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Abstract

Multivariate panel data of mixed type are routinely collected in many
different areas of application, often jointly with additional covariates
which complicate the statistical analysis. Moreover, it is often of inter-
est to identify unknown groups of units in a study population using
such data structure, i.e., to perform clustering. In the Bayesian frame-
work, we propose a finite mixture of multivariate generalised linear
mixed effects regression models to cluster numeric, binary, ordinal and
categorical panel outcomes jointly. The specification of suitable pri-
ors on the model parameters allows for convenient posterior inference
based on Markov chain Monte Carlo (MCMC) sampling with data
augmentation. The Bayesian approach allows to obtain both a clas-
sification of the subjects in the data and new subjects as well as
cluster-specific parameter estimates. Finally, model estimation and selec-
tion of the number of data clusters are simultaneously performed when
approximating the posterior for a single model using MCMC sam-
pling without resorting to multiple model estimations. The performance
of the proposed methodology is evaluated in a simulation study. Its
application is illustrated on two data sets, one from a longitudinal
patient study to infer prognosis groups, and a second one from the
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Czech part of the EU-SILC survey where households are annually
interviewed to obtain insights into changes in their financial capability.

Keywords: Multivariate longitudinal data, Mixed type outcome, Generalised
linear mixed model (GLMM), Model-based clustering, Classification, Sparse
finite mixture, EU-SILC

1 Introduction

Multivariate panel data containing several variables of different scale types are
nowadays routinely collected in many different areas of application. However,
panel data require specific statistical models and estimation methods in order
to be able to harvest the full potential of this data collection mode (see, e.g.,
Fitzmaurice et al, 2008). Modelling panel data can be challenging for several
reasons.

To begin with, the joint modelling of variables of different scale types
usually assumes that the binary, general categorical and ordinal variables
are manifestations of latent numeric variables (Agresti, 2013). This approach
drastically increases the number of model parameters, especially for general
categorical variables. Further, in multivariate data the variables included are in
general not only of different scale types, but also have different roles attributed
in the analysis. Some variables are considered to be the outcome or dependent
variables whereas others are used as covariates to indicate how the conditional
mean of the outcome variables varies in dependence of the covariate values.
This naturally leads to a multivariate regression setup where the covariates as
well as the outcome variables in the regression may be of different scale types,
in particular, numeric, binary, ordinal and general categorical.

In panel data, several measurements are available for the same subjects
and capturing the dependence between these measurements is of crucial impor-
tance. Repeated measurements for the same subjects are often imbalanced
and induce within-subject correlations, only allowing for the identically and
independently distribution assumption to hold on subject level. In a regres-
sion setting, random-effects models as proposed by Laird and Ware (1982)
account for repeated measurements and within-subject correlation by intro-
ducing subject-specific coefficients capturing the between-subject variation
through a normal distribution. These subject-specific coefficients are referred
to as random effects, whereas the regression coefficients which are identical
across subjects are referred to as fixed effects.

In a multivariate regression setting for panel data, random effects are spec-
ified for the regression model of each outcome variable. These random effects
capture within-subject dependency and are not only correlated for each single
regression model for each outcome variable, but are also correlated across the
different regression models. This means that the random effects distribution
needs to be specified to cover all random effects involved across the different
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outcome variables, thus also increasing the dimension of the random effects
(Fieuws and Verbeke, 2004).

Specifying only random effects following a normal distribution may be
insufficient to capture and also characterise the between-subjects variability.
Assuming that in fact groups of subjects exist where the effects on the outcome
variables distinctively differ, leads to a model-based clustering problem (Fraley
and Raftery, 2002). A finite mixture model of multivariate generalised lin-
ear mixed-effects regression models (GLMMs) allows to embed the clusterwise
regression problem in a statistical modelling framework (Wedel and DeSarbo,
1995).

This proposed model for numeric, binary, ordinal and general categorical
outcomes generalises and extends the models proposed in Fieuws and Ver-
beke (2004, 2006); Komárek and Komárková (2013); Komárek and Komárková
(2014); Vávra and Komárek (2022). Fieuws and Verbeke (2004, 2006) con-
sidered multivariate mixed-effects regression models but did not account for
unobserved heterogeneity using a mixture model; Komárek and Komárková
(2013); Komárek and Komárková (2014) only allowed for binary and discrete
count longitudinal outcomes in a model-clustering framework and Vávra and
Komárek (2022) considered finite mixtures of multivariate classical normal
mixed-effects regression models allowing only for numeric and both binary
and ordinal outcomes (assuming the thresholding concept), excluding general
categorical outcomes.

This paper proposes an approach which allows to discover clusters among
multivariate longitudinal data of possibly different types by building on and
combining several widely used methodologies. The model specification allows
to combine an arbitrary number of numeric, binary, ordinal or general categor-
ical outcome variables and to model them jointly by GLMMs. In Section 2, we
first outline the multivariate GLMM approach which allows the joint modelling
of mixed-type (numeric, binary, ordinal and general categorical) longitudinal
data. In Section 3, we extend this model to allow for unobserved discrete
heterogeneity using a mixture approach in the spirit of model-based clus-
tering. This allows to classify and characterise subjects in particular due to
distinctively different effects identified between the covariates and the out-
come variables. Section 4 embeds the model within a Bayesian framework
and outlines suitable prior specifications. In particular, a sparse finite mixture
approach (Malsiner-Walli et al, 2016) allows to conveniently estimate the num-
ber of data clusters or groups. Section 5 provides the details of the Markov
chain Monte Carlo (MCMC) algorithm for model estimation as well as the
necessary post-processing steps to obtain an identified model. The simulation
study in Section 6 evaluates the ability of the proposed model and inference
methods to identify the true number of data clusters, to induce good clus-
ter solutions and to characterise the clusters through the coefficient estimates.
Sections 7 and 8 contain the analyses of two different data sets using the pro-
posed approach: data from a medical study, where patients are monitored over
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an extended time period with multiple laboratory measurements being avail-
able for each visit, and data from the EU-SILC (European Union Statistics
on Income and Living Conditions) survey conducted in the Czech Republic
from 2005 to 2018, where households are monitored for four consecutive years
and information on their financial capabilities is collected. For both appli-
cations several variables naturally serve as outcome variables in a regression
setting and identifying groups of patients or households with similar regression
patterns is of core interest. Finally, Section 9 concludes.

2 Multivariate regression for mixed-type panel
data

We assume that the multivariate panel data are composed of n subjects with
ni observations being available for each subject i. In addition R variables
of mixed-type are considered as outcome variables in the regression models.
These outcomes may have the following scale types: numeric, binary, ordinal
or general categorical.

We define different index sets for the outcomes depending on the scale
level such that RNum contains the indices of the numeric outcomes, RBin those
of the binary outcomes, ROrd those of the ordinal outcomes and RCat those
of the general categorical outcomes. This implies that R = {1, . . . , R} =
RNum ∪RBin ∪ROrd ∪RCat.

In addition to the outcome observations Y r
i,j (r = 1, . . . , R, j = 1, . . . , ni

and i = 1, . . . , n), for each subject i, additional observations are available which
are used as covariates in the regression. We denote these additional variables,
which are used as covariates in the regression for outcome variable r of subject

i and its j-th observation, by vr
i,j . For subject i, let Y

r
i =

(
Y r
i,1, . . . , Y

r
i,ni

)⊤
be

the complete vector of all values of outcome r and Cr
i = {vr

i,1, . . . , v
r
i,ni

} the
set of all covariates for outcome r. Combining them across the outcomes gives

Yi = {Y r
i , r ∈ R} , Ci = {Cr

i , r ∈ R} , (1)

which denotes all information (outcomes and covariate values) available for
subject i. Y r and Cr represent the complete information (outcome and covari-
ate values) regarding one chosen outcome r ∈ R from all subjects. Finally, Y
and C stand for all gathered information (all outcomes and covariate values)
from all subjects.

The joint model for data (1) is built in the following way: For each outcome
(each r ∈ R) a generalised linear mixed model (GLMM) is assumed. A classical
linear mixed model (LMM) is assumed for numeric outcomes and a logistic
regression model with random effects is used for binary outcomes. The logistic
regression model is extended for the ordinal and general categorical outcomes
with more than two levels.
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These individual regression models are combined into a multivariate model
by assuming that the outcome variables given the regression models are inde-
pendent between subjects and also within subjects conditional on the random
effects of the mixed-effects models. However, the random effects are allowed to
be correlated within subjects within and across the different outcomes. In this
way correlation is induced between the outcomes given the regression models
for each subject.

2.1 Generalised linear mixed models

A generalised linear mixed model is assumed for each outcome. This means
that for each outcome a distribution from the exponential family is assumed
as well as a link function which maps the linear predictor, determined by a
linear combination of the fixed and random effects with their covariates, to the
conditional mean of the outcome, given the covariate values. Thus, the linear
predictor ηri,j for observation j belonging to subject i specific to outcome r is
given by the sum of

• a fixed part ηF,ri,j =
(
xr
i,j

)⊤
βr, which is a linear combination of regressors

xr
i,j derived from the full covariate information Ci,j with the unknown

vector of coefficients βr of dimension dFr ;

• a random part ηR,ri,j =
(
zr
i,j

)⊤
bri , which is a linear combination of

regressors zr
i,j derived from the full covariate information Ci,j with the

subject-specific vector of random effects bri of dimension dRr .

The linear predictor is thus given by ηri,j = ηF,ri,j +η
R,r
i,j =

(
xr
i,j

)⊤
βr+

(
zr
i,j

)⊤
bri .

The fixed-effects part ηF,ri,j captures the overall trend, and the random-effects

part ηR,ri,j captures differences between subjects. While observations between
different subjects are considered independent, the individual observations
j = 1, . . . , ni of subject i are assumed to be independent only given the ran-
dom effects bri . Note that in the following notation, we may drop the three
indices (i, j, r) at places where the notation would otherwise be unnecessarily
complicated.

For each numeric outcome r ∈ RNum, we assume the classical LMM (see
Laird and Ware, 1982):

Y r
i,j

∣∣ bri ; Cr
i,j ∼ N

(
ηri,j , τ

−1
r

)
,

where τr > 0 is the precision (inverse variance) of the noise or regression model
errors. The contribution of one numeric observation Y to the log-likelihood is
given by:

ℓN (Y |η, τ) = −
1

2
log(2π) +

1

2
log τ −

τ

2
(Y − η)

2
.

Binary outcomes are assumed to follow a logistic regression model. The
success probability is linked to the linear predictor using the inverse logit
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function:

P [Y = 1|η] = logit−1(η) =
exp{η}

1 + exp{η}
.

The contribution of one binary observation Y to the log-likelihood is then:

ℓB (Y |η) = Y η − log (1 + exp{η}) .

Logit models for ordinal outcomes with K > 2 levels are obtained by
parameterising the cumulative probabilities and linking them to the linear
predictors using the inverse logit function (e.g., Hartzel et al, 2001, Section 2.2):

pk := P [Y > k|η, c] = logit−1(η − ck) for any k = 1, . . . , K,

where −∞ = c0 < c1 < · · · < cK = ∞ are ordered intercepts that shift the
linear predictor η and c = (ck)k=0,...,K . Note that for identifiability purposes
the intercept term must not be included among the fixed effects in the logit
models for ordinal outcomes. Also note that this model formulation is based on
the proportional odds assumption; the log-odds differ only in the intercepts:
log (P [Y > k|η, c] /P [Y ≤ k|η, c]) = η − ck, k = 1, . . . , K. For K = 2 this
formulation is equivalent to the logistic regression model since a single free
threshold c1 is included in the model. This single threshold corresponds to the
negative intercept term in logistic regression as q1 = 1−p1 and q2 = p1. Using
the notation p0 = P [Y > 0] = 1 and pK = P [Y > K] = 0, the probability
of observing a value k is obtained as the difference between two consecutive
cumulative probabilities:

qk := P [Y = k|η, c] = P [Y > k − 1|η, c]− P [Y > k|η, c] = pk−1 − pk.

The contribution of one ordinal observation Y to the log-likelihood is given by:

ℓO (Y = k|η, c) = log (qk) = log (pk−1 − pk) .

