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Abstract In this paper, we investigate the empirical likelihood and estimation of pa-

rameters of interest in single-index varying coefficient models with right censored data. A

bias-corrected empirical log-likelihood ratio statistic for the regression parameter is proposed.

It is shown the the statistic is asymptotically standard chi-squared, and thus the confidence

region of the regression parameter is constructed. The estimators for both the regression param-

eter and the coefficient functions are constructed, their asymptotic distributions are obtained,

and the consistent estimators for the asymptotic variances are given. The obtained results

can be directly used to construct the confidence regions of the regression parameter and the

pointwise confidence intervals of the coefficient functions. Our approach is to directly calibrate

the empirical log-likelihood ratio, so that the resulting ratio is asymptotically chi-squared, un-

dersmoothing of the coefficient functions is avoided, and the existing data-driven methods can

effectively select the optimal bandwidth. The finite-sample behavior of the new methods is

evaluated through simulation studies, and applications to a real data are illustrated.
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1 Introduction

Consider the single-index varying-coefficient model of the form

Y = gT (βT
0 X)Z + ε, (1.1)

where (X,Z) ∈ Rp × Rq are covariates of the response variable Y , β0 is a p × 1 vector of

unknown parameters, g(·) is a q × 1 vector of unknown coefficient functions, ε is a random

error with E(ε|X,Z) = 0 almost surely. To assure the identifiability of model (1.1), we assume

that ∥β0∥ = 1 and that the first nonzero component of β0 is positive, where ∥ · ∥ denotes the

Euclidean metric. Generally, the first component of Z may be 1.

This paper assumes that response Y is a positive random variable and Y is right censored.

That is, instead of Y , we observe V = min{Y, C} and the indicator ∆ = I(Y ≤ C) of the event

(Y ≤ C), where C is a random variable with distribution function G(t) = P (C ≤ t). Let Y has

distribution function F (y) = P (Y ≤ y), and let G(t) and F (y) be continuous but unknown.

Suppose that, given X and Z, the variable C is independent of Y . For the distribution function

G(t), let G(t) = 1 − G(t) and bG = sup{t|G(t) < 1}. The two symbols can also be used for

other distribution functions. We assume throughout the paper that bF ≤ bG.

The major advantage of (1.1) is that it does not suffer from the curse of dimensionality which

is often encountered in multivariate nonparametric settings, since g(·) is a vector of univariate

functions. Model (1.1) includes a class of important statistical models. Several special examples

of this model are given below. If Z = 1, (1.1) reduces to the single-index models, which were

investigated by many scholars, see for example, Härdle et al. (1993), Ichimura (1993), Weisberg

and Welsh (1994), Zhu and Fang (1996), Chiou and Müller (1998), Hristache et al. (2001), Xue

and Zhu (2006), and Cui et al. (2011). If β0 = 1, (1.1) becomes the varying-coefficient models

studied by many scholars, some works include: Chen and Tsay (1993), Hastie and Tibshirani

(1993), Wu et al. (1998), Fan and Zhang (1999), Cai et al. (2000a, 2000b), and Xue and Zhu

(2007). If the last component of β0 to be non-zero and Z = (1, X̆T )T where X̆ is the remaining

vector of X with its pth component deleted, (1.1) becomes the adaptive varying-coefficient

linear model proposed by Fan et al. (2003). The model was also studied by Lu et al. (2007).

Xia and Li (1999) considered the generic case for this model. owing to model (1.1) takes into
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account the characteristics of single exponential model and variable coefficient model, so it is

easier to interpret in real application.

In no censored case, Xue and Wang (2012) developed statistical inference techniques for the

unknown coefficient functions and regression parameter in model (1.1). We first estimated the

coefficient functions via the local linear fitting, then constructed the estimated and adjusted

empirical likelihood (EL) ratios and a maximum EL estimator for the regression parameter,

and proved their asymptotic properties. Xue and Pang (2013) investigated the estimators

of parameters of interest for model (1.1). We constructed the estimators for the regression

parameter and the coefficient functions, and proved their asymptotic properties. Huang and

Zhang (2013) studied the profile EL inferences for model (1.1). They constructed the profile

EL ratio for each component of the relevant parameter as well as the corrected EL ratio for

coefficient functions, and proved the resulting statistics are asymptotically chi-squared.

It is interesting to model the right censored data with model (1.1). Since the semi-parametric

regression model with the censored data has both parametric components and unknown func-

tions, and the distribution functionG(t) is also unknown, it needs to replace it with its estimator

when constructing EL ratio, which brings a bias. Without eliminating the bias, the constructed

EL ratio is not standard chi-square, and it cannot be directly used to construct the region of

the parameter of interest. Therefore, we need to bias-correct the EL ratio. That is our motiva-

tion to study this question. This paper aims to propose a bias correction method to construct

the EL ratio and estimation of the parameters of interest in model (1.1). We propose a bias-

corrected empirical log-likelihood ratio statistic for the regression parameter, and prove Wilks’

phenomenon. Therefore, the confidence region of the regression parameter can be constructed.

We construct the estimators of the regression parameter and the coefficient functions. Their

asymptotic distributions are obtained, and the consistent estimators of the asymptotic variance

are presented. The obtained results can be directly used to construct the confidence region of

the regression parameter and the pointwise confidence intervals of the coefficient functions.

The following two desired features deserve mentioning. First, we directly calibrate the EL

ratio so that the resulting EL ratio is asymptotically chi-squared. The ratio does not need to be

multiplied by an adjustment factor. This avoids estimating the unknown adjustment factor, and
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thus improves the accuracy of the confidence region/interval. Second, by using bias correction

method in constructing the EL ratio and estimator, undersmoothing of the coefficient functions

is avoided, so that existing data-driven algorithms can be used to select the optimal bandwidth

of the estimators of coefficient functions.

The structure of the rest of this paper is as follows. Section 2 is the methodology, which

constructs the bias-corrected EL ratio and the maximum EL estimate of the regression param-

eter, and constructs a local linear estimates for the coefficient functions. Section 3 gives some

theoretical results. Section 4 shows the simulation studies and a real data analysis. Section 5

is the conclusion remark. The proofs of the theorems are placed in Appendix A.

2 Methodology

In this section, we first construct a local linear estimator of the coefficient function g(u), then

construct a bias-corrected EL ratio and a maximum EL estimator for the regression parameter

β0. Throughout this paper, we assume that the sample {(Xi, Zi, Vi,∆i), 1 ≤ i ≤ n} from

(X,Z, V,∆) are independent and identically distributed. Then, model (1.1) can be written as

Yi = gT (βT
0 Xi)Zi + εi, i = 1, . . . , n, (2.1)

where Xi = (Xi1, . . . , Xip)
T , Zi = (Zi1, . . . , Ziq)

T , and E(εi|Xi, Zi) = 0 almost surely. Write

W = (XT , ZT )T and Wi = (XT
i , Z

T
i )

T , i = 1, . . . , n.

2.1 Bias-corrected EL ratio

Let B = {β ∈ Rp : ∥β∥ = 1, and the first non-zero element is positive}. Then β0 is an

inner point of the set B. Therefore, we only need to search for β0 over B. It is easy to obtain

E
[
{∆/G(V )}{V − gT (βT

0 X)Z}|X,Z
]
= E(ε|X,Z) = 0. If g(·) is known, the single-index

direction β0 minimizes

Q(β) ≡ E
[
{∆/G(V )}{V − gT (βTX)Z}

]2
subject to ∥β∥ = 1. (2.2)

If we use the Newton’s algorithm to find the minimum point of Q(β), we need to calculate

the derivative of Q(β) at point β0. However, each component of g(βTX) has no a derivative
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at the point β0, because ∥β0∥ = 1 means that β0 is the boundary point on the unit sphere.

For this, we suggest to reparametrize β0, so that we can search the direction β0 over a region

in the Euclidean space Rp−1. A “reparametrization” method for β0 can be applied; see, for

example Yu and Ruppert (2002), Wang et al. (2010), and Xue and Pang (2013). Without loss

of generality, we may assume that the rth component for the true parameter β0 is positive.

