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Abstract

Identification of parameters in ordinary differential equations (ODEs) is
an important and challenging task when modeling dynamic systems in
biomedical research and other scientific areas, especially with the pres-
ence of time-varying parameters. This article proposes a fast and accurate
method, TVMAGI (Time-Varying MAnifold-constrained Gaussian process
Inference), to estimate both time-constant and time-varying parameters
in the ODE using noisy and sparse observation data. TVMAGI imposes
a Gaussian process model over the time series of system components as
well as time-varying parameters, and restricts the derivative process to
satisfy ODE conditions. Consequently, TVMAGI completely bypasses
numerical integration and achieves substantial savings in computation
time. By incorporating the ODE structures through manifold constraints,
TVMAGI enjoys a principled statistical construct under the Bayesian
paradigm, which further enables it to handle systems with missing data
or unobserved components. The Gaussian process prior also alleviates
the identifiability issue often associated with the time-varying parameters
in ODE. Unlike existing approaches, TVMAGI can be applied to general
nonlinear systems without specific structural assumptions. Three simu-
lation examples, including an infectious disease compartmental model,
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are provided to illustrate the robustness and efficiency of our method
compared with numerical integration and Bayesian filtering methods.

Keywords: ordinary differential equations, inverse problem, time-varying
parameter estimation, Gaussian process, Bayesian inference

1 Introduction

Ordinary Differential Equations (ODEs) are often used to analyze the behavior
of dynamic systems, such as the spread of infectious diseases [1], interactions
between species [2], and viral dynamics [3]. This paper studies a general
formulation of ODE equations, where some of the parameters are allowed to
be time-varying:

ẋ(t) ≡ dx(t)

dt
= f(x(t),θ(t),ψ, t), t ∈ [0, T ] (1)

Here, x(t) is the series of system outputs from time 0 to T , ψ denotes time-
constant parameters, θ(t) denotes time-varying parameters, and f is a set of
general functions that characterize the derivative process. When f is non-linear,
the system outputs x(t) typically do not have analytic solutions. To solve x(t)
given initial conditions x(0) and parameters θ(t) and ψ, numerical integration
methods are often required, such as Euler’s Method or Runge-Kutta Method [4].

This paper focuses on the inverse problem that, given the observations, how
to efficiently draw inference on the ODE parameters. Our goal is to estimate
time-constant parameters ψ and time-varying parameters θ(t) inside the ODE
from data. In real world, the observation data of system components x are
often obtained at discrete time points and are subject to measurement errors.
We thus assume that we observe y(τ ) = x(τ ) + ǫ(τ ), where τ denotes the
observation time points while error ǫ(τ ) denotes Gaussian noise. We focus on
the inference of θ(t) and ψ given y(τ ), with emphasis on nonlinear structure f .

The time-varying parameter θ(t) in the ODE is often important yet chal-
lenging to recover from real-world data. For example, during a pandemic, the
time-varying disease reproduction number is critical for public health policy
decisions. However, its estimation can still be crude despite the best effort [5].
The time-varying θ(t) provides too much degree of freedom to the ODE system,
and two different θ(t) can both give x(t) that fits the observation data, result-
ing in identifiability issues [6]. Such high degree of freedom in the time-varying
parameters also gives overfitting issues for the usual gold standard numerical
integration method, which tends to produce θ(t) that fits the observation data
exactly.
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2 Review of related literature

Most existing methods for ODE inference only accommodate time-constant
parameters [7–9]. For time-varying parameters inference in the ODE system,
existing methods all have their deficiencies [10]. For example, [11] relied on
time-consuming numerical integration; [12] proposed a Bayesian parametric
approach to model time-varying coefficients in the HIV-1 dynamic model,
sacrificing some flexibility; [13] developed an efficient two-stage local polynomial
estimation method that circumvents numerical integration for a non-parametric
time-varying parameters, but required ODE system to have linear dependency
on the time-varying parameters (see Eq.(S9.2) in Supplementary Material).
Bayesian filtering methods are also explored in the time-varying ODE parameter
inferences, although lacking some statistical rigor. For example, [14] and [15]
applied Ensemble Adjustment Kalman Filter (EAKF) algorithm to estimate
parameters in a metapopulation SEIR model. [16] proposed an extended Kalman
Filter approach based on Gauss-Markov process that can infer time-varying
parameter but cannot accommodate time-constant parameters any more. To
the best of our knowledge, there is no existing Bayesian inference method
that eliminates numerical integration for a general ODE system with both
time-constant and time-varying parameters.

3 Our contribution

We propose a fast and statistically principled method to infer time-varying
θ(t) and time-constant ψ from noisy observations of ODE. The key idea is
to use Bayesian approach and place Gaussian process (GP) prior on x(t) and
time-varying parameters θ(t), thus the identifiability issue is mitigated using
the informative prior that favors smoother parameter curves. Our method is
built upon the prior work of MAnifold-constrained Gaussian process Inference
[8] where the Gaussian process x(t) is restricted on a manifold that satisfies
the ODE system. Placing a Gaussian process on x(t) facilitates a fast inference
on θ(t), as it completely bypasses numerical integration. Our approach also
adheres to the classical Bayesian paradigm with principled posterior deriva-
tion. Through a Gaussian process model on θ(t), we are able to generalize
the MAnifold-constrained Gaussian process Inference to the situation where
time-varying and time-constant parameters co-exist. We name our method
TVMAGI (Time-Varying MAnifold-constrained Gaussian process Inference),
emphasizing its capability in handling time-varying parameters. We demon-
strate the effectiveness of TVMAGI through three realistic simulation examples,
where TVMAGI works well even when some of the system components x(t)
are partially observed. Through these simulation examples, we also show that
TVMAGI can outperform benchmark methods including a numerical integra-
tion approach, a Bayesian filtering approach, and a two-stage approach. Thanks
to the computational savings of bypassing numerical integration, TVMAGI
has great potential to be generalized in high-dimensional and large-scale sys-
tems. TVMAGI has a distinct contribution from the previously-proposed
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time-constant parameter inference methods ([8, 9]) by investigating a much
more complicated problem with functional estimate of time-varying parameters.
The change from time-constant parameter to time-varying parameter also cre-
ates a notable difference in the scientific context, as parameters to be inferred
in most real-world phenomena are non-stationary or changing over time.

4 Method of TVMAGI

The prior

Following standard Bayesian notation, the D-dimensional dynamic system x(t)
is a realization of stochastic process X(t) = (X1(t), ..., XD(t)), and the P -
dimensional time-varying parameters θ(t) is a realization of stochastic process
Θ(t) = (Θ1(t), ...,ΘP (t)). We assume that Θ(t) is continuous and differentiable
in t during time period [0, T ], which helps to prevent overfit and to alleviate
identifiability issue, but can be relaxed later. The prior distribution of X and
Θ in each dimension is independent Gaussian process. That is,

Θp(t) ∼ GP(µΘ
p ,KΘ

p ), t ∈ [0, T ], p ∈ {1, . . . , P} (2)

Xd(t) ∼ GP(µX
d ,KX

d ), t ∈ [0, T ], d ∈ {1, . . . , D} (3)

where KX
d and KΘ

p : R× R → R are positive definite covariance kernels for GP,

while µX
d and µΘ

d : R → R denote mean functions.

The likelihood

The observations are denoted as y(τ ) = (y1(τ1), ..., yD(τD)), where τ =
(τ1, τ2, ..., τD) is the collection of observation time points across all compo-
nents. Each component Xd(t) can have its own set of observation time points
τd = (τd,1, . . . , τd,Nd

), where Nd is the number of observations of the d-th com-
ponent. If the d-th component is not observed, then Nd = 0, and τd = ∅. The
observation likelihood is thus assumed to be

Yd(τd) = Xd(τd) + ǫ(τd), ǫ(τd) ∼ N (0, σ2
d) (4)

In this paper, notation t shall refer to time generically, and τ shall denote
specifically the observation time points.