The logit parameterisation (Hartzel et al, 2001, Section 2.3) for a general
categorical outcome with K > 2 levels requires a specific linear predictor η for
each level k = 1, . . . , K. Hence, the linear predictor for this outcome is the
vector η = {η1, . . . , ηK} where each ηk is a linear combination of the same
regressors with a different set of fixed effects βr,k and random effects bri,k. The
probability for level k is then obtained as the k-th element of the vector of
probabilities obtained from transforming the linear predictor vector with the
multivariate softmax function:

P [Y = k|η] = softmaxk(η) =
exp{ηk}

K∑
k′=1

exp{ηk′}

.
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This yields the probability ratios P [Y = k1|η] /P [Y = k2|η] = exp{ηk1
−ηk2

}.
For identifiability, the predictors η have to be restricted. We fix the last one to
ηK = 0 by setting βr,K = 0 and bri,K = 0. This means it is sufficient to consider
for η the (K − 1)-dimensional vector containing {η1, . . . , ηK−1}. Imposing
this restriction implies that the estimated regression coefficients capture the
probability ratio between the k-th and the last category K. Hence, level K
has a specific role and in general should correspond to some baseline level in
applications. Note that under K = 2 this formulation reduces to the logistic
regression assumed for binary outcomes. Then one has one actual predictor
η = η1 and fixes η2 = 0. The contribution of one general categorical observation
Y to the log-likelihood is given by:

ℓC (Y = k|η) = ηk − log

(
1 +

K−1∑

k′=1

exp{ηk′}

)
.

2.2 Combining the multivariate responses

In the GLMM framework, the random effects bri capture the correlation
between the outcome values observed for each subject i and outcome r ∈ R
conditional on the regression model. In the multivariate setting with several
different outcome variables, the random effects are also used to capture cor-
relations between different outcome variables for a subject i. To this end,
we suppose a joint multivariate distribution for all random effects similar to
Fieuws and Verbeke (2004, 2006); Komárek and Komárková (2013); Komárek
and Komárková (2014); Vávra and Komárek (2022).

Let us denote the set of fixed effects by β = {βr, r ∈ R} and the overall
vector of random effects for subject i by bi = {bri , r ∈ R}. In the following
we divide the vector bi into subvectors depending on the type of outcomes to
emphasise the resulting block structure. In particular, bNi =

{
bri , r ∈ RNum

}
,

bBi =
{
bri , r ∈ RBin

}
, bOi =

{
bri , r ∈ ROrd

}
and bCi =

{
bri , r ∈ RCat

}
. We will

also use notation type(r) ∈ {N,B,O,C} for the corresponding type of outcome
r ∈ R.

The overall random effects vector bi is now assumed to follow a centred
multivariate normal distribution with a general covariance matrix, i.e., it is
assumed

bi =




bNi
bBi
bOi
bCi




iid
∼ NdR


0, Σ =




ΣNN ΣNB ΣNO ΣNC

ΣBN ΣBB ΣBO ΣBC

ΣON ΣOB ΣOO ΣOC

ΣCN ΣCB ΣCO ΣCC





 ,

where dR =
∑

r∈R dRr is the total dimension of bi and Σ > 0 is the positive
definite covariance matrix of the random effects. A general structure is assumed
for this matrix thus allowing to capture arbitrary within-subject dependencies
between the different outcomes.
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Throughout the manuscript, the notation p(· | ·) and ℓ(· | ·) indicate a con-
ditional probability distribution function and its logarithm, respectively. The
unknown parameters of the model consist of the fixed effects β, the covariance
matrix Σ, the precisions of the error terms of the LMMs for numeric out-
comes τ =

{
τr, r ∈ RNum

}
and the ordered intercepts c =

{
cr, r ∈ ROrd

}
. The

random effects bi are unknown as well. However, these are considered latent
variables that are integrated out to obtain the likelihood.

The multivariate GLMM implies that the i-th subject has the following
likelihood contribution

p(Yi|β,Σ, τ , c; Ci) =

∫ R∏

r=1

ni∏

j=1

exp
{
ℓtype(r)

(
Y r
i,j |η

r
i,j , τ , c

)}

︸ ︷︷ ︸
p(Yi| bi,β, τ , c; Ci )

·

|2πΣ|−
1
2 exp

{
−
1

2
b⊤i Σ

−1bi

}

︸ ︷︷ ︸
p(bi|Σ )

dbi. (2)

The integral (2) can be expressed in closed form only if all outcomes are
numeric, i.e., R = RNum. Otherwise, numerical methods such as Adaptive
Gaussian Quadrature (AGQ) have to be used to approximate the integral (for
more details see Section 3.2).

3 Extending to model-based clustering

The multivariate regression for mixed-type panel data proposed so far accounts
for subject-specific slight differences and has the fixed effects capturing an
overall population effect. This specification assumes that all heterogeneity in
the outcome variables can be essentially captured by the available covariates.
However, in case of unobserved heterogeneity, i.e., if the population in fact
contains several groups where different multivariate regression models apply
with varying effects and conditional distributions, this model formulation is
insufficient and extension to a mixture model warranted.

A mixture model enables a clusterwise regression setup where based on
a model-based clustering approach subjects are classified into groups having
similar regression effects. Such a mixture model allows to classify available
subjects as well as new subjects into groups. A group-specific analysis is helpful
for a better understanding how the effects of the covariates differ across groups
in the population.

3.1 Creating a mixture distribution

Unobserved heterogeneity refers to the fact that there exists a discrete variable
Ui ∈

{
1, . . . , G

}
which represents the unobserved group-allocation indicator

for subject i (i = 1, . . . , n). Within each group g, the model for subject i
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is given by p
(
Yi

∣∣β(g),Σ(g), τ (g), c(g); Ci
)
of the form (2) with group-specific

parameters being inserted as indicated by the superscript (g).
This formulation assumes that all parameters vary across groups. However,

in general one splits the set of all unknown parameters into a set of parameters
which are common to all groups, which we will denote by ζ in the following,
and a set of parameters which are group-specific, i.e., ζ(g) for the parameters
specific to group g. The combination of all group-specific parameters is denoted
by ζ1:G =

{
ζ(g), g = 1, . . . , G

}
.

This formulation implies that the assumed conditional probability distri-
bution function of the ith subject’s outcomes given the group allocation Ui

is

p
(
Yi

∣∣∣Ui = g, ζ, ζ(g); Ci
)

(2)
=

∫ R∏

r=1

ni∏

j=1

exp
{
ℓtype(r)

(
Y r
i,j |η

r
i,j , ζ, ζ

(g)
)}

︸ ︷︷ ︸
p(Yi| bi, Ui=g, ζ, ζ(g); Ci )

·

∣∣∣2πΣ(g)
∣∣∣
− 1

2

exp

{
−
1

2
b⊤i Σ

−(g)bi

}

︸ ︷︷ ︸
p(bi|Ui=g,Σ(g) )

dbi, (3)

where we use the notation Σ−(g) for the inverse matrix of Σ(g), i.e., the
precision matrix.

Let wg = P
(
Ui = g

∣∣w
)

∈ (0, 1), g = 1, . . . , G,
∑G

g=1 wg = 1, be

the (unknown) group sizes, with w :=
(
w1, . . . , wG

)
. Integrating out the

unobserved group membership Ui, the mixture distribution for the observed
outcomes Yi of a single subject i given covariates and model parameters
θ =

{
w, ζ, ζ1:G

}
corresponds to

p (Yi| θ; Ci) =
G∑

g=1

wg

∫
p (Yi| bi, Ui = g, θ; Ci) p (bi| Ui = g, θ) dbi. (4)

i.e., a mixture distribution which consists of G components with component
weights w and component distributions resulting from the integration.

3.2 Classifying (new) observations

Given the model and its parameters θ, one can assign observed subjects to
groups based on their classification probabilities, i.e., the a-posteriori proba-
bilities to be from each of the group. In this way a partition of the available
subjects is obtained which usually is of core interest in clustering applications.
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The classification probability or the conditional probability of subject i to
be from group g given the observed data is provided by the Bayes rule:

ui,g(θ) := P [Ui = g |Yi, θ; Ci ] =
wg p

(
Yi

∣∣Ui = g, ζ, ζ(g); Ci
)

G∑
g′=1

wg′ p
(
Yi

∣∣Ui = g′, ζ, ζ(g′); Ci
) . (5)

Expression (5) can also be expressed as

ui,g(θ) =
wg

∣∣Σ(g)
∣∣− 1

2
∫
exp

{
h
(
bi; Yi, ζ, ζ

(g); Ci
)}

dbi
G∑

g′=1

wg′

∣∣Σ(g′)
∣∣− 1

2
∫
exp

{
h
(
bi; Yi, ζ, ζ(g′); Ci

)}
dbi

,

where

h(bi) := h
(
bi; Yi, ζ, ζ

(g); Ci
)
=

∑

r∈R

ni∑

j=1

ℓtype(r)
(
Y r
i,j |η

r
i,j , ζ, ζ

(g)
)
−

1

2
b⊤i Σ

−(g)bi.

In the special case where R = RNum (i.e., only normally distributed numeric
outcomes are included in the model) the integrals

∫
exp{h(bi)} dbi are avail-

able in closed form. In general, however, when also categorical outcomes are
present, we have to approximate these integrals, which is achieved by the
methodology summarised by Pinheiro and Chao (2006).

A rather crude approximation is possible using the Laplacian approxi-
mation, which relies on the Taylor expansion of the function h around its

stationary point b̂
(g)
i that can be found by Newton–Raphson’s method together

with the negative Hessian matrix H(g) at this point.∗ The integral is approx-

imated by
∫
exp{h(bi)} dbi ≈ exp{h(b̂

(g)
i )} · |H(g)|−

1
2 up to a multiplicative

constant, yielding

ui,g(θ) ≈
wg

∣∣Σ(g)
∣∣− 1

2
∣∣H(g)

∣∣− 1
2 exp

{
h
(
b̂
(g)
i

)}

G∑
g′=1

wg′

∣∣Σ(g′)
∣∣− 1

2
∣∣H(g′)

∣∣− 1
2 exp

{
h
(
b̂
(g′)
i

)} .

More precise approximations can be obtained via Adaptive Gaussian
Quadrature (AGD) which generalises the Laplacian approximation and evalu-
ates function h at more than just one single point. The grid of dR-dimensional
points zj consisting of the roots zjl of the Hermite polynomial of order NGQ

is scaled and translated into b̃
(g)
i,j = b̂

(g)
i +

(
H(g)

)− 1
2 zj . These roots are tied

∗Note that these derivatives of function h are also required for sampling bi from its
full-conditioned distribution, see Appendix B.3.
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with weights Wj = exp{∥zj∥
2}

dR∏
l=1

vjl , where vjl corresponds to the weight of

the root zjl . The classification probabilities are approximated by

ui,g(θ) ≈

wg

∣∣Σ(g)
∣∣− 1

2
∣∣H(g)

∣∣− 1
2
∑
j

exp
{
h
(
b̃
(g)
i,j

)}
Wj

G∑
g′=1

wg′

∣∣Σ(g′)
∣∣− 1

2
∣∣H(g′)

∣∣− 1
2
∑
j

exp
{
h
(
b̃
(g′)
i,j

)}
Wj

.

In applications we recommend to use a rather low value of NGQ, since there

are NdR

GQ summands to be evaluated, which can be costly to compute.

4 Bayesian modelling with suitable prior
specifications

The model parameters θ = {w, ζ, ζ1:G} imply the likelihood

L(θ) =

n∏

i=1

{
G∑

g=1

wgp
(
Yi

∣∣∣Ui = g, ζ, ζ(g); Ci
)}

. (6)

In the following we will pursue a Bayesian approach and determine the pos-
terior distribution of the model parameters. Compared to maximum likelihood
estimation, the Bayesian framework allows to regularise the mixture likelihood
through the prior specification, eases inference through data augmentation and
enables convenient estimation of the number of data clusters.

The Bayesian framework and the related MCMC methodology allow for
full exploitation of the hierarchical structure of the model. The integration
with respect to the unobserved quantities (Ui, bi) is elegantly avoided by data
augmentation and the sampling mechanism. This also applies potentially to
missing outcome values, for which a predictive distribution can be obtained
simultaneously with the model estimation as long as all covariates are at
disposal. Such an approach allows to retain more observations compared to
a complete case analysis and thus is more informative. Moreover, the likeli-
hood (6) is regularised by setting up convenient prior distributions over model
parameters. Additionally, the Bayesian framework enables the estimation of
the number of clusters in the data by specifying a suitable prior distribution
on the component weights w.

