗j

(
X(n)

)
g
(
X(n)

) + Ij (15)

is an unbiased zero-variance estimator of the expectation Ij = Efj (φj (X)).

Proof. By plugging the expressions of g∗j in the estimator ÎCV
g,g∗j ,Ij ,N

, a simple

computation leads to ÎCV
g,g∗j ,IjN

= Ij . Equivalently, Eg
(
ÎCV
g,g∗j ,Ij ,N

)
= Ij and

Vg
(
ÎCV
g,g∗j ,Ij ,N

)
= 0.

Note that Ij corresponds in this case to the optimal value of the control
parameter β ∈ R given in Equation (12). This proposition implies that for any
sequence (wj)j∈[[1,J]] ∈ R+, we have:

J∑
j=1

wjVg
(
ÎCV
g,g∗j ,Ij ,N

)
= 0. (16)

This result is very interesting because it shows that the use of CV allows to
make the criterion to minimise in Equation (1) equal to 0 with any auxiliary
sampling distribution. Nevertheless, the estimators in Equation (15) cannot be
used in practice because they require the knowledge of the values of (Ij)j∈[[1,J]],

which are the quantities to estimate.
To overcome this problem, in the same way as in the classical IS framework

presented in Section 2.2, it is possible to approach these optimal IS distributions(
g∗j
)
j∈[[1,J]]

by auxiliary distributions
(
gλj

)
j∈[[1,J]]

lying in a parametric family

of distributions DΛ. We can then plug them in the expression of the estimators
in Equation (15). The modification of the control functions from

(
g∗j
)
j∈[[1,J]]

to(
gλj

)
j∈[[1,J]]

implies that the optimal values of the control parameters (βj)j∈[[1,j]]

are no longer equal to the expectations (Ij)j∈[[1,J]]. It is then necessary to

estimate these new optimal parameters with some estimators
(
β̂j

)
j∈[[1,J]]

of the

expression in Equation (12).
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Moreover, the distribution gλj is usually well-suited to estimate the ex-
pectation Ij by IS. Then, Theorem 2.1 motivates us to consider a mixture

gα =
∑J
j=1 αjgλj

as the IS auxiliary sampling distribution. Indeed, since this

distribution is a mixture of the
(
gλj

)
j∈[[1,J]]

, it is possible to apply Theorem 2.1

to each estimator ÎCV
gα,gλj

,β∗
j ,N

, with β∗j the optimal control parameter associated

to this problem:

NVgα
(
ÎCV
gα,gλj

,β∗
j ,N

)
≤ α−1

j Vgλj

(
φj (X) fj (X)

gλj (X)

)
. (17)

This result gives thus an interesting upper bound for the variance of each esti-
mator ÎCV

gα,gλj
,β∗

j ,N
for j ∈ [[1, J ]], and thus an upper bound of the criterion to

minimize in (1) by summing these upper bounds.
Equation (17) highlights as well the importance of the choice of the weights

α = (αj)j∈[[1,J]] ∈ SJ of the mixture. Indeed, for j ∈ [[1, J ]], if αj � 1 and

Vgλj

(
φj (X) fj (X)

/
gλj

(X)
)

is large, then the upper bound of the variance

of ÎCV
gα,gλj

,β̂j ,N
will be bad. The intuition given by Equation (17) is that high

values of wjVgλj

(
φj (X) fj (X)

/
gλj

(X)
)

must be associated to high values of

αj , and the other way around. It is thus beneficial to optimize the choice of
α, which is facilitated by the following extension of Theorem 2.2 to the case of
multiple expectations.

Theorem 3.2. For any (βj)j∈[[1,J]] ∈ RJ and any family of positive weights

(wj)j∈[[1,J]] ∈ RJ+, the optimisation problem

α∗ = argmin
α∈SJ

J∑
j=1

wjVgα
(
φj (X) fj (X)− βjgλj

(X)

gα (X)

)
(18)

is convex on SJ .

Proof. Theorem 2.2 ensures that each individual term of the sum in Equation
(18) is convex on SJ w.r.t. α. Therefore, since it is a linear combination with
positive weights of convex functions, this optimisation problem is also convex
on SJ w.r.t. α.

In the same way as in Section 2.3, this theorem ensures then that simple op-
timisation algorithms can be performed in order to find a sequence of coefficients
α ∈ SJ which reduces the criterion to minimize.

