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Abstract

In this work, tests of symmetry for bivariate copulas are introduced and studied using empirical
Bernstein copula process. Three statistics are proposed and their asymptotic properties are established.
Besides, a multiplier bootstrap Bernstein version is investigated for implementation purpose. The
simulation study demonstrated the superior performance of the Bernstein tests compared to tests
based on empirical copulas. Furthermore, in real data applications, these tests consistently yielded
similar conclusions across a diverse range of scenarios.
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1 Introduction

Asymmetric copulas have massive explorations and applications in recent years. They are powerful

tools for capturing the asymmetrical dependence structure and have been applied in many fields, for

instance, Grimaldi and Serinaldi (2006) for flood frequency analysis, Wu (2014) in reliability modelling

and Zhang et al. (2018) for ocean data analysis. Meanwhile, more attention is given to testing and

identifying the symmetric nature of a copula. Genest et al. (2012) proposed tests based on empiri-

cal copula, Bahraoui et al. (2018) used empirical copula characteristic function to construct the test,

Jaser and Min (2021) developed a test by representing copula as a mixture of two conditional distribution

functions, Beare and Seo (2020) studied a randomization procedure. For d-variate symmetry tests, the

work of Genest et al. (2012) was extended by Harder and Stadtmüller (2017), and Bahraoui and Quessy

(2022) investigated tests based on Lévy measures.
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In this work, tests of symmetry for bivariate copulas based on empirical Bernstein copula process are

proposed. Specifically, consider a random pair (X, Y ) with cumulative distribution function FXY (x, y) =

P(X ≤ x, Y ≤ y) and continuous margins FX and FY . According to Sklar (1959), there exists a unique

copula function C such that

FXY (x, y) = C{FX(x), FY (y)}.

To detect the symmetry of copula C, one would like to test the following hypotheses





H0 : ∀(u, v) ∈ [0, 1]2 C(u, v) = C(v, u),

versus

H1 : ∃(u, v) ∈ [0, 1]2 C(u, v) 6= C(v, u).

(1)

The symmetry property of bivariate copulas has intimate relation with the symmetry of corresponding

random pairs and was discussed in Nelsen (1993, 2006) and Nelson (2007). It was shown that X and

Y are exchangeable, i.e., FXY (x, y) = FXY (y, x) if and only if FX = FY , and C(u, v) = C(v, u) for

(u, v) ∈ [0, 1]2. Specifically, for identically distributed margins, the symmetry structure of the copula can

determine the exchangeability of the random variables X and Y . Identifying the equality of margins is

well-developed and can be investigated using Kolmogorov-Smirnov test or Cramér-von Mises test. For

a positively dependent survival data setting, see Fujii (1989) and for a high-dimensional data setting,

see Cousido-Rocha et al. (2019). Together with the verification of equal margins, approaches to detecting

the symmetry of the copula function would provide an effective way to decide on the exchangeability of

two random variables. As the equality of margins was already discussed vigorously by many others, the

contribution of detecting the symmetry of copula becomes more appealing for deciding the exchangeability

of two random variables. Moreover, before fitting a specific copula model to the data, identifying the

symmetric structure can assist us to choose an appropriate model, for example, Archimedean copulas are

symmetric.

Empirical Bernstein copula has drawn attention in recent years due to free boundary bias prop-

erties and tractability of implementation. Indeed, one only needs to select the degree of the Bern-

stein polynomials during deployment. Theoretical properties of this estimator have been well-studied,

see Sancetta and Satchell (2004), Janssen et al. (2012), Belalia et al. (2017) and Segers et al. (2017),

among others. However, computational investigations of the empirical processes based on this estimator

are barely explored. To fill this gap, we proposed a smooth version of multiplier bootstrap method for

empirical Bernstein copula process with promising performance.

The rest of this paper is structured as follows. In Section 2, based on the empirical Bernstein copula, an

extension of symmetry test statistics in Genest et al. (2012) is proposed and their asymptotic behaviours

are examined. Section 3 develops the empirical Bernstein copula process multiplier bootstrap and its
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large sample behaviour. Simulation studies are carried out in Section 4. Two real data applications are

presented in Section 5. Some concluding remarks are given in Section 6. Finally, the proofs are relegated

in the Appendix and the R code that was used in this article is available on GitHub.

2 New testing procedures based on empirical Bernstein copula

2.1 Descriptive of the test statistics

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution FXY with continuous margins

FX and FY . Also, let C be their associated copula. Unfortunately, this function is generally unknown,

hence it has to be estimated. The empirical copula introduced by Rüschendorf (1976) is a natural

nonparametric estimator of C and is given by

Ĉn(u, v) =
1

n

n∑

i=1

I

(
Ûi ≤ u, V̂i ≤ v

)
, (2)

where Ûi = n−1∑n
j=1 I

(
Xj ≤ Xi

)
and V̂i = n−1∑n

j=1 I
(
Yj ≤ Yi

)
are the empirical distributions of the

margins.

The empirical copula is widely used for construction of nonparametric tests in the literature, such as,

test of independence, goodness-of-fit test among others. However, it is not a continuous estimator for C,

which mismatches the continuity of the copula function. To overcome this drawback, smoothed empir-

ical copulas were developed, for example, Morettin et al. (2010) introduced wavelet-smoothed empirical

copula for time series data, Gijbels and Mielniczuk (1990), Fermanian et al. (2004), Chen and Huang

(2007), Omelka et al. (2009) considered kernel-smoothed empirical copula and Genest et al. (2017) pro-

posed empirical checkerboard copula. Here, the empirical Bernstein copula is employed. This choice is

motivated by (i) estimation based on Bernstein polynomials is known to be asymptotically bias free at

boundary points (see, Leblanc (2012), Janssen et al. (2012), Belalia (2016)) as compared to kernel based

methods which suffer from excessive bias at or near to the boundary points. A good discussion about

the boundary bias for kernel based methods can be found in Chen and Huang (2007). (ii) The empirical

Bernstein copula is a polynomial, hence, it has all partial derivatives, which will be of highly important

for building our multiplier bootstrap. Besides, the support of bivariate copula is [0, 1]2 which meets the

Bernstein polynomials assumption perfectly.

The empirical Bernstein copula estimator of order m is defined as

Ĉn,m(u, v) =
m∑

k=0

m∑

ℓ=0

Ĉn
(
k/m, ℓ/m

)
Pm,k(u)Pm,ℓ(v)

=
1

n

n∑

i=1

m∑

k=0

m∑

ℓ=0

I

(
Ûi ≤ k/m, V̂i ≤ ℓ/m

)
Pm,k(u)Pm,ℓ(v), (3)
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where Pm,k(u) =
(m

k

)
uk(1−u)m−k is the binomial probability mass function. Note that, m is dependent on

n, in particular, if the degree of Bernstein polynomial m is equal to the sample size n, the estimator (3)

turns out to be the empirical beta copula developed by Segers et al. (2017). Resampling procedures

with the empirical beta copula are proposed and studied in Kiriliouk et al. (2021). A broad class of

smooth, possibly data-adaptive nonparametric copula estimators are proposed in Kojadinovic and Yi

(2021) and Kojadinovic (2022), which includes the empirical Bernstein and beta copula.

In the same spirit as the one presented in Genest et al. (2012), Kolmogorov-Smirnov and Cramér-von

Mises type statistics are proposed. Specifically, these statistics are built upon the empirical Bernstein

copula and are presented as follows:

Rn,m =

∫ 1

0

∫ 1

0

{
Ĉn,m(u, v) − Ĉn,m(v, u)

}2

du dv,

Sn,m =

∫ 1

0

∫ 1

0

{
Ĉn,m(u, v) − Ĉn,m(v, u)

}2

dĈn(u, v),

Tn,m = sup
(u,v)∈[0,1]2

∣∣∣Ĉn,m(u, v) − Ĉn,m(v, u)
∣∣∣ . (4)

In what follows, the asymptotic behaviour of the three test statistics will be studied, including the

asymptotic limit under both the null and alternative hypotheses.