For β = (β1, . . . , βp)
T , let β(r) = (β1, . . . , βr−1, βr+1, . . . , βp)

T be a p− 1 dimensional parameter

vector after removing the rth component βr in β. Then, the new parameter β
(r)
0 must satisfy

the constraint ∥β(r)
0 ∥ < 1, and hence β is infinitely differentiable in a neighborhood of β

(r)
0 .

Noting that βr = (1− ∥β(r)∥2)1/2, the Jacobian matrix of β with respect to β(r) is obtained by

Jβ(r) =
∂β

∂β(r)
= (γ1, . . . , γp)

T , (2.3)

where γs (1 ≤ s ≤ p, s ̸= r) is a p − 1 dimensional unit vector with sth component 1, and

γr = −(1− ∥β(r)∥2)−1/2β(r).

Now we consider the issue of minimizing Q(β) in (2.2). It is clear that minimizing Q(β) is

equivalent to solving the estimating equations




E
[
{∆/G(V )}{V − gT (βTX)Z}ġT (βTX)ZJT

β(r)X
]
= 0,

∥β∥ − 1 = 0,

(2.4)

where ġ(·) stands for the derivative of the coefficient function g(·). By (2.4), we introduce the

following auxiliary random vectors:

η∗i (β
(r)) = {∆i/G(Vi)}{Vi − gT (βTXi)Zi}ġT (βTXi)ZiJ

T
β(r)Xi, i = 1, . . . , n, (2.5)

Note that E{η∗i (β
(r)
0 )} = 0. Hence, we can define an empirical log-likelihood ratio of β

(r)
0 ,

say l∗(β
(r)
0 ), which is asymptotically chi-squared (Owen, 1990). However, l∗(β

(r)
0 ) cannot be

directly used to make statistical inference on β
(r)
0 because it contains the unknown functions

G(·), g(·) and ġ(·). A natural way is to replace G(·), g(·) and ġ(·) in l∗(β
(r)
0 ) by their estimators,

respectively. We use the Kaplan-Meier estimator Gn(v) of G(v). That is,

Gn(v) = 1−
n∏

i=1

(
n− i

n− i− 1

)I{V(i)≤v,∆(i)=0}

, (2.6)

where V(1) ≤ . . . ≤ V(n) are the order statistics of the V -sample, and ∆(i) is the ∆ associated

with V(i), i = 1, . . . , n. Let ViG = Vi∆i/{1−G(Vi)}. We can get E(ViG|Xi, Zi) = E(Yi|Xi, Zi),
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i = 1, . . . , n. Hence, under model (1.1), we have

ViG = gT (βT
0 Xi)Zi + ei, i = 1, . . . , n,

where ei = ViG − E(ViG|Xi, Zi), i = 1, . . . , n. For the above mode and the fixed point

β0, we apply the local linear fitting technique to estimate the coefficient function g(u) =

(g1(u), . . . , gq(u))
T and its derivative function ġ(u) = (g′1(u), . . . , g

′
q(u))

T . For any U in a small

neighborhood of u, one can approximate gj(U) locally by the linear functions

gj(U) ≈ gj(u) + g′j(u)(U − u) ≡ aj + bj(U − u), j = 1, . . . , q.

Let {(âj, b̂j), j = 1, . . . , q} be the solution to the weighted least-squares problem

n∑

i=1


ViGn

−
q∑

j=1

{
aj + bj(β

T
0 Xi − u)

}
Zij



2

Kh(β
T
0 Xi − u),

where Gn(·) is defined in (2.6), Kh(·) = h−1K(·/h), K(·) is a kernel function, h = hn is a

bandwidth and h > 0. Then the local linear estimators for gj(u) and g′j(u) are defined as

ĝj(u; β0) = âj and ĝ′j(u; β0) = b̂j at a given β0, It follows from the least squares theory that

(
ĝT(u; β0), hˆ̇g

T
(u; β0)

)T

= {DT (u; β0)Ω(u; β0)D(u; β0)}−1DT (u; β0)Ω(u; β0)V Gn
, (2.7)

where ĝ(u; β0) = (ĝ1(u; β0), . . . , ĝq(u; β0))
T , ˆ̇g(u; β0) = (ĝ′1(u; β0), . . . , ĝ

′
q(u; β0))

T ,

D(u; β0) =




ZT
1 h−1(βT

0 X1 − u)ZT
1

...
...

ZT
n h−1(βT

0 Xn − u)ZT
n



, (2.8)

Ω(u; β0) = diag(Kh(β
T
0 X1 − u), . . . , Kh(β

T
0 Xn − u)) and V Gn

= (V1Gn
. . . , VnGn

)T . From (2.7)

we obtain the initial estimators of g(u) and ġ(u), namely,

ĝ(u; β0) =
n∑

i=1

Wni(u; β0)ViGn
and ˆ̇g(u; β0) =

n∑

i=1

W̃ni(u; β0)ViGn
, (2.9)

where

(Wn1(u; β0), . . . ,Wnn(u; β0)) = (Iq,0q){DT (u; β0)Ω(u; β0)D(u; β0)}−1DT (u; β0)Ω(u; β0),

(W̃n1(u; β0), . . . , W̃nn(u; β0)) = h−1(0q, Iq){DT (u; β0)Ω(u; β0)D(u; β0)}−1DT (u; β0)Ω(u; β0),
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Iq is p × q identity matrix and 0q is q × q zero matrix. Therefore, we can obtain a random

vector η̃∗i (β0) by substituting G(·), g(·) and ġ(·) of η∗i (β0) with Gn(·), ĝ(u; β0) and ˆ̇g(u; β0),

which leads to an empirical log-likelihood ratio of β0, say l̃∗(β0). It is can proved that the ratio

has a asymptotic distribution of a weighted sum of independent chi-square distributions. each

with one degree of freedom and an unknown weight. It cannot be directly used for the statistical

inference of β0. Thus, l̃
∗(β0) needs to be adjusted by multiplying an adjustment factor.

Below we adopt an alternative approach to construct the EL ratio function of β(r). We can

introduce the random vectors

η̃i(β
(r)) =

∆i

Gn(Vi−)
{Vi − ĝT (βTXi; β)Zi}ˆ̇g

T
(βTXi; β)ZiJ

T
β(r)Xi, i = 1, · · · , n,

and construct an empirical log-likelihood ratio of β
(r)
0 , say l̃(β

(r)
0 ). However, the asymptotic

distribution of l̃(β
(r)
0 ) is not standard chi-squared. Actually, l̃(β

(r)
0 ) is asymptotically a weighted

sum of independent χ2-variables. It cannot be directly used for the statistical inference of β
(r)
0 .

Now, we directly construct a bias-corrected empirical log-likelihood ratio statistic of β
(r)
0

such that the statistic converges in distribution to a standard χ2-variable with p− 1 degrees of

freedom. Since the estimators Gn(·) and ĝ(·; β) are used, there exist the biases Gn(·) − G(·)

and ĝ(·; β)− g(·) in η̃i(β). To reduce the biases, we use the bias correction method. Let

ϕn(Wi, Vi; β
(r)) = w(βTXi){Vi − ĝT (βTXi; β)Zi}ˆ̇g

T
(βTXi; β)Zi

× JT
β(r){Xi − µ̂T (βTXi, Zi; β)}, (2.10)

where Wi = (XT
i , Z

T
i )

T , i = 1, . . . , n, Jβ(r) , ĝ(·; β) and ˆ̇g(·; β) are defined in (2.3) and (2.9),

respectively, w(·) is an indicator function on the bounded support of the distribution of βT
0 X,

which is used to control the boundary effect in the estimations ĝ(·; β), ˆ̇g(·; β) and µ̂(·, z; β0),

and µ̂(·, z; β0) is a Nadaraya-Watson estimation of µ(u, z) = E(X|βT
0 X = u, Z = z). That is,

