
Optimization via Rejection-Free Partial

Neighbor Search

Sigeng Chen1, Jeffrey S. Rosenthal1, Aki Dote2, Hirotaka
Tamura3 and Ali Sheikholeslami4

1Department of Statistical Sciences, University of Toronto, 700
University Avenue, Toronto, M5G 1Z5, Ontario, Canada.

2Fujitsu Ltd., 4-1-1 Kamikodanaka Nakahara-ku, Kawasaki,
211-8588, Kanagawa, Japan.

3DXR Laboratory Inc., 4-38-10 Takata-Nishi, Kohoku-ku,
Yokohama, 223-0066, Kanagawa, Japan.

4Department of Electrical and Computer Engineering, University
of Toronto, 10 King’s College Road, Toronto, M5S 3G4, Ontario,

Canada.

Contributing authors: sigeng.chen@mail.utoronto.ca;
jeff@math.toronto.edu; dote.aki@fujitsu.com;

tamura.hirotaka@dxrlab.com; ali@ece.utoronto.ca;

Abstract

Simulated Annealing using Metropolis steps at decreasing temper-
atures is widely used to solve complex combinatorial optimization
problems (Kirkpatrick et al, 1983). In order to improve its efficiency,
we can use the Rejection-Free version of the Metropolis algorithm,
which avoids the inefficiency of rejections by considering all the neigh-
bors at every step (Rosenthal et al, 2021). As a solution to avoid
the algorithm from becoming stuck in local extreme areas, we pro-
pose an enhanced version of Rejection-Free called Partial Neighbor
Search (PNS), which only considers random parts of the neighbors
while applying Rejection-Free. We demonstrate the superior perfor-
mance of the Rejection-Free PNS algorithm by applying these meth-
ods to several examples, such as the QUBO question, the Knapsack
problem, the 3R3XOR problem, and the quadratic programming.

Keywords: Simulated Annealing, Rejection-Free, Partial Neighbor Search,
QUBO

1

ar
X

iv
:2

20
5.

02
08

3v
2

 [
m

at
h.

O
C

]
 7

 O
ct

 2
02

2

2 Optimization via Rejection-Free Partial Neighbor Search

1 Introduction

Optimization is the cornerstone of many areas, and it plays a crucial role
in finding feasible solutions to real-life problems, from mathematical pro-
gramming to operations research, economics, management science, business,
medicine, life science, and artificial intelligence (Floudas and Pardalos, 2008).
Prior to the invention of linear and integer programming in the 1950s, opti-
mization was characterized by several independent topics, such as optimum
assignment, the shortest spanning tree, transportation, and the traveling sales-
man problem, which were then united into one framework (Schrijver, 2005).
Today, combinatorial optimization plays an important role in research because
most of its problems originate from practice and are dealt with on a daily
basis (Schrijver, 2005). The process of finding a feasible solution to some com-
plex combinatorial optimization problems may take a considerable amount of
time. In particular, no algorithm for NP-hard problems can guarantee that the
optimal state of the problem will be found within a limitation governed by a
polynomial based on the input length (Garey et al, 1974).

In general, metaheuristics are algorithmic frameworks that are often
nature-inspired and are used to solve complex optimization problems (Bianchi
et al, 2009) by arriving at a feasible solution, regardless of whether it is opti-
mal. The Simulated Annealing algorithm (Kirkpatrick et al, 1983), based on
the Metropolis algorithm (Metropolis et al, 1953) at decreasing temperatures,
is a typical method of this kind. The Simulated Annealing algorithm, how-
ever, may be inefficient with respect to rejections. In order to improve the
performance of Simulated Annealing, we adopt the Rejection-Free algorithm
for sampling (Rosenthal et al, 2021) into an optimization version. Addition-
ally, Rejection-Free may experience inefficiency when it enters local extreme
areas. Therefore, we propose another algorithm based on the Rejection-Free
algorithm called Partial Neighbor Search (PNS) in order to further enhance
its efficiency.

Even when applied to a single-core implementation, Rejection-Free and
PNS are more efficient in many optimization problems than Simulated Anneal-
ing. Moreover, the implementation of these algorithms can also be carried out
through parallelism in order to increase efficiency even further. It is possible to
use processors designed for general purposes, such as Intel and AMD cores, for
parallel computing to accelerate the algorithm to some extent. However, these
chips were not built for parallel computing, and off-chip communication signifi-
cantly slows the data transfer rate to and from the cores (Sodan et al, 2010). On
the other hand, parallelism hardware designed specifically for MCMC trials has
been proposed. For example, the second generation of Fujitsu Digital Annealer
uses a dedicated processor called Digital Annealing Unit (DAU) (Matsubara
et al, 2020) to achieve high speed. This dedicated processor is designed to min-
imize communication overhead in arithmetic circuitry and with memory. It is
possible to achieve 100x to 10,000x speedups by combining Rejection-Free and
PNS with such parallelism hardware (Sheikholeslami, 2021).

Optimization via Rejection-Free Partial Neighbor Search 3

We next review the Simulated Annealing algorithm, the Metropolis algo-
rithm, and the Rejection-Free algorithm for sampling. Following that, Section 2
describes how to use the Rejection-Free algorithm to solve optimization prob-
lems. Our next point is that the local maximum may lead to another kind
of inefficiency for Rejection-Free, and Section 3 introduces our Partial Neigh-
bor Search (PNS) algorithm for optimization, which considers just subsets of
neighbor states for possible moves. In Section 4, we demonstrate how PNS can
be applied to quadratic unconstrained binary optimization (QUBO) questions
and its effectiveness in solving them. We then discuss why this improvement
occurs (Section 5), and how its subsets of partial neighbors should be chosen
(Section 6), as well as its relation to the Tabu Search algorithm (Section 7).
Moreover, we present several other examples, such as the Knapsack problem
(Section 8) and the 3R3XOR problem (Section 9), to illustrate the advan-
tages of the PNS algorithm in discrete optimization problems. Furthermore,
Section 10 illustrates another advantage of PNS over Rejection-Free by pro-
viding a continuous optimization example known as quadratic programming.
PNS can easily be adapted to the general state space by selecting only a finite
subset, and it outperforms Simulated Annealing, whereas Rejection-Free can-
not be applied in this case due to the need to consider all neighbors at each
step.

1.1 Background on Simulated Annealing for optimization

Simulated Annealing, as introduced by Kirkpatrick et al (1983), is widely
used to solve combinatorial optimization problems, such as approximating the
optimal values of functions with many variables (Rutenbar, 1989). Although
there is no guarantee that this algorithm will provide an optimal solution, it
is capable of providing reasonable, feasible solutions quickly (Albright, 2007).
Simulated Annealing contains the following essential elements (Bertsimas and
Tsitsiklis, 1993):

1. A state space S.
2. A real-valued target distribution π on S. The ultimate goal for the Simu-

lated Annealing is to find Y ∈ S such that π(Y) > π(X), ∀X ∈ S. However,
for many circumstances, a good feasible solution is acceptable.

3. ∀X ∈ S, ∃ a proposal distribution Q(X, ·) where
∫
Y ∈S\{X}Q(X,Y) = 1.