2.2 Asymptotic behaviour of the test statistics

As it will be seen, the limits of the proposed test statistics are functional of the unknown underlying

copula C, therefore, some common assumptions are needed before going further.

Assumption 1. Assume that first-order partial derivatives Ċ1(u, v) = ∂C(u, v)/∂u, Ċ2(u, v) = ∂C(u, v)/∂v

exist and are continuous, respectively, on the sets (0, 1) × [0, 1] and [0, 1] × (0, 1).

Assumption 2. Assume that second-order partial derivatives C̈11(u, v) = ∂2C(u, v)/∂u2, C̈21(u, v) =

∂2C(u, v)/∂u∂v and C̈22(u, v) = ∂2C(u, v)/∂v2 exist and are continuous, respectively, on the sets (0, 1) ×
[0, 1], (0, 1) × (0, 1) and [0, 1] × (0, 1), and there exists a constant K > 0 such that

∣∣∣C̈11(u, v)
∣∣∣ ≤ K

u(1 − u)
,

∣∣∣C̈21(u, v)
∣∣∣ ≤ K min

(
1

u(1 − u)
,

1

v(1 − v)

)
,

∣∣∣C̈22(u, v)
∣∣∣ ≤ K

v(1 − v)
.

Let Bn,m and Sn,m denote, respectively, the empirical Bernstein copula process and symmetrised empirical

Bernstein copula process, namely, for all (u, v) ∈ [0, 1]2

Bn,m(u, v) =
√

n

{
Ĉn,m(u, v) − C(u, v)

}
, Sn,m(u, v) =

√
n

{
Ĉn,m(u, v) − Ĉn,m(v, u)

}
.

From the work of Segers et al. (2017), suppose C satisfies Assumption 1 and m = cnα with c > 0, α > 1,

then, in ℓ∞([0, 1]2) (the Banach space of all real-valued, bounded functions on [0, 1]2, equipped with

sup-norm),

Bn,m(u, v) BC(u, v) = C(u, v) − Ċ1(u, v)C(u, 1) − Ċ2(u, v)C(1, v), as n → ∞, (5)
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where C is a C-Brownian bridge whose covariance function is

ΓC(u, v, s, t) = C(min(u, s), min(v, t)) − C(u, v)C(s, t),

for (u, v), (s, t) ∈ [0, 1]2 and “  ” stands for the weak convergence. Based on this result, the weak

convergence of the symmetrised empirical Bernstein copula process is presented in the following theorem.

Theorem 1. Let C be a symmetric copula satisfying Assumption 1, in addition, if m = cnα with c >

0, α > 1, then as n → ∞, Sn,m converges weakly to a Gaussian process SC defined by

SC(u, v) = D(u, v) − Ċ1(u, v)D(u, 1) − Ċ2(u, v)D(1, v),

for all (u, v) ∈ [0, 1]2, where D is a C-Brownian bridge with covariance function given at each (u, v), (s, t) ∈
[0, 1]2 by ΓD(u, v, s, t) = 2{ΓC(u, v, s, t) − ΓC(u, v, t, s)}.

Proof. Using similar approach as in Genest et al. (2012, Proof of Prosition 2), under the null hypothesis,

one can write that,

Sn,m(u, v) =
√

n
{

Ĉn,m(u, v) − Ĉn,m(v, u)
}

−
√

nC(u, v) +
√

nC(v, u)

= Bn,m(u, v) − Bn,m(v, u).

Further, it was shown in Segers et al. (2017), that Bn,m  BC as n → ∞. Then, the desired result can

be proven using continuous mapping theorem, namely,

Sn,m  SC ,

where SC(u, v) = BC(u, v) − BC(v, u).

Based on Theorem 1 and the fact that the proposed test statistics in (4) are functional of Sn,m, their

asymptotic behaviours under the null hypothesis can be established as follows.

Theorem 2. Let C be a symmetric copula satisfying Assumption 1, in addition, if m = cnα with c >

0, α > 1, then as n → ∞,

nRn,m =

∫ 1

0

∫ 1

0

{
Sn,m(u, v)

}2
du dv  LR =

∫ 1

0

∫ 1

0

{
SC(u, v)

}2
du dv,

nSn,m =

∫ 1

0

∫ 1

0

{
Sn,m(u, v)

}2
dĈn(u, v) LS =

∫ 1

0

∫ 1

0

{
SC(u, v)

}2
dC(u, v),

n1/2Tn,m = sup
(u,v)∈[0,1]2

|Sn,m(u, v)| LT = sup
(u,v)∈[0,1]2

∣∣SC(u, v)
∣∣ .

Proof of Theorem 2. The proof is postponed to the appendix.
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More generally, the asymptotic behaviours of the test statistics under the alternative hypothesis are given

as follows.

Theorem 3. Let C be a copula satisfying Assumption 1, in addition, if m = cnα with c > 0, α > 1, then

as n → ∞,

Rn,m
a.s.−−→ RC =

∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2

du dv,

Sn,m
a.s.−−→ SC =

∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2

dC(u, v),

Tn,m
a.s.−−→ TC = sup

(u,v)∈[0,1]2

∣∣C(u, v) − C(v, u)
∣∣ .

Specifically, under the alternative hypothesis, as n → ∞,

nRn,m
a.s.−−→ ∞, nSn,m

a.s.−−→ ∞,
√

nTn,m
a.s.−−→ ∞,

which ensures the consistency of the proposed test statistics.

Proof of Theorem 3. The proof is postponed to the appendix.

Remark 1. Note that, the convergence in Theorem 1-3 also hold under Assumption 1-2 with a weaker

condition on m, that is, m = cnα with c > 0, α > 3/4.

Lemma 1. Suppose that C satisfies Assumption 1-2, if m = cnα with c > 0, α > 3/4, then, in ℓ∞([0, 1]2),

Equation (5) holds.

Proof of Lemma 1. The proof is postponed to the appendix.

3 Multiplier bootstrap

As shown in the preceding section, the asymptotic limits of the statistics are functions of the unknown

copula C, therefore it is impossible to compute valid P-values using standard Monte Carlo procedure di-

rectly. To overcome this issue, different bootstrap methods were developed, see for example Genest et al.

(2009) and Belalia et al. (2017) among others. However, these approaches are computationally intensive,

especially when the sample size is large. The multiplier bootstrap is an alternative methodology that miti-

gates the burden of computation by estimating the replicates of statistics under null hypothesis straightly.

For the application of this method, the reader is directed to Rémillard and Scaillet (2009), Genest et al.

(2012), Bahraoui et al. (2018) and references therein.

Following the multiplier procedure described in Harder and Stadtmüller (2017), let H ∈ N and for

each h ∈ {1, . . . , H}, let ξ
(h)
n =

(
ξ

(h)
1 , . . . , ξ

(h)
n

)
be a vector of independent random variables with unit
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mean and unit variance (taking ξ
(h)
i ∼ Exp(1), i = 1, . . . , n). Set

Cn,m(u, v) =
1

n

n∑

i=1

m∑

k=0

m∑

ℓ=0

I

(
Ui ≤ k

m
, Vi ≤ ℓ

m

)
Pm,k(u)Pm,ℓ(v),

where (Ui, Vi) =
(
FX (Xi) , FY (Yi)

)
. Denote the sample mean of ξ

(h)
n by ξ̄

(h)
n , then for each h, define

B̃n,m(u, v) = n1/2
{

Cn,m(u, v) − C(u, v)
}

= n1/2





1

n

n∑

i=1

m∑

k=0

m∑

ℓ=0

{
I

(
Ui ≤ k

m
, Vi ≤ ℓ

m

)
− C(u, v)

}
Pm,k(u)Pm,ℓ(v)



,

and

B
(h)
n,m(u, v) = n1/2





1

n

n∑

i=1

m∑

k=0

m∑

ℓ=0

(
ξ

(h)
i − ξ̄(h)

n

)
I

(
Ûi ≤ k

m
, V̂i ≤ ℓ

m

)
Pm,k(u)Pm,ℓ(v)



. (6)

One can observe that B̃n,m is the empirical Bernstein copula process when margins are known. The

following proposition states that B̃n,m converges weakly to the C-Brownian bridge C mentioned in (5),

moreover, B
(h)
n,m is a valid replicate of B̃n,m.