We employ the usual prior specification used in Bayesian model-based clus-
tering where exchangeable priors are imposed on the components and their
weights, and they are only potentially coupled through the use of hierarchical
priors. Assuming that the priors on the component weights and the covariance
matrices depend on hyperparameters e0 and Q, respectively, the joint prior
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distribution imposed decomposes into

p(θ, e0, Q) = p(w|e0) p(e0) p
(
β
∣∣ τ
)
p(τ ) p(c) p(Σ|Q) p(Q).

In the following, the suitable prior specifications for this modelling approach
in a model-based clustering context are discussed in detail.

4.1 Prior setting for the component distributions

In Bayesian mixture modelling, improper priors are not feasible for the compo-
nent distributions because they induce an improper posterior as components
have a positive probability of containing not a single observation (Roeder and
Wasserman, 1997). Thus proper priors need to be selected. Also, selecting pri-
ors which impose a certain amount of regularisation eliminates spurious modes
from the likelihood. In the regression case we thus standardise covariates prior
to the analysis and impose coefficient priors gauged to the unit scale.

In the following, we only discuss the priors specified when all parameters
characterising the component distributions are group-specific. Alternatively,
one could also split these parameter vectors into a sub-vector containing the
group-specific parameters and a sub-vector containing the parameters which
are identical across groups. In this case, the priors have to be suitably modified,
but the specifications are in an analogous way.

Priors on the fixed-effects coefficients and the precisions

The regression coefficients for numeric outcomes β
(g)
r =

(
β
(g)
r,1 , . . . , β

(g)

r,dF
r

)
,

r ∈ RNum, g = 1, . . . , G, are assumed to be a-priori independent and follow
a conjugate normal distribution in combination with the precision parameter

τ
(g)
r , that is N

(
β0,r,j ,

(
τ
(g)
r

)−1
drj,j

)
where β0,r,j and drj,j are fixed hyperpa-

rameters. These hyperparameters are set equal to 0 and 1, respectively, in the
applications.

The regression coefficients for the binary, ordinal and general categorical

outcomes, i.e., β
(g)
r,j , r ∈ RBin ∪ ROrd and β

(g)
r,k,j , r ∈ RCat are also assumed

to be a-priori independent and follow an analogous normal distribution
N
(
β0,r,j , d

r
j,j

)
, where, however, no precision parameter τ is involved.

Regarding the ordered intercepts c
(g)
r estimated for ordinal outcomes, i.e.,

r ∈ ROrd, the prior is not specified for them directly, but for transformed

quantities. The (K− 1)-dimensional ordered intercepts
(
c
(g)
r,1 , . . . , c

(g)
r,K−1

)
are

transformed into probabilities
(
π
(g)
r,1 , . . . , π

(g)
r,K

)
:

π
(g)
r,k = P

[
Y r
i,j = k

∣∣bi = 0, Ui = g, xr
i,j = 0

]
(7)

= logit−1
(
c
(g)
r,k

)
− logit−1

(
c
(g)
r,k−1

)
,
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c
(g)
r,k = log

(
π
(g)
r,1 + · · ·+ π

(g)
r,k

π
(g)
r,k+1 + · · ·π

(g)
r,K

)
.

The prior distribution is then specified for the probabilities π
(g)
r,k for all

outcomes r ∈ ROrd using a product of Dirichlet distributions:

p (π) ∝
∏

r∈ROrd

G∏

g=1

K∏

k=1

(
π
(g)
r,k

)αr,k−1

, (8)

where the hyperparameters αr,k are fixed. A value of 1 inducing a uniform
distribution on the simplex is used in the later applications.

The precision parameters τ
(g)
r for numeric outcomes are assumed to follow

independent Gamma priors τ
(g)
r ∼ Γ(α1, α2) with shape α1 > 0 and rate

α2 > 0. For calculations in the later applications, we use α1 = α2 = 1.

Priors on the random effects parameters

The covariance matrices Σ(g) of the random effects bi are general positive
definite matrices. We impose a Wishart prior on the inverse covariance matrices

Σ−(g) :=
(
Σ(g)

)−1
to preserve conjugacy. The parameters of the Wishart prior

are the scale matrix Q and the number of degrees of freedom ν0 ≥ dR. To avoid
selecting a specific value for the scale matrix and aiming at obtaining a weakly
informative prior for the covariance matrices, we also assume a prior for the
scale matrix Q while keeping the number of degrees of freedom ν0 ≥ dR fixed.
Again a Wishart prior is assumed for the inverse scale matrix Q−1. For this
prior, fixed values are selected for the scale matrix and the number of degrees
of freedom ν1. In our applications we use ν0 = ν1 = dR + 1 and a diagonal
matrix for the scale matrix given by DQ = 100 · IdR .

4.2 Prior setting for the component weights: Sparse
finite mixtures

Following the usual Bayesian mixture modelling specification, we impose a
symmetric Dirichlet prior on the component weights w:

w|e0 ∼ DirG ((e0, . . . , e0)) ≡ DirG (e0) (9)

with probability density function

p(w|e0) =
Γ(G · e0)

(Γ(e0))G

G∏

g=1

we0
g .

The specification of e0 is crucial depending on whether one assumes a-priori
that subjects from all components are contained in the data set with a high
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probability. We denote by G+ the number of clusters from which subjects are
generated in the given data set. The choice of e0 controls the prior probability
of G+ < G. This probability is high when e0 is small because the Dirichlet
prior then puts a lot of mass on the boundary regions of the simplex and many
of the G weights are small a-priori. For large values of e0 one has with high
probability G = G+ a-priori, i.e., the number of data clusters coincides with
the number of components specified.

We follow Frühwirth-Schnatter (2011) when specifying e0 to take into
account if the number of groups in the data set is known or should be esti-
mated from the data. In case the number of groups in the data set are a-priori
known, one would thus set G equal to this number and use a rather large value
for e0. By contrast, in case one needs to estimate G+ from the data set, it is
convenient to pursue the sparse finite mixture approach proposed by Malsiner-
Walli et al (2016). This approach consists of selecting a large, fixed value for
the number of components G such that G clearly exceeds the number of clus-
ters in the data. In combination with a small value for e0, one achieves that
a-priori G+ ≪ G and one may obtain a posterior distribution for G+ which
combines the prior specification of a small number of data clusters with the
information on the cluster structure contained in the data.

To attenuate the influence of a specific choice of e0, we assign a Gamma
prior on e0:

e0|ae, be ∼ Γ(ae, be) (10)

with probability density function

p(e0|ae, be) =
bae
e

Γ(ae)
eae−1
0 exp{−bee0}

and prior expected value E(e0) = ae/be. As recommended by Frühwirth-
Schnatter and Malsiner-Walli (2019), we select the parameters ae and be
of the Gamma prior to have a small mean when aiming at sparsity, i.e.,
E(e0) = ae/be = 0.01 with ae = 1. In case the number of components G are
assumed known and one aims at G+ ≈ G, we select the parameters to induce
a mean of E(e0) = ae/be = 4 or directly fix e0 = 4 to avoid sparsity.

5 Bayesian inference

For Bayesian inference, we exploit the ideas of Bayesian data augmentation
(Tanner and Wong, 1987) while considering all latent quantities, i.e., the
component allocations U :=

{
Ui, i = 1, . . . , n

}
, the random effect vectors

b :=
{
bi, i = 1, . . . , n

}
and the missing outcome values denoted by Ymis as

additional latent variables included in the posterior distribution. The model
specified in Sections 2 and 3 results in the following joint distribution of the
complete set of outcomes Y =

(
Yobs, Ymis

)
divided into the observed data Yobs

and the missing data Ymis together with the latent variables {U , b}, the model
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parameters θ and the hyperparameters e0 and Q:

p
(
Y, U , b, θ, e0,Q; C

)
= (11)

=

[ n∏

i=1

p
(
Yi

∣∣ bi, Ui, θ; Ci
)
p
(
bi
∣∣Ui,θ

)
p
(
Ui

∣∣ e0
)]
p(θ|Q)p(Q)p(e0)

=

[ n∏

i=1

p
(
Yi

∣∣ bi, β(Ui), τ (Ui), c(Ui); Ci
)
p
(
bi
∣∣Σ(Ui)

)
wUi

]

p(θ|Q)p(Q)p(e0),

where p(θ|Q) is the prior distribution of the model parameters given the scale
matrix Q, p(Q) is the prior for the scale matrix and p(e0) is the prior of the
Dirichlet parameter e0.

5.1 MCMC algorithm

The posterior distribution p
(
θ, U , b, e0, Q, Y

mis
∣∣Yobs; C

)
is estimated using

MCMC sampling (Brooks et al, 2011). In particular, we adopt the classical
Gibbs sampling scheme wherever possible. Due to the (semi)-conjugate choices

of prior distributions, the full-conditioned distributions of β
(g)
r , r ∈ RNum, τ (g),

Σ(g),Q, w, U and Ymis belong to well known distributional families, for which
efficient and straightforward sampling mechanisms are available, requiring only

updates of the parameters. This is not the case for β
(g)
r , r ∈ R \ RNum, c, b

and e0, which are sampled using a Metropolis proposal step. More details can
be found in the Appendix B.

The sampling algorithm can be summarised as follows:
1) Choose an initial partition P, values for the unknown parameters and

repeat the Steps 2) – 7).
2) Sample the missing outcome values Ymis according to the data-generating

process implied by the specified model.
3) Sample the component-specific parameters ζ(g) for g = 1, . . . , G:

a) If n(g) > 0 (non-empty component): sample the parameters from full-
conditioned distributions (directly or using a Metropolis step) using
the observations of the subjects currently assigned to cluster g.

b) If n(g) = 0 (empty component): sample the parameters from their
prior distributions (directly or using a Metropolis step).

n(g) denotes the number of subjects assigned to component g.
4) Sample the parameters ζ which are identical across components and the

scale matrix Q from their full-conditioned distributions (directly or using
a Metropolis step).

5) Sample the component weights w from the Dirichlet distribution given
by DirG (n+ e01), where n = (n(1), . . ., n(G))⊤ and 1 is a vector of ones.

6) Sample the allocation indicators Ui independently for all subjects to
create a new partition P:
a) Compute the full-conditioned classification probabilities ui,g(θ; bi).
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b) Sample new Ui from the multinomial distribution with probabilities
ui,g(θ; bi).

7) Sample e0 using a Metropolis step from p(e0|P, G) ∝ p(P|e0, G) · p(e0).
This algorithm for model estimation has been implemented in R (R Core

Team, 2022) with the use of the C programming language to optimise the
computation time.

5.2 Post-processing

After omitting a suitable number of burn-in samples and applying thinning,
the final MCMC chain contains M draws of θm, Um and bmi , m = 1, . . . , M .
For each drawm, the cluster indicators Um induce cluster occupation numbers
nm = (n(1),m, . . . , n(G),m)⊤ and a specific number of non-empty components

Gm
+ = G−

G∑
g=1

1(n(g),m = 0). The number of non-empty components may differ

among different draws m.
We estimate the number of data clusters as suggested by Malsiner-Walli

et al (2016). They use the mode Ĝ+ of the posterior of the number of filled
components as an estimator for the number of clusters in the data:

Ĝ+ = argmax
g∈{1, ..., G}

M∑

m=1

1(Gm
+ = g).

Then, for the subsequent inference only those MCMC draws are considered
where the number of filled components coincides exactly with the mode Ĝ+.
The MCMC draws where a different number of components is filled are
discarded and omitted from the further analysis.

Before group-specific inference can be performed based on the MCMC sam-
ples, one potentially needs to resolve label switching (Redner and Walker,
1984). Because the likelihood as well as the prior and thus the posterior are
label invariant, the posterior is multi-modal with modes corresponding to all
parameterisations obtained by permuting the labels of unique components.
The component labels may be switched across different draws of the MCMC
sampler and a unique labelling needs to be obtained to determine an identified
model where group-specific inference is possible. We suggest to use the proce-
dure proposed in Frühwirth-Schnatter (2011) and Malsiner-Walli et al (2016)
to resolve label switching with the later describing a method applicable when
pursuing the sparse finite mixture approach.