4. ∀X ∈ S, ∃ N (X) = {Y ∈ S | Q(X,Y) > 0} ⊂ S\{X}, called the neighbors
of X.

5. A non-increasing function T : N → (0,∞), called the Cooling Schedule.
T (k) is called the temperature at step k ∈ N.

6. An initial State X0 ∈ S.

With the above elements, the Simulated Annealing algorithm, which
consists of a discrete time-inhomogeneous Markov Chain {Xk}Kk=0 can be gen-
erated by Algorithm 1. Algorithm 1 is designed to converge to states Xk with
nearly-maximal values of π(Xk), though that is not guaranteed. Note that the
algorithm can also be formulated using log values for better numerical stability.

4 Optimization via Rejection-Free Partial Neighbor Search

Algorithm 1 Simulated Annealing

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < [π(Y)
π(Xk−1)

]1/T (k) then

. accept with probability min
{

1,
[π(Yk)
π(Xk−1)

]1/T (k)
}

Xk = Y . accept and move to state Y
else

Xk = Xk−1 . reject and stay at Xk−1
end if

end for

1.2 Background on Metropolis-Hastings algorithm

The above Simulated Annealing algorithm is designed based on the Metropolis
algorithm (Metropolis et al, 1953). Among all the Monte Carlo algorithms,
the Metropolis algorithm has been the most successful and influential (Beichl
and Sullivan, 2000). It is designed to generate a Markov chain that converges
to a given target distribution π on a state space S. As a generalization of the
Metropolis algorithm, the Metropolis-Hastings(M-H) algorithm includes the
possibility of a non-symmetric proposal distribution Q (Hitchcock, 2003). The
M-H algorithm is described in Algorithm 2.

Algorithm 2 the Metropolis-Hastings algorithm

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk <
π(Y)Q(Y,Xk−1)

π(Xk−1)Q(Xk−1,Y) then

. accept with probability min
{

1, π(Y)Q(Y,Xk−1)
π(Xk−1)Q(Xk−1,Y)

}
Xk ← Y . accept and move to state Y

else
Xk ← Xk−1 . reject and stay at Xk−1

end if
end for

Algorithm 2 ensures the Markov chain {X0, X1, X2, . . . , XK} has π as sta-
tionary distribution. It follows (assuming irreducibility) that the expected
value Eπ(h) of a functional h : S → R with respect to π can be estimated

by 1
M

∑M
i=1 h(Xi) for sufficiently large run length M . Although the M-H algo-

rithm and Simulated Annealing are designed for different purposes, regarding

Optimization via Rejection-Free Partial Neighbor Search 5

the implementation, the Cooling Schedule is the only difference between them.
Thus, both Simulated Annealing and the M-H algorithm may face inefficiencies
from the rejections (Rosenthal et al, 2021).

1.3 Background on Rejection-Free algorithm for sampling

Rejections in both Simulated Annealing and the M-H algorithm could be a

problem. In Algorithm 1, if Uk ≥ [π(Y)
π(Xk)

]1/T (k), then we will remain at the

current state, even though we have spent time in proposing a state, computing
a ratio of target probabilities, generating a random variable Uk, and deciding
not to accept the proposal. Such inefficiencies could happen frequently and are
considered a necessary evil of Simulated Annealing and the M-H algorithm.
However, we can compute all potential acceptance probabilities at once to allow
for the possibility of skipping these rejection steps (Rosenthal et al, 2021). By
taking out the inefficiencies of rejections in both algorithms, the Rejection-Free
algorithm can lead to significant speedup.

Before introducing Rejection-Free, we need to introduce the jump chain
first. Given a run {Xk} of a Markov chain, we define the jump chain to be
{Jk,Mk}, where {Jk} represents the same chain as {Xk} except omitting any
immediately repeated states, and the Multiplicity List {Mk} is used to count
the number of times the original chain remains at the same state.

For example, if the original chain is

{Xk} = {a, b, b, b, a, a, c, c, c, c, d, d, a, . . . }, (1)

then the jump chain would be

{Jk} = {a, b, a, c, d, a, . . . }, (2)

with the corresponding multiplicity list being

{Mk} = {1, 3, 2, 4, 2, 1, . . . }. (3)

The jump chain {Jk,Mk} itself is a Markov chain, with transition probabilities
P̂ (y | x) specified by

P̂ (x | x) := 0

∀y 6= x, P̂ (y | x) := P [Jk+1 = y | Jk = x] =
P (y | x)∑
z 6=x P (z | x)

(4)

Moreover, the conditional distribution of {Mk} given {Jk} is equal to the
distribution of 1 + G where G is a geometric random variable with success
probability p = 1− P (x | x) =

∑
z 6=x P (z | x); see Rosenthal et al (2021).

Given the above properties for the Jump chain, the Rejection-Free algo-
rithm can be used for sampling as described by Algorithm 3. Algorithm 3 only

6 Optimization via Rejection-Free Partial Neighbor Search

works for the discrete cases where all states have at most finite neighbors.
Theorem 13 in Rosenthal et al (2021) extended the Rejection-Free to general
state space, and we will discuss more by a continuous optimization question
in Section 10.

Algorithm 3 Rejection-Free for Sampling (Discrete Cases)

initialize J0
for k in 1 to K do

p← 0 . p is used to record the success probability for Mk−1
for Y in N (Jk−1) do . only works for finite neighbors

calculate q(Y) = Q(Y, Jk−1) min{1, π(y)
π(Jk−1)

}
. the transition prob. from Jk−1 to Y

p← p+ q(Y) . p =
∑

z 6=x P (z | x)
end for
choose Jk ∈ N (Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y)

. choose the next jump chain state
calculate Mk−1 = 1 +G where G ∼ Geom(p)

. multiplicity list for current state
end for

Algorithm 3 ensures (assuming irreducibility) that the expected value
Eπ(h) of a functional h : S → R with respect to π can be estimated by∑K

k=1Mk h(Jk)∑K
k=1Mk

for sufficiently large run length K, while avoiding any rejections.

Rejection-Free can lead to great speedup in examples where the Metropolis
algorithm frequently rejects (Rosenthal et al, 2021).

2 Rejection-Free algorithm for optimization

In addition to sampling, the above Rejection-Free algorithm can also be applied
to optimization problems. Given a set S and a real-valued target distribu-
tion π on the set S, we can use the Rejection-Free algorithm to find X ∈ S
that maximizes π(X) by Algorithm 4. Algorithm 4 is again designed to con-
verge to states Xk with nearly-maximal values of π(Xk), with greater efficiency
by avoiding rejections, though that is again not guaranteed. Although the
purpose of sampling and optimization are different, regarding the implementa-
tion, Rejection-Free for optimization is only different from Rejection-Free for
sampling by getting rid of the multiplicity list {Mk}.