Proposition 1. Let C be a symmetric copula satisfying Assumption 1-2, if m = cnα with c > 0, α > 3/4,

then for (u, v) ∈ [0, 1]2,

1. we have

B̃n,m(u, v) C(u, v),

2. also, for each h ∈ {1, . . . , H},

B
(h)
n,m(u, v) C(u, v). (7)

Proof of Proposition 1. The proof is postponed to the appendix.

Hence the bootstrap replicates of Bn,m(u, v) for h ∈ {1, . . . , H} are

B
(h)
n,m(u, v) = B

(h)
n,m(u, v) − ∂Ĉn,m(u, v)

∂u
B

(h)
n,m(u, 1) − ∂Ĉn,m(u, v)

∂v
B

(h)
n,m(1, v). (8)

The partial derivatives of the empirical Bernstein copula were studied in Janssen et al. (2016), more

specifically,

∂Ĉn,m(u, v)

∂u
= m

m−1∑

k=0

m∑

ℓ=0

{
Ĉn

(
k + 1

m
,

ℓ

m

)
− Ĉn

(
k

m
,

ℓ

m

)}
Pm−1,k(u)Pm,ℓ(v),

∂Ĉn,m(u, v)

∂v
= m

m∑

k=0

m−1∑

ℓ=0

{
Ĉn

(
k

m
,

ℓ + 1

m

)
− Ĉn

(
k

m
,

ℓ

m

)}
Pm,k(u)Pm−1,ℓ(v).

Unlike the empirical copula, the partial derivatives of the empirical Bernstein copula can be calculated

directly without any further approximations. The following proposition provides the uniform consistency

of partial derivatives.
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Proposition 2. Let C be a copula satisfying Assumption 1-2, if m = cnα with c > 0, α > 3/4 and

bn = κn−β with κ > 0, β < α/2, then

sup
v∈[0,1],

u∈[bn,1−bn]

∣∣∣∣∣∣
∂Ĉn,m(u, v)

∂u
− Ċ1(u, v)

∣∣∣∣∣∣
= O

(
m1/2n−1/2(log log n)1/2

)
,

sup
u∈[0,1],

v∈[bn,1−bn]

∣∣∣∣∣∣
∂Ĉn,m(u, v)

∂v
− Ċ2(u, v)

∣∣∣∣∣∣
= O

(
m1/2n−1/2(log log n)1/2

)
,

almost surely as n → ∞.

Proof of Proposition 2. The proof is postponed to the appendix.

The limiting behaviour of the multiplier replicates of the symmetrised empirical copula process are

stated in the following theorem.

Theorem 4. Let C be a symmetric copula satisfying Assumption 1-2, if m = cnα with 3/4 < α < 1 and

c > 0 , then for (u, v) ∈ (0, 1)2,

(
Sn,m,S(1)

n,m, . . . ,S(H)
n,m

)
 

(
SC ,S

(1)
C , . . . ,S

(H)
C

)
,

as n → ∞, where for each h ∈ {1, . . . , H},

S
(h)
n,m(u, v) = B

(h)
n,m(u, v) − B

(h)
n,m(v, u)

= S
(h)
n,m(u, v) +

∂Ĉn,m(u, v)

∂u
S

(h)
n,m(u, 1) − ∂Ĉn,m(u, v)

∂v
S

(h)
n,m(1, v),

and S
(h)
n,m(u, v) = B

(h)
n,m(u, v) − B

(h)
n,m(v, u).

Proof of Theorem 4. Given that under the null hypothesis

Ċ1(u, v) = Ċ2(v, u),

the proof is a direct application of Proposition 2 and the continuous mapping theorem.

Combining Theorems 2 and 4, the asymptotic properties of replicates of statistics defined by (4) are

established in the following corollary.

Corollary 1. Let C be a symmetric copula satisfying Assumption 1-2, if m = cnα with 3/4 < α < 1 and

c > 0, then as n → ∞, for all H ∈ N, one has

(
nRn,m, nR(1)

n,m, . . . , nR(H)
n,m

)
 

(
LR,L

(1)
R , . . . ,L

(H)
R

)
,

(
nSn,m, nS(1)

n,m, . . . , nS(H)
n,m

)
 

(
LS,L

(1)
S , . . . ,L

(H)
S

)
,

(
n1/2Tn,m, n1/2T (1)

n,m, . . . , n1/2T (H)
n,m

)
 

(
LT ,L

(1)
T , . . . ,L

(H)
T

)
.
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Remark 2. Note that, under Assumption 1-2, the proposed statistics together with multiplier bootstraps

can be valid under the same magnitude requirement of m, which is m = cnα with c > 0, 3/4 < α < 1.

It follows directly from Corollary 1 that P-values of the proposed tests can be computed as

1

H

H∑

h=1

I

(
R(h)

n,m > Rn,m

)
,

1

H

H∑

h=1

I

(
S(h)

n,m > Sn,m

)
,

1

H

H∑

h=1

I

(
T (h)

n,m > Tn,m

)
.

This approach will be employed to obtain the empirical level and power as shown in the next section.

4 Finite sample performance

The finite sample performance of the proposed testing procedure is investigated in this section through a

Monte Carlo experiment. All the tests were conducted with 500 repetitions under 5% nominal level using

H = 200 multiplier replicates, also since the statistics shown in Theorem 2 involve integration, a discrete

approximation is applied with size of integration grid N = 20 (i.e. 20 × 20 points on [0, 1]2).

4.1 Comparison with the empirical copula-based tests

To assess the improvement of the empirical Bernstein copula process-based tests defined in (7) and denoted

by {Rn,m, Sn,m, Tn,m}, the empirical level and power of the proposed tests were compared with the tests

based on the empirical copula process in Genest et al. (2012) denoted by {Rn, Sn, Tn}. For the empirical

size, samples with sizes n = {50, 100, 200} were generated from the Gaussian, Clayton, Gumbel-Hougaard

and Frank copulas with Kendall’s tau τ = 0.25. Since the Bernstein order m is dependent on the sample

size, m is chosen using m = ⌊cnα⌋ = {9, 13, 15}, where α = 4/5 and c = {0.40, 0.33, 0.22}.

The empirical level of the tests are presented in Table 1. Evidently, a significant portion of the Bernstein

tests falls below their designated nominal level; however, their performance surpasses that of the empirical

tests.
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Table 1: Level (%) of the tests of H0 based on {Rn, Sn, Tn} and {Rn,m, Sn,m, Tn,m}, as estimated from

500 samples from symmetric copulas using H = 200 multiplier bootstrap replicates with Bernstein order

m = {9, 13, 15} associated with sample size n = {50, 100, 200}.