µ̂(u, z; β0) =
n∑

i=1

Wni(u, z)Xi, (2.11)

where

Wni(u, z; β0) =

K
(
βT
0 Xi − u

b1/(q+1)
,
Zi − z

b1/(q+1)

)

n∑

i=1

K
(
βT
0 Xi − u

b1/(q+1)
,
Zi − z

b1/(q+1)

) ,
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K(·, ·) is a kernel function on Rq+1, and b = bn is a bandwidth with 0 < b < 1 and b → 0. Let

ϕ̃n(s; β
(r)) =

∫

v≥s

∫

w∈Rp+q+1
ϕn(w, y; β

(r))Fn(dw, dv), (2.12)

where

Fn(w, v) =
∫

t≤v

∫

s≤w

1

Gn(t−)
F ∗
n(ds, dt). (2.13)

and

F ∗
n(w, v) =

1

n

n∑

i=1

I(Wi ≤ w, Vi ≤ v,∆i = 1). (2.14)

Here for any two vectors a = (a1, . . . , ad)
T and b = (b1, . . . , bd)

T , the inequality a ≤ b, means

that ai ≤ bi, i = 1, . . . , d. We introduce the auxiliary random vectors

η̂i(β
(r)) =

∆i

Gn(Vi−)
ϕn(Wi, Vi; β

(r)) +
1−∆i

Hn(Vi−)
ϕ̃n(Vi; β

(r))

−
∫ ∞

−∞

I(Vi ≥ s)

H
2
n(s−)

ϕ̃n(s; β
(r))dH0n(s), i = 1, . . . , n, (2.15)

where Hn(·) = 1−Hn(·),

Hn(v) =
1

n

n∑

i=1

I(Vi ≤ v),

H0n(v) =
1

n

n∑

i=1

I(Vi ≤ v,∆i = 0),

and Gn(·), ϕn(·, ·; β(r)) and ϕ̃n(·; β(r)) are defined in (2.6), (2.10) and (2.12), respectively. Thus,

a bias-corrected empirical log-likelihood ratio function for β(r) is defined as

l̂(β(r)) = −2 max
p1,...,pn

{
n∑

i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑

i=1

pi = 1,
n∑

i=1

piη̂i(β
(r)) = 0

}
. (2.16)

Remark 1. The latter two items on the right side of (2.15) play a very important role

in the bias correction, which is mainly used to reduce the bias caused by Gn(·) − G(·). The

centralization of X in ϕn(Wi, Vi; β
(r)) also plays a important role in the bias correction, which

is mainly used to reduce the bias caused by ĝ(·; β) − g(·). See the proof of Lemma 4 in the

supporting materials. Just because we use the bias correction method to construct the EL

ratio l̂(β(r)), the asymptotic distribution of l̂(β
(r)
0 ) is a standard chi-square distribution with p

degrees of freedom. The result is given in Theorem 2 of Section 3.
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2.2 The estimation of regression parameter

We can maximize {−l̂(β(r))} to obtain an estimator of β
(r)
0 , say β̂(r). According to Qin

and Lawless (1994), β̂(r) is asymptotically equivalent to the solution of the estimating equation
n∑

i=1

η̂i(β
(r)) = 0. From (2.15), we have

Q̂(β(r)) ≡ 1

n

n∑

i=1

η̂i(β
(r))

=
1

n

n∑

i=1

∆i

Gn(Vi−)
ϕn(Wi, Vi; β

(r)) +
∫ ∞

−∞

1

Hn(s−)
ϕ̃n(s; β

(r))dH0n(s)

−
∫ ∞

−∞

Hn(s−)

H
2

n(s−)
ϕ̃n(s; β

(r))dH0n(s)

=
1

n

n∑

i=1

∆i

Gn(Vi−)
ϕn(Wi, Vi; β

(r)) ≡ Q̂∗(β(r)). (2.17)

From ∥β0∥ = 1, we can obtain an estimator of β0, say β̂. Therefore, β̂ is asymptotically

equivalent to the solution of the estimating equations





Q̂∗(β(r)) = 0,

∥β∥ − 1 = 0.

(2.18)

An iterative algorithm is widely used for solving the estimating equations (2.18). From

(A.25) in the proof of Theorem 3, we can give an iteration formula for calculating the estimate

of β0. That is,

β̌ = β̃ + Jβ̃(r)

√
nÃ−(β̃(r))Q̂∗(β̃(r)), (2.19)

where Q̂∗(·) is defined by (2.17),

Ã(β̃(r)) =
1

n

n∑

i=1

∆iw(β̃
TXi)

Gn(Vi−)
{ˆ̇gT

(β̃TXi; β̃)Zi}2JT
β̃(r){Xi − µ̂(β̃TXi, Zi; β̃)}⊗2Jβ̃(r) , (2.20)

Gn(·), ˆ̇g(·; β̃) and µ̂(·, ·; β̃) are defined in (2.6), (2.9) and (2.11), respectively, Ã− is a generalized

inverse of Â and ξ⊗2 = ξξT for any vector ξ. This iterative algorithm solves (2.18) and is

identical to the Fisher’s method of scoring version of the Newton-Raphson algorithm for solving

the estimating equation.

We now outline the algorithm for estimation β0 and g(·).

Step 0 (Initialization step): Specify an initial value β̂0 with ∥β̂0∥ = 1.

Step 1: For a given β, compute estimate g(·) and ġ(·) by formula (2.9).
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Step 2: Estimate β using the formula (2.19), and get an estimate β̂.

Step 3: Using the estimate β̂ to obtain the final estimate of g(·), say ĝ∗(u) = ĝ(u, β̂).

For narrative purposes, we call the above method the reparametric EL method (RELM).

Remark 2. The basic idea behinds the foregoing algorithm is simple: estimate g(·) and

ġ(·) locally via (2.9), and then use all of the data and (2.19) to estimate β0, with ĝ(·; β) and

ˆ̇g(·; β) replacing g(·) and ġ(·). The estimation procedure involves choosing the bandwidth. In

step 1, we first select the bandwidth using the initial value β̂0, then use the estimate of β0 in

the each iteration to select the bandwidth, and use the bandwidth to estimate g(·) and ġ(·) for

a given β using formula (2.9).

Remark 3. It is worth mentioning that the reparametrization approach plays a very

important role in constructing the estimator of β0. Since we use this approach for β0, the

resulting estimator β̂ is more efficient than other estimators. To compare the advantages of the

above estimation methods, we present an alternative method to estimate β0.

We may solve the estimating equation

n∑

i=1

η̃i(β) = 0 (2.21)

to get an estimator of β0, say β̂∗, where

η̃i(β) =
1

n

n∑

i=1

∆iw(β̃
TXi)

Gn(Vi−)
{Vi − ĝT (βTXi; β)Zi}ˆ̇g

T
(βTXi; β)Zi{Xi − µ̂(βTXi, Zi; β),

Gn(·), ĝ(·; β), ˆ̇g(·; β), w(·) and µ̂(·, ·; β) are defined by (2.6), (2.9), (2.10) and (2.11), respec-

tively. In Theorem 4 of Section 3, we will show the asymptotic normality of β̂∗.

For narrative purposes, we call the above method the reparametrize estimating equation

method (NREEM). We will compare the execution effects of RELM and NREEM in the simu-

lation study.

3 Main results

To obtain the asymptotic behaviors of the estimators, we first give the following conditions.
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(C1) The density function of βTX, fβ(u), is bounded away from zero for u ∈ Uw and β

near β0, and satisfies the Lipschitz condition of order 1 on Uw, where Uw is a compact

support of w(u). The distribution of Z has a compact support Z.

(C2) The functions gj(u), 1 ≤ j ≤ q, have bounded and continuous second derivatives on

Uw, where gj(u) is the jth component of g(u).

(C3) For β near β0, the matrix Φ(u; β) = E(ZZT |βTX = u) is positive definite, the (j, k)-th

element of Φ(u; β), 1 ≤ j, k ≤ q, is bounded away from zero, and satisfy the Lipschitz

condition of order 1 on Uw. Also, the (j, k)-th element ωjk(u; β) of the matrix Ω(u; β),

1 ≤ j, k ≤ p, is continuous at u0 ∈ Uw, where Ω(u; β) and Uw are defined in Theorem

6 and condition (C1), respectively.