Although the Rejection-Free algorithm for optimization can help reduce
the inefficiency of rejections, local maximum areas of π can still be a problem.
For example, we want to find X ∈ S, which maximizes π(X) from a state space
starting at state A in Figure 1. Here, we use a uniform proposal distribution Q
on the neighbor setsN as shown in Figure 1. We will have many rejections if we
constantly use Simulated Annealing with T ≡ 1. Note that, π(A1) = π(A2) =

Optimization via Rejection-Free Partial Neighbor Search 7

Algorithm 4 Rejection-Free for Optimization (Discrete Cases)

initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1) do
. only works for finite neighbors

calculate q(Y) = Q(Y, Jk−1) min{1, [π(Y)
π(Jk)

]
1

T (k) }
. the transition prob. from Jk−1 to Y

end for
choose Jk ∈ N (Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y)

. choose the next jump chain State
end for

Fig. 1 Illustration of the local maximum area in an optimization problem where both
Simulated Annealing and Rejection-Free may get stuck. The target distribution π has the
following function values: π(A) = π(B) = 100, π(A1) = π(A2) = · · · = π(An) = π(B1) =
π(B2) = · · · = π(Bn) = 0.01.

· · · = π(An) = 0.01 while π(A) = π(B) = 100. The probability of escaping
from A is 1

n+1 + n
n+1 ×

1
10000 , where 1

n+1 represents the probability of moving

from state A to state B, and n
n+1 ×

1
10000 is the probability of moving from

state A to A1, A2, . . . , An. Cooling Schedules can help reduce the probability
of rejection at the beginning of Simulated Annealing since T should be large
at the beginning. However, as we move on in Simulated Annealing, we will be
more and more likely to be trapped by local maximum areas like this. The
Rejection-Free algorithm for optimization can produce some speedup in this
case, but the Rejection-Free chain will still be stuck by the local maximum
area {π(A), π(B)}. If n, the number of other neighbors for A and B, is small,
this chain will be switching between A and B for a really long time, since

P̂ (J1 = B | J0 = A) =
min{1, π(B)

π(A)}∑
z 6=A min{1, π(z)π(A)}

=
1

1 + 0.0001× n
≈ 1

P̂ (J1 = A | J0 = B) ≈ 1.

(5)

To help our Markov chain escape from those local maximums in optimiza-
tion, we propose another method called Partial Neighbor Search based on the
Rejection-Free algorithm.

8 Optimization via Rejection-Free Partial Neighbor Search

3 Proposed Search Algorithm: Partial
Neighbor Search

Partial Neighbor Search (PNS) is an algorithm based on the Rejection-
Free, also designed as a Markov chain used for optimization as described in
Algorithm 5. Algorithm 5 is again designed to converge to states Xk with
nearly-maximal values of π(Xk), with greater efficiency by avoiding both
rejections and traps in local maximum areas.

Algorithm 5 Partial Neighbor Search

initialize J0
for k in 1 to K do

pick Nk(Jk−1) ⊂ N (Jk−1) (?)
for Y ∈ Nk(Jk−1) do . Only neighbors in Nk will be considered

calculate q(Y) = Q(Y, Jk−1) min{1, [π(Y)
π(Jk)

]
1

T (k) }
. the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y)

. choose the next Jump Chain State
end for

The (?) step in Algorithm 5 is the key of PNS. At this step, Nk(Jk−1) could
be random 50% of the elements from N (Jk−1). In Section 6, we will explore
many other choices for the (?) step to figuring out the best strategy. Moreover,
for continuous cases, PNS can be applied, and we only need to ensure the
Partial Neighbor SetsNk are always finite, ∀k. On the other hand, Algorithms 3
and Algorithm 4 for Rejection-Free only work for discrete cases where the
number of neighbors for all states must be finite, and we will illustrate these
by an optimization example in continuous cases in Section 10.

The motivation for PNS is simple: we have a better chance of escaping from
the local maximum area if we force the algorithm to avoid some neighbors
randomly. For example, in Figure 1, if we only consider half of the neighbors
at state A, then we may disregard state B with probability 50%, then we have
a probability of at least 50% of selecting a state from {A1, A2, . . . , An} as our
next state in the PNS chain. If this occurs, we are more likely to escape from
the local maximum area {π(A), π(B)}.

4 Application to the QUBO question

The quadratic unconstrained binary optimization (QUBO) has gained increas-
ing attention in the field of combinatorial optimization due to its wide range
of applications in finance and economics to machine learning (Kochenberger
et al, 2014). The QUBO problem is known to be NP-hard (Glover et al, 2018),

Optimization via Rejection-Free Partial Neighbor Search 9

so it is common to use Simulated Annealing to find the optimal or work-
able solution. This problem can now be addressed using our PNS algorithm.
(Additional applications are in Sections 8, Section 9, and Section 10 below.)

For a given N by N matrix Q (usually upper triangular), the QUBO
question aims to find

arg maxxTQx, where x ∈ {0, 1}N (6)

(Sometimes arg min is used in place of arg max, which is equivalent to taking
the negative of Q, so for simplicity, we focus on the arg max version here.)

As part of our algorithm, we use a uniform proposal distribution among
all neighbors where the neighbors are defined as binary vectors with Hamming
distance 1. That is, Q(X,Y) = 1

N for ∀Y ∈ N (X), where Y ∈ N (X) ⇐⇒
|X − Y | =

∑N
i=1|Xi − Yi| = 1, ∀X,Y ∈ {0, 1}N . We randomly choose half of

the neighbors at each step of PNS, which means we only consider a random
subset NK(x) ⊂ N (x) whose cardinality is |Nk(X)| = 1

2 |N (X)| = 1
2N for

∀X ∈ {0, 1}N . In addition, the target distribution π(x) = exp{xTQx}, since we
need the target distribution to be positive all time to use the Cooling Schedule,
and maximizing xTQx is the same as maximizing exp{xTQx}. Furthermore,
T (k) represents the temperature at step k for the cooling schedule here.

We compare Simulated Annealing, Rejection-Free for Optimization, and
PNS in 1000 simulation runs. We randomly generate a 200 by 200 upper trian-
gular as the QUBO matrix Q. The non-zero elements from Q were generated
randomly by Qi,j ∼ Normal(0, 1002), ∀i ≤ j.

The result for the simulation is shown in Figure 2. Here, we used a violin
plot to summarize the results. The violin plot uses the information available
from local density estimates and the basic summary statistics to provide a
useful tool for data analysis and exploration (Hintze and Nelson, 1998). The
violin plot combines two density traces on both sides and three quantile lines
(25%, 50%, and 75%) to reveal the data structure. In addition, we added a
long segment of the bottom layer as the mean for the values. We also added a
short segment on the y-axis to help compare the mean values.

From Figure 2, we can see that the PNS is always the best in all four
different cooling schedules. Note that the number of iterations used for Sim-
ulated Annealing is 200, 000 for Simulated Annealing while they are 1000 for
both Rejection-Free and PNS. We used these many iterations because we need
to consider 200 neighbors at each iteration in Rejection-Free, while we only
need to consider one neighbor for each iteration in Simulated Annealing. If we
proceed with all three algorithms on a single-core machine, the run time of
a single simulation run for simulated Annealing is about 20 seconds; the run
time for Rejection-Free is about 10 seconds; the run time for PNS is only 5
seconds. In addition, parallelism in computer hardware can increase the speed
of both Rejection-Free and PNS by distributing the calculation of the transi-
tion probabilities for different neighbors onto different cores (Rosenthal et al,

10 Optimization via Rejection-Free Partial Neighbor Search

Fig. 2 Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest
(log) target distribution value log π(x) = xTQx being found, for a random upper triangular
QUBO matrix Q where the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four
different cooling schedules where T (k) = 0.1, 1 and 10 constantly, and T (k) being geometric
from 10 to 0.1 are used here. The number of iterations for Simulated Annealing is 200,000,
and the numbers of iterations for Rejection-Free and PNS are 1000. The three black lines
inside the violin plots are 25%, 50%, and 75% quantile lines. The colored segments represent
the mean values.