Model (n, m) Rn Rn,m Sn Sn,m Tn Tn,m

Gaussian

(50, 9) 1.2 2.0 3.2 3.4 1.0 2.0

(100, 13) 2.6 4.6 4.4 5.2 2.8 4.0

(200, 15) 2.8 3.4 1.8 3.6 7.4 3.8

Clayton

(50, 9) 1.2 3.2 4.2 4.2 1.0 2.2

(100, 13) 1.0 3.6 3.6 3.8 1.8 2.6

(200, 15) 4.4 4.6 4.2 5.2 6.2 4.2

Gumbel

(50, 9) 0.8 3.2 3.4 3.8 0.4 1.6

Hougaard (100, 13) 1.8 4.0 2.8 3.4 1.8 2.8

(200, 15) 3.0 4.2 2.6 4.0 6.2 4.0

Frank

(50, 9) 1.4 2.4 3.4 3.4 1.6 2.2

(100, 13) 2.6 2.6 2.2 2.6 1.6 2.8

(200, 15) 3.6 3.8 4.0 4.4 6.4 4.0

To study the power of the considered tests, samples of sizes n = 100 and n = 200 were generated from

the Gaussian (GA), Frank (FR), Gumbel-Hougaard (GU) and Student (ST) copulas, made asymmetric

using the Khoudraji’s device (Khoudraji, 1995). The Khoudraji’s device is defined as

Kδ(u, v) = uδC(u1−δ, v),

and is implemented in the R (R Core Team, 2023) package copula by Hofert et al. (2023).

Different values of the shape parameter δ = {1/4, 1/2, 3/4} as well as various values of Kendall’s tau

τ = {0.5, 0.7, 0.9} were considered to assess their influence on the power. A quick inspection of Tables 2

and 3, one can observe that for large value of τ or n, the power of the tests increase, and they reach their

maximum at δ = 1/2. Under all circumstances, the proposed tests outperform the empirical copulas tests

or their differences are negligible. Moreover, significant improvements are discerned in the effectiveness

of Tn, especially when τ assumes large values. This implies that, in such cases, Bernstein smoothing

demonstrates greater efficacy for the Kolmogorov-Smirnov type statistic Tn compared to the Cramér-von

Mises type statistics Rn and Sn. Finally, by combining the tables of level and power, it is safe to claim

that the power of the tests is not affected by the empirical levels.
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Table 2: Power (%) of the tests of H0 based on {Rn, Sn, Tn} and {Rn,m, Sn,m, Tn,m}, as estimated from

500 samples from asymmetric copulas using H = 200 multiplier bootstrap replicates with Bernstein order

m = 13 associated and sample size n = 100.

Model δ τ Rn Rn,m Sn Sn,m Tn Tn,m

KGA
δ

1/4

0.5 5.2 11.2 7.0 11.0 5.0 7.4

0.7 31.4 48.2 46.6 51.4 17.0 31.6

0.9 90.2 92.8 99.8 98.2 57.0 71.6

1/2

0.5 15.6 27.8 18.8 29.6 9.0 18.2

0.7 70.2 83.6 75.8 84.0 38.4 67.8

0.9 99.6 100.0 100.0 100.0 81.0 98.8

3/4

0.5 9.4 18.2 13.8 18.2 6.2 12.2

0.7 42.8 62.2 51.0 62.0 23.2 47.4

0.9 74.6 88.4 85.2 88.2 44.4 74.0

KF R
δ

1/4

0.5 6.0 14.6 11.8 14.0 5.0 8.6

0.7 38.8 55.4 54.4 56.6 22.0 36.2

0.9 90.0 90.0 100.0 97.2 60.2 72.2

1/2

0.5 21.0 31.6 26.6 32.8 16.4 25.8

0.7 75.8 87.4 84.8 89.0 46.4 76.4

0.9 99.8 99.8 100.0 100.0 82.0 98.4

3/4

0.5 12.2 20.0 14.8 20.6 8.8 14.6

0.7 38.4 56.8 46.6 54.8 20.2 44.0

0.9 71.0 88.4 81.8 88.6 36.6 70.2

KGU
δ

1/4

0.5 7.4 15.2 9.8 14.8 8.0 10.6

0.7 35.2 50.6 48.2 54.2 18.4 31.4

0.9 90.6 86.8 99.8 97.0 58.2 70.6

1/2

0.5 20.8 32.2 26.6 35.2 10.2 24.0

0.7 80.6 87.6 87.4 89.6 47.6 77.2

0.9 100.0 100.0 100.0 100.0 84.6 98.2

3/4

0.5 21.8 32.6 24.0 32.2 11.4 21.8

0.7 56.0 73.4 62.0 73.0 27.6 57.0

0.9 77.0 86.8 86.8 88.0 44.0 75.4

KST
δ

1/4

0.5 5.8 14.4 11.0 17.2 7.4 9.2

0.7 36.8 48.0 51.4 54.0 18.6 32.6

0.9 88.4 88.8 99.4 95.6 55.0 72.6

1/2

0.5 16.0 29.8 24.4 30.2 11.0 20.8

0.7 71.0 82.6 80.4 84.4 38.6 68.4

0.9 99.8 100.0 100.0 100.0 78.2 97.8

3/4

0.5 12.4 23.6 15.4 22.4 8.6 15.8

0.7 40.8 57.8 54.0 60.8 22.4 43.8

0.9 75.4 87.8 84.0 88.6 42.0 73.2
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Table 3: Power (%) of the tests of H0 based on {Rn, Sn, Tn} and {Rn,m, Sn,m, Tn,m}, as estimated from

500 samples from asymmetric copulas using H = 200 multiplier bootstrap replicates with Bernstein order

m = 15 associated and sample size n = 200.

Model δ τ Rn Rn,m Sn Sn,m Tn Tn,m

KGA
δ

1/4

0.5 15.0 24.0 14.8 22.8 13.4 14.6

0.7 81.8 88.4 82.6 89.4 59.8 70.4

0.9 100.0 100.0 100.0 100.0 100.0 100.0

1/2

0.5 37.0 45.4 36.0 47.8 27.0 33.0

0.7 98.8 98.8 99.0 99.8 88.2 96.6

0.9 100.0 100.0 100.0 100.0 100.0 100.0

3/4

0.5 32.4 44.2 32.6 43.0 27.4 32.8

0.7 87.8 93.2 90.0 94.0 67.6 84.8

0.9 99.8 99.8 99.8 99.8 92.2 98.6

KF R
δ

1/4

0.5 25.2 34.4 25.4 35.4 24.2 25.4

0.7 93.2 95.0 95.0 95.6 80.2 84.2

0.9 100.0 100.0 100.0 100.0 100.0 99.4

1/2

0.5 52.2 60.8 52.0 61.4 41.2 48.2

0.7 99.6 100.0 99.6 100.0 95.4 99.0

0.9 100.0 100.0 100.0 100.0 100.0 100.0

3/4

0.5 32.8 41.8 34.4 42.6 26.4 34.2

0.7 79.2 88.4 80.8 89.6 62.8 78.2

0.9 99.2 99.6 99.6 99.6 91.6 99.0

KGU
δ

1/4

0.5 21.2 30.6 21.8 29.2 20.2 20.6

0.7 89.4 92.6 89.8 92.2 68.4 79.2

0.9 100.0 100.0 100.0 100.0 99.6 99.6

1/2

0.5 59.6 67.4 57.8 67.6 45.8 55.6

0.7 99.6 99.8 99.6 99.8 94.4 98.4

0.9 100.0 100.0 100.0 100.0 100.0 100.0

3/4

0.5 54.6 66.2 56.0 65.2 41.4 54.4

0.7 94.2 96.4 94.8 96.6 77.2 91.2

0.9 99.2 99.4 99.2 99.2 92.6 98.8

KST
δ

1/4

0.5 20.8 25.6 21.4 27.6 16.4 20.2

0.7 93.2 95.0 95.0 95.6 80.2 84.2

0.9 100.0 100.0 100.0 100.0 100.0 99.4

1/2

0.5 52.2 60.8 52.0 61.4 41.2 48.2

0.7 99.6 100.0 99.6 100.0 95.4 99.0

0.9 100.0 100.0 100.0 100.0 100.0 100.0

3/4

0.5 32.8 41.8 34.4 42.6 26.4 34.2

0.7 79.2 88.4 80.8 89.6 62.8 78.2

0.9 99.2 99.6 99.6 99.6 91.6 99.0
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Selecting the Bernstein order for each test is beyond the scope of this paper. However, to examine the

effect of the Bernstein order m on the power of the proposed procedures, one can plot the graph of the

power as a function of m. Figure 1 depicts the power of the proposed tests as function of the Bernstein

polynomial order m for asymmetric Gumbel-Hougaard copula model with shape parameter δ = 3/4 and

Kendall’s tau τ = 0.7. From that figure, it can be seen that Rn,m and Sn,m experience a similar pattern

as they are both Cramér-von Mises type statistics and the power seems to be stable for increasing m.