3.2. Presentation of the algorithm

3.2.1. Summary and input parameters

We propose here a new adaptive algorithm called ME-aISCV to estimate J
expectations with the same N -sample. In the same way as other adaptive IS
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algorithms [12, 13, 16, 17], the general idea is to adaptively update the IS auxil-
iary sampling distributions

(
gλj

)
j∈[[1,J]]

, the sampling distribution gα as well as

the control parameters (βj)j∈[[1,J]] until a stopping criterion is reached. Then,

a new independent sample drawn according to the final sampling distribution
allows to get unbiased estimators by IS and CV of the J expectations.

Let us describe more precisely the ME-aISCV algorithm. As input parame-
ters, it requires the family of functions (φj)j∈[[1,J]] as well as the corresponding

family of input distributions (fj)j∈[[1,J]]. It requires also the weights (wj)j∈[[1,J]],

a maximal number of calls allowed to the functions Nmax ∈ N∗ and a sequence
(Nk)k∈N ∈ (N∗)N corresponding to the number of points to draw at each itera-
tion of the algorithm.

3.2.2. Initialization

First, during the initialisation step (k = 0), an initialN0-sample
(
X(0,n)

)
n∈[[1,N0]]

is drawn according to an initial sampling distribution h0. This initial sample

allows to compute first estimations Î
(0)
j of the expectations as well as to esti-

mate the new parameters at each iteration of the algorithm. Natural choices for
h0 can be either the unweighted mixture J−1

∑J
j=1 fj or the weighted mixture(∑J

j=1 wj

)−1∑J
j=1 wjfj . Note that if we are in Case 1 (in Section 2.1), i.e. for

all i ∈ [[1, J ]] we have fi = f , then h0 is equal to f . Then, for j ∈ [[1, J ]], we set

α
(0)
j ∝

√
wj Î

(0)
j and β

(0)
j = Î

(0)
j .

3.2.3. The while loop and the stopping criterion

Next, the while loop consists in adaptively updating the parameters (λj)j∈[[1,J]],

α and (βj)j∈[[1,J]]. To do so, in the same way as in the adaptive multiple IS al-

gorithm presented in [12], we use all the previous samples generated so far.
Before the beginning of iteration k ≥ 1, we have already generated k samples(
X(0,n)

)
n∈[[1,N0]]

,
(
X(1,n)

)
n∈[[1,N1]]

, . . . ,
(
X(k−1,n)

)
n∈[[1,Nk−1]]

, respectively accord-

ing to h0, gα(1) , . . . , gα(k−1) . We can then consider heuristically that the con-
catenated sample has been generated according to the mixture hk−1 ∝ N0h0 +∑k−1
i=1 Nigα(i) , which will be useful for the following estimations.

We first compute the new parameters
(
λ

(k)
j

)
j∈[[1,J]]

of the IS auxiliary distri-

bution approaching the optimal distributions
(
g∗j
)
j∈[[1,J]]

. We do so by solving

the cross-entropy problem in Equation (6). As explained in Section 2.2, we will
solve it using the stochastic counterpart with the available sample distributed
according to hk−1. Thus, in order to estimate the expectation in Equation (6),
it is necessary to rewrite it as an expectation over hk−1:

∀j ∈ [[1, J ]], λ
(k)
j = argmax

λ∈Λ
Ehk−1

[
φj (X) log (gλ (X))

fj (X)

hk−1 (X)

]
. (19)
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The corresponding stochastic counterpart problem to solve is then given by:

λ
(k)
j = argmax

λ∈Λ

k−1∑
i=0

Ni∑
n=1

φj

(
X(i,n)

)
log
(
gλ

(
X(i,n)

)) fj
(
X(i,n)

)
hk−1

(
X(i,n)

) . (20)

We second compute the new vector α(k) ∈ SJ . As explained in Section
3.1, we will do so by solving the convex optimisation problem in Equation (18),

with the current values of the control parameters
(
β̂

(k−1)
j

)
j∈[[1,J]]

. Practically,

we have to estimate each variance in the sum, again with the available sam-
ple distributed according to hk−1. The computation developed in Appendix
A shows that solving the problem in Equation (18) is equivalent to solve the
following convex optimisation problem:

α(k) = argmin
α∈SJ

Ehk−1


∑J
j=1 wj

(
φj (X) fj (X)− β̂(k−1)

j g
λ

(k)
j

(X)
)2

gα (X)hk−1 (X)

 . (21)

The corresponding stochastic counterpart problem to solve is then given by:

α(k) = argmin
α∈SJ

k−1∑
i=0

Ni∑
n=1

∑J
j=1 wj

(
φj
(
X(i,n)

)
fj
(
X(i,n)

)
− β̂(k−1)

j g
λ

(k)
j

(
X(i,n)

))2

gα
(
X(i,n)

)
hk−1

(
X(i,n)

) .