2021). Besides that, we can also use multiple replicas at different tempera-
tures, such as in parallel tempering, or deploy a population of replicas at the
same temperature (Sheikholeslami, 2021). Combining these methods by par-
allelism can yield 100x to 10,000x speedups for both Rejection-Free and PNS
(Sheikholeslami, 2021).

In the above example, the improvement in the efficiency of Rejection-Free is
not hard to understand. The performance of PNS is somehow counter-intuitive.
Compared to Rejection-Free, why would we get a better result by considering
fewer neighbors at each step? To illustrate how PNS works, we can look closely
at the Markov chains generated in the above example.

5 Understanding the improvement of Partial
Neighbor Search

In this section, we found a local maximum area for the target distribution π
purposefully in the previous QUBO example in Section 4 by looking at the final
results from the simulation runs from the previous section. Many Rejection-
Free chains stopped at this local maximum area after 1000 iterations. For this
local maximum area, the target distribution value is around 82600, and this
local maximum area contains three states whose target distribution values are
much larger than all their other neighbors. Thus, this local maximum can
trap the regular Rejection-Free chain for a long time, just like the cases we
mentioned in Figure 1. We can plot the Markov chains by PNS with the target

Optimization via Rejection-Free Partial Neighbor Search 11

distribution values for all the neighbors by Rejection-Free and the random
subset of neighbors by PNS in the form of boxplots. The boxplot of the first
30 steps from the first simulation in PNS is shown in the first plot in Figure 3

From the first plot in Figure 3, most of the target distribution values within
the boxplot are not useful since they are too small to be picked by the algo-
rithm. Therefore, we only need to consider the important neighbors likely to be
chosen. Firstly, for each state Jk in the Markov Chain, we find the max value
among all the transition probabilities, and we define the important neighbors
to be those neighbors whose transition probability is larger than exp{−10}
times the highest transition probability among all neighbors. That is, for each
Jk from the chain, we find q(Y0) = max{q(Y) | Y ∈ N (Jk)}, and then we
define {Y | Y ∈ N (Jk), q(Y) > exp{−10} × q(Y0)} to be important neigh-
bors for Jk. This time, we only have several important neighbors at each step.
Thus, we used points instead of boxplots to show the important neighbors.
The result from Rejection-Free and PNS is also shown in Figure 3.

From the second plot in Figure 3, the red dots represent the important
neighbors, and the pink line means the Rejection-Free chain. We can see that
this local maximum area of three states can easily trap the Rejection-Free
chains because their target distribution values are much higher than all other
neighbors. Thus, the important neighbors for any of these three states are only
the remaining two, and the Rejection-Free chain will be switching between
these three for a long time. At the same time, the blue dots in the second
plot represent the important neighbors if we start to do PNS from that state.
Although we did not apply PNS in the second plot, we still put the random
subset for PNS there as a comparison. From the blue dots in the second plot,
we can say that if we perform PNS, then the Markov chain can escape from
this local maximum area faster since some groups of the blue dots do not
contain any of these three states with high target distribution values.

On the other hand, the third plot in Figure 3 shows that the PNS chain
(blue line) escapes from this local maximum area within five steps. Again, the
blue dots represent the important neighbor from PNS, and the red dots rep-
resent the important neighbor if we start to perform Rejection-Free from that
step. For each step of PNS within the local maximum area of three states, the
Markov Chain has the probability of 25% to include neither of the remain-
ing neighbors from the three states. Thus, PNS helped the Markov chain to
escape from this local maximum area. In addition, in the middle part of the
PNS chain, when the target distribution value of the PNS chain is increasing,
we usually have more than one important neighbor. For example, if we have
three important neighbors, we only have 12.5% for considering none of them
by PNS.

Thus, the PNS is better than Rejection-Free because the PNS performs
much better than the Rejection-Free algorithm when the local maximum areas
trap the Markov chain. On the other hand, PNS is not much worse than
Rejection-Free when the Markov chain is increasing with respect to the target
distribution value.

12 Optimization via Rejection-Free Partial Neighbor Search

Fig. 3 The detailed Markov Chains from Rejection-Free (the pink chain in the second plot)
and PNS (the light blue chain in the first and the third plot). The red box plots in the
first plot represent the target distribution values for all neighbors, and the blue box plots
represent the partial neighbors. Most of these values are useless because they are too small
to be picked by the Markov chain. The second and the third plots only show the important
neighbors, defined as those whose transition probability is larger than exp{−10} times the
highest transition probability among all neighbors. Here, red points represent all important
neighbors, and blue points mean important neighbors of a random subset of all neighbors
used for PNS. The Rejection-Free Chain switches between three local maximum states all
the time while the PNS chain escapes from the local maximum area after five iterations.

This section uses 50% random partial neighbors for each step. We have
many other choices, and we will consider and compare these choices in the
next section.

Optimization via Rejection-Free Partial Neighbor Search 13

6 Optimal subset choice for Partial Neighbor
Search

We formally define the way of choosing Partial Neighbors Sets. Before we start
the Markov chain, we need to define a proposal distribution Q and correspond-
ing neighbor sets N (X) := {Y ∈ S | Q(X,Y) > 0}. Partial Neighbor Sets Nk
means any set satisfies the following conditions:

1. Nk : S → P (S), where S is the state space, and P (S) is the power set of S.
2. Nk(X) ⊂ N (X), ∀X ∈ S.
3. Y ∈ Nk(X) ⇐⇒ X ∈ Nk(Y), ∀X,Y ∈ S.
4. Define Qk(X,Y) : S × S → R be the corresponding partial proposal dis-

tribution where Qk(X,Y) ∝ Q(X,Y) for Y ∈ Nk(X) and Qk(X,Y) = 0
otherwise.

5. Define the Partial Neighbor Weight t :=
∫
Y ∈Nk(X)

Q(X, y)dy. Note that if

we want to ensure the reversibility of the Markov chain, then we have to
make sure the Partial Neighbor Weight is a constant.

Usually, we want to pick Ni such that |Nk(X)| < |N (X)| to perform proper
PNS. In addition, to ensure irreducibility, we need to make sure ∪K−1i=0 Nk(X) =
N (X) for all X ∈ S.

Here, we compare the four different ways to choose the proposal distribution
{Qk,Nk} for PNS in the (?) step in Algorithm 5:

• Method A (random subset every step): The Partial Neighbor Sets Nk are
randomized for every step, where |Nk(X)| = 1

2 × |N (X)|. Qk’s are defined
accordingly.