In our simulation study and the applications, we observed that the number
of filled components usually stabilises during MCMC sampling at a specific
number, usually representing the lower bound of data clusters required to
provide an adequate fit for the data. Initialising using a partition with all com-
ponents being filled, we noted that during the first iterations of the MCMC
algorithm superfluous components are emptied and only the necessary num-
ber of components required to represent the group structure in the data set



Springer Nature 2021 LATEX template

Clusterwise multivariate regression of mixed-type panel data 17

remains filled. The sparse finite mixture prior imposed on the component
weights induces a penalty for the inclusion of redundant filled components,
hence encouraging a solution where only a few components are filled. Mon-
itoring thus the number of filled components serves as a means to assess
convergence of the MCMC chain and thus decide on a suitable number of
burn-in iterations to discard.

We also noted that label switching did not occur during MCMC sampling
after the burn-in samples are omitted in our simulation study and the appli-
cations. Using a multivariate regression model with repeated measurements
for subjects and avoiding redundant mixture components induces rather crisp
classifying probabilities. They induce well separated modes and prevent the
sampler also to move between these modes. Hence, for these analyses there
was no need to apply a procedure for resolving label switching and assigning
suitable labels to components such that they correspond to an identified model.

5.3 Classifying observations

After MCMC sampling there are basically two possibilities to obtain a final
classification or partition of the subjects. The posterior classification probabil-
ities ui,g may be estimated by conditioning not only on the observed data and
parameter estimates, but also on estimates of the random effects bi. Given the
MCMC samples this approach can easily be pursued for subjects included in
the data set. We use this approach in the simulation studies (Section 6) as well
as in the application using the EU-SILC data set (Section 8). This approach
reduces the computational time needed because costly integral approximations
are avoided and allows to obtain classifications based on the MCMC draws
made for posterior inference anyway.

Alternatively the posterior classification probabilities ui,g can also be esti-
mated by integrating out the random effects. This approach is applied in the
second application considered (Section 7). It is computationally more expen-
sive, but provides more accurate estimates because the latent random effects
are not conditioned on, but integrated out.

Conditioning on random effects

The Um
i draws obtained during MCMC sampling are posterior draws from the

multinomial distribution with success probabilities equal to the a-posteriori
probabilities induced by conditioning on the observed data as well as cur-
rent parameter estimates and draws of the random effects. Their empirical

means obtained with Ûi,g = 1
M

M∑
m=1

1(Um
i = g) represent suitable estimates for

the classification probabilities taking into account uncertainty with respect to
the parameter estimates as well as the random effects. This approach can be
directly applied after the sampling procedure and post-processing and does not
require any integral approximation. One only needs to store n ·G ·M values.
However, once the subjects are classified, these values may be discarded.
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Based on these classification probabilities, subjects may be classified by
assigning each subject i to the cluster g that has the highest estimate Ûi,g

among all g = 1, . . . , G+. In case these classification probabilities are not
clearly indicating assignment to a specific group, one may decide to leave
those subjects unclassified. Rules to decide not to assign might for example
be that the second largest classification probability lies within a pre-specified
tolerance (such as 0.2) below the highest one or that the highest probability
itself is below a given threshold (such as 0.6). Imposing such a rule leads to
both classified subjects where classification is unambiguous, and unclassified
subjects where assignment has been assessed to be not sufficiently clear.

Integrating out random effects

The posterior probabilities ui,g(θ) are estimated for all sampled θm, i.e.,
the classifying probabilities are determined for the observed data and model
parameters while integrating out the random effects. The posterior mean is

then estimated by Ûi,g = 1
M

M∑
m=1

ui,g(θ
m). This approach requires M · G

approximations of the integral, which is in particular costly when done for
each subject i = 1, . . . , n. Using the Laplacian approximation is in this case
preferable to reduce the computational burden.

This approach approximates the posterior distribution of ui,g(θ), thus
allowing to construct 95% Highest Posterior Density (HPD) credible intervals.

Subjects are then classified based on the highest Ûi,g value. Again for some
subjects one may decide not to classify. In this case one can use as rule for
example that the upper bound of the HPD intervals of the other groups need
to lie below the lower bound of the HPD interval for group g to which one
would assign based on the maximum value of Ûi,g. This rule implies that one
leaves a subject i unclassified if the classifying probability is comparable for
more than one group and hence classification is not unambiguous.

6 Simulation study

We performed a simulation study to demonstrate the performance of our pro-
posed approach under various settings. We were particularly interested in
assessing how the structure of the sampled data as well as the data generat-
ing process affects (1) the ability to estimate the number of data clusters, (2)
the clustering performance measured by the misclassification rates and (3) the
accuracy of the model parameter estimates.

6.1 Simulation design

A wide range of parameters are selected to specify the simulation study. Some
parameters vary across the settings to study their impact on performance,
while others are kept fixed. In particular, the sample size is varied with values
n ∈ {100, 250, 500, 1000} and the number of true data clusters G ∈ {2, 3}.
Regarding the panel structure, we use a rather challenging setting of only
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ni = 4 observations per subject in order to mimic the panel structure of the
applications.

For each data set we generate one outcome of each type – numeric Y N,
binary Y B, ordinal Y O with KO = 5 levels and general categorical Y C with
KC = 4 levels. With respect to the random-effects part, we only consider
a random intercept term for each type of outcome bi = (bNi , b

B
i , b

O
i , b

C
i )

⊤ ∼
N4 (0, Σ) and assume that the covariance matrix Σ of the random effects is
the same across clusters and may be decomposed into standard deviations and
correlation matrix such that

Σ = S




1 −0.5 −0.5 −0.4
−0.5 1 0.3 0.4
−0.5 0.3 1 0.2
−0.4 0.4 0.2 1


S.

with S = diag{0.5, 0.5, 0.5, 0.5}. A common random-effects structure is then
also used when fitting the model.

The fixed-effects part of the predictor consists of an intercept term and one
other covariate x ∈ (0, 1). This covariate represents time and is sampled in such
a way that the values are close to each other for the same subject. In particular,
we use the simulation parameter ξ = 1

3 to define the length of the observational
window for one subject, i.e., for each subject only a third of the total length of
the interval is admissible for values of x. To obtain the x values for each subject

i, first, the centre of the interval is sampled by xc,i ∼
ξ
2 · Unif

{
1, . . . , 2

ξ
− 1
}

and then ni values for subject i are sampled from Unif
(
xc,i −

ξ
2 , xc,i +

ξ
2

)
and

ordered. Marginally, for ξ < 1 the distribution of x is not Unif (0, 1) since the

intervals at the boundary
(
0, ξ2

)
and

(
1− ξ

2 , 1
)
have lower probability. Note

that this setting is selected to resemble the structure of the rotational panel
in the EU-SILC data set.

We explore several different ways how the time covariate affects the
outcome:
a) no effect of time at all (no),
b) a slope term common to all clusters (parallel),
c) different intercepts and slopes for each cluster resulting in a crossing

(cross).
We follow the same scheme when specifying the models for estimation, con-
sidering models where no time effect is included, a common slope for time and
a group-specific slope for time. Examples of the predictors simulated for the
different time parameterisations and number of clusters G are illustrated in
Figure 1.

The intercept term is always (both when generating the data set and
when estimating) considered to be group-specific. This ensures some differences
between clusters. The numerical outcome is obtained by adding an error term
with group-specific standard deviation, {0.5, 0.8} for G = 2 and {0.5, 0.75, 1}



Springer Nature 2021 LATEX template

20 Clusterwise multivariate regression of mixed-type panel data

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-0
.5

0
.5

1
.5

No, G=2

P
re
d
ic
to
r

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

4

Parallel, G=2

P
re
d
ic
to
r

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

Cross, G=2

P
re
d
ic
to
r

0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1

No, G=3

P
re
d
ic
to
r

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3
4

Parallel, G=3
P
re
d
ic
to
r

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

Cross, G=3

P
re
d
ic
to
r

Fig. 1 Lines connecting predictors of n = 250 individual subjects generated from G clusters
for different types of time effects. The maximum length of the observational window is ξ = 1

3

for G = 3, to the linear predictor. For the ordinal outcome, group-specific
equidistant ordered intercepts are used (i.e., typically whole numbers shifted
by a certain constant amount to have reasonable frequencies of outcome val-
ues in each cluster). Three different specifications of intercepts (e.g., using an
exchange of monotonicity type) are required to obtain the predictors for the
categorical outcome with KC = 4 levels.

We generate 200 data sets for each considered data setting. For Bayesian
inference, the prior distributions together with their parameter values are spec-
ified as outlined in Section 4. For estimating the number of data clusters or
assessing the clustering abilities, we initialise the Markov chain with the max-
imal number of components Gmax = 10 considered for the mixture model. A
burn-in period ofB = 500 samples was enough to then use the nextM = 10 000
sampled parameter and latent variable values to approximate their posterior
distributions. Subjects were classified using the sampled indicators Ui, leav-
ing subjects unclassified when less than 60% of these indicators assigned the
subject to the same cluster.

6.2 Estimating number of data clusters and classifying
subjects

In the following we assess the ability of the proposed approach to estimate the
number of data clusters and evaluate the classification performance, focusing
in particular on the benefit incurred through joint modelling of the outcome
variables. We consider the cross parameterisation of time with ξ = 1

3 for data
generation and also use a suitable model specification for estimation to be
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able to capture these effects. We estimate the model for each type of outcome
separately as well as all four outcomes of different types jointly.

Results indicate that the performance regarding the estimation of the num-
ber of data clusters G+ is rather comparable regardless of the type of outcome
used and also when all outcomes are modelled jointly. Sample size had an effect
with only one or two data clusters being selected for n = 100 regardless of if
the true number of data clusters is 2 or 3. For G = 2 and n = 250 the number
of data clusters was in general already correctly identified, whereas n = 500
was required for G = 3 to achieve a good performance.

Figure 2 provides an overview on the proportions of correctly classified,
unclassified and misclassified subjects when using either only a single outcome
variable or using all four outcome variables jointly. In addition the sample size
n and the true number of data clusters are also varied. The results for the
single outcome variables are shown in the rows labelled “Num” for numeric
outcome, “Bin” for binary outcome, “Ord” for ordinal outcome and “Cat” for
general categorical outcome. The results when modelling all four outcomes
jointly are shown on top in the row labelled “All”.

Figure 2 clearly shows a general pattern of an increase in sample size n
improving the classification performance. This certainly also is partly due to
the underestimation of G+ for n ∈ {100, 250}. In case the number of data
clusters is underestimated, a high misclassification rate naturally results. Also
the classification performance is in general better if the true number of data
clusters is 2 instead of 3.

Classification
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Fig. 2 Proportions of correctly classified (green), unclassified (grey) and misclassified (red)
subjects in dependence of the types of outcomes used, sample size n and the true number
of data clusters G. The number of data clusters used for classification are estimated based
on Ĝ+, the most frequent number of non-empty components during MCMC sampling with
Gmax = 10
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Figure 2 also highlights the impact of the type of outcome on the classifica-
tion performance. If only a single outcome is considered, the numeric outcome
performs best, while the categorical outcome results in a classification perfor-
mance which is barely better than a random classification. Modelling all types
together clearly outperforms the single models and achieves the highest cor-
rect classification rates indicating the advantage of using a modelling approach
which allows to jointly model the data.

6.3 Estimating model parameters

Regarding the accuracy of the model parameter estimates, we focus on the
estimation of the fixed effects β. In many applications these parameters will
be of core interest for characterising the clusters identified and interpreting
the effects. We vary the data generation setting with respect to sample size,
true number of data clusters and effect of the time covariate and generate 200
data sets for each data setting.

A joint model for all outcome variables is estimated assuming that the true
number of data clusters is known. This is achieved by setting Gmax = G and
using ae = 4 and be = 1 for the hyperparameters of the prior on the component
weights to avoid sparse cluster solutions. Using this specification ensures that
we estimate exactly G data clusters for each of the 200 simulated data sets.
Posterior medians of the estimated group-specific intercepts are used to match
the labelling of the estimates for the simulated data sets to the labels of the
clusters used in data generation.
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Fig. 3 Medians, 2.5 and 97.5% quantiles of estimated posterior medians of the slope term
for the Bin outcome variable across 200 simulated data sets. Model estimation is performed
assuming that the number of data clusters G is known. Different settings are considered
for the effect of the time covariate x for data generation (rows) and model specification
(columns) and ξ = 1

3
is used for data generation. The dashed lines indicate the true values.