(22)
Independently of the optimisation algorithm chosen to solve this problem, we
propose to use as starting point at iteration k the optimum found at iteration k−
1, which is α(k−1). We compute then the new mixture gα(k) =

∑J
j=1 α

(k)
j g

λ
(k)
j

,

we draw a new sample
(
X(k,n)

)
n∈[[1,Nk]]

according to gα(k) and we compute the

new simulated sampling mixture hk ∝ N0h0 +
∑k
i=1Nigα(i) .

Third, we compute the new values of the control parameters
(
β̂

(k)
j

)
j∈[[1,J]]

∈

RJ . We estimate each of them for j ∈ [[1, J ]] with the following estimator of the
optimal value of the control parameter in Equation (12):

β̂
(k)
j =

 1

Nk − 1

Nk∑
n=1

 g
λ

(k)
j

(
X(k,n)

)
gα(k)

(
X(k,n)

) −m(1,k)
j

2

−1

 1

Nk − 1

Nk−1∑
n=1

 g
λ

(k)
j

(
X(k,n)

)
gα(k)

(
X(k,n)

) −m(1,k)
j

(φj (X(k,n)
)
fj
(
X(k,n)

)
gα(k)

(
X(k,n)

) −m(2,k)
j

) ,

(23)

where

m
(1,k)
j =

1

Nk

Nk∑
n=1

g
λ

(k)
j

(
X(k,n)

)
gα(k)

(
X(k,n)

) and m
(2,k)
j =

1

Nk

Nk∑
n=1

φj
(
X(k,n)

)
fj
(
X(k,n)

)
gα(k)

(
X(k,n)

) .

(24)
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Note that we choose here to use only the last sample drawn according to gα(k)

in order to make the estimation process easier, because the covariance and the
variance operators in Equation (12) are computed according to gα(k) .

Finally, we decide to stop the while loop when the final value of the criterion
to minimise in Equation (1) does not decrease anymore between two successive
iterations, and more precisely when the following inequality is satisfied:

1

Nmax −N0 − · · · −Nk−1

J∑
j=1

wjVg
α(k−1)

φj (X) fj (X)− β̂(k−1)
j g

λ
(k−1)
j

(X)

gα(k−1) (X)

 ≤
1

Nmax −N0 − · · · −Nk

J∑
j=1

wjVg
α(k)

φj (X) fj (X)− β̂(k)
j g

λ
(k)
j

(X)

gα(k) (X)

 . (25)

This inequality compares at the end of iteration k the final value of the criterion
in (1) that we would get if we had stopped the while loop after iteration k − 1
with its value after iteration k. In the inequality, Nmax − N0 − · · · − Nk−1 is
the size of the independent sample used to estimate the integrals if the while
loop is stopped at step k− 1, and Nmax −N0 − · · · −Nk is similar for a stop at
step k. If the inequality in Equation (25) is satisfied, we consider that having
paid a budget Nk to refine the parameters from step k − 1 to k was not worth
it: it would have been better to allocate this budget Nk to the final estimates
of the integrals, using the parameters of step k − 1. In practice, the empirical
counterpart of Equation (25) is evaluated with the samples

(
X(k−1,n)

)
n∈[[1,Nk−1]]

and
(
X(k,n)

)
n∈[[1,Nk]]

for the left and right-hand side respectively.

3.2.4. Final estimate with a new independent sample

At last, at the end of the while loop after k iterations, there are Nf =
Nmax − N0 − · · · − Nk calls to the functions remaining. We draw then a final
i.i.d sample

(
X(n)

)
n∈[[1,Nf ]]

according to the final sampling distribution gα(k)

which is independent, conditionally to α(k),
(
λ

(k)
j

)
j∈[[1,J]]

and
(
β̂

(k)
j

)
j∈[[1,J]]

,

from all the previous ones drawn so far in order to get unbiased estimates(
ÎCV

g
α(k) ,g

λ
(k)
j

,β̂
(k)
j ,Nf

)
j∈[[1,J]]

of the expectations (Ij)j∈[[1,J]], as remarked in Sec-

tion 2.3. Algorithm 1 illustrates how to implement the described ME-aISCV
algorithm in practice.