• Method B (random subset every 10 steps): The Partial Neighbor Sets Nk
are randomized for once 10 steps, where |Nk(X)| = 1

2 × |N (X)|. That
is, N10×k+1 = N10×k+2 = · · · = N10×k+10 for ∀k ∈ N. Qk’s are defined
accordingly.

• Method C (systematic subset every step): Before we start our Markov Chain,
we define two Partial Neighbor Sets N1 and N2, where |N1(X)| = |N2(X)| =
1
2 × |N (X)|, N1(X) ∩ N2(X) = ∅. For step k of the Markov chain, we only
randomly generate rk ∈ {1, 2}, and apply Nrk for step k. Q1 and Q2 are
defined accordingly.

• Method D (systematic subset every 10 steps): Before we start our Markov
Chain, we define two Partial Neighbor Sets N1 and N2, where |N1(X)| =
|N2(X)| = 1

2 × |N (X)|, N1(X) ∩ N2(X) = ∅. For every ten steps of the
Markov chain, we only randomly generate rk ∈ {1, 2} and apply Nrk . That
is r10×k+1 = r10×k+2 = . . . = r10×k+10 for ∀k ∈ N. Q1 and Q2 are defined
accordingly.

Again, we use the 200×200 QUBO example. The settings for the simulation
are the same as in Section 4. For Method C and D, the two Partial Neighbor
Sets N1 and N2 are defined to be flipping the first 100 entries in x and flipping
the last 100 entries in x. The result for the simulation is shown in Figure 4.

14 Optimization via Rejection-Free Partial Neighbor Search

Fig. 4 Comparison of different methods to choose the subsets for PNS, in terms of the
highest (log) target density value log π(x) = xTQx found. Method A: random subset every
step; method B: random subset every ten steps; method C: systematic subset every step;
method D: systematic subset every ten steps. Random upper triangular QUBO matrix where
the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules
where T = 0.1, 1, and 10 for all n, and T being geometric from 10 to 0.1, are used here. The
number of iterations for all methods is 1000. The three black lines inside the violin plots are
25%, 50%, and 75% quantile lines. The colored segments represent the mean values.

This figure shows that the random subset at every step (Method A) performs
the best in all four Cooling Schedules. Therefore, we will keep using Method
A in all later parts.

In addition, we used Partial Neighbor Sets with half elements from all
neighbors in previous simulations. Now we compare the Partial Neighbor Sets
with cardinality of |N (X)|×{1, 34 ,

2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8} by the same simulation

settings as before. From Figure 5, we can see that 1
3 ,

1
4 ,

1
5 are overall the best

among all the choices. Thus, we can conclude that Partial Neighbor Sets with
around 25% of the neighbors being considered at each step are the best for the
QUBO question stated above.

Therefore, we conclude that our best method to do optimization for the
200× 200 QUBO question is Algorithm 6.

7 Comparison with Tabu Rejection-Free
algorithm

Tabu search (Glover, 1989) (Glover, 1990) is also a methodology in optimiza-
tion that guides a local heuristic search procedure to explore the solution space
beyond local optimality. The idea of Tabu search is to prohibit access to spe-
cific previously-visited solutions. Tabu search is the most intuitive method to
help the Markov Chain escape from local maximum areas, as in Figure 1.
After moving from state A to state B, we must choose our next state among

Optimization via Rejection-Free Partial Neighbor Search 15

Fig. 5 Comparison of different sizes of the random subsets for PNS, in terms of the
highest (log) target density value log π(x) = xTQx being found. Subset sizes are N ×
{1, 3

4
, 2
3
, 1
2
, 1
3
, 1
4
, 1
5
, 1
6
, 1
7
, 1
8
}. Random upper triangular QUBO matrix where the non-zero

elements are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules where T =
0.1, 1, and 10 for all n, and T being geometric from 10 to 0.1, are used here. The number
of iterations for all methods is 1000. The three black lines inside the violin plots are 25%,
50%, and 75% quantile lines. The colored segments represent the mean values.

Algorithm 6 Partial Neighbor Search for the 200 by 200 QUBO question

initialize J0
for k in 1 to K do

randomly pick Nk(Jk−1) ⊂ N (Jk−1) where |Nk(Jk−1)| = 50
. Only 50 out of the 200 neighbors will be considered

for Y ∈ Nk(Jk−1) do

calculate q(Y) = min{1, [exp(Y TQY)

exp(JT
k−1QJk−1)

]
1

T (k) }
. the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y)

. choose the next Jump Chain State
end for

{B1, B2, . . . , BN}. We can combine our Rejection-Free algorithm for optimiza-
tion with Tabu search and then compare this new method to the PNS by the
QUBO question. Note that we do not need to record all visited states since we
are almost impossible to revisit a state after a certain number of steps. Thus,
we only need to record the last several steps and prohibit our Markov chain
from revisiting them. The new algorithm is formulated as Algorithm 7.

Here, we compare PNS with L-step Simplified Tabu Rejection-Free for
L = 1, 2, 3, . . . , 9. Again, we randomly generate a 200 by 200 upper triangular
QUBO matrix. The non-zero elements from the 200 by 200 upper triangular
matrix Q were generated randomly with Qi,j ∼ N(0, 1002) for i < j. Note

16 Optimization via Rejection-Free Partial Neighbor Search

Algorithm 7 L steps Simplified Tabu Rejection-Free for optimization

initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1)\{Jk−2, . . . , Jk−L−1} do
. Remove states from the last L steps

q(Y) = min{1, [exp(Y
TQY)

exp(JT
k QJk)

]
1

T (k) }
. the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y)

. choose the next Jump Chain State
end for

Fig. 6 Comparison of PNS, Rejection-Free and 1-Step to 9-steps Simplified Tabu Rejection-
Free, in terms of the highest (log) target density value log π(x) = xTQx found. Random
upper triangular QUBO matrix where the non-zero elements are generated by Qi,j ∼
N(0, 1002). Four different cooling schedules where T = 0.1, 1, and 10 constantly, and T being
geometric from 10 to 0.1, are used here. The run time for all algorithms on a single-core
implementation is about the same. The number of iterations for PNS is 400, and the number
of iterations for all other methods is 100. The colored segments represent the mean values.

that we need to consider about 200 neighbors at each step for both Rejection-
Free and Simplified Tabu Rejection-Free, while we only need to consider 50
neighbors at each iteration for PNS. If we proceed with the algorithms with
a single-core implementation, Rejection-Free and Tabu Rejection-Free need
about four times longer than PNS with the same number of steps. Therefore,
we can compare the PNS with 4× 100 = 400 iterations with the other meth-
ods to get a fair comparison for the program on a single core. Note that we
are using this many numbers of steps here because 400 steps are enough for
PNS to find a good enough answer. The result for the simulation is shown
in Figure 6. From this plot, we can see that PNS performs much better than
Rejection-Free and Simplified Tabu Rejection-Free.