These are grey in case the effects are identical across clusters and in colour otherwise
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Figure 3 shows the results obtained for the slope estimates of the binary
outcome. The binary outcome variable corresponds to the least informative
outcome type and thus these results demonstrate that accurate estimation is
achieved even under the most challenging conditions, in case the sample size is
sufficiently large. Estimating a model with a common slope for all clusters leads
to the correct estimation of the value 0 (in case no effect of time is present) or
2 (in case the clusters share the same slope term) for a sample size n of 250
or higher for G = 2 and 500 or higher for G = 3. However, an average effect is
estimated when clusters indeed have a different slope. On the other hand, when
estimating the model with different slopes across clusters, the group-specific
estimates also coincide with the true common value (0 when no effect and 2 in
the parallel lines), though, a small shrinkage towards zero is visible for a low
sample size n. Such a shrinkage behaviour can also be discerned in case the
data generating process has group-specific slopes. However, this effect vanishes
with increasing sample size and excellent results are obtained for n = 1000.

7 Analysis of the PBC medical study data

In the study of primary biliary cholangitis (PBC) of liver conducted by the
Mayo Clinic between 1974 and 1984, 312 patients were randomly assigned to a
placebo control group and to a treatment group consisting of D-penicillamine
drug users. The study protocol required visits after 6 months, one year and then
annually until the patients died, had a liver transplant or dropped out from the
study. At each visit multiple laboratory results were obtained and combined
into a longitudinal data set. At each visit not all tests were undertaken leading
to missing values in the outcome variable.

This data set has in particular been studied to predict survival,
see Therneau and Grambsch (2000). In the following we use the data to infer
different prognosis groups based on the observed patterns of evolvement of
specific markers over time taking also age and gender into account as covari-
ates. Having established an association of the groups identified with survival,
new patients may be classified based on their marker evolvement.

7.1 Data and model description

Similar to Komárek and Komárková (2013), we restrict our analysis to the
patients (n = 260) who survived the first 910 days (2.5 years) of the study
without liver transplantation. The vast majority (178) of patients have ni = 4
visits recorded within this period. However, there are also patients included
where only a single visit is available. Restricting the data to only the first 910
days imitates a situation, where a prognosis for a patient is desired and the
aim is to establish a classification rule for patients where data from 910 days
of the follow-up are available.

We used five outcome variables for the analysis. Two numeric markers are
included as outcome variables: serum bilirubin (bili) and albumin (on log-
scale). Two binary outcome variables are included which indicate if the patient
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suffered from presence of blood vessel malformations in the skin (spiders) and
hepatomegaly or enlarged liver (hepato). A single ordinal outcome variable is
included which indicates the seriousness of edema. Missing values were aug-
mented during MCMC sampling to keep all subjects in the analysis and obtain
a posterior approximation of the unknown values.

The five markers are jointly modelled by assuming random intercepts for
the patients and a group-specific linear effect of time, age at entry to the
study and gender without any interaction terms. All other model parameters
were also considered to be group-specific to capture differences in all possible
aspects. Hence, not only a different evolution over time is expected, but also the
effects of age or gender may vary across groups as well as the noise variances for
the numeric outcomes and the covariance structure of the random intercepts.

A sparse finite mixture was induced by setting ae = 1, be = 100 and the
other hyperparameters were set to correspond to a unit scale prior distribution.
With Gmax = 10 the MCMC sampling converged after few hundred steps to a
Ĝ+ = 2 solution. The burn-in period was decided as a multiple of 200 iterations
based on a visual inspection of trace plots. For the results reported,M = 10 000
sampled parameter and latent variable values were used without thinning to
approximate their posterior distributions. Repeating this procedure for four
different chains using random initialisations indicated that results are rather
comparable across the chains.

7.2 Results

The n = 260 patients are classified based on the maximum classifying probabil-
ities obtained by integrating out the random effects. This results in a partition
of the patients into two groups. Combining this grouping with the remaining
data (beyond 910 days) allows to determine the Kaplan–Meier estimates of
the survival functions for each group (see Figure 4). Even though the fitted
model did not include the information on subsequent survival, the identified
groups clearly exhibit different survival curves. Thus the grouping identified
can be used to obtain prognosis about future survival.

Table 1 provides posterior estimates of the group-specific parameters which
allow to characterise the two estimated groups with respect to their covariate
effects. The red cluster of Figure 4 (n(1) = 106, 26 men) with the drastically
decreasing survival function represents about 41% of patients with high serum
bilirubin increasing over time, lower serum albumin in general, increasing odds
of spiders with time and increasing risk of edema over time. On the other hand,
the turquoise cluster (n(2) = 154, one man only) with much higher survival
probabilities consists of 59% of the patients who have a low value of serum
bilirubin only slowly increasing over time, higher values of serum albumin,
stable odds in time for both spiders and hepatomegaly and increasing risk of
edema with age.
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Table 1 Posterior medians of group-specific model parameters including 95% equal-tailed credible intervals

Type Outcome Cluster β0 or ck βtime 10βage βsex τ−
1
2

N
u
m
er
ic log(bili)

1 0.85 ( 0.18; 1.59) 0.21 ( 0.14; 0.28) −0.02 (−0.15; 0.12) 0.10 (−0.25; 0.51) 0.50 (0.46; 0.55)
2 0.14 (−0.24; 0.53) 0.02 (−0.02; 0.05) −0.09 (−0.16; −0.02) 0.20 (−0.16; 0.56) 0.24 (0.23; 0.26)

log(albumin)
1 1.31 ( 1.19; 1.42) −0.02 (−0.04; 0.00) −0.01 (−0.03; 0.01) −0.03 (−0.08; 0.02) 0.16 (0.15; 0.18)
2 0.80 ( 0.69; 0.91) −0.01 (−0.02; 0.00) 0.01 ( 0.00; 0.02) 0.45 ( 0.35; 0.55) 0.12 (0.11; 0.13)

B
in
ar
y spiders

1 −0.45 (−2.19; 1.26) 0.50 ( 0.09; 0.93) −0.30 (−0.68; 0.07) 0.55 (−0.64; 1.73)
2 −0.11 (−1.84; 1.63) 0.08 (−0.39; 0.54) −0.63 (−1.15; −0.18) −0.19 (−1.85; 1.51)

hepato
1 −0.17 (−1.91; 1.62) 0.32 (−0.12; 0.78) 0.30 (−0.09; 0.69) −0.10 (−1.39; 1.14)
2 0.24 (−1.42; 1.92) 0.07 (−0.27; 0.41) −0.21 (−0.59; 0.13) −0.45 (−2.00; 1.13)

O
rd
in
al

edema
1

4.09 ( 2.78; 5.50)
1.07 ( 0.63; 1.53) 0.56 (−0.07; 1.20) 0.62 (−0.65; 1.90)

7.05 ( 5.47; 8.80)

2
1.63 (−0.13; 3.86)

0.08 (−0.39; 0.53) 0.82 ( 0.07; 1.68) −2.26 (−4.05; −0.46)
6.75 ( 4.33; 10.06)
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Fig. 4 Kaplan–Meier survival function estimates after day 910 of the n = 260 patients from
the PBC medical study clustered into the two estimated groups

8 Analysis of the EU-SILC data

The EU-SILC (Statistics on Income and Living Conditions) survey gathers
data on households within member states of the European Union, Iceland,
Norway and Switzerland annually since 2003. We apply our proposed approach
to identify groups of households which differ in their evolvement of financial
capability over time as measured by several highly correlated outcomes of
mixed type.

8.1 Data and model description

The analysis focuses on the subset of Czech households surveyed between 2005
and 2018. This time period includes the years of the economic crisis which
started in late 2008. We have n = 23 360 households that were followed for
exactly ni = 4 consecutive years, as induced by the rotational design of the
study. Starting with more than 7 000 households, each year a quarter is dropped
to be replaced by a comparably sized set of new households.

Eight outcomes (two for each type) are modelled jointly using the proposed
approach. All eight outcomes reflect the financial capacity of the household.
Two numeric outcome variables are included which are income related: Equiv-
alised total disposable income [¤/year], that sums the gross personal income
components of all household members over the whole year and divides it by the
Equivalised household size (see below), and Lowest monthly income to make

ends meet [¤/month], that reflects the minimum net monthly income required
to pay for all usual necessary expenses of the household. In addition, the finan-
cial capacity is measured by the ability to afford certain luxuries. Affordability
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of one week annual holiday away from home and Capacity to face unex-

pected financial expenses are binary outcome variables (“Yes”, “No”), while
the possession indicators of a car or a computer are general categorical out-
come variables with three levels consisting of “Yes”, “No – cannot afford” and
“No – other reason”. Two ordinal outcome variables are also included which
rather reflect subjective assessment of financial capability and are measured
as the Ability to make ends meet (on a scale from 1=“with great difficulty” to
6=“very easily”) and the perceived Financial burden of the total housing cost

(with levels: “a heavy burden”, “a slight burden”, “not a burden at all”).
Because the numeric income related outcomes have a heavily skewed distri-

bution, we transformed the values to log-scale. In case the income was negative
(which very rarely occurred), it was set to zero on the log-scale. The baseline
levels for the general categorical and the ordinal outcomes were determined
by ordering the categories with respect to their expected positive correlation
with increasing financial capacity.

In the regression the time variable indicating the year when the survey
was completed was included as group-specific covariate to identify how the
financial capacity of the households evolves over time, in particular also during
the phasis of an economic crises. To capture a possible change in trend, we
used a quadratic spline parameterisation with one inner knot.

Additional covariates were also included in the regression which charac-
terise the households. These covariates were included with constant effects
across the whole population. These additional variables are: Level of urban-
isation of their location (with levels “thinly-populated area”, “intermediate
area”, “densely populated area”, “capital city of Prague”), the Highest edu-

cation level attained by at least one household member (with levels “lower
than secondary”, “secondary”, “higher than secondary”) whether at least one
household member is a baby (i.e., younger than 3 years) or a student (i.e.,
attending some educational institution) and the Equivalised household size.
The Equivalised household size is obtained by summing over all household
members using the following weights: a weight of 1 for the first member, a
weight of 0.5 for the other household members older than 14 and a weight of
0.3 for household members who are 14 or younger.

The maximum number of components was set to Gmax = 20. To invoke
sparsity we specify the parameters of the prior distribution for e0 to be ae = 1,
be = 100. To regularise the effect estimates and shrink them towards zero,
the standard deviations of the priors for the centred effects were set to 0.5.
Ordered intercepts c and error term precisions τ are set to be group-specific,
the variance matrix Σ of random effects is kept common to all households.

The burn-in period was decided as a multiple of 1 000 iterations based
on a visual inspection of trace plots. For the results reported, M = 1000
sampled parameter and latent variable values were used without thinning to
approximate their posterior distributions. Repeating this procedure for four
different chains using random initialisations indicated again comparability of
results obtained across chains.
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8.2 Results

Post-processing led to the estimation of Ĝ+ = 4 clusters. Using the sampled Ui,
we classified households where the maximum classification probability was at
least 0.5. Otherwise the household remained unclassified (0.55% of households).
The classified households were used to create the plots in Figure 5 describing
the evolvement of the outcome variables across time for each cluster separately.

Figure 5 indicates that the cluster sizes vary strongly with the green cluster
containing 78.57% of the households, followed by the yellow cluster consisting
of 17.11% of the households. With respect to their cluster size, the remaining
two clusters seem rather negligible with the blue cluster containing 3.65% of
the households and the red cluster containing 0.12% of the households. 0.55%
of the households remained unclassified.

Assessing the financial capacity of the households as depicted by the
outcome variables, one can conclude that the blue cluster (3.65%) contains
households that are doing well in general, while the yellow cluster (17.11%)
represents the more struggling households. In-between these two, the most
common green cluster (78.57%) contains housholds with an intermediate finan-
cial capacity. The red cluster (0.12%) consists of the rare households faced
with a bad financial situation.

The group-specific evolvement of the log-scaled Equivalised total disposable

income is shown in Figure 5 on the top left. In particular the estimated pos-
terior median curves indicate how the evolvement differs across the clusters.
For all four clusters a rather strong increase is captured for the first four years
which at the start of the economic crisis either levels off to a rather constant
equivalised total disposal income or even to a slightly decreasing one.