The manifold constraint

We introduce a variable W to quantify the difference in the derivative process
Ẋ(t) between Gaussian process and ODE:

W = sup
t∈[0,T ],d∈{1,...,D}

|Ẋd(t)− f(X(t),Θ(t),Ψ, t)d| (5)

Intuitively, W is the L∞ norm of derivative difference, and W = 0 if
and only if Ẋ(t) strictly satisfies the ODE structure, which is equivalent to
constraining X(t) on the manifold of the ODE solutions. The advantage of
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L∞ norm is further discussed in Supplementary Material Section S1. In the
ideal situation where W ≡ 0, the posterior distribution of Θ(t), Ψ, and X(t)
shall be formulated as PΘ(t),Ψ,X(t)|W,Y (τ )(θ(t),ψ,x(t)|W = 0,Y (τ ) = y(τ )).
However, such ideal posterior is not computable in practice. Therefore, we
approximate W by finite discretization on time points I = {t1, t2, . . . , tn}, such
that τ ⊂ I ⊂ [0, T ]. We similarly define WI on the discretization set I as the
L∞ distance of the derivative from GP and that from ODE:

WI = sup
t∈I,d∈{1,...,D}

|Ẋd(t)− f(X(t),Θ(t),Ψ, t)d| (6)

Here WI is the maximum on a finite set, and WI → W monotonically
as I becomes dense. The associated computable Baysian probability of the
discretized manifold constraint WI = 0 is

P (WI = 0|X(I) = x(I),Θ(I) = θ(I),Ψ = ψ) (7)

=P (Ẋ(I)− f(X(I),Θ(I),Ψ, tI) = 0|X(I) = x(I),Θ(I) = θ(I),Ψ = ψ)

=P (Ẋ(I) = f(x(I),θ(I),ψ, tI)|X(I) = x(I))

which is a multivariate Gaussian distribution since the time derivative Ẋd(t)
of GP is also a GP with specific mean and covariance kernel.

Supplementary Material Section S2 presents additional intuition regarding
the manifold constraint WI = 0.

The posterior

Therefore, a computable discretized posterior for TVMAGI inference of X(t),
Θ(t), and Ψ is:

PΘ(I),Ψ,X(I)|WI ,Y (τ )(θ(I),ψ,x(I)|WI = 0,Y (τ ) = y(τ )) (8)

Equation (8) is the computable discretized posterior of TVMAGI inference. In
this paper, we consider the Maximum A Posteriori (MAP) as the fast point
estimate from TVMAGI, while the Posterior Mean and the Posterior Interval
are the formal Bayesian inference results that further quantify the uncertainty.

The closed-form derivation

The posterior distribution ofX(t), Θ(t), and Ψ in Eq.(8) can be further derived
as

pΘ(I),Ψ,X(I)|WI ,Y (τ )(θ(I),ψ,x(I)|WI = 0,Y (τ ) = y(τ ))

∝ P (Θ(I) = θ(I),Ψ = ψ,X(I) = x(I),WI = 0,Y (τ ) = y(τ )) (9)

∝πΨ(ψ)× P (Θ(I) = θ(I)|Ψ = ψ)
︸ ︷︷ ︸

1st Part, which is Eq.(2)

× P (X(I) = x(I)|Θ(I) = θ(I),Ψ = ψ)
︸ ︷︷ ︸

2nd Part, which is Eq.(3)

× P (Y (τ ) = y(τ )|X(I) = x(I),Θ(I) = θ(I),Ψ = ψ)
︸ ︷︷ ︸

3rd Part, which is Eq.(4)

× P (WI = 0|Y (τ ) = y(τ ),X(I) = x(I),Θ(I) = θ(I),Ψ = ψ)
︸ ︷︷ ︸

4th Part, which is Eq.(7)

(10)
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= πΨ(ψ)× exp
{

−
1

2

( P∑

p=1

[

|I| log(2π) + log|KΘ
p (I)|+ ‖θp(I)− µ

Θ
p (I)‖2KΘ

p (I)−1

]

︸ ︷︷ ︸

1st Part, which is Eq.(2)

+

D∑

d=1

[

|I| log(2π) + log|KX
d (I)|+ ‖xd(I)− µ

X
d (I)‖2KX

d
(I)−1

︸ ︷︷ ︸

2nd Part, which is Eq.(3)

+Nd log(2πσ
2
d) + ‖xd(τd)− yd(τd)‖

2
σ−2

d
︸ ︷︷ ︸

3rd Part, which is Eq.(4)

+ |I| log(2π) + log|Cd|+ ‖fx,θ,ψ
d,I

− µ̇
X
d (I)− ′K

X
d (I)KX

d (I)−1{xd(I)− µ
X
d (I)}‖2

C−1

d

])}

︸ ︷︷ ︸

4th Part, which is Eq.(7)

(11)

where ‖v‖2A = vTAv, |I| is the cardinality of I, and fx,θ,ψd,I is short

for the d-th component of f(x(I),θ(I),ψ, tI), and Cd = K′′X
d (I) −

′KX
d (I)KX

d (I)−1K′X
d (I) is the conditional covariance matrix of Ẋd(I) given

Xd(I).
A deeper look into the above equation reveals that Eq.(9) is the joint

probability in Bayesian statistics, and Eq.(10) further decomposes it into parts.
The 1st Part (which is Eq.(2)) corresponds to independent GP prior distribution
of Θ(I), as the prior of Θ(t) and Ψ are independent. The 2nd Part (which is
Eq.(3)) is the prior of GP on X(I), because the prior of X(I) is independent
from Θ(t) and Ψ. The 3rd Part (which is Eq.(4)) is the level of observation
noise, and given the value of underlying true components X(τ ), the additive
Gaussian observation noise ǫ(τ ) is independent from everything else. The 4th
Part (which is Eq.(7)) can be simplified to be the conditional probability of Ẋ(I)
given X(I) evaluated at f(x(I),θ(I),ψ, tI). All four parts are multivariate
Gaussian distributed. Especially, The 4th Part (which is Eq.(7)) is Gaussian
because conditional Ẋ(I) given X(I) has a multivariate Gaussian distribution,
provided that the GP kernel KX is twice differentiable.

We choose Matern kernel with degree of freedom ν = 2.01 for both Θ(t)
and X(t) to guarantee a differentiable GP that allows more flexible patterns:

Kν(l) = φ2
1

21−ν

Γ(ν)
(
√
2ν

l

φ2
)νKν(

√
2ν

l

φ 2

), l =|s− t| (12)

where Kν denotes the modified Bessel function of the second kind. In this case,
′K = ∂

∂s
K(s, t), K′ = ∂

∂t
K(s, t), and K′′ = ∂2

∂s∂t
K(s, t) are all well-defined.

5 Algorithm

This section provides a detailed computational scheme of TVMAGI, including
the hyper-parameter settings. The implementation is available on GitHub.
Overall, the Maximum A Posteriori (MAP) of X(I), Θ(I), and Ψ is obtained
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by optimization, while the posterior mean/interval is obtained by Hamiltonian
Monte Carlo. To set the hyper-parameters and initiate the optimizer, we
introduce a multi-stage approach in the algorithm. The advantages of the
multi-stage mechanism are discussed in Supplementary Material Section S10.

5.1 Initialization and inference of the mean

At the first stage, we impose a GP only onX(t) and substitute the time-varying
θ(t) with its unknown mean µΘ in the entire model. This formulation ignores
the time-varying property of θ(t) and treats it as time-constant, which fits in
the time-constant parameters inference framework of [8]. As such, we can use
MAGI package ([8]) to obtain point estimates for the parameters and system
components, denoted as µ̂Θ, ψ(0), and x(I)(0). The µ̂Θ is subsequently used
as the prior mean value for the time-varying θ(t) in an empirical Bayes fashion,
and will be plugged in Eq.(11). The ψ(0) and x(I)(0) will be used as the initial
values for ψ and x(I) in the later MAP optimization.

The hyper-parameters (φX
1,d, φ

X
2,d) for kernel KX

d in Eq.(12) and the noise
level σ for each system component Xd, d = 1, ..., D, are also estimated in MAGI
package, using the Gaussian process smoothing marginal likelihood ([8]). The
MAGI estimated noise level σ(0) will serve as initial value for later joint MAP
optimization.