Optimization via Rejection-Free Partial Neighbor Search 17

8 Application to Knapsack problem

The Knapsack problem is another well-known NP-hard problem in optimiza-
tion (Salkin and De Kluyver, 1975). We consider the simplest 0-1 Knapsack
problem here. Given a knapsack of max capacity W and N items with corre-
sponding values {vi}Ni=1 and weights {wi}Ni=1, we want to find a finite number of
items among all N items which can maximize the total value while not exceed-
ing the max capacity of the knapsack. That is, for given W > 0, {vi}Ni=1 > 0
and {wi}Ni=1 > 0, find a sequence of N binary variable {Xi}Ni=1 ∈ {0, 1} to
maximize

N∑
i=1

viXi

subject to

N∑
i=1

wiXi ≤W

(7)

Since the Knapsack problem is NP-hard, we can use the Simulated Anneal-
ing algorithm to find a feasible solution. For this simulation, we set W =
100, 000. We randomly generate N = 1000 items where the values and
weights are random by wi, vi ∼ Poisson(1000). The mean and the variance
for Poisson(1000) are both 1000. Suppose we want to find a binary vec-
tor X = (X1, X2, . . . , XN)T of dimension N to maximize vTX subject to
wTX ≤W .

Again, we used a uniform proposal distribution among all neighbors where
the neighbors are defined as binary vectors with Hamming distance 1. That
is, Q(X,Y) = 1

N for ∀Y ∈ N (X), where Y ∈ N (X) ⇐⇒ |X − Y | =∑N
i=1|Xi−Yi| = 1, ∀X,Y ∈ {0, 1}N . We randomly choose half of the neighbors

at each step for PNS. That is, |Nk(X)| = 1
2 |N (X)| = 500 for ∀X ∈ {0, 1}N .

Moreover, the target density π(X) = 1(wTX ≤W)×vTX, where 1 represents
the indicator function. In addition, T (k) represents the temperature at step k
for the Cooling Schedule here.

Again, we compare Simulated Annealing, Rejection-Free with PNS here.
The result is shown in Figure 7. The plot shows that Rejection-Free for opti-
mization and PNS algorithm are better than the regular Simulated Annealing
algorithm in all four Cooling Schedules. Again, for the simulation shown in
Figure 7, the numbers of iterations used for the three methods are set to be dif-
ferent to have a fair comparison between three methods. We set the number of
iterations for Simulated Annealing to be 1000, 000. The numbers of iterations
for Rejection-Free and PNS are 1000 since we need to consider 1000 neighbors
at each iteration for Rejection-Free for optimization. In contrast, we only need
to consider one neighbor for each iteration in Simulated Annealing.

This result shows that PNS is not always that much better than Rejection-
Free when the number of iterations is the same. In some cases, where the
target distribution is not sharply peaked, and there are not too many local
extreme areas, Rejection-Free can also have excellent performance. Note that

18 Optimization via Rejection-Free Partial Neighbor Search

Fig. 7 Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest
target density values found in Knapsack Problem with W = 100, 000, N = 1000, wi, vi ∼
Poisson(1000). Four different cooling schedules where T = 0.1, 1, and 10 constantly, and
T being geometric from 10 to 0.1, are used there. The number of iterations for Simulated
Annealing is 1,000,000, while the number for Rejection-Free and PNS is 1000. The three
black lines inside the violin plots are 25%, 50%, and 75% quantile lines. The colored segments
represent the mean values.

if we run the above simulation on a single core, PNS will only take about half
of the time used by Rejection-Free, and if we use parallel hardware to apply
the above algorithm, Rejection-Free and PNS will take about the same time.

In addition, Rejection-Free is not always better than simple Simulated
Annealing. For example, if π(X) ≡ 1 for all X ∈ S, there will be no rejec-
tions. The Simulated Annealing will move to a new state by computing a
single probability, while the Rejection-Free will do the same but compute the
probabilities for all neighbors. However, when the dimension of the problem
is large, or the target density is sharply peaked, the PNS will perform much
better than Rejection-Free, and Rejection-Free will perform much better than
Simulated Annealing.

9 Application to 3R3XOR problem

The 3R3XOR problem is a methodology for generating benchmark problem
sets for Ising machines devices designed to solve discrete optimization problems
cast as Ising models introduced by Hen (2019). The Ising model, named after
Ernst Ising, is concerned with the physics of magnetic-driven phase transitions
(Cipra, 1987). The Ising model is defined on a lattice, where a spin si ∈ {−1, 1}
is located on each lattice site (Block and Preis, 2012). The optimization ques-
tion for the Ising model has been widely applied to many scientific problems
such as neuroscience (Hopfield, 1982) and environmental science (Ma et al,
2014). Thus, algorithms, even special-purpose programmable devices, designed

Optimization via Rejection-Free Partial Neighbor Search 19

to solve discrete optimization problems cast as Ising models are popular (Hen,
2019), and our PNS algorithm is one of them.

However, the non-planar Ising model is NP-complete (Cipra, 2000). We
cannot find an optimal state from an Ising model in polynomial time. Then,
it is hard for us to compare the performance of the heuristic solvers, such as
Rejection and PNS, by the time used to find the optimal state from a random
Ising model. On the other hand, Hen (2019) introduced a tool for benchmarking
Ising machines in 2019. In his approach, linear systems of equations are cast
as Ising cost functions. The linear systems can be solved quickly, while the
corresponding Ising model exhibits the features of NP-hardness (Hen, 2019).
This way, we can construct special Ising models with a unique known optimal
state. Then we can use these special Ising models to compare the heuristic
solvers’ runtimes for finding the optimal state.

In this section, we focus on constructing a simplified version of 3-body
Ising with N spins from a binary linear system of N equations. The simplified
version is defined as follows:

H({sj}) =
∑
a<b<c

Ma,b,csasbsc, (8)

where si ∈ {−1, 1} for ∀i = 1, 2, . . . , N . Ma,b,c is a N ×N ×N matrix where
Ma,b,c = 0 ∀a ≥ b, b ≥ c, or a ≥ c.

In Hen’s (2019) approach, we start by choosing a binary matrix {Ai,j} and
a binary vector {bj} to form a modulo 2 linear system of N equations in N
variables.

N∑
j=1

Ai,jxj ≡ bi mod 2, for i = 1, 2, . . . , N. (9)

This module 2 linear system of equations can always be solved in polynomial
time using Gaussian elimination. In addition, as long as the binary matrix
{Ai,j} is invertible, the solution (if exists) is unique. Suppose {x1, ..., xn} are
n binary variables. Then for given {Ai,j} and {bj}, we define

F ({xj}) =

N∑
i=1

1
(N∑
j=1

Ai,jxj 6≡ bi mod 2
)
, (10)

where 1 means indicator function here. Since F is a sum of N indicator func-
tions, then 0 ≤ F ≤ N and the minimum bound is reached when {xj} is the
solution to the modulo 2 linear system.

Let sj = 1 − 2xj ∈ {−1, 1} for j = 1, 2, . . . , N be N Ising spins. Then we
must have

∏
j:Ai,j=1

sj = (−1)bi if and only if

N∑
j=1

Ai,jxj ≡ bi mod 2, (11)

20 Optimization via Rejection-Free Partial Neighbor Search

∀i = 1, 2, . . . ,m. Then

F =

N∑
i=1

1
(N∑
j=1

Ai,jxj 6≡ bi mod 2
)

=

N∑
i=1

1
(∏
j:Ai,j=1

sj 6= (−1)bi

)
, since

∏
j:Ai,j=1

sj and (−1)bi ∈ {−1, 1}

=
1

2

[N∑
i=1

(
1− (−1)bi

∏
j:Ai,j=1

sj

)]
.