The plot of the Equivalised total disposable income also indicates that the
clusters strongly differ in the standard deviation of the error term in the lin-
ear regression model. This standard deviation captures how much the income
variable differs for the same household across the four consecutive measure-
ments and thus also reflects how volatile the income situation is for a houshold.
Assessing the group-specific standard deviation estimates for the error term
using 95% equi-tailed credible intervals indicates that the green cluster con-
tains households with a rather constant income over time (σ̂ ∈ (0.063; 0.064)).
On the contrary, the yellow (σ̂ ∈ (0.129; 0.133)) and, especially, the blue clus-
ter (σ̂ ∈ (0.279; 0.300)) contain households with dramatic changes in their
income between consecutive years. The small red cluster contains the extremely
low values of income (including the few negative income observations) that
also heavily fluctuate from one year to another.

The posterior estimates for the other covariates included in the regression
with a constant effect for the whole population indicate, based on the poste-
rior medians and the 95% equi-tailed credible intervals, that living in more
densely populated areas (town, city, Prague) increases the expected Equiv-

alised total disposable income by 1.27% (0.93%; 1.61%), 2.12% (1.68%; 2.48%),
8.29% (7.63%; 8.98%), respectively, compared to living in a thinly populated
village. Having one additional adult within a household increases the expected
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Equivalised total disposable income by 2.58% (2.41%; 2.73%). Taking care
of a baby, respectively having a student, within a household decreases the
expected Equivalised total disposable income by 5.44% (5.08%; 5.76%), respec-
tively 3.30% (3.02%; 3.56%). Having as highest education level a secondary,
respectively upper-secondary or tertiary education level within a household
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Fig. 5 Visualisation of the evolution of five (out of the eight) outcome variables across

time when grouped into Ĝ+ = 4 clusters. The upper left plot shows the observed values
for the classified households together with the estimated median posterior curves for the
log-transformed numeric outcome variable Equivalised total disposable income for a repre-
sentative household of size 1.5 from a thinly-populated area, with secondary educational
level the highest achieved level of all household members and without having a baby or a
student as household member. The other plots visualise the empirical frequencies of the cat-
egorical outcome variables after classifying households obtained separately for each year
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increases the expected Equivalised total disposable income by 11.02% (10.61%;
11.37%), respectively 20.44% (19.85%; 21.08%), compared to a situation when
the highest education level achieved by all household members corresponds to
the lower-secondary educational level.

The estimated curves for the categorical outcome variables across time were
more or less flat for all four clusters, but they differed in their levels across
clusters. This agrees with Figure 5 where we barely see any evolution of the
ratios in time within any of the main clusters (blue, green, yellow). These con-
stant ratios, however, correspond to the interpretation of the clusters obtained
so far. Households within the blue cluster most probably own a car, can afford
a week holiday away from home, have capacity to pay for unexpected expenses
and the housing cost does not seem to be a burden to them when compared
to other clusters. On the other hand, the majority of households within the
yellow cluster cannot afford a car, nor a week holiday, nor pay for unexpected
expenses. They also agree to the highest extent with the statement that hous-
ing cost is a heavy financial burden. Households within the green cluster (the
majority) are comparable to the prosperous ones in the blue cluster, but they
are in general a bit worse off. We obtained an analogous interpretation for the
other outcomes which are not included in Figure 5 and these results are hence
not shown.

9 Conclusion

This paper proposes an approach which allows to infer clusters from multivari-
ate longitudinal data of possibly different types by building on and combining
several different methodologies. The model specification allows to combine an
arbitrary number of numeric, binary, ordinal or general categorical outcome
variables and to model them jointly by GLMMs. The suitable distributional
family is used for each outcome type and the linear predictor may consist
of group-specific as well as common fixed effects as well as group-specific or
common random effects. The random effects are assumed to follow a multi-
variate normal distribution with a general covariance matrix and are allowed
to be correlated not only within a single outcome but also across all outcome
variables. This accounts for correlation between observations from the same
subject even after accounting for group differences and any covariate effects
in the regression. A finite mixture model is specified to embed the clusterwise
regression problem into a model-based clustering framework.

The Bayesian approach is pursued for model estimation and inference
exploiting the possibility to determine the number of data clusters based on a
sparse finite mixture approach, specify priors which have a regularising effect
on the mixture likelihood and fully exploit the hierarchical structure and
the latent variable framework using Bayesian data augmentation in MCMC
inference.

The performance of the proposed approach is evaluated in a simulation
study indicating the benefits of jointly modelling the outcome variables to
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improve the clustering abilities as well as highlighting the accuracy of the
parameter estimates obtained from an identified mixture model. The appli-
cations demonstrate how the proposed approach helps analysing medical and
economic survey data indicating the wide potential in many different areas
such as health care, psychology, social sciences and many more.
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Appendix A Full-conditioned distributions in
Gibbs sampling

In this section we list the full-conditioned distributions for the model param-
eters which fall into well-known distributional families. The rest of the
parameters is sampled using a Metropolis proposal step and their detailed
derivations are postponed to Appendix B. Note that in the following deriva-
tions the parameters are considered to be group-specific where applicable.
Similar formulas may be derived even if some of them were kept common to
all clusters.

A.1 Component sizes w

Due to conjugacy the full-conditioned distribution of w stays within the family
of Dirichlet distributions, i.e., w|U , e0 ∼ DirG (n(U) + e01). The Dirichlet
parameter of the full-conditioned posterior distributed is obtained by adding
to the prior value e0 the number of subjects currently assigned to each of the

clusters, i.e., nG(U) = {n(g)(U) =
n∑

i=1

1{Ui = g}; g = 1, . . . , G}.

A.2 Group-allocation indicators Ui

The latent variables Ui are discrete variables taking values in {1, . . . , G}. To
draw their values from the multinomial distribution, we use Bayes’ theorem to
calculate the full-conditioned probability that the i-th subject is from group g:

ui,g(θ; bi) =

wg p
(
Yi

∣∣ bi, Ui = g, β(g), Σ(g), τ (g), c(g); Ci
)
p
(
bi
∣∣Σ(g)

)

G∑
g′=1

wg′ p
(
Yi

∣∣ bi, Ui = g′, β(g′), Σ(g′), τ (g′), c(g′); Ci
)
p
(
bi
∣∣Σ(g′)

) . (A1)

By conditioning also on the random effects, we work with the contributions to
the likelihood as given in Section 2.1 without the necessity of integration as
in (5).
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A.3 Precision parameter e0

We follow Malsiner-Walli et al (2016) and sample e0 from the semi-
marginalised full-conditioned distribution. We integrate the parameter w out
of the conditioning and sample e0 from p(e0|U) ∝ p(e0)p(U | e0) instead of
p(e0|U , w). The integration over w yields

p(U | e0) =
Γ(Ge0)

Γ(Ge0 + n)

∏

{g:n(g)(U)>0}

Γ(n(g)(U) + e0)

Γ(e0)
. (A2)

Combining (A2) with the pdf (10) of the prior for e0, we obtain

p(e0|U) ∝ eae−1
0 exp{−bee0} ·

Γ(Ge0)

Γ(Ge0 + n)

∏

{g:n(g)(U)>0}

Γ(n(g)(U) + e0)

Γ(e0)
.

(A3)
We are not able to sample from this distribution directly. However, we can

still use a Metropolis step, see appendix section B.1. Since e0 is restricted to be
positive, we perform the proposal on the log-scale by defining a new parameter
e⋆0 = log e0 ∈ R, which yields

p(e⋆0|U) ∝ exp{e⋆0ae − be exp{e
⋆
0}} ·

Γ(G exp{e⋆0})

Γ(G exp{e⋆0}+ n)

∏

{g:n(g)(U)>0}

Γ(n(g)(U) + exp{e⋆0})

Γ(exp{e⋆0})
. (A4)

A.4 Parameters for numeric outcomes

The assumption of normality for numeric outcomes and the choice of the
semi-conjugate prior distributions for τ and βr, r ∈ RNum preserves the dis-
tributional families for the full-conditioned distributions. The inverse variance
τ
(g)
r for the numeric outcome r ∈ RNum within cluster g = 1, . . . , G follows a
Gamma distribution

τ (g)r

∣∣∣Y r, U , br, β(g)
r ; Cr ∼ Γ

(
α
(g)
r,1 , α

(g)
r,2

)

with updated parameters α
(g)
r,1 and α

(g)
r,2 :

α
(g)
r,1 =

1

2

∑

{i:Ui=g}

ni +
1

2
dFr + α1,

α
(g)
r,2 =

1

2

∑

{i:Ui=g}

ni∑

j=1

(
Y r
i,j − η

r,(g)
i,j

)2
+

1

2

dF
r∑

j=1

(
β
(g)
r,j − β

(g)
0,r,j

)2

drj,j
+ α2.
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If τr ≡ τ were common to all clusters, we would use all subjects i = 1, . . . , n
instead of just the subjects assigned to cluster g.

The full-conditioned distribution for the fixed effects β
(g)
r of the numeric

outcome r ∈ RNum is a multivariate normal distribution with

β(g)
r

∣∣∣Y r, U , br, τ (g)r ; Cr ∼

NdF
r

(
β̃(g)
r ,

1

τ
(g)
r

[(
Xr

Ng(U)

)⊤
Xr

Ng(U) + (Dr)
−1

]−1
)
,

where Ng(U) = {i : Ui = g} and

β̃(g)
r =
[(

Xr
Ng(U)

)⊤
Xr

Ng(U) + (Dr)
−1

]−1((
Xr

Ng(U)

)⊤
ỹr
Ng(U) + (Dr)

−1
β
(g)
0,r

)
.

Dr = diag{drj,j , j = 1, . . . , dFr} is the diagonal variance matrix of the prior
distribution and •Ng(U) restricts • to the subset of subjects in group g:

Xr
Ng(U) =




...(
xr
i,j

)⊤
...




i∈Ng(U),
j=1, ..., ni

, ỹr
Ng(U) =




...

Y r
i,j − ηR,ri,j

...




i∈Ng(U),
j=1, ..., ni

.

In case some of the fixed effects βr are common to all groups, the linear

combination
(
xr
i,j

)⊤
β
(g)
r is divided into a sum of two linear combinations of

lower dimension. Then the evaluation of the full-conditioned distribution and
subsequent sampling is performed separately for the part which is common to
all groups and the group-specific part. In each of these separate steps the other
part is simply subtracted to obtain the auxiliary vector ỹ. Unlike the group-
specific part, where we work with the subjects currently belonging to the g-th
cluster only, the full-conditioned distribution of the common fixed part uses
all subjects.

A.5 Prior scale matrix Q for Σ

Parameter Q is the hyperparameter to increase the flexibility of the prior
distribution of Σ. Priors for both, Σ and Q, are specified for their inverse
counterparts because these are more natural to work with. The specification
implies that the Wishart distribution family for the inverse matrix Q−1 is
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preserved with parameters

Q−1
∣∣∣Σ(1), . . . ,Σ(G) ∼ WdR



[

G∑

g=1

Σ−(g) +
(
DQ
)−1

]−1

, Gν0 + ν1


 .

A.6 Prior inverse covariance matrices Σ−1 for random
effects b

Similarly, the multivariate normal assumption for the random effects bi with
variance matrix Σ(g) keeps the full-conditioned distribution of the precision
matrix Σ−(g) within the family of Wishart distributions

Σ−(g) |U , b, Q ∼ WdR

(
Q̃(g), n(g)(U) + ν0

)
,

independently for all g = 1, . . . , G, where

Q̃(g) =
(
Q̃−(g)

)−1

and Q̃−(g) = Q−1 +
∑

i∈Ng(U)

bib
⊤
i .

If Σ(g) ≡ Σ is common to all clusters, then we would use the random effects
from all subjects i = 1, . . . , n.

Appendix B Metropolis proposal step with
the use of the Newton–Raphson
method

Within the MCMC estimation procedure, we also need to sample from (partly
marginalised) full-conditioned distributions of parameters, which do not fall
into well-known distributional families and which complicates the sampling.

In the following we assume that we work with a parameter ω ∈ Rκ

from which we want to sample with respect to a distribution given by a
pdf proportional to a twice differentiable function p(ω) > 0, ∀ω ∈ Rκ.
This differentiability property is also transferred to the corresponding log-pdf
ℓ(ω) = log p(ω) that can be arbitrarily shifted by a constant.