5.2 Point-wise inference of the time-varying parameters

At the second stage of TVMAGI, we obtain an initial estimate for time-varying
θ(I) by removing the smoothing GP prior. That is, we maximize the partial
posterior Eq.(13) conditioning on Θ(I), without considering Part 1 Eq.(2):

x̃(I), θ̃(I), ψ̃, σ̃

=argmax
x,θ,ψ,σ

pΨ,X(I)|WI ,Y (τ ),Θ(I)(ψ,x(I)|WI = 0,Y (τ ) = y(τ ),Θ(I) = θ(I))

∝πΨ(ψ)× P (X(I) = x(I))
︸ ︷︷ ︸

2nd Part Eq.(3)

(13)

× P (Y (τ ) = y(τ )|X(I) = x(I))
︸ ︷︷ ︸

3rd Part Eq.(4)

×

P (Ẋ(I) = f(x(I),θ(I),ψ, tI)|X(I) = x(I))
︸ ︷︷ ︸

4th Part Eq.(7)

(14)

The optimization is initialized at x(I)(0), ψ(0), σ(0), and the θ(I) is initial-
ized at µ̂Θ. We denote the optimized θ(I) as θ̃(I), and x(I)(0), ψ(0), σ(0) are
updated to a new optimum x̃(I), ψ̃ and σ̃. We call θ̃(I) the point-wise esti-
mate since there is no requirement on the smoothness or continuity of θ̃(t) on
I. Although wiggling and possibly overfitting the data, the point-wise estimate
θ̃(I) captures the trend of parameter changes, which provides information to
set the hyper-parameters of GP kernels KΘ

p for Θ(t).
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5.3 GP hyper-parameters for time-varying ODE
parameters

Length scale parameter φΘ controls how fast θ(t) could change. Provided the
point-wise estimate θ̃(I), we use Gaussian Process smoothing method to set
the hyper-parameters φΘ

1,p, φ
Θ
2,p of GP kernels KΘ

p in Eq.(12). We shall treat

θ̃(I) as observations of Θ(I), and operate on each dimension of time-varying
ODE parameters separately.

Recall the prior Θp(I) ∼ GP(µ̂Θ
p ,KΘ

p (I, I)), where the mean µ̂Θ
p is obtained

in Section 5.1. We use the empirical Bayes approach again to set φΘ
1,p, φ

Θ
2,p by

maximizing its posterior density at θ̃p(I):

φ̂Θ
1,p, φ̂

Θ
2,p = argmax

φ1,φ2

πΦp
(φ)P (θ̃p(I)|φ) (15)

where θ̃p(I)|φ ∼ N (µ̂Θ
p ,K(φ) + diag(δ2)), the δ is the nuisance parameter

governing the induced noise in point-wise estimate θ̃p(I), and the πΦp
(·) is

the hyper-prior. In practice, the hyper-prior πΦp
(·) is often set to be uniform

on a reasonable interval depending on the context to ensure desired level of
smoothness for the time-varying ODE parameter θp(t).

5.4 Maximum A Posteriori (MAP) optimization

All hyper-parameters are now set and will be held as constant when optimizing
Eq.(11) to get the MAP, with initial values θ(I)(0) = θ̃(I), x(I)(0) = x̃(I),
ψ(0) = ψ̃ and σ(0) = σ̃, all from Section 5.2. The joint posterior function
Eq.(11) of x(I), θ(I), ψ and σ is optimized with Adam optimizer [17] in
PyTorch to get the MAP estimation of TVMAGI. Finally, to mitigate the
potential issue of Adam optimizer converging to local optimum, we suggest
trying multiple initial values, including starting x(I) at linear interpolations
from the observations y(τ ).

5.5 Interval estimation of parameters

In addition to the MAP point estimate, we also quantify of the parameter
uncertainty in TVMAGI using posterior samples. In particular, we sample the
posterior function Eq(11) using Hamilton Monte Carlo (HMC), while holding
all the hyper-parameters at the same constant value as in Section 5.4. Details
about the HMC algorithm can be found in Supplementary Material Section
S3. The interested reader may refer to [18] for more thorough introduction to
HMC. Specifically in all illustration examples of this paper, we set step size
ǫ = 10−5, number of leap-frog steps L = 100, sample size 8000, burn-in ratio
0.5, and the HMC is initialized at the MAP estimate.
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6 Benchmark methods and evaluation metrics

6.1 Benchmark methods

We compare our method with two common approaches for time-varying
parameter inference in ODE: numerical integration methods, represented by
Runge-Kutta method [4], and Bayesian filtering methods, represented by Ensem-
ble Adjustment Kalman Filter (EAKF)[15], which has been used in estimating
the influenza disease spread SIRS model parameter [15] and studying time-
varying fatality rate In COVID-19 disease spread modeling [19]. Supplementary
Material Section S6 provides the review of two approaches and some addi-
tional theoretical discussion about the limitations and the statistical rigor of
the benchmark methods for ODE inference when time-varying parameters and
time-constant parameters co-exist.

6.2 Evaluation Metrics

To assess the quality of the parameter estimates and the system recovery, we
consider two metrics based on root mean squared error (RMSE). First, we
examine the accuracy of the parameter estimates, using parameter RMSE. For
the time-constant parameters, we directly calculate the RMSE of the parameter
estimates to the true parameter value across simulations. For the time-varying
parameters, we additionally average over discretization set I for the RMSE.
Second, we examine the system recovery, using trajectory RMSE. Due to the
potential identifiability issue that different parameters can give similar system
observations, we measure how well the system components are recovered as
another independent evaluation. To calculate the trajectory RMSE, we use
numerical integration to reconstruct the trajectory based on the TVMAGI
inferred parameters and initial conditions. The RMSE of the reconstructed
trajectory to the true system is then calculated at observation time points.

We emphasize that the numerical integration is only used for evaluation
purpose, and throughout our TVMAGI approach, no numerical integration is
ever needed. For better distinction, we refer to the MAP of x(I) directly from
TVMAGI as the inferred trajectory, and refer to the numerically integrated
x(t) based on the TVMAGI inferred parameters and initial conditions as the
reconstructed trajectory.

To assess the quality of the interval estimates, we consider the Frequentist
coverage of our posterior intervals. For the time-constant parameters, we directly
calculate the proportion of repeated simulations where our posterior interval
covers the truth. For the time-varying parameters, we additionally average over
discretization set I for the coverage. The coverage of the inferred trajectory can
be similarly calculated, averaging over discretization set I. We do not compute
the coverage of the reconstructed trajectory as it will require numerical solver
for each posterior sample of the parameters and initial conditions.
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7 Results

We illustrate the accuracy and efficiency of TVMAGI through three realis-
tic simulation studies of ODE models in epidemiology, ecology, and system
biology. We begin with a disease compartmental model that demonstrates
the effectiveness of TVMAGI for problems with partially observed system
component(s). We then use an ecology example to show how TVMAGI can
mitigate the identifiability issue through the informative GP prior that favors
smoother time-varying parameters. Lastly, we apply TVMAGI on a system biol-
ogy example with non-stationary rapid-changing time-varying parameters, and
presents TVMAGI’s competitive performance with one additional tailor-made
benchmark method for such ODE.

7.1 SEIRD model

Consider a COVID-19 cases/deaths modeling using an infectious disease
Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) compartmental
ODE model [20, 21], where the entire population is classified into S, E, I, R,
D components, and any transitions from one state to another state (i.e., the
disease spreading dynamics) are modeled as ODE:

dS

dt
= −βIS

N
,

dE

dt
=

βIS

N
− veE,

dI

dt
= veE − viI,

dD

dt
= viI · pd (16)

N is the total population, and the cumulative recovered population is R =
N − S − E − I − D. The S,E, I and D denote the susceptible, exposed,
infected population and cumulative death respectively. The 4 parameters of
interest are investigated: rate of contact by an infectious individual (β), rate of
transferring from state of exposed to infectious (ve), rate of leaving infectious
period (vi) and fatality rate (pd). During a pandemic, parameters in the SEIRD
model can evolve over time due to pharmaceutical and non-pharmaceutical
interventions. We assume that β is time-varying due to the mutation of disease
and policy interventions during a specific time; pd is time-varying depending
on the sufficiency of medical treatments; ve is time-varying due to the different
levels of public awareness or complacency, and vi is assumed to be unknown
time-constant parameter to avoid identifiability issues.