(C4) The joint density function of (βTX,Z), fβ(u, z), is bounded away from zero on Uw×Z,

where Uw and Z are defined in condition (C1). The functions fβ(u, z) and µj(u, z) have

bounded partial derivatives up to order 2(q+ 1), where µj(u, z) is the jth components

of µ(u, z) = E(X|βTX = u, Z = z) for β near β0, and j = 1, . . . , p.

(C5) The kernel K(u) is a bounded symmetric probability density function with a support

[−1, 1], satisfying the Lipschitz condition, and
∫ 1

−1
u2K(u)du ̸= 0. The kernel K(u, z)

is a real-valued function of bounded variation, and is a right continuous probability

density function of order q + 1 with support contained [−1, 1]q+1.

(C6) The bandwidths h and b satisfy h = c1n
−1/5 and b = c2n

−1/5 for c1 > 0 and c2 > 0.

(C7) sup
u,z

E[{∥X∥2/G(Y )}| βTX = u, Z = z] < ∞, sup
x,z

E[{ε4/G(Y )}|X = x, Z = z] < ∞,

where β near β0.

Remark 4. Condition (C1) is used to bound the density function of βTX away from zero.

This ensures that the denominators of ĝ(u; β) and ˆ̇g(u; β) are, with high probability, bounded

away from 0 for u ∈ Uw. Conditions (C2)–(C4) are the standard smoothness and continuous

conditions. Condition (C5) is the common assumption for the kernel functions. Condition (C6)

gives the optimal bandwidth for estimating g(u) and β0. Condition (C7) is the usual component

condition.

We first state the uniform convergence rates of the estimators of g(·) and ġ(·).

11



Theorem 1. Suppose that conditions (C1)–(C3) and (C5)–(C7) hold. Then

sup
u∈Uw,β∈Bn

∥ĝ(u; β)− g(u)∥ = OP

(
n−2/5

√
log n

)

and

sup
u∈Uw,β∈Bn

∥ˆ̇g(u; β)− ġ(u)∥ = OP

(
n−1/5

√
log n

)
,

where Bn = {β| ∥β − β0∥ ≤ c1n
−1/2} for some positive constant c1, ĝ(u; β) and ˆ̇g(u; β) are

defined in (2.9), and ġ(u) = (g′1(u), . . . , g
′
q(u))

T .

The asymptotic property of l̂(β0) defined by (2.16) is as follows.

Theorem 2. Suppose that conditions (C1)–(C7) hold. Then l̂(β
(r)
0 )

D−→ χ2
q, where “

D−→ ”

represents the convergence in distribution, χ2
q is a chi-square variable with q degrees of freedom.

Using Theorem 2, an approximate 1− α confidence region of β
(r)
0 is defined as

{
β(r)| l̂(β(r)) ≤ χ2

q(1− α)
}
,

where χ2
q(1− α) is the (1− α)th quantile of the χ2

q distribution and 0 < α < 1.

The following theorem shows that the estimator β̂ has asymptotic normality.

Theorem 3. Suppose that conditions (C1)–(C7) hold. Then

√
n
(
β̂(r) − β

(r)
0

)
D−→ N

(
0, A−BA−

)
,

and

√
n
(
β̂ − β0

)
D−→ N

(
0, J

β
(r)
0
A−BA−JT

β
(r)
0

)
,

where J
β
(r)
0

is defined by (2.3),

A = E
{
w(βT

0 X){ġT (βT
0 X)Z}2JT

β
(r)
0

{X − µ(βT
0 X,Z)}⊗2J

β
(r)
0

}
,

B = E

[
1

G(Y )
{ϕ(W,Y ; β

(r)
0 )}⊗2

]
− E

[
1

F (C)G
2
(C)

{ϕ̃(C; β
(r)
0 )}⊗2

]
,

ϕ(W,Y ; β
(r)
0 ) = w(βT

0 X){Y − gT (βT
0 X)Z}ġT (βT

0 X)ZJT
β(r){X − µ(βT

0 X,Z)}, (3.1)

ϕ̃(y; β
(r)
0 ) = E

{
ϕ(W,Y ; β

(r)
0 )I(Y ≥ y)

}
, (3.2)

and ξξ⊗2 for any vector ξ.

To apply Theorem 3 to construct the confidence regions of β
(r)
0 and β0, we need to estimate

A and B. The estimator of A is defined as Â = Ã(β̂(r)), where Ã(·) is defined by (2.20). The

12



estimator of B is defined as

B̂ =
1

n

n∑

i=1

η̂(β̂(r))η̂T (β̂(r)),

where η̂(·) is defined in (2.15). By Theorem 3, we have

{
Â−B̂Â−

}−1/2 √
n(β̂(r) − β

(r)
0 )

D−→ N(0, Ip−1)

and
{
Jβ̂(r)Â

−B̂Â−JT
β̂(r)

}−1/2√
n(β̂ − β0)

D−→ N(0, Ip).

Using Theorem 10.2d in Arnold (1981), we obtain

(β̂(r) − β
(r)
0 )T

{
n−1Â−B̂Â−

}−1
(β̂(r) − β

(r)
0 )

D−→ χ2
p−1

and

(β̂ − β0)
T
{
n−1Jβ̂(r)Â

−B̂Â−JT
β̂(r)

}−1
(β̂ − β0)

D−→ χ2
p.

The above results can be used to construct the confidence regions/intervals of β
(r)
0 and β0,

and to make the hypothesis test.

The following theorem shows that the estimator β̂∗ has asymptotic normality.

Theorem 4. Suppose that conditions (C1)–(C7) hold. Then

√
n
(
β̂∗ − β0

)
D−→ N

(
0, C−DC−

)
,

where

C = E
{
w(βT

0 X){ġT (βT
0 X)Z}2{X − µ(βT

0 X,Z)}⊗2
}
,

D = E

[
1

G(Y )
{ϕ∗(W,Y ; β

(r)
0 )}⊗2

]
− E

[
1

F (C)G
2
(C)

{ϕ̃∗(C; β
(r)
0 )}⊗2

]
,

ϕ∗(W,Y ; β
(r)
0 ) = w(βT

0 X){Y − gT (βT
0 X)Z}ġT (βT

0 X)Z{X − µ(βT
0 X,Z)}

and ϕ̃∗(y; β
(r)
0 ) = E

{
ϕ∗(W,Y ; β

(r)
0 )T (Y ≥ y)

}
.

Because β̂ is root-n consistent, we immediately obtain the following result.

Theorem 5. Suppose that conditions (C1)–(C7) hold. Then

√
nh {ĝ∗(u0)− g(u0)− b(u0)} D−→ N (0,Σ(u0; β0)) ,

13



where b(u0) =
1

2
h2g̈(u0)

∫ 1

−1
t2K(t)dt, g̈(u0) = (g′′1(u0), . . . , g

′′
q (u0))

T ,

Σ(u0; β0) = Ψ−1(u0)Ω(u0)Ψ
−1(u0),

Ψ(u0; β0) = fβ0(u0)E(ZZT |βT
0 X = u0)

and

Ω(u0; β0) = fβ0(u0)E
[
{V1G − Y + ε}2ZZT | βT

0 X = u0

] ∫ 1

−1
K2(u)du.