12



Algorithm 1 ME-aISCV algorithm for estimating J expectations with the
same N -sample

Require: (φj)j∈[[1,J]] , (fj)j∈[[1,J]] , (wj)j∈[[1,J]] , Nmax, (Nk)k∈N

1: set h0 = J−1
∑J
j=1 fj or h0 =

(∑J
j=1 wj

)−1∑J
j=1 wjfj and draw(

X(0,n)
)
n∈[[1,N0]]

according to h0

2: for j ∈ [[1, J ]], estimate

Î
(0)
j =

1

N0

N0∑
n=1

φj

(
X(0,n)

) fj (X(0,n)
)

h0

(
X(0,n)

)
3: set α

(0)
j ∝

√
wj Î

(0)
j and β̂

(0)
j = Î

(0)
j

4: set Neval = N0 and k = 0
5: while Neval < Nmax/2 do
6: update k = k + 1

7: for j ∈ [[1, J ]], estimate the new distribution parameters λ
(k)
j by solving

the cross-entropy problem in Equation (20)
8: estimate α(k) by solving the optimisation problem in Equation (22) using

as starting point α(k−1)

9: set gα(k) =
∑J
j=1 α

(k)
j g

λ
(k)
j

10: draw
(
X(k,n)

)
n∈[[1,Nk]]

according to gα(k) and update Neval = Neval +Nk

11: update hk = Neval−Nk

Neval
hk−1 + Nk

Neval
gα(k)

12: for j ∈ [[1, J ]], estimate β̂
(k)
j with Equation (23)

13: if the stopping criterion in Equation (25) is satisfied then
14: exit the while loop
15: end if
16: end while
17: set Nf = Nmax −Neval
18: draw

(
X(n)

)
n∈[[1,Nf ]]

according to gα(k)

19: return

ÎCV

g
α(k) ,g

λ
(k)
j

,β̂
(k)
j ,Nf

=
1

Nf

Nf∑
n=1

φj
(
X(n)

)
fj
(
X(n)

)
− β̂(k)

j g
λ

(k)
j

(
X(n)

)
gα(k)

(
X(n)

) + β̂
(k)
j

13



4. Applications to sensitivity analysis and numerical results

In order to illustrate the practical interest of the previous efforts, this section
aims to evaluate numerically the performances of the suggested ME-aISCV al-
gorithm to estimate J expectations with the same sample, and to compare them
to the performances of the existing methods. The code to reproduce the numer-
ical experiments is publicly available at: https://github.com/Julien6431/

Multiple_expectation_estimation.git.
Let us introduce the adopted numerical parameters that will be used:

• Nmax = 2×104 which represents the total number of calls to the functions,

• for all k ∈ N, we choose Nk = Nmax/10 = 2× 103,

• each of the IS auxiliary distribution gλ will be picked in the Gaussian
family,

• we use the Sequential Least SQuares Programming (SLSQP) algorithm
[28] to solve the convex problem in Equation (18), because it is well-suited
for bounded and constrained problems,

• nrep = 200 realisations of each estimator to represent the results as box-
plots.

For adaptive algorithms, a discussion about the choice of the sequence (Nk)k∈N
is made in [12]. At first, it can be more intuitive to consider a sequence that
increases with the accuracy of the IS auxiliary distributions. However, it is
difficult to recover from poor early samples because of the ”what-you-get-is-
what-you-see” nature of these kind of algorithms. Therefore, as said in [12], a
good trade-off is then to consider a stationary sequence, as we do here.

4.1. Estimation of the non-centered moments of the standard Gaussian distri-
bution

First, for illustration purposes, let us consider the simple problem of the
estimation of the non-centered even moments of the one-dimensional standard
Gaussian distribution. More precisely, the expectations to estimate are defined
by
(
Imom
j = Ef1

(
X2j

))
j∈[[1,J]]

, where f1 is the PDF of the standard Gaussian

distribution N1 (0, 1). Note that we consider only the even moments between 2
and 2J for two reasons: first, since the standard Gaussian distribution is sym-
metric around zero, its odd moments are equal to 0, and second, the functions
of interest must be non negative, as defined in Section 2.2.1.

We consider here J = 10, and reference values are computed with their
analytical expressions. We compare the performances of the proposed algo-
rithm with the ones of the classical Monte Carlo estimations. For pedagogical

purposes, as the theoretical values are known, we set wj =
(
Imom
j

)−2
for all

j ∈ [[1, J ]] in Equation (1). Numerical results are presented graphically in Fig-
ure 1. The boxplots show that the quality of the estimations of the J = 10
expectations is significantly better with the ME-aISCV algorithm than with the
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Figure 1: Estimation of the J = 10 first even moments of the one-dimensional standard
Gaussian distribution.

existing Monte Carlo method. These observations are confirmed by Table 1,
because the criterion to minimize has been divided by about 104. Note that
for the moments of order 16, 18 and 20, the Gaussian approximation of the
standard Monte Carlo estimation does not kick-in at all. As a result, although
the estimation is unbiased, its distribution is highly asymmetric and its median
is far from its mean.