In the experiment we set vi = 0.1, βt = 1.8 − cos(πt/8), vet = 0.1 −
0.02 cos(πt/8), pdt = 0.05 + 0.025 cos(πt/8), and focus on a time horizon of
32 days. The initial values of four components are set as (100000, 100, 50, 50)
for (S,E, I,D). We assume S, I, D are observed on daily frequency with log-
normal multiplicative observation noise at 3% level. The exposed population E
is assumed to be only sparsely observable at 3% noise level, with one observation
per two days, due to the high cost of data acquisition from sampling test. Such
pandemic settings [22, 23] capture the periodic fluctuation of parameters often
observed in the real world.

We apply TVMAGI on a log-transformed system (by taking the log of
populations in each of the S,E, I,D state) over 100 simulation datasets, with
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Fig. 1 Results of parameter inference (upper) and reconstructed trajectory (lower) of
TVMAGI in 100 simulated datasets for SEIRD model. The mean and the 95% interval here
refer to the point estimates across 100 simulated datasets. One sample simulation dataset is
also presented to visualize the noise level and observation schedule.

Table 1 Accuracy comparison for the SEIRD model based on 100 simulation datasets. The
mean of RMSE is reported first with the standard deviation across 100 replications followed
after ± for the parameters and the reconstructed trajectories. The last column is the
coverage of interval estimates for the parameters and the inferred trajectories. The last row
shows the computing time (in seconds) needed to obtain point estimates from all methods.

Point Estimate TVMAGI Posterior Samples

RMSE TVMAGI-MAP Runge-Kutta EAKF Posterior Mean RMSE Interval Coverage

P
a
ra

m
et

er β 0.114± 0.039 0.178± 0.094 0.706±0.010 0.110 ± 0.043 98.2%
ve 0.009± 0.010 0.051± 0.030 0.057±0.003 0.007 ± 0.005 97.4%
vi 0.005± 0.003 0.004±0.003 0.151±0.008 0.007 ± 0.004 91.0%
pd 0.019± 0.029 0.083± 0.073 0.039±0.003 0.011 ± 0.008 98.0%

T
ra

je
ct

o
ry S 581.7± 272.1 1084.8± 195.3 3868.3±132.2 615.3 ± 294.5 98.8%

E 704.7± 218.3 951.7± 142.3 5376.1±496.6 660.7 ± 202.3 96.6%
I 439.0± 140.4 556.2± 90.6 3167.0±404.9 415.0 ± 158.7 96.4%
D 38.3± 4.9 33.3± 5.0 907.3± 48.6 14.0 ± 5.2 94.2%

Computing Time (s) 1006.7± 115.54 2904.4± 195.5 7.3± 0.4 -

2 discretizations per day. Figure 1 shows the results of parameter inference
and the TVMAGI reconstructed trajectory X(I) of the ODE system. The
parameter RMSE and trajectory RMSE introduced in Section 6.2 are presented
in Table 1, where TVMAGI is shown to be more accurate than Runge-Kutta
or EAKF.

For point estimates, Figure 1 and Table 1 show that, even when the exposed
population is sparsely observed, TVMAGI is still capable of providing good
results of inference. As the most important parameter when assessing the spread
of disease, βt can be accurately and robustly inferred. vi can also be accurately
inferred as constant. pdt has larger variability at the start, as initial deaths are too
few to provide enough information. In comparison, the variability of vet inference
increases at the end of the period, because susceptible population has decreased
to nearly zero while infectious population reaches plateau. Despite variations
in the inferred parameters, the inferred system trajectories are all very close to
the truth, confirming the intuition that the system is possibly less sensitive to
pd in earlier state and ve in later stage. Supplementary Material Section S5
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has the visual illustration for Runge-Kutta or EAKF, and their accuracy is far
from satisfactory: Runge-Kutta method will overfit the observation noise, and
EAKF reconstructed trajectory completely misses the truth.

For Interval estimates, Figure 10 in Supplementary Material Section S7 gives
a visual illustration for 10 sample datasets. The coverage of Posterior Interval
across 100 simulated datasets is included in Table 1. The emperical coverage
of the interval is reasonable around the 95% nominal value. The intervals are
wider for pd at the starting time, and wider for ve at the ending time, which
are consistent with the intuition about their sensitivity discussed above. More
interval estimation results are available in Supplementary Material Section S7.

On the computational cost, Table 1 also shows that TVMAGI is much faster
than the Runge-Kutta numerical integration methods. EAKF is fast, but gives
unreliable results (see Supplementary Material Section S6 for more discussion
on the reliability of EAKF).

7.2 Lotka-Volterra Model

Lotka-Volterra (LV) model (a.k.a. predator-prey model) is widely used to
describe population fluctuation of predators and preys and their interactions
in the ecosystem [24]. With the introduction of time-varying parameters, the
system becomes weakly identifiable during certain time range, which creates a
challenge in the inference. Specifically, the ODE system is characterized as:

dx

dt
= αtx− βxy,

dy

dt
= δxy − γty (17)

where x and y denote the population of preys and predators. αt indicates
the birth rate of the prey and γt denotes the death rate of the predator, both
of which are assumed to fluctuate according to seasonality. β and δ describe
the interaction relationships between predators and preys, and are assumed
constant. We set the parameters β = 0.75, δ = 1, αt = 0.6 + 0.3 cos(πt/5),
and γt = 1 + 0.1 sin(πt/5). The time is measured on a yearly basis, and data
for 20 years are generated with monthly observations contaminated by 3%
multiplicative log-normal noise. The initial values of predators and preys are 1
and 3, as an ideal ratio in real ecology systems [25].

Fig. 2 Comparison of inferred θ(t) and reconstructed X(t) of LV model. The mean and
the 95% interval here refer to the point estimates across 100 simulated datasets. One sample
simulation dataset is also plotted to visualize the noise level.

Figure 2 shows the estimated time-varying parameters and the reconstructed
trajectory X(I), with parameter RMSE and trajectory RMSE presented in
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Table 2 Accuracy comparison of estimated parameters and reconstructed trajectory in the
LV model based on 100 simulation datasets. See legend of Table 1 for detailed description.

Point Estimate TVMAGI Posterior Samples

RMSE TVMAGI Runge-Kutta EAKF Posterior mean RMSE Interval Coverage

P
a
ra

m
et

er α(t) 0.0395±0.0302 0.1155± 0.0920 0.2330±0.1589 0.0450 ± 0.0346 40.5%
β 0.0154±0.0098 0.0480± 0.0069 0.1041±0.0621 0.0187 ± 0.0122 62.0%
δ 0.0156±0.0111 0.0166± 0.0058 0.1605±0.0831 0.0160 ± 0.0119 58.0%

γ(t) 0.0304±0.0226 0.0863± 0.0756 0.0974±0.1847 0.0341 ± 0.0201 46.0%

T
ra

j. x (prey) 0.0606± 0.0550 0.0314±0.0085 0.4701±0.0903 0.0838 ± 0.0568 69.1%
y (predator) 0.0813± 0.0622 0.0384±0.0131 0.2773±0.0646 0.0989 ± 0.0714 62.2%

Computing Time (s) 910.8± 113.7 2042.1± 85.2 22.7± 1.1 -

Table 2. Our recovered system components x and y are very close to the truth,
despite the weak identifiability of the parameter αt and γt when the x and
y are at peak (year=12). Most notably, αt could deviate from the truth in
the attempt to best fit the observed noisy data at the peak of xt, resulting in
a biased inference of the time-varying parameters at the weakly identifiable
time points, although all deviations are still within the range of smoothness
constraints on αt. Nevertheless, both TVMAGI inferred system components x
and y are still accurate.