In Theorem 5, if the condition (C6) is replaced by nh2/ log n → ∞ and nh5 → 0, then

√
nh{ĝ∗(u0)− g(u0)} D−→ N(0,Σ(u0)). (3.3)

Applying Theorem 5, we can construct the pointwise confidence intervals for a component of

g(u0). However, we need to use the plugin estimations for the asymptotic bias and covariance of

ĝ(u0). Obviously, the asymptotic bias and covariance of ĝ(u0) are dependent on b(u0), Ψ(u0; β0)

and Ω(u0; β0), we need to estimate them. The estimators Ψ(u0; β0) and Ω(u0; β0) are defined

as

Ψ̂(u0) =
1

n

n∑

i=1

ZiZ
T
i Kh(β

TXi − u0)

and

Ω̂(u0) =
1

nh

n∑

i=1

ζ̂i(u0)ζ̂
T
i (u0),

respectively, where ζ̂i(u0) = {ViGn
− ĝ∗T (β̂TXi)Zi}ZiK((β̂TXi − u0)/h), ĝ

∗(·) = ĝ(·; β̂), ĝ(·; β̂)

is given by (2.9), β̂ is given by the estimating equations (2.18), and K(·) and h are defined in

(2.7). We now consider the estimator of b(u0). Note that

E
[
{g(βT

0 X)− g(u0)}Kh(β
T
0 X − u0)

]
= b(u0) + oP (h

2).

Hence, an estimator of b(u0) is defined as

b̂(u0) =
1

n

n∑

i=1

{ĝ∗(β̂TXi)− ĝ∗(u0)}Kh(β
T
0 Xi − u0).

It is easy to prove that Ψ̂(u0), Ω̂(u0) and b̂(u0) are the consistent estimators of Ψ(u0; β0),

Ω(u0; β0) and b(u0), respectively. Assume that Ψ(u0; β0) is invertible. Then Ψ−1(u0; β0) can
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be consistently estimated by Ψ̂−1(u0). Finally, we can obtain a consistent estimator Σ̂(u0) of

Σ(u0; β0) by substituting Ω(u0; β0) and Ψ−1(u0; β0) of Σ(u0; β0) with Ω̂(u0) and Ψ̂−1(u0). From

Theorem 5, we have

{Σ̂(u0)}−1/2
√
nh
{
ĝ∗(u0)− g(u0)} − b̂(u0)

}
D−→ N(0, Iq), (3.4)

where Iq is the unit matrix of order q. Using (3.4), a pointwise confidence interval for each

component gj(u0) of g(u0) can be given by

ĝ∗j (u0)− b̂j(u0)± z1−α/2(nh)
−1/2σ̂j(u0), j = 1, . . . , q, (3.5)

where ĝ∗j (u0) and b̂j(u0) are the jth components of ĝ∗(u0) and b̂(u0), σ̂j(u0) is the (j, j)th

element of Σ̂(u0), and z1−α/2 is the 1− α/2 quantile value of the standard normal distribution.

If the condition (C6) in Theorem 5 is replaced by nh2/ log n → ∞ and nh5 → 0, then by

(3.3), we have

ĝ∗j (u0)± z1−α/2(nh)
−1/2σ̂j(u0), j = 1, . . . , q. (3.6)

Formulas (3.5) and (3.6) can be also used to construct a pointwise confidence interval of gj(u0).

4 Numerical properties

In this section, we first carry out a simulation study to demonstrate the performance of our

method in finite data set. We then apply the single-index varying-coefficient model and the

estimation method to a real data set.

4.1 Simulation study

Consider the single-index varying-coefficient model (2.1), where Xi are the multivariate

standard normal distribution with p = 3, Zi = (1, Zi1, , Zi2)
T , (Zi1, , Zi2)

T are independent

random vectors uniformly distributed on [0, 1]2, εi ∼ N(0, 0.42), the regression parameter is

β0 = (β01, β02, β03)
T = (1/3, 2/3, 2/3)T , and the coefficient functions are g0(t) = 2 exp(−t),

g1(t) = 6t3 and g2(t) = 5 cos(πt), respectively. The response Y is right censored. The censored
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variable C follows an exponential distribution with the parameter λ = 0.07. The average

censoring rate is about 20%.

We used the Epanechnikov kernel function K(x) = 0.75(1 − x2)I(|x| ≤ 1) and the kernel

function K(t, z1, z2) = K0(t)K0(z1)K0(z2), where K0(x) = (3/8)(3 − 5x2)I(|x| ≤ 1), and used

the cross-validation (CV) and modified multi-fold cross-validation (MCV) methods (see, Cai et

al. 2000b) to select the optimal bandwidths b and h, whose calculation formulas are similar,

only use ViGn
instead of the response variable Yi in the formulas. Since the simulation results

are not sensitive to the choice of this weight function w(·), we take w(·) = 1, and the calculation

is stable.

Two methods were used to make the simulation for the estimate of β0. That is, the RELM

and NREEM given in Section 2. The simulations were considered in the following three situa-

tions.

(I) The bias, standard deviation (SD) and mean squared error (MSE) for the estimators

β̂1, β̂2 and β̂3 were computed by 500 runs with sample sizes 60, 100 and 150. The simulated

results are presented in Table 1.

Table 1. The bias, SD and MSE for the estimators β̂1, β̂2 and β̂3.

β̂1 β̂2 β̂3

n Method Bias SD MSE Bias SD MSE Bias SD MSE

60 RELM −0.1283 0.1326 0.0340 0.0265 0.1140 0.0137 0.0185 0.1160 0.0183

NREEM 0.1263 0.2359 0.0716 −0.0996 0.2449 0.0699 −0.1099 0.2392 0.0693

100 RELM −0.1241 0.0946 0.0244 0.0180 0.0811 0.0069 0.0177 0.0805 0.0068

NREEM 0.0876 0.2467 0.0704 −0.0885 0.2442 0.0675 −0.1088 0.2385 0.0687

150 RELM −0.1242 0.0944 0.0243 −0.0170 0.0810 0.0068 −0.0167 0.0802 0.0067

NREEM 0.0729 0.2454 0.0655 −0.0837 0.2406 0.0649 −0.0989 0.2347 0.0649

From Table 1 we can see that the estimators β̂1, β̂2 and β̂3 based on RELM have smaller MSE

than the estimators based on NREEM. This shows that RELM improved estimated accuracy.

In addition, all the bias, SD and RMSE decrease as the sample size n increases.

(II) The performances of the estimators ĝ∗0(t), ĝ
∗
1(t) and ĝ∗2(t) were considered when sample

size is 60. Figure 1 (a)–(c) give the real coefficient function curves, the estimated coefficient
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function curves and approximate 95% pointwise confidence intervals. The estimators ĝ∗ν(·) are

assessed by using the root mean squared errors (RMSE). That is,

RMSEν =

[
n−1
grid

ngrid∑

k=1

{ĝ∗ν(tk)− g(tk)}2
]1/2

, ν = 0, 1, 2, (4.1)

where {uk, k = 1, . . . , ngrid} are regular grid points. The boxplot for the 500 RMSEs is given in

Figure 1 (d).
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Figure 1: (a)–(c) are the real cures (solid curves), estimated curves (dotted curves) and approximate

95% pointwise confidence intervals (dashed curves) for g0(t), g1(t) and g2(t), respectively. (d) is the

boxplots of the 500 RMSE values for estimate of g0(t), g1(t) and g2(t) when n = 60.

From Figure 1 (a)–(c) we see that each estimated curves are close to the real coefficient

function curves. Figure 1 (d) shows that the RMSEs of estimates for coefficient functions are

small.

(III) The confidence regions for (β01, β02) and (β01, β03), and their coverage probabilities were

also computed from 200 simulation runs, which were based on EL and the normal approximation

(NA) when the sample size was 100. The simulation results are presented in Figure 2.
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Figure 2: Approximate 95% confidence regions for (β01, β02) and (β01, β03), based on EL (solid curve)

and NA (dashed curve) when n = 100.

Figure 2 shows that EL gives smaller confidence regions than NA. For (a), the empirical

coverage probability for EL and NA are 0.935 and 0.930, respectively. For (b), the empirical

coverage probability for EL and NA are 0.930 and 0.925, respectively.