Unexpectedly, the power of the test based on Tn,m decreases as m goes up. Overall, they outperform the

empirical copula tests when m is not extremely small. It is noted that other asymmetric copulas have

shown almost the same pattern, and are not reported here. A practical way to select an appropriate

Bernstein order m will be discussed in the next subsection.
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Figure 1: The power (%) of the proposed tests versus the Bernstein polynomial order m. Left: Gumbel-

Hougaard copula with sample size n = 100; Right: Gumbel-Hougaard copula with sample size n = 200.

4.2 Comparison with empirical beta copula-based test

The method of studying the effect of the Bernstein order m in the preceding subsection is computationally

expensive. In practice, one can apply the method suggested in Segers et al. (2017) to reduce the size of

the grid of the Bernstein order m. This recommendation will be used in order to compare the empirical

power of the proposed testing procedure to the test based on the empirical beta copula denoted by

Rβ
n in Kiriliouk et al. (2021). It was shown in Kiriliouk et al. (2021, Table 2.8) that the smoothed beta

bootstrap test based on Rβ
n has slightly higher power in almost all cases. In Table 4 the same configuration

for Clayton copula made asymmetric by Khoudraji’s device as in Kiriliouk et al. (2021, Table 2.8) was

used. The table highlights the advantage of the empirical Bernstein copula-based tests using multiplier
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bootstraps on the smoothed beta bootstrap in almost all cases.

Remark 3. Note that, the selection method of the Bernstein order m recommended in Janssen et al.

(2012) is not valid for the proposed multiplier bootstraps. Because this method of selection depends on the

first and second partial derivatives of the underlying copula function C. Whereas for most copula models,

these partial derivatives do not exist at the end points (u, 1), (1, u), (1, v), (v, 1). Therefore, it fails to apply

this approach for the second and third terms in Equation (8). It is also noted that this method of selection

m is valid only for interior points of [0, 1]2.

Table 4: Power (%) of the tests of H0 based on {Rn, Sn, Tn}, {Rn,m, Sn,m, Tn,m} and Rβ
n, as estimated

from 500 samples from Clayton made asymmetric using Khoudraji’s device with H = 200 multiplier

replicates.

(n, m) δ τ Rn Rn,m Sn Sn,m Tn Tn,m Rβ
n

(
50, 50/5

)

1/4

0.25 1.0 3.6 2.2 3.8 0.6 2.4 3.6

0.50 2.0 5.4 5.4 5.8 1.2 1.8 5.4

0.75 14.8 21.0 41.8 28.8 2.4 12.0 22.2

1/2

0.25 0.8 5.0 4.2 4.8 0.4 2.4 4.8

0.50 3.0 7.2 6.4 7.4 0.6 3.8 7.0

0.75 24.8 45.8 48.2 52.0 5.2 29.6 44.0

3/4

0.25 0.8 4.4 3.6 3.8 0.4 1.8 2.8

0.50 2.0 6.0 5.6 5.8 1.0 2.6 5.8

0.75 9.8 21.4 15.0 21.4 2.4 11.2 18.0

(
100, 100/5

)

1/4

0.25 1.8 4.8 2.4 4.4 2.6 3.8 4.0

0.50 6.4 10.2 9.2 11.0 5.0 5.2 9.8

0.75 51.4 62.6 77.6 71.2 25.2 40.6 64.4

1/2

0.25 1.6 3.6 2.2 4.0 2.2 2.0 3.4

0.50 8.8 16.8 14.0 17.6 5.8 10.4 14.0

0.75 70.6 83.8 82.2 86.2 41.6 66.0 82.8

3/4

0.25 3.2 5.6 5.2 6.2 2.6 3.4 4.4

0.50 6.2 10.6 10.4 12.2 4.8 6.0 10.0

0.75 30.0 40.2 36.4 42.2 20.2 28.6 38.2
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5 Real data application

5.1 Ocean data application

A simple illustration was carried out on the ocean data (at south Kodiak, Station 46066) from the

National Data Buoy Center (NDBC), US. There are three variables of interest: WVHT (significant wave

height in meter), APD (average wave period in second) and WSPD (wind speed in meter per second)

during the winter season of 2015 (from November 2014 to February 2015) with 2855 observations. Al-

though the data was modelled using asymmetric copulas in Zhang et al. (2018), they did not provide a

formal statistical test to justify the asymmetric structure therein. Here, the justification is shown using

the empirical tests and the proposed Bernstein tests as in Table 5.

Rank plots are shown in Figure 2, one can notice that APD and WSPD are positively correlated with

WVHT according to the Spearman’s rho. Further, as presented in Figure 3, these pairs most likely have

an asymmetric dependence structure.
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Figure 2: Scatter plot and Spearman’s rho between WVHT, APD and WSPD.
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Figure 3: Rank plots of the pairs. Left: WVHT versus APD; Right: WVHT versus WSPD.

Table 5: P-values of the tests based on the empirical copula, the empirical Bernstein copula (m1 =

⌊n/100⌋, m2 = ⌊n/50⌋) and the empirical beta.

Pairs Rn Rn,m1
Rn,m2

Sn Sn,m1
Sn,m2

Tn Tn,m1
Tn,m2

Rβ
n

(WVHT, APD) 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

(WVHT, WSPD) 0.005 0.000 0.000 0.022 0.045 0.005 0.000 0.000 0.005 0.001

To apply the proposed testing procedure, the Bernstein polynomial order was taken to be m ∈
{
⌊2118/100⌋,

⌊2118/50⌋
}

, and other settings (the nominal level, number of multiplier bootstrap replicates H and 20×20

grids on [0, 1]2) were the same as in the simulation study. From Table 5, the Bernstein tests, empirical beta

test and empirical tests reach the same conclusion that these two pairs have an asymmetric dependence

pattern.

Once the asymmetric characteristic of dependence is confirmed, all the symmetric copula families

(which is a huge proportion) should be ruled out for modelling. That is, to construct the copula function

of (WVHT, APD) and (WVHT, WSPD), only asymmetric copulas should be considered. Naturally, one

can use the Khoudraji’s device in Section 4 to obtain asymmetric copula models. In addition, there are

various methods available in the literature, for example the product method in Liebscher (2008) and the

linear convex combination method in Wu (2014).

5.2 Nutrient data application

A sample of daily intake (in mg) of calcium (Ca), iron (Fe), protein (Pr), vitamin A (vA) and vitamin

C (vC) for n = 747 women aged between 25 and 50 years has been collected by the United States De-
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partment of Agriculture in 1985. The nutrient data set (see also, Genest et al. (2012); Bahraoui et al.

(2018)) is revisited to check the performance of the proposed Bernstein tests. In terms of the sug-

gestion for Bernstein order m in Segers et al. (2017), three candidates of m are chosen, i.e., m =
{
⌊n/30⌋ = 24, ⌊n/70⌋ = 10, ⌊n/90⌋ = 8

}
, with number of grids N = 20.

To make a fair and concise comparison, the results of the characteristic function test SN
n,σ∗ in Bahraoui et al.