Comparing with benchmark models in Table 2, TVMAGI gives the most
accurate parameter inference thanks to the GP smoothing prior that mitigates
the identifiability issue. The numerical method of Runge-Kutta gives better
trajectory inference, but it cannot handle the identifiability issue in the param-
eters. The coverage from TVMAGI is not ideal, possibly due to the bias in
α(t) estimate and the variance in γ(t) estimate – if the GP smoothing prior is
too strong, the point estimates will be biased, and if the GP smoothing prior
is too weak, the point estimates will have large variance (see Supplementary
Material Figure 10. The comparison on computational cost again demonstrates
the expected advantage of TVMAGI over Runge-Kutta, while EAKF is the
fastest method with the worst accuracy.

This example illustrates the performance of TVMAGI in the presence
of weak identifiability – the inferred time-varying parameters at the weakly
identified time points could subject to deviation from the truth, although the
parameters are smooth and still fit the observed data well.

7.3 HIV model

In this example, we compare TVMAGI with a state-of-the-art two-stage Efficient
Local Estimation (ELE) method proposed by [26] in an HIV dynamic model
that they studied. This is a challenging case for GP modeling as the true time-
varying parameter has non-periodic non-stationary trends with rapid changes
[3, 27]. To use the ELE method of [26], the ODE system must fit in the linear
form of Eq.(18):

X ′(t) =

d
∑

i=1

ai(t)Zi(t)− cX(t) (18)
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Table 3 Accuracy comparison of estimated parameters and trajectories in the HIV
model based on 100 simulation datasets. See legend of Table 1 for detailed description.

Point Estimate TVMAGI Posterior Samples

RMSE TVMAGI Runge-Kutta EAKF ELE Posterior mean RMSE Interval Coverage

a(t) 281.9± 71.8 695.7± 50.9 818.6± 54.9 291.5± 48.4 359.0 ± 127.8 74.1%

x(t) 0.057±0.002 0.038±0.003 0.181±0.004 0.075±0.003 0.069 ± 0.004 65.9%

Computing Time (s) 897.6± 72.1 1940.2± 79.7 5.4± 0.3 10.7± 0.1 - -

where Zi(t) is the known covariate, and ai(t) is the unknown time-varying
coefficient. For benchmark comparison, we treat a1(t) and a2(t) in Eq.(18) as
unknown time-varying parameters for TVMAGI. Detailed illustration of HIV
model formulation is provided in Supplementary Material S9.

Figure 3 shows the TVMAGI inferred parameter a(t) =
∑d

i=1 ai(t)Zi(t)
and the reconstructed trajectory X(t). The parameter/trajectory RMSEs of
TVMAGI and the benchmark methods are reported in Table 3. TVMAGI has
a small advantage over the state-of-the-art method on HIV model inference
of X(t). Further visual comparison to benchmark methods (Supplementary
Material Figure 9) shows that TVMAGI is slightly more accurate at the
beginning phase of the system, which is in fact the most challenging phase for
HIV inference as viral load drops sharply due to the drug effect. TVMAGI also
achieves competitive inference result on a(t), which is of clinical importance
for the generation rate of HIV virus [13]. The TVMAGI posterior interval
coverage is less ideal because of the decreased accuracy in a(t) towards the
ending period (Supplementary Material Figure 12). Most importantly, while
the benchmark method requires a highly restricted form of ODE formulation,
TVMAGI assumes no specific form of ODE equations, and is thus applicable
for general ODE systems, albeit with longer computing time.

Fig. 3 TVMAGI inferred a(t) and reconstructed X(t) of HIV model.

Overall in this example, we compare TVMAGI with an additional benchmark
method that can only be applied to the ODEs with a specific form, where
TVMAGI is shown to provide competitive inference accuracy while having
much more general applicability. The application in HIV model also illustrates
that TVMAGI could work well with non-stationary trends in the time-varying
parameters, where the time-varying parameters is not periodic and have rapid
changes in part of the time horizon.
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8 Sensitivity analysis

We conduct three sensitivity analysis to show the robustness of our approach:
the number of discretization, the selection of GP kernel, and the mis-specified
time-varying parameters. Detailed discussion is provided in Supplementary
Material Section S8, along with tables and visualizations of SEIRD model
results.

9 Discussion

In this paper, we introduce a Bayesian approach, TVMAGI, for time-varying
parameters inference in ODE dynamic systems. TVMAGI models time-varying
parameters and system components as Gaussian process, and is constrained to
have the derivative processes satisfy the ODE dynamics. We show that TVMAGI
is statistically principled and illustrate its general applicability through three
simulation examples. Results have shown that TVMAGI yields accurate and
robust parameter inference from noisy observations, with reasonable interval
estimates as well. Moreover, TVMAGI can mitigate the identifiability issue
and the over-fitting issue in the time-varying parameters using the informative
GP smoothing prior. TVMAGI is also generally applicable in the presence of
missing observations.

TVMAGI is more accurate than the benchmark methods because TVMAGI
addresses the challenges of the numerical integration method and the Bayesian
filtering method for ODE time-constant and time-varying parameter inference.
Numerical integration methods are the gold standard for the ODE parameter
inference when all parameters are time-constant. However, with the presence
of time-varying parameters, due to the lack of smoothness structure on θ(t),
the inferred time-varying parameters from Runge-Kutta will overfit the noisy
observation data, resulting in volatile θ(t) with little information about the
true trends. The Bayesian filtering approach, on the other hand, cannot infer
time-constant parameter ψ because the update in ψ is not permissible in a
state-space model fashion. We can nevertheless enforce an update on the time-
constant parameter, but there will be no guarantee on the accuracy of the
reconstructed trajectory. The ELE two-stage approach relies on a regression
technique that can only be used if the ODE has linear dependency on the
time-varying parameters. Therefore, TVMAGI is the only approach that is
theoretically sound, practically accurate, and generally applicable for the ODE
inference problem when time-constant and time-varying parameters co-exist.

On the computational time comparison, TVMAGI has notable advantage of
reduced computation cost compared to numerical integration method, while the
inference is more accurate compared to the fast-yet-unreliable Bayesian filter-
ing methods. Even for the three small-sized problems in this paper, TVMAGI
is more than twice as fast than the numerical integration method of Runge-
Kutta with better accuracy. When dealing with large-scale system, the gain
in computational time is likely to be even larger, as TVMAGI computa-
tional time would scale linearly as the dimension of system components grow,
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while inference with numerical integration method typically scales super lin-
early. Therefore, TVMAGI has strong potential in large-scale systems, where
numerical integration is expensive.

There are two settings that may require tuning in TVMAGI. First, the
number of discretization can affect the inference results. When observed compo-
nents are sparse, the number of discretization should increase until the results
are stabilized. However, over-densed discretization will lead to higher computa-
tion cost. For example, in SEIRD model, we set discretization as 2 data points
per day for optimized performance, as further increasing the discretization will
not improve the result accuracy. Second, the inference results on TVMAGI can
be affected by hyper-parameter settings of the GP kernel for θ(t). To achieve
the desired variability level of time-varying parameters, we find it helpful to
use informative hyper-prior that specifies the range of length-scale (a.k.a. band-
width) parameter of the GP kernel for θ(t) to prevent obvious over-smoothing
or over-fitting.

The Gaussian process modeling of θ(t) with Matern kernel ν = 2.01 ensures
continuously differentiable time-varying parameters, which prevents overfitting
the parameter to the observation noise. The variability in time-varying param-
eter θ(t) can be further controlled by the length-scale GP hyperparameter φ2

through its hyper-prior. The Matern kernel together with the hyper-prior on
the length-scale hyperparameter ensures the smoothness and the degree of
variability in θ(t), which in turn prevents over-fitting and mitigates identifi-
ability issues. If a more flexible θ(t) is desired, Matern kernel ν = 1.5 with
hyper-prior favoring smaller GP hyperparameter φ2 can be used to allow rapid
non-differentiable changes in θ(t).

One limitation of TVMAGI is its inherent bias. Just like any other Bayesian
approaches, TVMAGI could be biased towards smoother curves due to the GP
prior. The results of inference would be less accurate when the true time-varying
parameters have rapid changes, and the posterior interval coverage could suffer.
But as shown in the examples, the magnitude of such bias is small in practice,
and our accuracy is still comparable with state-of-the-art approaches while
TVMAGI having much better universal applicability. TVMAGI is also not
suitable if the underlying time-varying parameter is a jump process. In this
case, methods in change point detection literature might be more applicable
[28]. Alternatively, we can place the prior of continuous-time Markov chain or
Poisson process on θ(t), instead of Gaussian process, to model the jump process.