4.2 A real example

We now illustrate the proposed method through the application of an environmental data

set. The data set used here consists of daily measurements of pollutants and other environmental

factors in New Territories East in Hong Kong between January 1, 2000 and June 30, 2000. For

this data set, there are three pollutants and an environmental factors. That is, sulphur dioxide

(in g/m3)X1, nitrogen dioxide (in g/m3)X2, ozone (in g/m3)X3, and temperature (in Celsius)

Z. Wong, Ip and Zhang (2008) investigated this data set using a partially varying-coefficient

single-index model. Our main interest is to study the relationship between the levels of chemical

pollutants and the number of daily total hospital admissions (Y) for respiratory diseases in New

Territories East in Hong Kong. We uae the single-index varying-coefficient model to fit the data

set. That is,

Y = g0(β
T
0 X) + g1(β

T
0 X)Z + ε, (4.2)

where βT
0 X = β01X1 + β02X2 + β03X3.

To use the data set to illustrate our method, we assume that the response variable Y is

censored. The distribution of the censored variable C was taken as G(t) = 1 − exp(−0.01t),

and hence about 33% of the Y values are censored. We used the Epanechnikov kernel func-

tion K(x) = 0.75(1 − x2)I(|x| ≤ 1) and the kernel function K(t, z) = K0(t)K0(z), where
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K0(x) = (3/8)(3−5x2)I(|x| ≤ 1), We also used the modified multi-fold cross-validation (MCV)

method proposed by Cai et al. (2000b) to select the optimal bandwidths. Since ∆ was randomly

generated, the estimates of β0, g0(t) and g1(t) and the confidence regions of β0 were computed

from 50 simulation runs, which are based on EL and NA. By calculation, we obtain that the esti-

mate of β0 is (0.3009, 0.7181, 0.5280)
T , corresponding standard error is {0.1364, 0.0865, 0.0621}.

By calculation, we obtain that the bandwidth of the estimators ĝ∗0(t) and ĝ∗1(t) is 26.474.

The estimated curves are shown in Figure 3.
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Figure 3: The estimated curves (solid curve)and approximate 95% pointwise confidence intervals

(dashed curves) for the coefficient functions g0(t) and g1(t).

From Figure 3 (a) it is clear that the number of daily total hospital admissions for respira-

tory disease patients in New Territories East in Hong Kong is increasing with the air pollutants

index—a linear combination t = β̂Tx of the chemical pollutants—increasing, which implies

that increasing air pollution increases the onset of respiratory diseases. This suggests that the

government should take air pollution seriously. However, if we consider the interaction between

three contaminants and an environmental factor, then the number of daily total hospital ad-

missions for respiratory disease patients is decreasing with the air pollutants index t = β̂Tx

increasing. Moreover, we can also see from Figure 3 that the estimated curves of the coefficient

functions are not linear, that is, the linear model is not suitable to fit this data set.

The confidence regions for (β01, β02) and (β01, β03) were also computed from 50 simulation

runs, which were based on EL and NA. The simulation results are presented in Figure 4. Figure

4 shows that EL gives smaller confidence regions than NA.
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Figure 4: Approximate 95% confidence regions for (β01, β02) and (β01, β03), based on EL (solid curve)

and NA (dashed curve).

The coefficient of determination, R2
new, is used to evaluate the goodness of fit for nonlinear

regression models. That is,

R2
new = 1−

n∑

i−1

∆i

Gn(Vi−)
(Vi − Ŷi)

2

/
n∑

i=1

∆i

Gn(Vi−)
V 2
i , (4.3)

where Ŷi = ĝ∗0(β̂
TXi) + ĝ∗1(β̂

TXi)Zi is a prediction value of Yi, 1 ≤ i ≤ n, and Gn(·) is defined

in (2.6). R2
new and the coefficient of determination in the linear model, R2, are identical in the

sense of the goodness of fit. For model (4.2), R2
new = 0.9443. The value of R2

new is very hight,

indicating that the model (4.2) is reasonable to model this environmental data set.

5 Concluding remarks

We in this paper proposed a bias-corrected empirical log-likelihood ratio statistic for the

regression parameter in model (1.1), and showed that the ratio is asymptotically standard chi-

squared. We constructed the estimators for both the regression parameter and the coefficient

functions. The asymptotic properties of these estimators were proved, and the consistent es-

timators of asymptotic variances were also constructed. The obtained results can be directly

used to construct the confidence regions/intervals of the regression parameter and the point-

wise confidence intervals of the coefficient functions. Our study achieved two aims. One is

the bias correction directly inside the EL ratio, rather than multiplying an adjustment factor

externally, which reflects the essential characteristics of EL, and the constructed EL ratio is

asymptotically standard chi-squared. The second is a bias correction method to avoid under-

smoothing the coefficient functions, and the optimal bandwidth can be selected by data-driven
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method. Simulation study and real data analysis demonstrate the superiority and utility of the

proposed method. Our approach can also be used to study other semiparametric regression

models with right censored data, such as partially linear single-index model, partially linear

varying coefficient model, etc.
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Appendix A: Proofs of Theorems 1–4

In this appendix, we prove Theorems 1–3 and 5. The proof of Theorem 4 is similar to the

proof of Theorem 3, and therefore omit its proof. The following Lemmas 1–4 are useful for

proving these Theorems. Lemma 1 is the lemma A.1 of Wang et al. (2010), and it can also be

used when the variable t is removed. The proof of Lemma 2 is similar to the proof of Theorem

3.1 in He et al. (2016), and hence the details are omitted. The proofs of Lemmas 3 and 4 can

be found in the supplementary material.

Lemma 1. Suppose that {ξi(u, β), 1 ≤ i ≤ n} are random variables, and satisfy the

following two conditions:

1

n

n∑

i=1

|ξi(u, β)− ξi(u0, β0)| ≤ cna(|u− u0|+ ∥β − β0∥) (A.1)

for some constants c > 0, a ≥ 0, u0 and β0;

P

(∣∣∣∣
1

n

n∑

i=1

ξi(u, β)
∣∣∣∣ > εn

)
≤ 1

2
(A.2)

for β ∈ Bn and εn > 0 depend only on n. Then

P

(
sup

(u,β)∈U×Bn

∣∣∣∣
1

n

n∑

i=1

ξi(u, β)
∣∣∣∣ > εn

)
≤ cn2paε−2p

n E

{
sup
β∈Bn

exp
(−n2ε2n/128∑n

i=1 ξ
2
i (β)

)
∧ 1

}
,

where U is a compact support set of the distribution of U , Bn = {β | β ∈ Rp, ∥β−β0∥ ≤ c1n
−1/2},

and c1 is a positive constant.
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Lemma 2. Suppose that the sample {(Wi, Vi,∆i), 1 ≤ i ≤ n} from (W,V,∆) are indepen-

dent and identically distributed, and F (y) = P (Y ≤ y) and G(t) = P (C ≤ t) are continuous,

where Y and C are the random variables, V = min{Y, C} and ∆ = I(Y ≤ C). If for each fixed

θ ∈ Θ, ζ(w, v; θ) is a measurable function of (w, v), and the condition

∫ ζ2(w, v; θ)

G(v)
F (dw, dv) < ∞

hold, then uniformly on θ ∈ Θ,

∫
ζ(w, v; θ)Fn(dw, dv) =

1

n

n∑

i=1

∆i

G(Vi)
ζ(Wi, Vi; θ) + oP (n

−1/2),

where F (w, y) is the joint distribution function of (W,Y ) and Fn(w, v) is defined in (2.13).

Lemma 3. Suppose that conditions (C1)–(C7) hold. Then

sup
β(r)∈B∗

n

∥Q̂∗(β(r))−Qn(β
(r))∥ = oP (n

−1/2),

where B∗
n = {β(r)| ∥β(r) − β

(r)
0 ∥ ≤ c2n

−1/2} for a positive constant c2, Q̂
∗(β(r)) is defined in

(2.17) and

Qn(β
(r)) =

1

n

n∑

i=1

∆i

Gn(Vi−)
w(βTXi){Vi − gT (βTXi)Zi}

× ġT (βTXi)ZiJ
T
β(r){Xi − µ(βTXi, Zi)}.

