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Abstract

Given a random sample extracted from a Multivariate Bernoulli Variable (MBV),
we consider the problem of estimating the structure of the undirected graph for which
the distribution is pairwise Markov and the parameters’ vector of its exponential form.
We propose a simple method that provides a closed form estimator of the parame-
ters’ vector and through its support also provides an estimate of the undirected graph
associated to the MBV distribution. The estimator is proved to be consistent but it
is feasible only in low-dimensional regimes. Synthetic examples illustrates its perfor-
mance compared with another method that represents the state of the art in literature.
Finally, the proposed procedure is used for the analysis of a real data set in the pediatric
allergology area showing its practical efficiency.
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AMS (2000) Subject Classification: Primary: 62G05. Secondary: 62-07

1 Introduction

Graphical models are an elegant framework to deal with complex systems of random vari-
ables and it is becoming strategic for the statistical analysis of data in a variety of domains
such as bioinformatics, image analysis, physics, economics, etc. In many of these contexts
one is interested in exploring the complex dependence structure among random variables by
using graphical model inference. In this work we deal with the problem of learning a undi-
rected graph which encodes the conditional dependence relationship between components
(X1, . . . , Xp) of a Multivariate Bernoulli Variable (MBV).

It is very important to note that the conditional dependence relationship is very different
from the marginal dependence relationship and that the former does not imply the second
nor vice versa, as pointed out in the well know Yule-Simpson effect [1]. More precisely,
two variables Xi and Xj are conditionally independent (conditioned on the rest of the other
system’s variables Xl with l 6= i, j) if their conditional distribution is the product of the
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conditional marginal distributions, while two variables are independent (in the classical sense,
i.e. marginally) if their joint distribution (i.e. the marginal of Xi and Xj) is the product
of the marginals. The concept of conditional independence, being more sophisticated with
respect to the marginal one, can capture more fundamental relations between variables
and this is the reason why it is becoming central in the analysis of complex system of
variables. As an example, consider a data set which consists of recording p simultaneous
presence/absence of allergy for p different allergens, it is then possible, to model the joint
distribution of these p Bernoulli variables as a MBV. Starting from the dataset, measuring
these p Bernoulli variables in n different subjects, one wants to discriminate between direct
and indirect association among the different allergens. This is an example of cross-reactivity
network between allergens (see [10]), where the marginal (indirect) relationship between
reaction to different allergens is almost certainly present since the system of p variables is
very complex and each variable interacts certainly with the others, and thus we are not
interested in it; yet the relationship of conditional (direct) dependence expresses a deeper
and more interesting link from the allergological point of view. The statistical task of testing
conditional independence has been extensively studied in various forms within the statistics
and econometrics communities for nearly a century, see for example[14], [2], [9] and reference
therein. However, in this paper we do not propose a new hypothesis test, but in a broader
sense we face a parametric estimation problem for an MBV that will have implications on
the conditional dependence relationship among components.

More specifically, MBV admits a parametrization within the framework of exponential
families which guarantees a direct interpretation of conditional independence through the
exponential family canonical parameters. In this work we are interested not only in the
problem of learning the graph underlying the MBV, but we also deal with the problem of
learning the parameters’ vector of its exponential representation. It will be clear during the
exposition that these two problems are strongly connected because the problem of learning
the graph is reduced to the problem of learning the support of the parameters’ vector of
the MBV exponential representation. Hence, we can even say that we’re dealing with the
problem of learning a factorization of the MBV, which indeed is equivalent to learn the graph
structure.