There are also many other interesting future directions for TVMAGI. We
currently focus on empirical performance of TVMAGI through simulation
examples. More theoretical study on the convergence property, identifiability
issue, and asymptotic behavior of the time-varying parameter estimate are all
natural directions of future research. It would be of future interest to extend
TVMAGI for partial differential equation of spatial-temporal dynamics [29], or
stochastic differential equation of inherent noise modeling [30].
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Appendix A Supplementary materials

A.1 Advantage of the infinity norm in Eq.(4.5)

In this section we illustrate how L∞ norm in Eq.(4.5) of main text facilitates
theoretical construction, compared to L2 norm. First, with L∞ norm in W ,
it is clear that on the discretization subset I, the corresponding WI will

simply be the maximum over I. However, with the L2-norm of
∫ T

0
(X(t) −

f(X(t),Θ(t),Ψ, t))2dt, the formulation of the corresponding WI is not as clear.
Second, using L∞ makes the theoretical justification easier. To mathematically
study the properties of TVMAGI while avoiding Borel paradox, one can use
the fact that {WI < ǫ} ≡ ∩i∈I{Wi < ǫ}, thanks to WI being the L∞ norm
over the set I. Third, the L∞ norm in Eq.(4.5) and Eq.(4.6) automatically
transforms into L2 loss for likelihood calculation in Eq.(4.7) and Eq.(4.11)
through a simple mathematical derivation, which facilitates computation while
maintaining the theoretical rigor. This is because when a Gaussian distributed
vector is constrained to have zero deviation with some fixed value (i.e., vector
L∞ distance to the fixed value is zero), the fixed value will be plugged into
the Gaussian probability density function, inducing an L2 loss in the target
function Eq.(4.11).

A.2 Intuition of the manifold constraint on Gaussian
process

In this section we illustrate the intuition behind the manifold constraint W = 0
(or WI = 0) for the Gaussian process.

We consider the following simple bi-variate Gaussian example:

(Z1, Z2) ∼ N2(0,

(

1 0.5
0.5 1

)

)

Let W = Z1 − 0.5 × (Z2
2 + 1). Then conditioning on W = 0, the (Z1, Z2) is

distributed on the parabola as in the left panel of Figure A1. The sampling is
possible as the blue dots in the right panel of Figure A1, where the density is
proportional to the original bi-variate Gaussian but only on the parabola curve.

The Gaussian process XI in the main text and the constraint WI = 0 apply
the same intuition on |I|-dimensional Gaussian vector, thus having a manifold
constraint induced by WI = 0.

A.3 HMC algorithm

We outline the HMC procedure for sampling from a target probability
distribution. Algorithm 1 provides the details of our HMC implementation.
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Fig. A1 Illustration of the manifold constraint on bi-variate Gaussian. Left panel:
blue dots are the samples from joint density of (Z1, Z2) without the manifold constraint
W = 0. The red curve is the manifold constraint W = 0 to be imposed. Right panel: blue
dots are the samples from (Z1, Z2)|W = 0 where all points lie on the parabola. The density
is proportional to the original bi-variate Gaussian but only on the parabola curve.

Algorithm 1 HMC sampling in TVMAGI

Input:
U : Log likelihood function in Eq.(4.11)
ǫ: step size of HMC
L: number of leaf frog steps
N: number of samples
Initialize: x(I),θ(I),ψ,σ

1: for i in 1:N do

2: qcurrent = vector(x(I), θ(I), ψ, σ)
3: q = qcurrent

4: p = rnorm(length(q), 0, 1)
5: pcurrent = p
6: p = p− ǫ∇U(q)/2
7: for j in 1:L do

8: q = q + ǫp
9: p = p− ǫ∇U(q)

10: end for

11: p = p− ǫ∇U(q)/2
12: if runif(1) < exp(U(qcurrent)− U(q) + sum(p2current − p2)/2) then

13: return q ⊲ (Accept)
14: else

15: return qcurrent ⊲ (Reject)
16: end if

17: end for
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A.4 Additional benchmark methods of Bayesian
filtering approaches

Compared with Ensemble Adjustment Kalman Filter (EAKF), other Bayesian
filtering methods, such as Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF) and Ensemble Kalman Filter (EnKF) are less discussed in ODE
parameter inference applications. In this section we also include a few more
Bayesian filtering benchmark methods of Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF), and EnKF. All the Bayesian filtering methods
have the inherent limitation that all parameters must be assumed time-varying,
and thus cannot accommodate time-constant parameters. To further illustrate
the Bayesian filtering approaches, we also provide inference results using the
other three methods. Fig.A2 and Fig.A3 illustrate the results of SEIRD model.
Fig.A4 shows the results of LV model and Fig.A5 shows the results of HIV
model.

Fig. A2 Inferred θ(t) of EKF, UKF and EnKF approach for SEIRD model. The inferred
parameters cannot capture the ODE structure, thus yielding inaccurate reconstructed
trajectory.
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Fig. A3 Reconstructed trajectory of EKF, UKF and EnKF approaches for SEIRD model.
The accuracy is far from satisfactory.
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Fig. A4 Inferred parameter and reconstructed trajectory of EKF, UKF and EnKF
approaches for LV model. The accuracy is far from satisfactory.
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Fig. A5 Inferred parameter and reconstructed trajectory trajectory of EKF, UKF and
EnKF approaches for HIV model. The accuracy is worse than TVMAGI, Runge-Kutta, or
ELE.



Springer Nature 2021 LATEX template

24 Time-varying Manifold Gaussian process inference

A.5 Additional results of the main benchmark methods

Due to the limited space of the main text, we include visualizations of the
main benchmark methods of Runge-Kutta method and EAKF method for the
three examples in the main text here. Fig.A6 is for SEIRD model parameter
inference, and Fig.A7 is for SEIRD model reconstructed trajectory. Fig.A8 is
for LV model. Fig.A9 is for HIV model.

Fig. A6 Results of parameter inference in 100 simulated datasets using Runge-Kutta and
EAKF for SEIRD model.
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Fig. A7 Reconstructed trajectory using inferred parameters of Runge-Kutta and EAKF
methods for SEIRD model. One sample simulation dataset is also presented to visualize the
noise level and observation schedule.

Fig. A8 Comparison of inferred θ(t) and reconstructed X(t) of LV model. We also plot
one sample simulation dataset to visualize the noise level.
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Fig. A9 Comparison of inferred θ(t) and reconstructed X(t) of HIV model. We also plot
one sample simulation dataset to visualize the noise level.
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A.6 Review on benchmark methods

A.6.1 Runge-Kutta method

Runge-Kutta methodis a brute-force way for parameter inference in ODE
systems. As a non-linear least square method, Runge-Kutta method minimizes
the MSE of observations and reconstructed trajectory using numerical inte-
gration from the proposed initial conditions and parameters. The objective
function is given by:

min
x0,θ(I),ψ

∑

τ∈τd

D
∑

d=1

(yd(τ)− X
RK4
τ (x0,θ(t),ψ)d)

2 (A1)

where X
RK4 denotes the reconstructed trajectory using the 4th Order Runge-

Kutta method.

A.6.2 Ensemble Adjustment Kalman Filter

Ensemble Adjustment Kalman Filter (EAKF) is a variation of Kalman Filter
that is popular for parameter calibration of ODE systems in practice. It is a
specially designed fast Bayesian filtering method. As a data assimilation tech-
nique, EAKF represents filtered distribution using Monte Carlo samples, and
replaces the covariance matrix with sample covariance. The Kalman update
assumes all probability distributions involved are Gaussian. As a major differ-
ence with Ensemble Kalman Filter (EnKF), EAKF uses a deterministic update
instead of stochastic update.