Lemma 4. Suppose that conditions (C1)–(C7) hold. Then

√
nQn(β

(r)
0 )

D−→ N(0, B), (A.3)

1

n

n∑

i=1

η̂i(β
(r)
0 )η̂Ti (β

(r)
0 )

P−→ B (A.4)

and

max
1≤i≤n

|η̂i(β(r)
0 )| = oP (n

1/2). (A.5)

where η̂i(β
(r)
0 ), Qn(β

(r)
0 ) and B are defined in (2.15), Lemma 3 and Theorem 3, respectively.

Proof of Theorem 1. Let

Sn,k(u; β) =
1

n

n∑

i=1

(
βTXi − u

h

)k

ZiZ
T
i Kh(β

TXi − u), k = 0, 1, 2, 3.

Then, we have

Sn(u; β) ≡ DT (u; β)Ω(u; β)D(u; β) =




Sn,0(u; β) Sn,1(u; β)

Sn,1(u; β) Sn,2(u; β)


 , (A.6)
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where D(u; β) and Ω(u; β) are defined in (2.7). By Lemma 1, we can prove

Sn,k(u; β)− E{Sn,k(u; β)} = OP ((nh/ log n)
−1/2), k = 0, 1, 2, 3, 4.

uniformly for u ∈ Uw and β ∈ Bn. A simple calculation yields

E{Sn,k(u; β)} = κkΨ(u; β) +OP (h), k = 0, 1, 2, 3,

uniformly for u ∈ Uw and β ∈ Bn, where Ψ(u; β) = fβ(u)E(ZZT |βTX = u), κk =
∫ 1

−1
tkK(t)dt,

k = 0, 1, 2, 3, and fβ(u) is a probability density function of βTX. Therefore, we have

Sn,k(u; β) = κkΨ(u; β) +OP (cn), k = 0, 1, 2, 3, 4,

uniformly for u ∈ Uw and β ∈ Bn, where cn = (nh/ log n)−1/2+h. Note that κ0 = 1 and κ1 = 0.

By (A.6), we can obtain

Sn(u; β) = Ψ(u; β)⊗




1 0

0 κ2


+OP (cn),

uniformly for u ∈ Uw and β ∈ Bn, where ⊗ is the Kronecker product. Using the fact

(A+ hB)−1 = A−1 − hA−1BA−1 +O(h2)

for any matrices A and B, we have

S−1
n (u; β) = Ψ−1(u; β)⊗




1 0

0 κ−1
2


+OP (cn), (A.7)

uniformly for u ∈ Uw and β ∈ Bn. Let

ξn(u; β) =




ξn,0(u; β)

ξn,1(u; β)


 and ξ∗n(u; β) =




ξ∗n,0(u; β)

ξ∗n,1(u; β)


 .

where

ξn,l(u; β) =
1

n

n∑

i=1

(
βTXi − u

h

)l

Kh(β
TXi − u)ZiViGn

, l = 0, 1

and

ξ∗n,l(u; β) =
1

n

n∑

i=1

(
βTXi − u

h

)l

Kh(β
TXi − u)Zi{ViGn

− ZT
i g(β

TXi)}, l = 0, 1.
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Using Taylor’s expansion for g(·) at u, we can derive

ξn,l(u; β)− ξ∗n,l(u; β) = g(u)Sn,l(u; β) + hġ(u)Sn,l+1(u; β)

+
1

2
h2g̈(u)Sn,l+2(u; β) + oP (h

2), l = 0, 1,

uniformly for u ∈ Uw and β ∈ Bn. So that

ξn(u; β)− ξ∗n(u; β) = Sn(u; β)




g(u)

hġ(u)


+

1

2
h2g̈(u)




Sn,2(u; β)

Sn,3(u; β)


+ oP (h

2),

uniformly for u ∈ Uw and β ∈ Bn, where Sn(u; β) is defined by (A.6). Thus it follows, from

(2.7) and (A.7), that




ĝ(u; β)− g(u)

h{ˆ̇g(u; β)− ġ(u)}


 = Ψ−1(u; β)ξ∗n(u; β) +

1

2
h2g̈(u)




κ2

κ3

κ2


+ oP (h

2). (A.8)

uniformly for u ∈ Uw and β ∈ Bn. If we prove

ξ∗n(u; β) = OP ((nh/ log n)
−1/2) +OP (n

−1/2), (A.9)

uniformly for u ∈ Uw and β ∈ Bn, combining (A.8), (A.9) and condition (C3), we can complete

the proof of Theorem 1. We now prove (A.9). For the K-M estimator in (2.6), we have

1

Gn(Vi−)
=

1

G(Vi)
+

Gn(Vi−)−G(Vi)

G
2
(Vi)

+
{Gn(Vi−)−G(Vi)}2

Gn(Vi−)G
2
(Vi)

. (A.10)

By the results of Gill (1983) and Zhou (1992), we have

sup
v≤V(n)

|Gn(v)−G(v)| = OP (n
−1/2) (A.11)

and

Wn = sup
v≤V(n)

∣∣∣∣∣
Gn(v−)−G(v)

1−Gn(v−)

∣∣∣∣∣ = OP (1), (A.12)

where V(n) = max{V1, . . . , Vn}. Using (A.10)–(A.12) and Lemma 1, and similar to the above

proof, we can prove (A.9). This completes the proof of Theorem 1.

Proof of Theorem 2. By the Lagrange multiplier method, l̂(β
(r)
0 ) can be represented as

l̂(β
(r)
0 ) = 2

n∑

i=1

log (1 + λT η̂i(β
(r)
0 )), (A.13)
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where λ = λ(β
(r)
0 ) is a p× 1 vector given as the solution to

h(λ) =
1

n

n∑

i=1

η̂i(β
(r)
0 )

1 + λT η̂i(β
(r)
0 )

= 0.

It can be shown that for large n, h(λ) = 0 has a unique solution λn such that λT
n η̂i(β

(r)
0 ) > −1

for all i. Its proof is similar to the proof of Theorem 4.2 in He et al. (2016), and hence the

details are omitted. By (2.17), Lemma 3 and (A.3) of Lemma 4, we have

√
nQ̂(β

(r)
0 )

D−→ N(0, B(β
(r)
0 )). (A.14)

Therefore, From (A.4), (A.5) and (A.14), and using the same arguments as are used in the

proof of (2.14) in Owen (1990), we can show that

λ = OP (n
−1/2). (A.15)

Applying the Taylor formula to (A.13), and invoking (A.4), (A.5), (A.14) and (A.15), we get

l̂(β
(r)
0 ) = 2

n∑

i=1

[
λT η̂i(β

(r)
0 )− {λT η̂i(β

(r)
0 )}2/2

]
+ oP (1). (A.16)

Note that h(λ) = 0. It follows that

0 =
n∑

i=1

η̂i(β
(r)
0 )

1 + λT η̂i(β
(r)
0 )

=
n∑

i=1

η̂i(β
(r)
0 )−

n∑

i=1

η̂i(β
(r)
0 )η̂Ti (β

(r)
0 )λ+

n∑

i=1

η̂i(β
(r)
0 ){λT η̂i(β

(r)
0 )}2

1 + λT η̂i(β
(r)
0 )

.

This, together with (A.4), (A.5), (A.14) and (A.15), proves that

n∑

i=1

{λT η̂i(β
(r)
0 )}2 =

n∑

i=1

λT η̂i(β
(r)
0 ) + oP (1) (A.17)

and

λ =
( n∑

i=1

η̂i(β
(r)
0 )η̂Ti (β

(r)
0 )

)−1 n∑

i=1

η̂i(β
(r)
0 ) + oP (n

−1/2). (A.18)

Therefore, from (A.16)–(A.18) we have

l̂(β
(r)
0 ) = {

√
nQ̂T (β

(r)
0 )}

(
1

n

n∑

i=1

η̂i(β
(r)
0 )η̂Ti (β

(r)
0 )

)−1

{
√
nQ̂(β

(r)
0 )}+ oP (1). (A.19)

This, together with (A.19), (A.4), (A.14) and Slutsky’s theorem, proves Theorem 2.
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Proof of Theorem 3. We now prove the asymptotic normality of β̂. The proof is divided

into two steps: step (I) proves the existence of the estimator β̂, and step (II) proves the

asymptotic normality of β̂.