(12)

After dropping immaterial constants, we define

F0({sj}) =

N∑
i=1

[
(−1)bi

∏
j:Ai,j=1

sj

]
. (13)

Note that F ≥ 0 and the minimum bound is reached when {xj} is the solution
to the modulo 2 linear system. Thus, F0 ≤ N , and the maximum bound will
be reached when {xj | xj = 1

2 (1 − sj)} is the solution to the modulo 2 linear
system. In addition, as long as the matrix {Ai,j} is invertible, the solution to
the equation system must uniquely exist, and then there must exist a single
configuration maximize F0 whose maximum value is exactly N .

Again, the Hamiltonian for simplified 3-body Ising model including only
the cubic term to be H({sj}) =

∑
a<b<cMa,b,csasbsc. Here, we assume, on

each row of binary matrix {Ai,j},
∑N

j=1 Ai,j = 3. Then, let Ma,b,c = (−1)bi

if ∃i, a < b < c such that Ai,a = Ai,b = Ai,c = 1, and Ma,b,c = 0 otherwise.
Then, we have H({sj}) = F0({sj}).

Thus, we can construct an Ising model with a unique optimal bound with
a known optimal value N as follows:

1. find an invertible binary matrix {Ai,j} and a binary vector {bi}, where∑N
j=1 Ai,j = 3, ∀i

2. solve the modulo 2 linear equation system
∑N

j=1 Ai,jxj ≡ bi mod 2, for
i = 1, 2, . . . , N to make sure the unique solution exists

3. define Ma,b,c be a N×N×N matrix where Ma,b,c = (−1)bi if ∃i, a < b < c
such that Ai,a = Ai,b = Ai,c = 1, and Ma,b,c = 0 otherwise

4. then we must have a unique optimal solution smax for H(smax) =
max(H(s)) = N

By constructing the special 3-body N ×N ×N Ising model with a unique
optimal solution of maximum bound N , we can examine the performance of
the Rejection-Free and PNS algorithms on these special Ising models. Again,
uniform proposal distributions are used here, and the neighbors are defined
as binary vectors with Hamming distance 1. We random generate the special
Ising models with four different sizes N = 12, 24, 48 and 96. For each of these

Optimization via Rejection-Free Partial Neighbor Search 21

Fig. 8 Comparison of the minimum value for the time used to find the optimal state by
Rejection-Free and PNS with 25%, 50%, and 75% of the neighbors being considered at each
step for a random Ising model generated by 3R3XOR. Each dot represents the median of
50 repeated simulations for a given problem size N = 12, 24, 48 and 96.

four different sizes, we generate 50 different Ising models and record the time
used by the algorithms to reach the unique optimal state. The median of these
50 results for both Rejection-Free and PNS algorithms are shown in Figure 8.
From this figure, Rejection-Free is the worst. 25% PNS performs comparably
to 75%, and the 50% PNS performs the best.

10 Application to Continuous State Space

In previous sections, we focused on optimization questions with the discrete
state space S where all states have at most a finite number of neighbors.
Meanwhile, Simulated Annealing works for general state space. In addition,
Theorem 13 in Rosenthal et al (2021) extended the Rejection-Free for sam-
pling to general state space. Similarly, we can extend the Rejection-Free for
optimization to general state space.

Although we have a solid theory base for Rejection-Free in general state
space, it is challenging to apply Rejection-Free to those cases. There is a major
difficulty involved in the for loop that calculates the transition probability of
all neighbors in Algorithm 4. In continuous cases, although numerical integra-
tion of all transition probability can be performed, it is unlikely that such tasks
may be efficiently divided among specialized hardware with a certain number
of parallel processing units. On the other hand, PNS, as described in Algo-
rithm 5, can be applied straightforwardly to continuous cases by choosing the
Partial Neighbors Sets Nk(X) to be finite subsets of all the neighbors N (X)
in Algorithm 5.

We compare the performance of Simulated Annealing with our PNS on a
simple example of quadratic programming, which belongs to the category of

22 Optimization via Rejection-Free Partial Neighbor Search

continuous optimization, as stated below:

arg max xTQx

subject to xi ≥ 0, ∀i = 1, 2, . . . , N

N∑
i=1

xi = 1,

(14)

where Q is a given an upper triangular N by N matrix and x ∈ RN . For most
cases, the quadratic programming is stated by arg min instead of arg max. We
use the arg max version here to be consistent with the QUBO question in
Section 4, and arg max is equivalent to arg min when replacing Q by −Q. This
quadratic programming question is also NP-hard as long as Q is indefinite
(Sahni, 1974), where indefinite means matrices that are neither positive semi-
definite nor negative semi-definite.

We randomly generate a 200 by 200 upper triangular to be the matrix
Q, where the non-zero elements from the 200 by 200 upper triangular matrix
Q were generated randomly by Qi,j ∼ Normal(0, 1002), ∀i ≤ j. We compare
Simulated Annealing and PNS in 100 simulation runs here. We omit Rejection-
Free since applying Rejection-Free to continuous cases is quite hard.

The target density value is set to be π(x) = exp{xTQx}, ∀x such that
xi ∈ (0, 1), ∀i = 1, 2, . . . , N , and π(x) = −∞ otherwise. In addition, the
proposal distribution Q and the corresponding neighbor set N are defined as
follows:

1. for state x = (x1, x2, . . . , xN)T ∈ S, choose a random entry xr for r ∈
{1, 2, . . . , N};

2. generate a random value s ∼ Normal(0, 0.12);
3. let yr = xr + s and yn = xn × 1−xr

1−yr , ∀n 6= r;

4. if yr /∈ (0, 1), then the corresponding π(y) is defined to be −∞; in practice,
we just need to generate a new y; also note that, as long as yr, x ∈ (0, 1),
we must have y ∈ (0, 1) as well;

5. to ensure the reversibility within each Partial Neighbor Set, we also consider
y′r = xr−s and y′n = xn× 1−xr

1−y′r
, ∀n 6= r; if y′r /∈ (0, 1), then we can ignore y′.

With the given steps, we have
∑N

n=1 yn = 1 as long as
∑N

n=1 xn = 1. This
method is similar to component-wise Simulated Annealing. We find a ran-
dom component, magnify or minify it, and then modify the rest of the entries
accordingly to make the summation remain unchanged. This proposal distri-
bution Q is therefore systematic. By the above ways to generate neighbors, we
can eliminate the constraints that xi ≥ 0, ∀i = 1, 2, . . . , N , and

∑N
i=1 xi = 1,

and we only need to focus on arg maxxTQx.
For Simulated Annealing, we randomly generate one neighbor by the above

given steps and calculate the transition probability. For PNS, we can gener-
ate, for example, 20 random neighbors at each step. In this case, the Partial

Optimization via Rejection-Free Partial Neighbor Search 23

Fig. 9 Comparison of Simulated Annealing and PNS in terms of the highest (log) target
distribution value log π(x) = xTQx being found, for a random upper triangular matrix Q

and x ∈ RN subject to xi ≥ 0, ∀i = 1, 2, . . . , N , and
∑N

i=1 xi = 1. The non-zero elements
are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules where T (k) = 0.1, 1
and 10 constantly, and T (k) being geometric from 10 to 0.1 are used here. The number
of iterations for Simulated Annealing is 600, 000, and the number of iterations for PNS is
72, 000. The run times for these two algorithms on a single-core implementation are both
around 80 seconds. The three black lines inside the violin plots are 25%, 50%, and 75%
quantile lines. The colored segments represent the mean values.