Monte-Carlo ME-aISCV∑J
j=1 wjV

(
Îmom
j

)
12.782 1.631× 10−3

Table 1: Weighted sum of the variances of the estimators of the J = 10 first even moments of
the one-dimensional standard Gaussian distribution.

Figure 2 represents the evolution of the distribution gαk
during the procedure

for one execution of the ME-aISCV algorithm. The optimal IS distribution is a
mixture of the distribution g∗2j (x) ∝ x2jf1 (x) for j ∈ [[1, J ]]. In particular, it is
symmetric around zero and its standard deviation might be larger than 1. First,
the blue line represents the PDF of the initial distribution. Then, the orange line
represents the PDF of the mixture gα1 obtained at the end of iteration 1. We
can see in particular that it is not symmetric around zero, and so it is not close
to the target sampling distribution. Next, the green line represents the PDF of
the mixture gα2

obtained at the end of iteration 2. It is now symmetric around
zero and is then a good candidate. However, another iteration is necessary
because the stopping criterion in Equation (25) is not reached yet. At last, the
red line represents the PDF of the mixture gα3 obtained at the end of iteration
3. It is very close to the green line, so the third iteration did not improve a lot
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Figure 2: Evolution of the distribution gαk during one execution of the algorithm.

the accuracy of the IS sampling distribution and the stopping criterion is thus
reached. The distribution gα3

is then the final IS sampling distribution and the
while loop is over in Algorithm 1.

4.2. Estimation of Sobol’ indices

4.2.1. Presentation of the problem

The Sobol’ indices [4] are quantitative tools which allow to quantify the
influence of each input variable on the variability of the output, in the case
where the input variables are mutually independent. For all i ∈ [[1, d]], the first
order Sobol’ indices are defined, for a function φ : X −→ R+, by:

Si =
Vf [Ef (φ (X) |Xi)]

Vf (φ (X))
. (26)

We will estimate them with the well-known Pick-Freeze method introduced in
[4, 29]. It consists in rewriting each Sobol’ index in Equation (26) as a single
expectation. The idea is to introduce a second random variable Xi =

(
Xi,X

′
−i
)
,

where X′−i =
(
X ′1, . . . , X

′
i−1, X

′
i+1, . . . , X

′
d

)
satisfies X′−i

d
= X−i and X′−i ⊥⊥

X−i and where ⊥⊥ is the independence symbol. By decomposing the variance
at the denominator as well, the Sobol’ indices can be then rewritten for all
i ∈ [[1, d]] as:

Si =
Ef
(
φ(X)φ(Xi)

)
− Ef (φ(X))

2

Ef (φ(X)2)− Ef (φ(X))
2 . (27)
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This procedure requires then NPF = N(d+1) calls to the function φ to compute
the d first order Sobol’ indices.

4.2.2. Formulation as a multiple estimation problem

To estimate the d first order Sobol’ indices in Equation (27), there are
J = d + 2 different expectations to estimate: the Pick-Freeze expectations
Ef
(
φ(X)φ(Xi)

)
for i ∈ [[1, d]], Ef (φ(X)) and Ef

(
φ(X)2

)
. The classical method

to estimate them by Pick-Freeze consists in drawing two independent i.i.d N -
samples according to f and to mix both of them to build the random variables
X and Xi for i ∈ [[1, d]]. This process is equivalent to considering the aug-
mented space X × X of dimension 2d, to draw an i.i.d. N -sample according to
the distribution of PDF f̃ : (x,x′) ∈ X × X 7→ f (x) × f (x′) and to make the
appropriate combinations to build the random variables X and Xi for i ∈ [[1, d]].
The corresponding functions in the augmented space are then:

φi : X× X −→ R
(x,x′) 7−→ φ (xi,x−i)φ

(
xi,x

′
−i
)
,

(28)

and

φd+1 : X× X −→ R
(x,x′) 7−→ φ (x)

and
φd+2 : X× X −→ R

(x,x′) 7−→ φ (x)
2
.

(29)

Finally, we have here a family
(
Ef̃ (φi (X,X′))

)
i∈[[1,d+2]]

of J = d+2 different

expectations to estimate under the same input distribution f̃ , which corresponds
to the Case 1 presented in Section 2.1. All the weights (wj)j∈[[1,J]] are set to 1.