(I) Existence. We prove the following fact: Under conditions (C1)–(C7) and with proba-

bility one there exists an estimator of β0 solving the estimating equations (2.18) in B∗∗
n , where

B∗∗
n = {β(r)| ∥β(r)−β

(r)
0 ∥ = Mn−1/2} for some constant M such that 0 < M < ∞. From Lemma

3 and (A.10)–(A.12), we obtain

Q̂∗(β(r)) = Qn(β
(r)) + oP (n

−1/2)

= Qn(β
(r)
0 )− An(β

(r) − β
(r)
0 ) + oP (n

−1/2) (A.20)

uniformly for β(r) ∈ B∗∗
n , where

An =
1

n

n∑

i=1

∆iw(β
T
0 Xi)

Gn(Vi−)
{ġT (βT

0 Xi)Zi}2JT

β
(r)
0

{Xi − µ(βT
0 Xi, Zi)}⊗2J

β
(r)
0
.

By Lemma 2 and the law of large numbers, we have

An = A+ oP (1), (A.21)

where A is defined in Theorem 3. From (A.20) and (A.21) we get

Q̂∗(β(r)) = Qn(β
(r)
0 )− A(β(r) − β

(r)
0 ) + oP (n

−1/2). (A.22)

uniformly for β(r) ∈ B∗∗
n . Therefore, we have

n(β(r) − β
(r)
0 )Q̂∗(β(r)) = n(β(r) − β

(r)
0 )Qn(β

(r)
0 )− n(β(r) − β

(r)
0 )A(β(r) − β

(r)
0 ) + oP (1).

We note that the above formula is dominated by the term ∼ M2 because
√
n∥β(r)−β

(r)
0 ∥ = M ,

whereas |n(β(r)−β
(r)
0 )TQn(β

(r)
0 )| = MOP (1), and n(β(r)−β

(r)
0 )A(β(r)−β

(r)
0 ) ∼ M2. So, for any

given η > 0, if M is chosen large enough, then it will follows that n(β(r) − β
(r)
0 )Q̂∗(β(r)) < 0 on

an event with probability 1− η. From the arbitrariness of η, we can prove the existence of the

estimator of β0 in B∗∗
n as in the proof of Theorem 5.1 of Welsh (1989). The details are omitted.

(II) Asymptotic normality. From step (I) we find that β̂(r) is a solution in B∗∗
n to the

equation Q̂∗(β(r)) = 0, namely Q̂∗(β̂(r)) = 0, where Q̂∗(β(r)) is defined in (2.17). From (A.22)

we have

0 = Qn(β
(r)
0 )− A(β̂(r) − β

(r)
0 ) + oP (n

−1/2),
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and hence

√
n(β̂(r) − β

(r)
0 ) = A−1

√
nQn(β

(r)
0 ) + oP (1). (A.23)

For the estimator β̂, according to the calculation in Wang at el. (2010), we known

β̂ − β0 = J
β
(r)
0
(β̂(r) − β

(r)
0 ) +OP (n

−1).

Therefore, we have

√
n(β̂ − β0) = J

β
(r)
0
A−1

√
nQn(β

(r)
0 ) + oP (1). (A.24)

This, together with (A.23), (A.24), (A.3) of Lemma 4 and Slutsky’s theorem, proves Theorem

3.

Proof of Theorem 5 By (A.8) and (2.9), we can obtain

√
nh
{
ĝ∗(u0)− g(u0)− 0.5κ2h

2g̈(u0)
}

= Ψ−1(u0)(nh)
−1/2

n∑

i=1

{ViG − Yi + εi}ZiK

(
βT
0 Xi − u0

h

)
+ oP (1)

≡ Ψ−1(u0; β0)Rn(u0; β0) + oP (1), (A.25)

where Ψ(u0; β0) = fβ0(u0)E(ZZT |βT
0 X = u0). It is not difficult to prove E{Rn(u0; β0)} = 0

and var((Rn(u0; β0)) = Ω(u0; β0) + o(1). We can check that Rn(u0; β0) satisfies the conditions

of the Cramér-Wold theorem and the Lindeberg condition (Serfling, 1980). Therefore, we get

that

Rn(u0; β0)
D−→ N(0,Ω(u0; β0)). (A.26)

This, together with (A.25), (A.26) and Slutsky’s theorem, proves Theorem 5.
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Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models.

Ann. Statist. 21, 157–178.

Hastie, T. J. and Tibshirani, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. ser.

B 55, 757–796.

He, S. Y., Liang, W., Shen, J. S. and Yang, G. (2016). Empirical likelihood for right censored

lifetime data. J. Amer. Statist. Assoc., 111, 646–655.

Huang, J. Z. and Shen, H. P. (2004). Functional Coefficient Regression Models for Nonlinear

Time series: A Polynomial Spline Approach. Scandinavian J. Statist. 31, 515–535.

Huang, Z. S. and Zhang, R. Q. (2013). Profile empirical-likelihood inferences for the single-

index-coefficient regression model. Statist. Comput., 23, 455–465.

28



Hristache, M., Juditsky, A. and Spokoiny, V. (2001). Direct estimation of the index coefficient

in a single-index model. Ann. Statist. 29, 595–623.

Ichimura, H. (1993). Semiparametric least squares(SLS) and weighted SLS estimation of

single-index models. J. Econometrics 58, 71–120.

Li, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer.

Statist. Assoc. 86, 316–342.

Lu, Z. D., Tjøstheim, D. and Yao, Q. W. (2007). Adaptive varying-coefficient linear models

for stochastic processes: Asymptotic theory. Statist. Sinica 17, 177–197.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18, 90–120.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: John

Wiley & Sons.

Stute, W. (1982). A law for the logarithm of kernel density estimators. Ann. Prob. 10,

414–422.

Wang, J. L., Xue, L. G., Zhu, L. X. and Chong, Y. S. (2010). Estimation for a partial-linear

single-index model. Ann. Statist. 38, 246–274.

Wang, Q. H. and Xue L. G. (2011) Statistical inference partially-varying-coefficient single-

index model. J. Mult. Anal., 102, 1–19.

Weisberg, S. and Welsh, A. H. (1994). Adapting for the Missing Linear Link. Ann. Statist.

22, 1674–1700.

Welsh, A. H. (1989). On M-processes and M-estimation. Ann. Statist. 17 337–361. [Correc-

tion(1990) 18 1500.]

Wu, C. O., Chiang, C. T. and Hoover, D. R. (1998). Asymptotic confidence regions for kernel

smoothing of a varying-coefficient model with longitudinal data. J. Amer. Statist. Assoc.

93, 1388–1402.

29



Xia, Y. C. and Li, W. K. (1999). On single-index coefficient regression models. J. Amer.

Statist. Assoc. 94, 1275–1285.

Xia, Y., Tong, H. Li, W. K. and Zhu L. X. (2002). An adaptive estimation of dimension

reduction space. J. R. Statist. Soc. B 64, 363–410.

Xue, L. G. and Pamg Z. (2013). Statistical inference for a single-index varying-coefficient

model. Statist. Comput., 23 589–599.

Xue, L. G. and Wang, Q. H. (2012). Empirical likelihood for single-index varying-coefficient

models. Bernoulli, 18, 836–856.

Xue, L. G. and Zhu, L. X. (2006). Empirical likelihood for single-index model. J. Mult. Anal.

97, 1295–1312.

Xue, L. G. and Zhu, L. X. (2007). Empirical Likelihood for a varying coefficient model with

longitudinal data. J. Amer. Statist. Assoc. 102, 642–654.

Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index

models. J. Amer. Statist. Assoc. 97, 1042–1054.

Zhou, M. (1992). Asymptotic normality of the ‘synthetic data’ regression estimator for cen-

sored survival data. Ann. Statist. 20, 1002–1021.

Zhu, L. X. and Fang, K. T. (1996). Asymptotics for the kernel estimates of sliced inverse

regression. Ann. Statist. 24, 1053-1067.

30