Given a previous value ωm we want to find a suitable proposal ωm+1 for
the next value of the parameter ω. We adopt a random walk approach with
independent steps sampled from a centred multivariate normal distribution
with variance matrix Ω, i.e., ωm+1 ∼ Nκ (ω

m, Ω). The proposal ωm+1 is then
accepted with probability

α
(
ωm+1,ωm

)
= min

{
1,
p
(
ωm+1

)

p (ωm)

}



Springer Nature 2021 LATEX template

Clusterwise multivariate regression of mixed-type panel data 35

=

{
exp

{
ℓ
(
ωm+1

)
− ℓ (ωm)

}
, if ℓ

(
ωm+1

)
< ℓ (ωm) ,

1, if ℓ
(
ωm+1

)
≥ ℓ (ωm) .

The suitable choice of the variance matrix Ω is crucial as a poor choice results
in an inappropriate exploration of the posterior.

Using a Taylor expansion at ω̂ maximising the (log-)pdf, thus satisfying
∂
∂ω
ℓ (ω̂) = 0, we obtain the following approximation

ℓ (ω) ≈ const.−
1

2
(ω − ω̂)

⊤

[
−
∂2ℓ(ω)

∂ω∂ω⊤

∣∣∣∣
ω=ω̂

]
(ω − ω̂) .

Hence, we want to sample from the pdf which locally (around ω̂) resembles

the pdf of Nκ

(
ω̂,

[
−
∂2ℓ(ω)

∂ω∂ω⊤

∣∣∣∣
ω=ω̂

]−1
)
. Hence, we use the variance matrix

Ω = cω·

[
−
∂2ℓ(ω)

∂ω∂ω⊤

∣∣∣∣
ω=ω̂

]−1

for the multivariate normal distribution to sample

the increment when proposing a new value of ω. We add a multiplicative
constant cω (close to 1) to control the length of the increment steps.

This matrix does not have to be updated in every iteration m. Especially,
once the limiting distribution of the chain is reached, Ω should be more or
less the same and hence should be updated rarely to save computational time.
We also propose several transitions between ωm+1 and ωm to speed up con-
vergence to the limiting distribution and to make better use of the costly
computation of Ω.

To find ω̂ maximising ℓ(ω), we employ the Newton–Raphson method.
Starting from some initial value ω0, e.g., the maximum from the previous step,
we iterate the following steps until convergence:
a) Evaluate the gradient and Hessian matrix of ℓ(ω) at the current value ωk.
b) Use the Cholesky decomposition to solve the following system of

equations: [
−
∂2ℓ(ω)

∂ω∂ω⊤

∣∣∣∣
ω=ωk

]
s =

∂ℓ(ω)

∂ω

∣∣∣∣
ω=ωk

.

c) Use the solution s to define a new value ωk+1 = ωk + s.
d) Check the convergence by computing the norm ∥s∥ of the step s and

continue if still too large.
This procedure yields ω̂ and the basis for the precision matrix Ω−1 of the
incremental distribution.

In the following sections we explore in detail the peculiarities of individual
parameters that require a Metropolis proposal approach for sampling from the
full-conditioned distribution. These include: the log-precision e⋆0 (to sample

e0 > 0), the fixed effects β
(g)
r of categorical outcomes r ∈ R\RNum, the random

effects bi specific to each subject i and the transformed ordered intercepts
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a
(g)
r (to sample the ordered intercepts c

(g)
r and the corresponding probabilities

π
(g)
r ).

B.1 Log-precision parameter e⋆
0

We start with the only univariate parameter – the precision e0 > 0, which has
to be transformed into e⋆0 = log e0 such that it has as domain the whole R.
Equation (A4) transformed into log-scale yields

ℓ(e⋆0|U) = const. + e⋆0ae − be exp{e
⋆
0}+ log Γ(G exp{e⋆0})

− log Γ(G exp{e⋆0}+ n) +
∑

{g:n(g)(U)>0}

log Γ(n(g)(U) + exp{e⋆0})

−G+ log Γ(exp{e⋆0}). (B5)

The first and second derivative of (B5) can be obtained with the use of the
derivatives of the log-Gamma function log Γ, namely the digamma function ψ
and the trigamma function ψ1, both implemented in base R. They take the
following form:

[⋆] = −be +Gψ(G exp{e⋆0})−Gψ(G exp{e⋆0}+ n)

+
∑

{g:n(g)(U)>0}

ψ(n(g)(U) + exp{e⋆0})−G+ψ(exp{e
⋆
0}),

[∗] = G2ψ1(G exp{e⋆0})−G2ψ1(G exp{e⋆0}+ n)

+
∑

{g:n(g)(U)>0}

ψ1(n
(g)(U) + exp{e⋆0})−G+ψ1(exp{e

⋆
0}),

∂ℓ(e⋆0|U)

∂e⋆0
= ae + exp{e⋆0} · [⋆],

∂2ℓ(e⋆0|U)

∂ (e⋆0)
2 = exp{e⋆0} · ([⋆] + exp{e⋆0}[∗]) .

The new e⋆0 is proposed using this combination of a Newton–Raphson step
and a random walk and if accepted, we transform it back to obtain the new
e0 = exp{e⋆0}.

B.2 Fixed effects βr for categorical outcomes

Table B1 contains an overview of the contributions of a single outcome obser-
vation to the log-likelihood depending on the type of the outcome. Moreover,
derivatives with respect to the predictor η (or η) can be further used for deter-
mining the derivatives with respect to fixed and random effects. In this section,
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which is devoted to the fixed effects, we will use that

∂η

∂β
=
∂
(
x⊤β + ηR

)

∂β
= x,

where ηR denotes the random-effects part of the linear predictor.
In the following we present the log-posteriors and their derivatives for the

full-conditioned distribution of the fixed effects β
(g)
r within the g-th group

for a binary, ordinal and general categorical outcome. We start with a binary
outcome, r ∈ RBin:

ℓ
(
β(g)
r

∣∣∣ Y r, U , br; Cr
)
=

∑

{i:Ui=g}

ni∑

j=1

[
Y r
i,jη

r,(g)
i,j − log

(
1 + exp

{
η
r,(g)
i,j

})]

−
1

2

(
β(g)
r − β

(g)
0,r

)⊤
D−1

r

(
β(g)
r − β

(g)
0,r

)
,

∂ℓ
(
β
(g)
r

∣∣∣ Y r, U , br; Cr
)

∂β
(g)
r

=
∑

{i:Ui=g}

ni∑

j=1

[
Y r
i,j − logit−1

(
η
r,(g)
i,j

)]
xr
i,j

− D−1
r

(
β(g)
r − β

(g)
0,r

)
,

−
∂2ℓ

(
β
(g)
r

∣∣∣ Y r, U , br; Cr
)

∂β
(g)
r ∂

(
β
(g)
r

)⊤ =
∑

{i:Ui=g}

ni∑

j=1

[
logit−1

(
η
r,(g)
i,j

)
·

(
1− logit−1

(
η
r,(g)
i,j

))]
xr
i,j

(
xr
i,j

)⊤
+ D−1

r .

Next, the log-posterior and its derivatives of the full-conditioned distribu-

tion of the fixed effects β
(g)
r within the g-th group for an ordinal outcome

r ∈ ROrd are derived:

ℓ
(
β(g)
r

∣∣∣ Y r, U , br, c(g); Cr
)
=

∑

{i:Ui=g}

ni∑

j=1

log
(
pY r

i,j
−1 − pY r

i,j

)

−
1

2

(
β(g)
r − β

(g)
0,r

)⊤
D−1

r

(
β(g)
r − β

(g)
0,r

)
,

∂ℓ
(
β
(g)
r

∣∣∣ Y r, U , br, c(g); Cr
)

∂β
(g)
r

=
∑

{i:Ui=g}

ni∑

j=1

[
1− pY r

i,j
−1 − pY r

i,j

]
xr
i,j

− D−1
r

(
β(g)
r − β

(g)
0,r

)
,

−
∂2ℓ

(
β
(g)
r

∣∣∣ Y r, U , br, c(g); Cr
)

∂β
(g)
r ∂

(
β
(g)
r

)⊤ =
∑

{i:Ui=g}

ni∑

j=1

[
pY r

i,j
−1

(
1− pY r

i,j
−1

)
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Table B1 The contribution of a single observation to the log-likelihood as well as the first and second derivative depending on the type of the
outcome. Formulas for ordinal and categorical outcomes assume Y = k. Categorical outcomes have a multivariate predictor η, the other types work
with a univariate predictor η. Notation follows the one used in Section 2.1

Type ℓ(Y |η, ζ) ∂
∂η
ℓ(Y |η, ζ) − ∂2

∂η∂η⊤ ℓ(Y |η, ζ)

Num − 1
2 log(2π) +

1
2 log τ −

τ
2 (Y − η)

2
τ(Y − η) τ

Bin Y η − log (1 + exp{η}) Y − logit−1(η) logit−1(η)
(
1− logit−1(η)

)

Ord log (qk) = log (pk−1 − pk) 1− pk−1 − pk pk−1 (1− pk−1) + pk (1− pk)

Cat ηk − log

(
1 +

K−1∑
k′=1

exp{ηk′}

)
ek − softmax(η) : if k < K

− softmax(η) : if k = K

diag{softmax(η)}−

softmax(η) softmax(η)⊤
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+pY r
i,j

(
1− pY r

i,j

)]
xr
i,j

(
xr
i,j

)⊤
+ D−1

r .

Analogously, we present these quantities for a general categorical out-
come r ∈ RCat. For a general categorical outcome, we do not only have

different β
(g)
r,k for each of the clusters, but also for different outcome lev-

els k = 1, . . . , Kr − 1. Notice that β
(g)
r,k affects the likelihood regardless of

the outcome value. For that reason, full-conditioned distributions of β
(g)
r,k are

not independent between different values of k. Hence, we stack them into a

long vector β
(g)
r =

(
β
(g)
r,1 , . . . , β

(g)
r,Kr−1

)⊤
that will be sampled at once. The

log-posterior of the full-conditioned distribution of β
(g)
r takes the form of:

ℓ
(
β(g)
r

∣∣∣ Y r, U , br; Cr
)
=

∑

{i:Ui=g}

ni∑

j=1

log

[
η
r,(g)
Y r
i,j

,i,j − log

(
1 +

Kr−1∑

k=1

exp
{
η
r,(g)
k,i,j

})]

−
1

2

(
β(g)
r − β

(g)
0,r

)⊤
D−1

r

(
β(g)
r − β

(g)
0,r

)
.

The first derivative consists of the following subvectors:

∂ℓ
(
β
(g)
r

∣∣∣ Y r, U , br; Cr
)

∂β
(g)
r,k

=

∑

{i:Ui=g}

ni∑

j=1

[
1(Y r

i,j = k)− softmaxk

(
η
r,(g)
i,j

)]
xr
i,j − D−1

r,k

(
β
(g)
r,k − β

(g)
0,r,k

)
.

The negative Hessian matrix consists of the following blocks:

−
∂2ℓ

(
β
(g)
r

∣∣∣ Y r, U , br; Cr
)

∂β
(g)
r,k∂

(
β
(g)
r,k

)⊤ =
∑

{i:Ui=g}

ni∑

j=1

[
softmaxk

(
η
r,(g)
i,j

)

(
1− softmaxk

(
η
r,(g)
i,j

))]
xr
i,j

(
xr
i,j

)⊤
+ D−1

r ,

−
∂2ℓ

(
β
(g)
r

∣∣∣ Y r, U , br; Cr
)

∂β
(g)
r,k1

∂
(
β
(g)
r,k2

)⊤ =

∑

{i:Ui=g}

ni∑

j=1

[
− softmaxk1

(
η
r,(g)
i,j

)
softmaxk2

(
η
r,(g)
i,j

)]
xr
i,j

(
xr
i,j

)⊤
,



Springer Nature 2021 LATEX template

40 Clusterwise multivariate regression of mixed-type panel data

where k, k1, k2 ∈ {1, . . . , Kr − 1} and k1 ̸= k2.
If any part of the fixed effects βr is common to all clusters, we need to

consider the common part and the group-specific part separately. For the
group-specific part the formulae are the same. Only the vector is of lower
dimension because xr

i,j then only contains the subset of regressors for the
group-specific regression coefficients. The effects common to all clusters are
sampled separately conditionally on the group-specific part, which is not part
of the derivative of the predictor η in the same way as the random-effect con-
tribution ηR is not included. The resulting formulae are analogous, however,
they use all the subjects i = 1, . . . , n.