4.2.3. Numerical results on the cantilever beam problem

The cantilever beam problem is a real structure engineering problem which
is presented in [30, 31]. Consider a rectangular cantilever beam structure. The
dimensional parameters of the beam are denoted lX , lY and L. The elastic
modulus of the structure is represented by E. Two random forces FX and FY
are exerted on the tip of the section. The goal function is the maximum vertical
displacement of the tip section, which is given analytically according to the
previous parameters by:

φ (FX , FY , E, lX , lY , L) =
4L3

109 × ElX lY

√(
FX
l2X

)2

+

(
FY
l2Y

)2

. (30)

The distributions of each input variable are listed in Table 2. Moreover, the
dimensional variables lX , lY and L are linearly dependent through the following
Pearson correlation coefficients:

ρlX ,lY = m7 and ρL,lX = m8 and ρL,lY = m9. (31)

This input distribution is parameterized by the sequence of parameters m =
(mi)i∈[[1,9]] ∈ R3

+ × R3×]− 1, 1[3.
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Symbol and Unit Distribution Mean Coefficient of variation

1 FX (N) LogNormal m1 0.08
2 FY (N) LogNormal m2 0.08
3 E (Pa) LogNormal m3 0.06
4 lX (m) Normal m4 0.1
5 lY (m) Normal m5 0.1
6 L (m) Normal m6 0.1

Table 2: Distributions of each input variable of the cantilever beam example

We want to estimate the first order Sobol’ indices in Equation (26) for this
system. Here, the input distribution is fully known and the parameter m is
given by msob = (556.8, 453.6, 200, 0.062, 0.0987, 4.29, 0, 0, 0). In line with Sec-
tion 4.2.1, all the input variables are independent because the three Pearson
correlation coefficients ρlX ,lY , ρL,lX and ρL,lY are assumed to be equal to 0 in
this section, which is a necessary assumption for the Sobol’ indices to have their
full set of beneficial properties.

References values of the Sobol’ indices are obtained by applying the existing
Pick-Freeze estimation scheme with two N -samples of (very large) size N = 107.
Moreover, we compare the performances of the ME-aISCV algorithm with the
ones of the existing standard Pick-Freeze estimation scheme using two Nmax-
samples such that both methods require exactly the same number NPF of calls
to the function φ.

The results of the estimations of the first order Sobol’ indices for the can-
tilever beam problem are given in Figure 3. We can see that the ME-aISCV
algorithm provides significantly better performances than the existing method
for estimating the Sobol’ indices. Indeed, the boxplots corresponding to the
ME-aISCV algorithm are centered on the reference values and have a much
smaller stretch. These observations are confirmed by the numerical values in
Tables 3 and 4. The individual variances of each estimator of the first order
Sobol’ indices are divided by 10 and consequently the sum of the variances.

standard Pick-Freeze ME-aISCV

V
(
Ŝ1

)
4.316× 10−4 3.372× 10−5

V
(
Ŝ2

)
4.375× 10−4 3.364× 10−5

V
(
Ŝ3

)
4.412× 10−4 3.308× 10−5

V
(
Ŝ4

)
3.635× 10−4 2.377× 10−5

V
(
Ŝ5

)
4.112× 10−4 3.053× 10−5

V
(
Ŝ6

)
4.605× 10−4 1.943× 10−5

Table 3: Individual variance of each of the d = 6 estimators of the first order Sobol’ indices
for both methods.
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Figure 3: Estimation of the Sobol’ indices for the cantilever beam problem with independent
input variables.
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Monte-Carlo ME-aISCV∑d
i=1 V

(
Ŝi

)
2.533× 10−3 1.733× 10−4

Table 4: Sum of the variances of the estimators of the d = 6 first order Sobol’ indices for both
methods.

4.3. Sensitivity analysis w.r.t. parameters of the input distribution

4.3.1. Presentation of the problem

Most of the time, the input distribution of a computer model φ is assumed
to be fully known and determined. However, this assumption is not always true
in practice. Indeed, because of lack of knowledge or data, the input distribu-
tion might depend on unknown or uncertain parameters m, such as the mean
vector or the standard deviations of the marginals for example. This epistemic
uncertainty is then also propagated through the computer model φ, and can
thus have an impact on the output value of the system.

In order to quantify the individual influence of the parameters in m on a
quantity of interest, such as the mean of the output, a solution is to compute
some sensitivity indices of the uncertain parameters, such as the Sobol’ indices
defined in Section 4.2.

4.3.2. Formulation as a multiple estimation problem

The quantity of interest considered here is the mean output value of the
function. To achieve the goal presented above and estimate the sensitivity in-

dices, one need to get an input/output dataset
(
m(j),Ef

m(j)
(φ (X))

)
j∈[[1,J]]

,

with
(
m(j)

)
j∈[[1,J]]

a sample of J sets of parameters and (fm(j))j∈[[1,J]] its cor-

responding PDF family. The challenge is then to efficiently estimate each ex-
pectation Ef

m(j)
(φ (X)) for j ∈ [[1, J ]]. We have then to estimate a family of

J expectations of the same computer model φ under J different input distribu-
tions (fm(j))j∈[[1,J]], which corresponds to the Case 2 presented in Section 2.1.