(2018) are also reported here as a competitor. Since P-values therein are computed based on a large

amount of bootstraps, it is reasonable to consider a similarly large bootstrap sample, accordingly, H =

5000 is considered in this subsection.

Table 6 indicates a surprisingly different conclusion of the Bernstein tests with m = ⌊n/70⌋, that is,

only Bernstein tests can reject the pair (Fe, vC) under 5% nominal level. For other pairs, all the tests

arrive at the same conclusion. Moreover, the time of calculating the P-values is also recorded based on a

desktop PC with processor 11th Gen Intel(R) Core(TM) i5-11400F and graphics NVIDA GeForce RTX

3060 with 15 repetitions (for time mean and standard deviation). It is important to emphasize that the

Sn test is conducted using the exchTest function within the R copula package, which is known for its

high optimization. In terms of computational efficiency, the SN
n,σ∗ test stands out as the most efficient

choice.
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Table 6: P-values and computational performance of empirical tests, empirical beta copula tests

and Bernstein tests (m1 = ⌊n/30⌋, m2 = ⌊n/70⌋, m3 = ⌊n/90⌋). Characteristic function test SN
n,σ∗

in Bahraoui et al. (2018) is also reported here.

Pair
Statistics

Rn Rn,m1
Rn,m2

Rn,m3
Sn Sn,m1

Sn,m2
Sn,m3

Tn Tn,m1
Tn,m2

Tn,m3
Rβ

n SN
n,σ∗

P-values

(Ca, Fe) 0.010 0.005 0.007 0.000 0.003 0.005 0.008 0.000 0.002 0.006 0.007 0.000 0.006 0.004

(Ca, Pr) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

(Ca, vA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(Ca, vC) 0.143 0.166 0.321 0.216 0.158 0.169 0.317 0.223 0.065 0.092 0.276 0.171 0.151 0.225

(Fe, Pr) 0.304 0.796 0.956 0.996 0.394 0.678 0.954 0.993 0.114 0.529 0.943 0.998 0.501 0.895

(Fe, vA) 0.003 0.004 0.022 0.005 0.000 0.004 0.017 0.005 0.005 0.002 0.009 0.002 0.001 0.008

(Fe, vC) 0.008 0.006 0.012 0.004 0.005 0.005 0.009 0.004 0.012 0.012 0.013 0.004 0.007 0.007

(Pr, vA) 0.007 0.006 0.029 0.003 0.001 0.005 0.020 0.002 0.024 0.013 0.029 0.004 0.005 0.006

(Pr, vC) 0.194 0.092 0.036 0.143 0.112 0.089 0.034 0.133 0.070 0.240 0.052 0.147 0.153 0.064

(vA, vC) 0.549 0.834 0.884 0.927 0.602 0.828 0.884 0.922 0.180 0.774 0.913 0.940 0.624 0.827

Time

(Ca, Fe) 16.083 159.849 30.219 20.336 24.947 434.192 81.676 54.421 22.694 168.899 35.939 25.630 640.700 9.014

mean

(Ca, Pr) 15.973 159.809 30.560 20.378 24.818 433.909 82.875 54.546 22.779 168.868 35.902 25.256 830.757 8.904

(secs)

(Ca, vA) 15.987 159.800 29.610 20.204 24.807 438.175 79.886 55.000 25.505 186.549 34.852 25.584 613.265 8.276

(Ca, vC) 16.710 163.675 29.626 19.996 26.679 442.293 79.889 53.352 23.705 171.107 34.833 24.712 631.973 8.237

(Fe, Pr) 16.327 160.460 29.553 19.883 25.110 435.617 79.913 53.364 23.062 169.563 34.848 24.661 765.784 8.238

(Fe, vA) 16.230 168.632 29.685 19.863 31.671 455.719 79.912 53.367 23.760 172.449 34.846 24.638 594.638 8.183

(Fe, vC) 16.880 170.615 29.549 19.960 32.841 444.503 79.911 53.339 22.883 169.118 34.806 24.664 570.436 8.182

(Pr, vA) 17.143 159.834 29.605 19.933 25.050 460.171 79.893 53.344 28.486 174.660 34.825 24.637 556.674 8.309

(Pr, vC) 17.843 175.920 29.651 20.661 27.116 439.817 79.898 55.361 23.242 170.081 34.830 24.671 565.487 8.470

(vA, vC) 16.571 160.764 29.589 20.425 27.435 461.440 79.921 54.761 28.622 171.081 34.799 24.686 608.412 8.416

Time

(Ca, Fe) 0.080 0.206 0.085 0.118 0.098 1.216 0.577 0.271 0.027 0.129 0.242 0.589 66.092 0.223

standard

(Ca, Pr) 0.059 0.106 0.244 0.059 0.057 0.120 0.596 0.295 0.063 0.110 0.237 0.231 212.529 0.175

deviation

(Ca, vA) 0.067 0.087 0.062 0.317 0.053 4.873 0.075 0.448 1.605 6.344 0.090 0.324 36.873 0.324

(Ca, vC) 0.073 0.929 0.082 0.073 0.227 2.589 0.047 0.091 0.128 1.348 0.070 0.143 81.312 0.114

(Fe, Pr) 0.067 0.093 0.014 0.014 0.087 0.115 0.102 0.066 0.038 0.130 0.091 0.121 114.724 0.121

(Fe, vA) 0.121 7.014 0.064 0.076 2.718 19.865 0.065 0.065 0.053 0.926 0.099 0.097 62.509 0.079

(Fe, vC) 0.238 7.008 0.013 0.100 0.409 13.617 0.123 0.072 0.065 0.154 0.108 0.141 7.012 0.067

(Pr, vA) 0.708 0.129 0.053 0.092 0.101 24.851 0.068 0.042 0.384 2.948 0.096 0.100 5.417 0.143

(Pr, vC) 0.351 4.343 0.124 0.177 0.485 12.610 0.062 0.287 0.147 0.449 0.080 0.142 7.623 0.271

(vA, vC) 0.277 0.376 0.047 0.139 0.157 27.036 0.128 0.198 0.505 1.337 0.121 0.097 82.739 0.119

The bold values indicate a different decision for Bernstein tests comparing with other tests under 5% nominal level.

6 Final remarks

Tests based on the Bernstein polynomials for symmetry of bivariate copulas were proposed and investi-

gated. These test statistics are smoothed versions of those based on the empirical copula in Genest et al.

(2012). The proposed procedure exhibits enhanced performance in simulation studies and aligns with

identical conclusions in real data applications across the majority of scenarios. The limiting distribu-

tions of the proposed test statistics were investigated and a Bernstein version of multiplier bootstrap was

constructed and implemented to simulate P-values.
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Since the underlying copula is continuous, a smooth copula estimator such as the empirical Bernstein

copula is competitive with the empirical copula. From the bias-variance trade-off point of view, with

appropriate smoothness parameter, the former can outperform the latter by balancing the bias and

variance. On the other hand, the smoothed Bernstein tests still hold the same features as the non-

smoothed empirical tests. For example, the empirical tests tend to have an empirical level which is below

the nominal level, see Genest et al. (2012) and Bahraoui et al. (2018). The proposed Bernstein tests still

undergo this pattern, but are less affected.