B.3 Random effects bi

Random effects bi are subject-specific, i.e., there is one set of random effects
for each subject i = 1, . . . , n. Hence, only observations belonging to subject
i appear in the full-conditioned distribution of bi. Each bi consists of subvec-
tors bri for each of the outcomes r ∈ R, which are modelled independently
of each other given the random effects. The dependencies among the random
effects bi arise from assuming that they follow a multivariate normal distribu-
tion with general covariance matrix Σ(g) (possibly) specific to cluster g across
subjects. Putting all of this together yields the following log-posterior of the
full-conditioned distribution of bi:

ℓ
(
bi

∣∣∣Yi, Ui = g, ζ(g); Ci
)
= const. + log

∣∣∣Σ−(g)
∣∣∣− 1

2
b⊤i Σ

−(g)bi

−
∑

r∈RNum

τ
(g)
r

2

ni∑

j=1

(
Y r
i,j − η

r,(g)
i,j

)2

+
∑

r∈RBin

ni∑

j=1

[
Y r
i,jη

r,(g)
i,j − log

(
1 + exp

{
η
r,(g)
i,j

})]

+
∑

r∈ROrd

ni∑

j=1

log
(
pY r

i,j
−1 − pY r

i,j

)

+
∑

r∈RCat

ni∑

j=1

log

[
η
r,(g)
Y r
i,j

,i,j − log

(
1 +

Kr−1∑

k=1

exp
{
η
r,(g)
k,i,j

})]
.

Subvectors bri (or bri,k if random effects are specific to each level of general

categorical outcome r) hide within the predictor η
r,(g)
i,j (or η

r,(g)
k,i,j for general

categorical outcome r). We use the following derivatives

∂η

∂bri
=
∂
(
ηF + z⊤bri

)

∂bri
= z
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in combination with the derivatives in Table B1 to compute the derivatives
of full-conditioned log-posterior of bi with respect to subvectors bri . In case
that bri are common to all (except the last) categorical outcome values k =
1, . . . , Kr − 1, the first derivative ∂ℓ (bi| · · · ) /∂bi takes the following block
form:




...

τ
(g)
r

ni∑
j=1

(
Y r
i,j − η

r,(g)
i,j

)
zr
i,j , r ∈ RNum

...
ni∑
j=1

[
Y r
i,j − logit−1

(
η
r,(g)
i,j

)]
zr
i,j , r ∈ RBin

...
ni∑
j=1

[
1− pY r

i,j
−1 − pY r

i,j

]
zr
i,j , r ∈ ROrd

...

ni∑
j=1


1(Y

r
i,j ̸= Kr)−

Kr−1∑
k=1

exp
{
η
r,(g)
k,i,j

}

1 +
Kr−1∑
k=1

exp
{
η
r,(g)
k,i,j

}


 zr

i,j , r ∈ RCat

...




−Σ−(g)bi.

However, if the random effects bri,k are specific to each level k = 1, . . . , Kr − 1
(the last Krth one is always zero for identifiability purposes) of the general
categorical outcome we would replace the row corresponding to an outcome
r ∈ RCat with

(
∂ℓ (bi| · · · )

∂bri,k

)

k=1, ..., Kr−1

=

(
ni∑

j=1

[
1(Y r

i,j = k)− softmaxk

(
η
r,(g)
i,j

)]
zr
i,j

)

k=1, ..., Kr−1

+ · · · ,

where · · · in expression above stands for corresponding elements of −Σ−(g)bi
coming from the prior distribution.

With regard to the Hessian matrix it is again better to deal with the two
contributions separately. The basis of the negative Hessian matrix is formed by
Σ−(g). The other contribution comes in the form of a block-diagonal matrix,
where the diagonal structure comes from the fact that bri among different
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outcomes r ∈ R do not interact within the model specification, i.e.,

∂2ℓ (bi| · · · )

∂br1i ∂ (b
r2
i )

⊤
= OdR

r1
×dR

r2
for r1, r2 ∈ R : r1 ̸= r2.

Below is the list of diagonal blocks except for the contribution of Σ−(g):

τ (g)r

ni∑

j=1

zr
i,j

(
zr
i,j

)⊤
, r ∈ RNum,

ni∑

j=1

[
logit−1

(
η
r,(g)
i,j

)(
1− logit−1

(
η
r,(g)
i,j

))]
zr
i,j

(
zr
i,j

)⊤
, r ∈ RBin,

ni∑

j=1

[
pY r

i,j
−1

(
1− pY r

i,j
−1

)
+ pY r

i,j

(
1− pY r

i,j

)]
zr
i,j

(
zr
i,j

)⊤
, r ∈ ROrd,

ni∑

j=1

[
softmaxk

(
η
r,(g)
i,j

)(
1− softmaxk

(
η
r,(g)
i,j

))]
zr
i,j

(
zr
i,j

)⊤
, r ∈ RCat,

ni∑

j=1

[
− softmaxk1

(
η
r,(g)
i,j

)
softmaxk2

(
η
r,(g)
i,j

)]
zr
i,j

(
zr
i,j

)⊤
, r ∈ RCat,

where k, k1, k2 ∈ {1, . . . , Kr−1} and k1 ̸= k2. In the case when bri is common
to all levels k = 1, . . . , Kr − 1 of a general categorical outcome r ∈ RCat the
corresponding block is equal to

ni∑

j=1

Kr−1∑
k=1

exp
{
η
r,(g)
k,i,j

}

(
1 +

Kr−1∑
k=1

exp
{
η
r,(g)
k,i,j

})2 zr
i,j

(
zr
i,j

)⊤
.

B.4 Transformed ordered intercepts a for ordinal
outcomes

The prior distribution for parameter c is specified through the probabilities
π by (7). Specifying the prior for the probabilities allows for a more straight-
forward inclusion of prior knowledge. Both c and π cannot directly be used
in combination with a Metropolis proposal without taking into account the
limitation of the corresponding parametric space. Hence, we transform the
parameter a in the following way:

πk = softmaxk(a) :=
eak

K∑
k′=1

eak′

,
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with ak = log(πk/πK), k = 1, . . . ,K − 1 and aK = 0, thus implying

ck = log
ea1 + · · ·+ eak

eak+1 + · · ·+ eaK−1 + 1
, ak = log

logit−1 (ck)− logit−1 (ck−1)

1− logit−1 (cK−1)

for k = 1, . . . , K − 1. Note that we dropped the outcome index r and the
superscript (g) for the g-th cluster for simplicity. The prior (8) over π translates
to the following form in terms of a:

p (a) ∝
K∏

k=1

(πk)
αk−1 ·

K∏

k=1

eak

K∑
k′=1

eak′

=

K∏

k=1

(softmaxk(a))
αk .

The logarithm of this can be easily differentiated:

log p (a) =

K∑

k=1

αkak − (α1 + · · ·+ αK) log

(
1 +

K−1∑

k=1

exp{ak}

)
,

∂ log p (a)

∂a
= α− (α1 + · · ·+ αK) softmax(a),

−
∂2 log p (a)

∂a∂a⊤
= (α1 + · · ·+ αK)

(
diag{softmax(a)} − softmax(a) softmax(a)⊤

)
.

The parameter vector a = (a1, . . . , aK−1) ∈ RK−1 is not restricted. Hence,
we can propose a new value for a using a usual Metropolis proposal step
and obtain c or π using the backward transformation described above. The

log-posterior of the full-conditioned distribution of a
(g)
r takes the following

form:

ℓ
(
a(g)
r

∣∣∣Y r, U , br, β(g)
r ; Cr

)
= const. + log p

(
a(g)
r

)
+

+
∑

{i:Ui=g}

ni∑

j=1

log
[
logit−1

(
η
r,(g)
i,j − cY r

i,j
−1

(
a(g)
r

))

︸ ︷︷ ︸
pY r

i,j
−1

(
a

(g)
r

)

−

logit−1
(
η
r,(g)
i,j − cY r

i,j

(
a(g)
r

))

︸ ︷︷ ︸
pY r

i,j

(
a

(g)
r

)

]
.

Focusing on outcome r ∈ ROrd and group g we strip away the nuisance indices
to obtain the expression
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ℓ (a | · · · ) = const. + log p (a) +
∑

{i:Ui=g}

ni∑

j=1

K∑

k=1

1(Yi,j = k)·

log

[
logit−1

(
ηi,j − log

ea1 + · · ·+ eak−1

eak + · · ·+ eaK−1 + 1

)

︸ ︷︷ ︸
pk−1

− logit−1

(
ηi,j − log

ea1 + · · ·+ eak

eak+1 + · · ·+ eaK−1 + 1

)

︸ ︷︷ ︸
pk

]
.

Before we obtain its derivatives, we first present the derivatives of the
probabilities pk and qk = pk−1 − pk (remember also 1 = p0 > p1 > · · · > pK =
0) with respect to al:

∂pk1

∂ck2

=
∂ logit−1(η − ck1)

∂ck2

=

{
−pk(1− pk), if k = k1 = k2 = 1, . . . , K − 1,

0, otherwise,

∂ck
∂al

=





eal

ea1 + · · ·+ eak
, if 1 ≤ l ≤ k ≤ K − 1,

−eal

eak+1 + · · ·+ eaK−1 + 1
, if 1 ≤ k < l ≤ K − 1,

0, otherwise,

∂ log(pk−1 − pk)

∂al
= −

1

pk−1 − pk

[
pk−1(1− pk−1)

∂ck−1

∂al
− pk(1− pk)

∂ck
∂al

]
,

for k = 1, . . . , K, and l = 1, . . . ,K − 1.
Finally, we can evaluate the gradient of the log-posterior of the full-

conditioned distribution of the parameter a
(g)
r by

∂ℓ (a | · · · )

∂a
=
∂ log p (a)

∂a
−

∑

{i:Ui=g}

ni∑

j=1

K∑

k=1

1(Yi,j = k)
pk−1(1− pk−1)

∂ck−1

∂a
− pk(1− pk)

∂ck
∂a

pk−1 − pk

for a specific choice of ordinal outcome r ∈ ROrd and group g.
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Next, we determine the second derivatives of ck with respect to al1 and al2
for 1 ≤ l1 ≤ l2 ≤ K − 1

∂2ck
∂al1∂al2

=





∂ck
∂al

(
1−

∂ck
∂al

)
if 1 ≤ l = l1 = l2 ≤ k ≤ K − 1,

∂ck
∂al

(
1 +

∂ck
∂al

)
if 1 ≤ k < l = l1 = l2 ≤ K − 1,

−
∂ck
∂al1

∂ck
∂al2

if 1 ≤ l1 < l2 ≤ k ≤ K − 1,

−
∂ck
∂al1

∂ck
∂al2

if 1 ≤ k < l1 < l2 ≤ K − 1,

0 otherwise.

Now we can proceed with the second derivatives of individual model contribu-
tions for k = 1, . . . , K and l1, l2 = 1, . . . , K − 1.

−
∂2 log(pk−1 − pk)

∂al1∂al2
=

∂2ck−1

∂al1∂al2

pk−1(1− pk−1)

pk−1 − pk
−

−
∂2ck

∂al1∂al2

pk(1− pk)

pk−1 − pk
+

+
∂ck−1

∂al1

∂ck−1

∂al2

pk−1(1− pk−1)[p
2
k−1 + pk(1− 2pk−1)]

(pk−1 − pk)2
−

−
∂ck−1

∂al1

∂ck
∂al2

pk−1(1− pk−1)pk(1− pk)

(pk−1 − pk)2
+

+
∂ck
∂al1

∂ck
∂al2

pk(1− pk)[p
2
k + pk−1(1− 2pk)]

(pk−1 − pk)2
−

−
∂ck
∂al1

∂ck−1

∂al2

pk−1(1− pk−1)pk(1− pk)

(pk−1 − pk)2
.

Finally, we can express the negative Hessian matrix of the log-posterior of the

full-conditioned distribution of the parameter a
(g)
r in the following way:

−
∂2ℓ (a | · · · )

∂a∂a⊤
= −

∂2 log p (a)

∂a∂a⊤
−

∑

{i:Ui=g}

ni∑

j=1

K∑

k=1

1(Yi,j = k)
∂2 log(pk−1 − pk)

∂a∂a⊤

for a specific choice of ordinal outcome r ∈ ROrd and group g.
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