All the weights (wj)j∈[[1,J]] are set to 1.

4.3.3. Numerical results on the cantilever beam problem

Let us consider again the cantilever beam problem presented in Section 4.2.3.
The parameter m = (mi)i∈[[1,9]] is here supposed uncertain, with independent
components whose marginal distributions are given in Table 5. The quantity
of interest is the mean value of the maximal vertical displacement of the tip
section given in Equation (30).

Here, we estimate J = 100 expectations. A sample of parameters
(
m(j)

)
j∈[[1,J]]

is drawn according to the distribution in Table 5 with the Latin Hypercube
Simulation (LHS) method [32]. References values for the J = 100 expectations
are computed with the crude Monte Carlo estimator of each expectation with
samples of (very large) size N = 107. To evaluate the performances of the ME-
aISCV algorithm, we compare it to two existing estimators. The first one is
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Parameter Distribution

1 m1 U(525, 575)
2 m2 U(425, 475)
3 m3 U(175, 225)
4 m4 U(0.06, 0.07)
5 m5 U(0.09, 0.1)
6 m6 U(4, 5)
7 m7 U(−0.6, 0)
8 m8 U(0, 0.5)
9 m9 U(0, 0.5)

Table 5: Marginal distributions of the random parameter m = (mi)i∈[[1,9]].

the naive Monte Carlo method (nMC) which consists, for j ∈ [[1, J ]], in draw-
ing an i.i.d sample of size Nmax/J according to each distribution fm(j) and to
compute the corresponding empirical mean of the output. The second one con-
sists in considering a unique sampling distribution h = J−1

∑J
j=1 fm(j) which is

the mixture of the J different input distribution and to compute the following
estimators:

ÎMCmixt
j =

1

Nmax

Nmax∑
n=1

φ
(
X(n)

) fm(j)

(
X(n)

)
h
(
X(n)

) , (32)

where
(
X(n)

)
n∈[[1,Nmax]]

is an i.i.d. sample drawn according to h. The distri-

bution h corresponds then to the initial sampling distribution h0 of Algorithm
1. Both methods require exactly Nmax calls to the function φ, as the proposed
algorithm.

The results of the estimations of the J = 100 expectations for the cantilever
beam problem are given in Figure 4. We can see that the ME-aISCV algorithm
provides significantly better performances than the existing methods for esti-
mating a large number of expectations, for the same reasons as in the previous
example. These observations are confirmed by the numerical values in Table
6. Indeed, the criterion to minimize has been considerably reduced with the
proposed algorithm compared to the existing methods.

nMC MCmixt ME-aISCV∑J
j=1 V

(
Îj

)
1.309× 10−4 6.103× 10−5 4.379× 10−6

Table 6: Sum of the variances of the estimators of the J = 100 expectations for all methods.

Moreover, this example highlights a specific property of the ME-aISCV al-
gorithm due to the choice of the criterion to minimize in Equation (1). One
can see on Figure 4 that some expectations have more variance reduction than
others, since their corresponding boxplots have a lower stretch. Indeed, due to

the form of the criterion to minimize in Equation (1), high values of wjV
(
Îj

)
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Figure 4: Estimation of the J = 100 expectations for the cantilever beam problem.
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have a more important role in the sum than lower ones. Therefore, the pro-
posed algorithm will mainly focus on reducing before anything else the variance
of the corresponding estimators, which explains the phenomenon described and
observed here.

5. Conclusion

In the present article, we are interested in efficiently estimating multiple ex-
pectations with the same N -sample, a problematic encountered in some classical
problems related to the study of black-box models. The criterion used to quan-
tify the quality of the common estimation of the expectations is the weighted
sum of each individual variance given in Equation (1). We show that there exists
a family of optimal estimators combining both IS and CV, which nevertheless
cannot be used in practice because they require the knowledge of the values of
the expectations to estimate. Motivated by the form of these optimal estimator
and some interesting properties, we suggest a new effective ME-aISCV algo-
rithm combining both IS and CV, whose general idea is to adaptively update
the IS distributions as well as the control parameters for approaching the opti-
mal ones until a quantitative stopping criterion is reached. The main goal of this
adaptive procedure is to minimize as much as possible the criterion in Equation
(1). Then, a new independent sample drawn according to the final IS sampling
distribution allows to get unbiased estimators by IS and CV of all the expec-
tations. Finally, we illustrate and discuss the practical interest of the proposed
algorithm. We first address the estimation of the even moments of the standard
Gaussian distribution. Then, we show that the suggested ME-aISCV algorithm
is generally applicable to sensitivity analysis, both on the input parameters and
also on their uncertainty distribution. This is applied to the physical cantilever
beam problem. Overall, the applications demonstrate the robustness of the al-
gorithm to a wide range of situations. Especially, the high-order moments of the
Gaussian distribution imply that the IS distributions must explore the far tails
of the initial one. Furthermore, 100 expectations are estimated simultaneously
in the input-distribution-sensitivity example.