For future study, it would be possible to apply the Bernstein polynomials for testing various kinds

of symmetry in Nelsen (1993) and the vertex and diametrical symmetry developed in Mangold (2017)

recently. In general, other statistical tests based on the empirical copula can be adapted easily to use

the empirical Bernstein copula. Another avenue to explore involves adopting distinct Bernstein orders for

each component of the empirical Bernstein copula. Drawing from the authors’ experiential insights, such

alternatives are likely to offer benefits, particularly concerning Rn,m and Tn,m.
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A Proof of Theorem 2

Proof. This proof is an adaption of Genest et al. (2012, Proposition 3). For the convergence of nRn,m

and n1/2Tn,m, one can directly apply continuous mapping theorem combined with Theorem 1. For the

convergence of nSn,m, the functional delta method was used. To this end, let C [0, 1]2 denote the space

of continuous functions on [0, 1]2, D [0, 1]2 denote the space of functions with continuity from upper right

quadrant and limits from other quadrants on [0, 1]2, equipped with sup-norm. Further, denote BV1[0, 1]2

by the subspace of D [0, 1]2 where functions with total variation bounded by 1. By continuous mapping

theorem,
(
S

2
n,m,Bn,m

)
 

(
S

2
C ,BC

)

in the space ℓ∞[0, 1]2 × ℓ∞[0, 1]2. Rewrite it as

(
S

2
n,m,Bn,m

)
= n1/2{(An,m, Ĉn,m) − (A, C)},

where A ≡ 0 and An,m := n1/2(Ĉn,m − Ĉ⊤
n,m)2, where Ĉ⊤

n,m(u, v) = Ĉn,m(v, u). Then, consider the map

φ : ℓ∞[0, 1]2 × BV1[0, 1]2 → R defined by

φ(a, b) =

∫

(0,1]2
a db,
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Clearly,

nSn,m = φ
(
S

2
n,m,Bn,m

)
= n1/2{φ(An,m, Ĉn,m) − φ(A, C)}.

To conclude the proof, by Carabarin-Aguirre and Ivanoff (2010, Lemma 4.3), φ is Hadamard differentiable

tangentially to C [0, 1]2 × D [0, 1]2 at each (α, β) in ℓ∞[0, 1]2 × BV1[0, 1]2 such that
∫

|dα| < ∞ with

derivative

φ′

(α,β)(a, b) =

∫
α db +

∫
a dβ.

Then by applying the Functional Delta Method (van der Vaart and Wellner, 1996, Theorem 3.9.4), nSn,m  

φ′

(A,C)

(
S

2
C ,BC

)
, where

φ′

(A, C)

(
S

2
C ,BC

)
=

∫

(0,1]2
A dBC +

∫

(0,1]2
S

2
C dC =

∫

(0,1]2
S

2
C dC.

This yields to the desired result.

B Proof of Theorem 3

Proof. This proof is an adaption of Genest et al. (2012, Proposition 4). The strongly uniform consistency

of Ĉn,m was provided in Janssen et al. (2012, Theorem 1), then by continuous mapping theorem, it follows

immediately that Rn,m and Tn,m converge to RC and TC almost surely, respectively. Further, to prove

the convergence of Sn,m, write

|Sn,m − SC | ≤ |γn,m| + |ζn|,

where

γn,m =

∫ 1

0

∫ 1

0

{
Ĉn,m(u, v) − Ĉn,m(v, u)

}2
dĈn(u, v)

−
∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2
dĈn(u, v),

and

ζn =

∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2
dĈn(u, v) −

∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2
dC(u, v).

Since

∣∣∣∣
{

Ĉn,m(u, v) − Ĉn,m(v, u)
}2

−
{
C(u, v) − C(v, u)

}2
∣∣∣∣

=

∣∣∣∣
[
Ĉn,m(u, v) + C(u, v)

]
−
[
Ĉn,m(v, u) + C(v, u)

]∣∣∣∣

×
∣∣∣∣
[
Ĉn,m(u, v) − C(u, v)

]
−
[
Ĉn,m(v, u) − C(v, u)

]∣∣∣∣

≤
[∣∣∣Ĉn,m(u, v) + C(u, v)

∣∣∣ +
∣∣∣Ĉn,m(v, u) + C(v, u)

∣∣∣
]
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×
[∣∣∣Ĉn,m(u, v) − C(u, v)

∣∣∣ +
∣∣∣Ĉn,m(v, u) − C(v, u)

∣∣∣
]

≤ 8 sup
(u,v)∈[0,1]2

∣∣∣Ĉn,m(u, v) − C(u, v)
∣∣∣ ,

one has

|γn,m| ≤ 8 sup
(u,v)∈[0,1]2

∣∣∣Ĉn,m(u, v) − C(u, v)
∣∣∣ a.s.−−→ 0.

For ζn, by Genest et al. (1995, Proposition A.1 (i)), one has

∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2
dĈn(u, v) →

∫ 1

0

∫ 1

0

{
C(u, v) − C(v, u)

}2
dC(u, v),

then ζn → 0. Therefore, Sn,m converges to SC almost surely.

C Proof of Lemma 1

Proof. Under these assumptions, one need to use the framework in Segers et al. (2017). Specifically,

let µm,(u,v) be the law of random vector (B1/m, B2/m), where B1 and B2 follow Binomial(m, u) and

Binomial(m, v), respectively. The empirical Bernstein copula can be rewritten as

Ĉn,m(u, v) =

∫

[0,1]2
Ĉn(x, y) dµm,(u,v)(x, y), (x, y) ∈ [0, 1]2.

Moreover, write (x, y)(t) = (u, v) + t((x, y) − (u, v)) with t ∈ [0, 1]. Then, the empirical Bernstein copula

process is

Bn,m(u, v) =
√

n
{

Ĉn,m(u, v) − C(u, v)
}

=
√

n

{
Ĉn,m(u, v) −

∫

[0,1]2
C(x, y) dµm,(u,v)(x, y) +

∫

[0,1]2
C(x, y) dµm,(u,v)(x, y) − C(u, v)

}

=

∫

[0,1]2

√
n
{

Ĉn,m(x, y) − C(x, y)
}

dµm,(u,v)(x, y) +
√

n

{∫

[0,1]2
C(x, y) dµm,(u,v)(x, y) − C(u, v)

}

= T1 + T2. (9)

The two terms are dealt with separately.

• For the term T1, according to Segers et al. (2017, Proposition 3.1), one has

sup
(u,v)∈[0,1]2

∣∣∣∣∣

∫

[0,1]2

√
n
{

Ĉn,m(s, t) − C(s, t)
}

dµm,(u,v)(s, t) −
√

n
{

Ĉn,m(u, v) − C(u, v)
}∣∣∣∣∣ = op(1).

And note that,
√

n
{

Ĉn,m(u, v) − C(u, v)
}
 BC(u, v) in ℓ∞([0, 1]2) under the Assumption 1 (see Segers

(2012)). Therefore, T1  BC(u, v) as n goes to infinity.
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• For the term T2, Let m = cnα for some c > 0, by Kojadinovic (2022, Lemma 3.1),under Assump-

tion 1-2 , one has

sup
(u,v)∈[0,1]2

√
n

∣∣∣∣∣

∫

[0,1]2
C(x, y) dµm,(u,v)(x, y) − C(u, v)

∣∣∣∣∣ = O
(
n(3−4α)/6

)

almost surely. Therefore, if α > 3/4, T2 goes to zero as n goes to infinity.

Combining above results completes the proof.

D Proof of Proposition 1

Proof. By Rémillard and Scaillet (2009), one has

Cn(u, v) =
√

n
{
Cn(u, v) − C(u, v)

}
= n1/2





1

n

n∑

i=1

{
I
(
Ui ≤ u, Vi ≤ v) − C(u, v

)}




 C(u, v),

where Cn(u, v) = 1
n

∑n
i=1 I (Ui ≤ u, Vi ≤ v), and

C
(h)
n (u, v) = n1/2





1

n

n∑

i=1

(
ξ

(h)
i − ξ̄(h)

n

)
I(Ûi ≤ u, V̂i ≤ v)



 C(u, v).

To end the proof, one needs to show that the difference between

(
Cn,C

(h)
n

)
and

(
B̃n,m,B

(h)
n,m

)
are

asymptotically negligible.