Such a problem has been addressed in the recent statistical literature. For example in
[8], given a sample extracted from an MBV, it is proposed to estimate the graph by using
the support of the generalized covariance matrix, however this method is applicable only for
graph with singleton separator sets (tree being a special case of this class) and moreover
this method does not furnish an estimate of the parameters’ vector of the exponential MBV
representation. On the other hand, all the others existing methodologies for estimating
the parameters’ vector make use of a l1- penalized maximum likelihood approach, under
sparseness hypothesis on the graph. To be more precise, in [7] it is proposed a procedure for
solving a class of l1-regularized log likelihood models which estimate the parameters’ vector
and hence the graph structure of a binary pairwise Markov network. A binary pairwise
Markov network is a MBV with interaction term up to order two. In [12] an l1-regularized
logistic regression approach is proposed to learn the signed set of neighbors of each graph’s
node for an Ising model. An Ising model is a MBV with interaction term up to order two and
different support since value 0 is replaced by value -1; the l1-regularized logistic regression
can be slightly modified to obtain an estimate of parameters’ vector not only of its signed
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support, possible modifications are presented in [7] as well as in [4] in the case of symmetric
model (i.e. no first order terms). Moreover it is important to note that all these procedures
can be in principle easily extended to general MBV with interaction terms of any order at
the price of a severe increase of computational cost; more importantly all these procedures
are useful in high dimensional regime, the l1-regularized logistic regression approach of [12]
being the most widely used procedure in many different applications.

Instead of using a maximum likelihood principle, in this paper we propose simple em-
pirical method to estimate the parameters’ vector which can work for general MBV. The
method is efficient in a low dimensional regime. The great advantage of this procedure lies
in its simplicity of calculation, because it provides an estimator in a closed form and hence
there is no need for iterative procedures as in the case of maximum likelihood estimators.
Moreover, theoretical properties for this estimator are obtained under very general assump-
tion on the underlying MVB, hence there is no need of sophisticated hypothesis as for the
case of maximum likelihood estimators.

The paper is organized as follows. In Section 2 we present population level results, i.e.
theoretic properties of a Multivariate Bernulli Variable and set the statistical problem. In
Section 3 we review in detail the mechanics of the l1-regularized logistic regression (MLE
based) proposed in [12] and we adapt it to our context. In the same section we introduce
our procedure proving a theoretical consistency result. In Section 4 we present some results
on simulated data and finally in Section 5 we apply the proposed procedure to a real case
problem.

2 Mathematical framework

2.1 Binary undirected graphs

For a complete and exhaustive treatment of graphs theory we refer to [6]; below we give only
definitions and properties necessary for this work. A finite graph G = (V,E) consists of a
finite collection of nodes V = {1, 2..., p} and a collection of edges E ⊆ V × V . For the scope
of this work, we will consider graphs that are undirected, namely graphs whose edges are not
ordered, i.e. there is no distinction between the edges (i, j) and (j, i) ∈ E. Moreover, for
any i ∈ V N(i) := {j ∈ V : (i, j) ∈ E} is the set of neighbours of node i.

In this paper the notion of a graph is used to keep track of the conditional dependence
relationship between random variables of a complex system. By complex system here we
mean a jointly distributed vector of random variables (X1, X2, ..., Xp) that interact with each
other.

Associated with an undirected graph G = (V,E) and a system of random variables XV

indexed in the vertexes set V there is a range of different Markov properties which establish
how much the graph is explanatory of the conditional independence property of the random
variables, see [6] for details. Specifically, in this work we deal with systems of random
variables which are pairwise Markov with respect to an undirected graph G = (V,E), i.e. it
holds

Xi ⊥⊥ Xj|XV \{i,j} ⇔ (i, j) /∈ E,

which establish conditional independence among two variables Xi and Xj iff their corre-
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sponding nodes in the graph G are not connected. Moreover, in [6] it is also defined the
factorization property of a distribution, specifically a joint distribution factorizes if it can
be expressed by an exponential form strictly connected to the graph structure (as the one
showed in eq. (2)). The remarkable theorem of Hammersley and Clifford (cfr. Theorem
3.9 in [6]) say that for a positive distribution the factorization property is equivalent to the
pairwise Markov property. Hence, in this paper, our working hypothesis is that the MBV is
positive and it admits an exponential form.

Our perspective is inferential, therefore, given a statistical sample extracted from the
unknown distribution f(X1, . . . , Xp), we are interested into two goals: i) learn the structure
of the graph for which the distribution is pairwise Markov ii) learn the parameters’ vector
which characterizes its exponential form. In the subsequent section, we explain in detail why
these two problems are strongly connected.