A.7 Limitations of Runge-Kutta method

Numerical integration methods are the gold standard for the ODE parameter
inference when all parameters are time-constant. However, with the presence of
time-varying parameters, there are several inherent disadvantages of numerical
integration methods. First and foremost, without any structure on the time-
varying parameters, the numerical integration method will give time-varying
parameter estimate that perfectly fits the observation data, resulting in overfit-
ting issues in the time-varying parameter. Second, with the increase of time
points and size of the system, the objective function becomes expensive to
evaluate, resulting in high computation cost. Third, the numerical methods are
sensitive to the initial value of the optimization, while searching for a good ini-
tial point can be challenging in the high-dimensional scenarios, as optimization
of objective functions using algorithms such as Adam can be easily stuck at local
minimum. We point out that using random initial values in our examples can
lead to high level of error, making numerical integration methods completely
fail. In this case, all the optimization for Runge-Kutta method are initialized
at the TVMAGI initial points from Section 5.1 in the main text examples.
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A.8 Limitations of Bayesian filtering methods

Although Bayesian filtering method is the fastest, examples have shown that
applying Bayesian filtering methods to ODE parameter inference problems has
failed to provide satisfactory results. Even though we included the Bayesian
filtering methods as baseline comparison methods, we emphasize that state-
space model (Bayesian filtering) and ODE parameter inference (TVMAGI) are
fundamentally different problems. To illustrate the difference in a simplified
framework from a theoretical perspective, consider the following example of
time-constant parameter inference where all parameters are denoted as θ.

The fundamental difference is the lack of randomness in the state transition
given the model parameters, and thus the Bayesian update given the observation
will have zero effect. With the ODE structure, there is no randomness in
xt|xt−1,θ. The state transition distribution p(xt|xt−1,θ) essentially has shifted
Dirac delta distribution. Therefore, regardless of emission probability p(yt|xt),
the hidden state xt will not depend on yt. As such, all Bayesian updates
will have zero effect to shift distribution of p(xt|xt−1,θ), which is still shifted
Dirac delta distribution. The exact Bayesian filtering results will simply be the
solution of ODE dynamics given the initial sample of x0 and the parameter θ.
In this case, the parameter estimation in the exact Bayesian filtering reduces to
using numerical solver to generate the entire ODE curve given x0,θ, and then
using a least square approach to compare the solved curve and the observations
to find the best x0,θ. The exact Bayesian filtering in this case degenerates to
a numerical integration method. From another particle filter perspective, each
particle of sampled x0,θ will evolve in time according to ODE without any
randomness, and the parameter estimation becomes a brute-force search of the
particle of sampled x0, θ that provides the smallest mean squared error to the
observation. In light of this, the Bayesian filtering/smoothing is more suitable
for inference of Stochastic Differential Equations (SDEs) parameters.

However, Bayesian filter methods still can be applied in ODE inference
problem if we can forego some statistical rigor. We can treat all parameters
as time-varying, and artificially introduce additional randomness in θt|θt−1

and ψt|ψt−1. In this case, the simultaneous estimation of system components
x(t), time-constant parameter ψ and time-varying parameter θ(t) becomes an
estimation of joint hidden state (xt,ψt,θt). Then Bayesian filtering methods
such as EKF, UKF, EnKF and EAKF become applicable. However, this is not
a statistically principled approach, because (1) time-constant parameter ψ is
now changing with time, and (2) the inference on the distribution is not exact
as Gaussian distributional approximation is used on system components x(t).
Nevertheless, this method could work empirically, with the notable success of
SIRS-EAKF model.

In our example, we found the Bayesian filter methods are highly sensitive
to the initialization of the parameters. Randomized initialization often lead
to insensible results. Therefore, all the parameters for Bayesian filter methods
are initialized at the TVMAGI initial points from Section 5.1 in the main text
examples, which is the same as Runge-Kutta method.
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Even then, our numerical experiments suggest that Bayesian filtering meth-
ods are the fastest, but often yield unreliable inference results. Among EKF,
UKF, EnKF and EAKF, we see that UKF, EnKF and EAKF yield similar
results, all outperforming EKF in LV and HIV examples, while EKF has a
slight advantage in SEIRD model inference compared with other Bayesian fil-
tering methods, although not robust. All of them yield orders of magnitude
worse trajectory RMSE compared to TVMAGI or Runge-Kutta. Two factors
contribute to the unsatisfactory trajectory RMSE of Bayesian filtering methods.
First, all filtering approaches fail to yield an accurate and robust parameter
estimation, especially in SEIRD model when the observation points are limited.
Second, the variance of time-varying parameters is large at weakly identifiable
time points (Figure A4), and the estimates for the later time points are no
longer accurate due to the cascading effect.

The failure of Bayesian filtering in our setting is not surprising. First, it
violates the assumption of the model, as it is not principled to allow time-
constant parameters ψ to change over time. Although we used the average ψ̄ of
the filtered parameter ψt to be the final estimate for the ψ, the approximation
error can still be large. The idea of changing a time-constant parameter to be
time-varying during inference and later plugging in the average of the inferred
values is not theoretically sound. The trajectory RMSE precisely evaluates
how accurate the estimated parameters can be used to reconstruct the entire
system given the ODE structure, of which ψ̄ would fail. Second, contrary to the
typical setting of Bayesian filtering in machine learning where there is a long
sequence of data, our experiments are designed to see how the method performs
with short time series and sparse observations, as in most scientific experiment
settings. The lack of long series of data poses a challenge to Bayesian filtering
methods. Third, the ODE structure is no longer exactly followed in Bayesian
filtering, which loosens the structure constraints and creates additional loss of
information from the observation data that is already sparse.

A.9 Additional results of TVMAGI interval estimates

In this section we present the visualization for the interval estimation results.
We see that for long time series of observations, the estimated intervals tend
to be narrow and may not contain the true values, which is a limitation of
TVMAGI.
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Fig. A10 Illustration of interval estimation of SEIRD model of 10 sample datasets for β

(upper), ve (middle), pd (lower). The shadow indicates the 95% posterior interval from HMC
samples, the solid lines indicate the posterior mean, and the red surface indicates the true
value.

(a) β (b) ve

(c) pd

Fig. A11 Median of upper & lower bound of β, ve and pd in SEIRD model. We randomly
plot 10 replications.
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(a) Interval estimation of α(t) (b) Median of upper & lower bound of α(t)
interval

(c) Interval estimation of γ(t) (d) Median of upper & lower bound of γ(t) interval

Fig. A12 Estimated interval of α(t) and γ(t) in LV model. We randomly plot 10
replications.
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(a) Interval estimation of a(t) (b) Median upper and lower bound of a(t)

Fig. A13 Estimated interval of a(t) in HIV model. We randomly plot 10 replications.
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Table A1 Parameter and trajectory RMSE of TVMAGI in SEIRD model under different
discretization level. The computing time (in seconds) is reported in the last row.

RMSE
Discretization Level

1 2 4

P
a
ra

m
et

er β 0.156 ± 0.083 0.114 ± 0.039 0.102 ± 0.036
ve 0.007 ± 0.007 0.009 ± 0.010 0.010 ± 0.010
vi 0.006 ± 0.004 0.005 ± 0.003 0.005 ± 0.003
pd 0.018 ± 0.027 0.019 ± 0.029 0.021 ± 0.033

T
ra

je
ct

o
ry S 1253.4 ± 332.0 581.7 ± 272.1 603.9 ± 355.2

E 1010.6 ± 231.9 704.7 ± 218.3 679.5 ± 209.1
I 584.6 ± 195.6 439.0 ± 140.4 401.0 ± 132.8
D 44.7 ± 8.8 38.3 ± 4.9 39.0 ± 3.4

computing time (s) 622.1 ± 49.6 1013.3 ± 109.1 1773.9 ± 161.3

A.10 Additional results on TVMAGI sensitivity study

In this section we conduct three sensitivity analysis: the number of discretization,
the selection of GP kernel, and the mis-specified time-varying parameter. For the
number of discretization, our theoretical derivation ensures that the inference
result will converge as the discretization increase, and we recommend gradually
increasing the number of discretization points until the result is stabilized. Here
we empirically demonstrate such convergence by presenting results with various
discretization level. For the GP kernel selection, we relax the GP kernel of
time-varying parameter to be Matern kernel with different degrees of freedom
ν = 2.5 and ν = 1.5. When ν = 1.5, θ(t) is only required to be continuous, but
not necessarily differentiable. For the mis-specified time-varying parameter, we
examine the TVMAGI time-varying estimate when one parameter is in fact
time-constant.