It is well-known (for example, see Deheuvels (1979)) that, as n → ∞,

‖Cn(u, v) − C(u, v)‖ = O
(
n−1/2(log log n)1/2

)
,

almost surely and using the same techniques in Janssen et al. (2012) gives

‖Cn,m(u, v) − C(u, v)‖ = O
(
n−1/2(log log n)1/2

)
,

almost surely, it immediately follows that

‖Cn,m(u, v) − Cn(u, v)‖ = O
(
n−1/2(log log n)1/2

)
,

almost surely. Therefore, one can conclude that B̃n,m(u, v) C(u, v).

Further, by Janssen et al. (2012, Lemma 1), as n → ∞,

‖Ĉn(u, v) − C(u, v)‖ = O
(
n−1/2(log log n)1/2

)
,

almost surely. By Lemma 1, under the assumptions,

‖Ĉn,m(u, v) − C(u, v)‖ = op(1).
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Hence

‖Ĉn,m(u, v) − Ĉn(u, v)‖ = op(1),

one has that B
(h)
n,m(u, v) C(u, v).

E Proof of Proposition 2

Proof. We only show the uniform consistency for

∂Ĉn,m(u, v)

∂u
= m

m−1∑

k=0

m∑

ℓ=0

{
Ĉn

(
k + 1

m
,

ℓ

m

)
− Ĉn

(
k

m
,

ℓ

m

)}

· Pm−1,k(u)Pm,ℓ(v).

The result for the other partial derivative can be obtained similarly. For any u ∈ [bn, 1 − bn], v ∈ [0, 1],

one has
∣∣∣∣∣∣
∂Ĉn,m(u, v)

∂u
− Ċ1(u, v)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
m

m−1∑

k=0

m∑

ℓ=0

{
Ĉn

(
k + 1

m
,

ℓ

m

)
− Ĉn

(
k

m
,

ℓ

m

)

− C

(
k + 1

m
,

ℓ

m

)
+ C

(
k

m
,

ℓ

m

)}
Pm−1,k(u)Pm,ℓ(v)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
m

m−1∑

k=0

m∑

ℓ=0

{
C

(
k + 1

m
,

ℓ

m

)
− C

(
k

m
,

ℓ

m

)}

· Pm−1,k(u)Pm,ℓ(v) − Ċ1(u, v)

∣∣∣∣∣∣

= A1 + A2.

Further, let P ′
m,k(u) = 1

u(1−u)Pm,k(u) (k − mu) be the derivative of Pm,k(u), then

A1 ≤
m∑

k=0

m∑

ℓ=0

∣∣∣∣∣Ĉn

(
k

m
,

ℓ

m

)
− C

(
k

m
,

ℓ

m

) ∣∣∣∣∣

·
∣∣∣P ′

m,k(u)
∣∣∣Pm,ℓ(v)

≤ sup
(u,v)∈[0,1]2

∣∣∣∣∣Ĉn (u, v) − C (u, v)

∣∣∣∣∣ ·
m∑

k=0

∣∣∣P ′
m,k(u)

∣∣∣

= O
(
m1/2n−1/2(log log n)1/2

)
,

almost surely as n → ∞ and where
m∑

k=0

∣∣∣P ′
m,k(u)

∣∣∣ = O(m1/2),
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by Janssen et al. (2014, Lemma 1).

For dealing with A2, let νm,(u,v) be the law of random vector (S1/(m − 1), S2/m), where S1 and S2

follow Binomial(m − 1, u) and Binomial(m, v), respectively. Therefore,

m−1∑

k=0

m∑

ℓ=0

C

(
k + 1

m
,

ℓ

m

)
Pm−1,k(u)Pm,ℓ(v)

=

∫

[0,1]2
C

((
x +

1

m − 1

)
m − 1

m
, y

)

dνm,(u,v)(x, y),

and

m−1∑

k=0

m∑

ℓ=0

C

(
k

m
,

ℓ

m

)
Pm−1,k(u)Pm,ℓ(v)

=

∫

[0,1]2
C

(
x

m − 1

m
, y

)
dνm,(u,v)(x, y).

Using the representation in Segers et al. (2017, Proof of Proposition 3.4), for 0 < t < 1, one has

A2 =

∣∣∣∣∣∣
m

m−1∑

k=0

m∑

ℓ=0

{
C

(
k + 1

m
,

ℓ

m

)
− C

(
k

m
,

ℓ

m

)}

· Pm−1,k(u)Pm,ℓ(v) − Ċ1(u, v)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫ 1

0

{∫

[0,1]2

[
Ċ1

(
m − 1

m
x +

1 + t

m
, y

)
− Ċ1(u, v)

]

dνm,(u,v)(x, y)

}
dt

∣∣∣∣∣∣
. (10)

Let x′(x, t) := m−1
m x + 1+t

m and εn = bn/2, then one has,

(10) ≤

∣∣∣∣∣∣

∫ 1

0

{∫

[0,1]2

[
Ċ1

(
x′, y

)
− Ċ1(u, v)

]

· I
(
max(|x′ − u|, |y − v|) ≤ εn

)

dνm,(u,v)(x, y)

}
dt

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫ 1

0

{∫

[0,1]2

[
Ċ1

(
x′, y

)
− Ċ1(u, v)

]

·I
(
max(|x′ − u|, |y − v|) > εn

)
dνm,(u,v)(x, y)

}
dt

∣∣∣∣∣∣

= A21 + A22.
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Further, the two terms are dealt with separately using the strategy in Kojadinovic (2022, Proof of Lemma

3.1).

• For A21, under Assumption 1-2, by Segers (2012, Lemma 4.3), for a constant L > 0, one has
∣∣∣∣Ċ1

(
x′, y

)
− Ċ1(u, v)

∣∣∣∣ I
(
max(|x′ − u|, |y − v|) ≤ εn

)

≤ Lb−1
n

[
|x′ − u| + |y − v|

]
.

Further,

A21 ≤ Lb−1
n

∫ 1

0

{∫

[0,1]2

[
|x′ − u| + |y − v|

]

dνm,(u,v)(x, y)

}
dt

≤ Lb−1
n

∫

[0,1]2

∫ 1

0

[
|x − u| + |y − v| +

∣∣∣∣
x

m
− 1 + t

m

∣∣∣∣

]

dt dνm,(u,v)(x, y)

≤ Lb−1
n

∫

[0,1]2

∫ 1

0

[
|x − u| + |y − v|

+
x

m
+

1 + t

m

]
dt dνm,(u,v)(x, y)

= Lb−1
n

∫

[0,1]2

[
|x − u| + |y − v| +

x

m
+

3

2m

]
dνm,(u,v)(x, y). (11)

By Cauchy-Schwarz inequality,

(11) ≤ Lb−1
n

[
O
(
m−1/2

)
+ O(m−1)

]

= O
(
b−1

n m−1/2
)

.

• For A22, since 0 ≤ Ċ1 ≤ 1 and using the result of A21,

A22 ≤

∣∣∣∣∣∣

∫ 1

0

{∫

[0,1]2

2

εn
max(|x′ − u|, |y − v|)

dνm,(u,v)(x, y)

}
dt

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫ 1

0

{∫

[0,1]2

2

εn
(|x′ − u| + |y − v|)

dνm,(u,v)(x, y)

}
dt

∣∣∣∣∣∣

≤ ε−1
n

[
O
(
m−1/2

)
+ O(m−1)

]

= O
(
b−1

n m−1/2
)

.
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Therefore,

sup
v∈[0,1],

u∈[bn,1−bn]

∣∣∣∣∣∣
∂Ĉn,m(u, v)

∂u
− Ċ1(u, v)

∣∣∣∣∣∣

= O
(
m1/2n−1/2(log log n)1/2

)
+ O

(
b−1

n m−1/2
)

,

almost surely as n → ∞, which completes the proof.
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