Neighbor Set Ni is only a random subset of N with 20 elements, and thus, the
implementation of PNS is simple compared to the Rejection-Free.

The result for the simulation is shown in Figure 9. We can see that the
PNS performs better than Simulated Annealing in all four different cooling
schedules. However, the difference between PNS and Simulated Annealing in
this continuous example is not as much as the difference between the algorithms
from the discrete QUBO questions. This is because the continuous example is
not as sharply peaked as the discrete example from Section 6. After we choose
a random entry r, we only need to move a small step around the original value
of xr. On the other hand, we have to flip between 0 and 1 in the discrete
example. Thus, the rejection rate for the Simulated Annealing is lower than
the rate from the discrete example, so the performance of these two algorithms
gets closer.

In addition, PNS is specially designed for parallelism hardware. Again, with
a specialized dedicated processor such as DAU, PNS can yield 100x to 10,000x
speedups Sheikholeslami (2021). In addition, this example also shows PNS has
more flexibility compared to the Rejection-Free algorithm. Again, Rejection-
Free can hardly work for cases with infinite neighbors, while PNS can be easily
applied by choosing finite Nk.

Moreover, the number of elements in Nk needs to be reasonable for PNS to
keep its performance. For example, if we used |Nk| = 500, we would calculate
too many transition probabilities at each step, and the algorithm would be

24 Optimization via Rejection-Free Partial Neighbor Search

inefficient. Meanwhile, if we used |Nk| = 2, the number of Partial Neighbor
Sets being considered at each step would be too few. As PNS will force the
Markov chain to move to one element from the Partial Neighbor Set Nk, it will
move to some terrible choices of states when all states in the Partial Neighbor
Set Nk have small target distribution values. In the above simulation, choosing
|Nk| from 10 to 30 won’t make a big difference.

11 Summary

This paper illustrates Rejection-Free Simulated Annealing algorithms that con-
sider all neighbors at each step in order to prevent inefficiency from rejections.
We have also proposed a Partial Neighbor Search (PNS) algorithm based on the
Rejection-Free technique in order to address the issue of local maximum area.
Three sets of discrete examples have been simulated to demonstrate that PNS
can produce significant speedups in optimization problems. PNS has also been
applied to continuous examples in order to demonstrate its greater flexibility
in comparison to Rejection-Free.

Acknowledgments

The author(s) would like to thank Fujitsu Ltd. and Fujitsu Consulting
(Canada) Inc. for providing financial support.

References

Albright B (2007) An introduction to simulated annealing. The College
Mathematics Journal 38(1):37–42.

Beichl I, Sullivan F (2000) The Metropolis algorithm. Computing in Science
& Engineering 2(1):65–69.

Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Statistical science
8(1):10–15.

Bianchi L, Dorigo M, Gambardella LM, et al (2009) A survey on metaheuristics
for stochastic combinatorial optimization. Natural Computing 8(2):239–287.

Block B, Preis T (2012) Computer simulations of the Ising model on graphics
processing units. The European Physical Journal Special Topics 210(1):133–
145.

Cipra BA (1987) An introduction to the Ising model. The American Mathe-
matical Monthly 94(10):937–959.

Cipra BA (2000) The Ising model is NP-complete. SIAM News 33(6):1–3.

Optimization via Rejection-Free Partial Neighbor Search 25

Floudas CA, Pardalos PM (2008) Encyclopedia of optimization, Springer
Science & Business Media, pp 1538–1542.

Garey MR, Johnson DS, Stockmeyer L (1974) Some simplified NP-complete
problems. In: Proceedings of the sixth annual ACM symposium on Theory
of computing, pp 47–63.

Glover F (1989) Tabu search—part I. ORSA Journal on computing 1(3):190–
206.

Glover F (1990) Tabu search—part II. ORSA Journal on computing 2(1):4–32.

Glover F, Kochenberger G, Du Y (2018) A tutorial on formulating and using
QUBO models. arXiv:1811.11538

Hen I (2019) Equation planting: A tool for benchmarking Ising machines. Phys
Rev Applied 12:011,003.

Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism.
The American Statistician 52(2):181–184.

Hitchcock DB (2003) A history of the Metropolis-Hastings algorithm. The
American Statistician 57(4):254–257.

Hopfield JJ (1982) Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences
79(8):2554–2558.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. science 220(4598):671–680.

Kochenberger G, Hao JK, Glover F, et al (2014) The unconstrained binary
quadratic programming problem: a survey. Journal of combinatorial opti-
mization 28(1):58–81.

Ma YP, Sudakov I, Strong C, et al (2014) Ising model for melt ponds on Arctic
sea ice. arXiv:1408.2487

Matsubara S, Takatsu M, Miyazawa T, et al (2020) Digital annealer for high-
speed solving of combinatorial optimization problems and its applications.
2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC) pp 667–672.

Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953) Equation of State
Calculations by Fast Computing Machines. The Journal of Chemical Physics
21(6):1087–1092.

arXiv:1811.11538
arXiv:1408.2487

26 Optimization via Rejection-Free Partial Neighbor Search

Rosenthal JS, Dote A, Dabiri K, et al (2021) Jump Markov chains and
rejection-free Metropolis algorithms. Computational Statistics 36(4):2789–
2811.

Rutenbar RA (1989) Simulated annealing algorithms: An overview. IEEE
Circuits and Devices magazine 5(1):19–26.

Sahni S (1974) Computationally related problems. SIAM Journal on comput-
ing 3(4):262–279.

Salkin HM, De Kluyver CA (1975) The knapsack problem: a survey. Naval
Research Logistics Quarterly 22(1):127–144.

Schrijver A (2005) On the history of combinatorial optimization (till 1960).
Handbooks in operations research and management science 12:1–68.

Sheikholeslami A (2021) The power of parallelism in stochastic search for
global optimum: Keynote paper. In: ESSCIRC 2021 - IEEE 47th European
Solid State Circuits Conference (ESSCIRC), pp 36–42.

Sodan AC, Machina J, Deshmeh A, et al (2010) Parallelism via multithreaded
and multicore CPUs. Computer 43(3):24–32

	Introduction
	Background on Simulated Annealing for optimization
	Background on Metropolis-Hastings algorithm
	Background on Rejection-Free algorithm for sampling

	Rejection-Free algorithm for optimization
	Proposed Search Algorithm: Partial Neighbor Search
	Application to the QUBO question
	Understanding the improvement of Partial Neighbor Search
	Optimal subset choice for Partial Neighbor Search
	Comparison with Tabu Rejection-Free algorithm
	Application to Knapsack problem
	Application to 3R3XOR problem
	Application to Continuous State Space
	Summary