A first way of improvement of the ME-aISCV algorithm is to adaptively
update the weights (wj)j∈[[1,J]] during the while loop in Algorithm 1. Indeed, it

can be interesting to adjust online the importance given to each expectation or
to estimate more accurately unknown target weights, such as

(
I−2
j

)
j∈[[1,J]]

for

example. In that latter case, the criterion in Equation (1) is the sum of the
square coefficients of variation of each estimator. Another way of improvement
of this algorithm is to use non-parametric IS auxiliary distributions [15] to ap-
proach the optimal distributions

(
g∗j
)
j∈[[1,J]]

defined at the beginning of Section

3. This method allows more flexibility and to approach more complex target
distributions, but faces the curse of dimensionality. At last, the algorithm can
be adapted to estimate small failure probabilities. It can be done by performing
adaptive parametric IS to solve the cross-entropy problem in Equation (6) as
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in [17] to approach the optimal distributions
(
g∗j
)
j∈[[1,J]]

adapted to small fail-

ure probabilities. An interesting application of this adaptation can be found
in [33] and consists in identifying the most influential parameters of the input
distribution on the variability of the failure probability of the system.

Finally, a more complex application of this new method is the estimation of
the Shapley effects for global sensitivity analysis with dependent input variables
[5]. Estimating each of them efficiently is a challenging task because it requires
the estimation of the closed Sobol’ indices for many subsets u ⊆ [[1, d]]. A
formulation of this problem as a multiple expectation estimation problem has
been written in [34], and the estimation of the Shapley effects in a reliability
context by IS has been investigated in [35]. Since the inputs are dependent, it
is no longer possible to perform the estimation in the augmented space X×X as
we did in Section 4.2. The main remaining challenge is then to find an optimal
IS distribution in X associated to each closed Sobol’ index in order to be able
to apply the proposed ME-aISCV algorithm.
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Appendix

A. Equivalence between both optimization problem

Let us prove that the optimization problem in Equation (18) is equivalent to
the one in Equation (21). Consider a sequence α ∈ SJ , a family of IS auxiliary
distributions

(
gλj

)
j∈[[1,J]]

, a family of control parameters (βj)j∈[[1,J]] ∈ RJ and

a family of positive weights (wj)j∈[[1,J]] ∈ RJ+.

For any j ∈ [[1, J ]] and any IS auxiliary distribution h, we have:

Vgα
(
φj (X) fj (X)− βjgλj

(X)

gα (X)

)
= Egα

[(
φj (X) fj (X)− βjgλj

(X)

gα (X)

)2
]
− Egα

(
φj (X) fj (X)− βjgλj

(X)

gα (X)

)2

= Egα

[(
φj (X) fj (X)− βjgλj

(X)
)2

gα (X)
2

]
− Efj

(
φj (X)−

βjgλj (X)

fj (X)

)2

︸ ︷︷ ︸
=cj independent of α

= Eh

[(
φj (X) fj (X)− βjgλj

(X)
)2

gα (X)h (X)

]
− cj .
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Therefore, we have:

J∑
j=1

wjVgα
(
φj (X) fj (X)− βjgλj

(X)

gα (X)

)

=

J∑
j=1

wj

(
Eh

[(
φj (X) fj (X)− βjgλj

(X)
)2

gα (X)h (X)

]
− cj

)

=

J∑
j=1

wjEh

[(
φj (X) fj (X)− βjgλj

(X)
)2

gα (X)h (X)

]
−

J∑
j=1

wjcj

= Eh

[∑J
j=1 wj

(
φj (X) fj (X)− βjgλj

(X)
)2

gα (X)h (X)

]
−

J∑
j=1

wjcj .

Since the term
∑J
j=1 wjcj does not depend on the sequence α, minimizing∑J

j=1 wjVgα
(
φj (X) fj (X)− βjgλj (X)

gα (X)

)
w.r.t. α is then equivalent to min-

imize Eh

[∑J
j=1 wj

(
φj (X) fj (X)− βjgλj

(X)
)2

gα (X)h (X)

]
w.r.t. α. As a conclusion,

both optimization problems in Equations (18) and (21) are equivalent.
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