A.11 Number of discretization

In this section we explore the sensitivity of TVMAGI to the number of dis-
cretization. In the paper we used discretization level of 2 in the SEIRD model,
that is, with 32 observation points, we have a total of 64 discretization points
(2 discretization per observation). For comparison, we use the same observation
data with discretization level of 1 and level of 4, corresponding to 32 discretiza-
tion points (1 discretization per observation) and 128 discretization points (4
discretization per observation), respectively. Table A1 shows that the inference
accuracy indeed converges. However, the computational time scales up linearly
with the number of discretization points. In practice, we recommend gradually
increasing the number of discretization points until the result is stabilized,
trying to balance the inference accuracy with the computing cost.
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Table A2 Parameter and trajectory RMSE of TVMAGI in SEIRD using different kernels.

RMSE
ν for θ(t)

1.5 2.5 2.01

P
a
ra

m
et

er β 0.085 ± 0.005 0.139 ± 0.021 0.114 ± 0.039
ve 0.012 ± 0.004 0.015 ± 0.005 0.009 ± 0.010
vi 0.004 ± 0.005 0.003 ± 0.004 0.005 ± 0.003
pd 0.058 ± 0.004 0.044 ± 0.012 0.019 ± 0.029

T
ra

je
ct

o
ry S 423.0 ± 130.2 853.3 ± 288.5 581.7 ± 272.1

E 412.3 ± 111.7 836.1 ± 186.5 704.7 ± 218.3
I 356.3 ± 94.1 569.4 ± 171.8 439.0 ± 140.4
D 69.1 ± 21.5 20.4 ± 8.6 38.3 ± 4.9

A.12 Selection of kernel

In this section we discuss how the kernel selection will affect the performance
of TVMAGI. In the paper we recommend modeling θ(t) as Gaussian process
with Matern kernel ν = 2.01 to guarantee a continuous and differentiable time-
varying parameters while maintaining high flexibility. We can also use other GP
kernels or hyperparameters to control the smoothness. For example, Matern
kernel with ν = 2.5 can be used for even smoother GP with a simple closed-
form kernel. The condition of differentiability can also be further relaxed if we
substitute the kernel with ν = 1.5, and then the parameters are only assumed
with continuity without differentiability, allowing more flexible patterns for the
time-varying parameters θ(t). Table A2 shows the result under both kernels,
where the the performance is similar to the recommended ν = 2.01 in SEIRD
model, indicating that TVMAGI is not sensitive to the choice of kernels.

A.13 Mis-specified time-varying parameters

In this section, we explore the TVMAGI estimation when a time-constant
parameter is mis-specified to be time-varying, i.e., a time-constant ODE param-
eter is falsely recognized as a time-varying parameter. Ideally, the inferred
parameter curve from TVMAGI should be a horizontal line which is close to
the true constant value, while still maintaining smoothness. In this example,
we alter the settings of SEIRD model by setting parameter ve as constant
ve = 0.1, and treat it as time-varying parameter in the TVMAGI estimation.
As shown in Figure A14, TVMAGI is capable of dealing with the mis-specified
parameters, where the inferred ve is approximately a horizontal line close to
true parameter value (except the ending time when the ve is difficult to esti-
mate), while the inference of other parameters are not affected. The parameter
and reconstructed RMSE results are presented in Supplementary Material
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Table 1, and the accuracy is comparable to the Table 1 in main text where all
time-varying parameters are correctly specified.

Fig. A14 Mis-specified parameter ve in SEIRD model. Figure y-scale is the same as Figure
1 for better visualization.

A.14 Discretization and choice of kernels

In this section we give additional visualizations for TVMAGI sensitivity study
when varying the discretization level, and Matern kernel degree of freedom ν.

(a) Discretization level = 1

(b) Discretization level = 4

Fig. A15 TVMAGI inferred parameters in SEIRD model with different discretization level.
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(a) Discretization level = 1

(b) Discretization level = 4

Fig. A16 TVMAGI reconstructed trajectories in SEIRD model with different discretization
level.

Table A3 Parameter and reconstructed RMSE table for mis-specified time-varying
parameter ve.

RMSE

Parameter Reconstructed

β 0.120±0.046 S 513.13±232.08
ve 0.008±0.009 E 647.16±232.81
vi 0.007±0.004 I 364.94±197.92
pd 0.022±0.036 D 27.61± 6.52

A.15 Structure of HIV model

The ODE model that characterizes the response of anti-viral regimens during
HIV infection is given by:



























T ′(t) ≡ d

dt
T (t) = λ− ρT (t)− k[1− r(t)]T (t)X(t)

T ∗′(t) ≡ d

dt
T ∗(t) = k[1− r(t)]T (t)X(t)− δT ∗(t)

X ′(t) ≡ d

dt
X(t) = NδT ∗(t)− cX(t)

(A2)

T (t) denotes the concentration of uninfected CD4+ T cells, which can be
accurately measured clinically; T ∗(t) denotes the unknown unobservable con-
centration of infected T cells; X(t) is the HIV-1 viral load in plasma, and can
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(a) Inferred parameters of ν = 1.5

(b) Reconstructed trajectory of ν = 1.5

Fig. A17 TVMAGI inferred parameters and reconstructed trajectories of SEIRD model
with Matern kernel ν = 1.5

be observed with noise. λ is the rate of new T cell generation; ρ is the death
rate of T cells; k is the infection rate of T cells by HIV virus; δ is the death
rate of infected cells; N is the total production of new virions by an infected T
cell; c denotes the known constant rate of free virion clearance; r(t) is the time-
varying antiviral drug efficacy coefficient, which may decay through time due
to drug resistance. Our simulation settings are based on as λ = 36, ρ = 0.108,
k = 5×10−4, δ = 0.1, N = 1000, c = 3.5, X(0) = 1000, T (0) = 350, T ∗(0) = 20,
and r(t) = cos(πt/500). Time horizon is set as 100 days, with observation noise
level at 5%. Hulin Wu (2008) transformed the system Eq.(A2) into Eq.(7.17)
by taking d = 2, a1(t) = −NT ∗′(t), a2(t) = Nk[1 − r(t)]X(t), Z1(t) = 1
and Z2(t) = T (t), and then used their ELE method estimate time-varying
coefficients ai(t).

A.16 Advantages of multi-stage algorithm

Compared with joint optimization of hyperparameters and parameters together,
the multi-stage optimization method enjoys several advantages. First, the GP
hyperparameters ΦX for the system components are set at the first stage and
held as constant in the rest of the optimization so that the inverse of kernel
matrix only needs to be computed once. Second, GP hyperparameters ΦΘ

for the time-varying parameters could not be set without any information
about Θ(I). Therefore, a multi-stage procedure is necessary, where a point-
wise θ̃(I) is obtained in one stage without GP, and then GP hyperparameters
ΦΘ is estimated in the following stage based on θ̃(I). Lastly, The multi-stage
optimization ensures that each step of the optimization starts with sensible
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(a) Inferred parameters of ν = 2.5

(b) Reconstructed trajectory of ν = 2.5

Fig. A18 TVMAGI inferred parameters and reconstructed trajectories of SEIRD model
with Matern kernel ν = 2.5

initial value obtained from previous modularized optimization, thus drastically
decreasing the chance of Adam optimizer stuck in local mode. Experiments
have shown that our carefully designed multi-stage optimization is faster and
achieves better results than joint optimization with randomized starting values.

However, although we carefully designed the multi-stage optimization and
sampling schedule, occasionally the Adam optimizer or the HMC sampler could
still get stuck. Among the total of 300 simulated datasets across three examples,
the algorithm got stuck in one particular dataset of the SEIRD model. In
the stuck case, some manual tuning of the hyper-parameters or jittering of
the sampled parameters might be needed. We will continue to improve the
robustness of our proposed algorithm and our software implementation.
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