2.2 Multivariate Bernoulli distribution

In this section we present some properties of MBV that will be instrumental for defining the
statistical technique discussed in this paper. Let (X1, . . . , Xp) be a MBV, this means that
each variable Xi assumes value in {0, 1}, hence (X1, . . . , Xp) ∈ {0, 1}p, the support being of
cardinality 2p. From a classical point of view, each possible outcome can be identified by
the subset D ⊆ V = {1, . . . , p} of variables assuming value 1, with all the others assuming
value 0; then the distribution can be expressed by the following formula:

p(x1, . . . , xp) =
∑

D⊆V

pD
∏

i∈D

xi

∏

i/∈D

(1− xi), (1)

where pD is the p.m.f. of configuration D, with the constrain
∑

D⊆V pD = 1.
For clarity throughout the paragraph we will illustrate the simple case p = 3, then formula

(1) becomes

p(x1, x2, x3) = p000(1− x1)(1− x2)(1− x3) + p100x1(1− x2)(1− x3) + p010(1− x1)x2(1− x3)+
p001(1− x1)(1− x2)x3 + p110x1x2(1− x3) + p101x1(1− x2)x3+
p011(1− x1)x2x3 + p111x1x2x3,

where for example p000 = pD with D = ∅; p011 = pD with D = {2, 3}, ecc... Very remarkable
properties of MBV are discussed and presented in [3]; for example: independence and uncor-
relatedness are equivalent, both marginal and conditional distributions of subset of variables
are still MBV. All these properties resemble that of (MGV) Multivariate Gaussian Variable,
making some results that will be drown in the following less surprising. MBV representation
(1), although it is very simple and intuitive, does not offer a direct interpretation of the
conditonal dependency among variables. For that reason many authors (see e.g. [3] and
[13]), offer an alternative parametrization of the MBV within the framework of exponential
families which guarantees a direct interpretation of conditional independence through the
exponential family canonical parameter. More precisely, let us define P(V ) the power set
of V and denote θP(V ) = (θD)D⊆V the parameters’ vector which will be used to express
distribution given in (1) in exponential form
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p(x1, . . . , xp) = exp(
∑

D⊆V

θD
∏

i∈D

xi). (2)

In the simple case p = 3, expression (2) becomes

p(x1, x2, x3) = exp (θ0 + θ1x1 + θ2x2 + θ3x3 + θ12x1x2 + θ13x1x3 + θ23x2x3 + θ123x1x2x3)

with the obvious notations θ0 = θ∅, θ1 = θ{1}, ecc... Expression (2), when positive, can be
logarithmically transformed to obtain a log-linear model, see for detail [11] and [13]. Since
equations (1) and (2) are equivalent there is a one-to-one relationship between the probability
vector πP(V ) = (pD)D⊆V used in (1) and the parameters’ vector θP(V ) = (θD)D⊆V used in
(2). In the following we make this relation explicit. Let us first define the zeta matrix, Zi,
and its inverse Mi, called the Möbius matrix associated to the set {i}:

Zi =

[
∅ {i}

∅ 1 1
{i} 0 1

]

Mi =

[
∅ {i}

∅ 1 −1
{i} 0 1

]

. (3)

Let us now define the zeta and Möbius matrices associated to V = {1, . . . , p}:

Z = ⊗i∈V Zi M = ⊗i∈V Mi. (4)

In the case p = 3, hence V = {1, 2, 3}, the zeta matrix is:

ZV =















∅ {1} {2} {3} {12} {13} {23} V

∅ 1 1 1 1 1 1 1 1
{1} 0 1 0 0 1 1 0 1
{2} 0 0 1 0 1 0 1 1
{3} 0 0 0 1 0 1 1 1
{12} 0 0 0 0 1 0 0 1
{13} 0 0 0 0 0 1 0 1
{23} 0 0 0 0 0 0 1 1
V 0 0 0 0 0 0 0 1















,

and its inverse is:

MV =















∅ {1} {2} {3} {12} {13} {23} V

∅ 1 −1 −1 −1 1 1 1 −1
{1} 0 1 0 0 −1 −1 0 1
{2} 0 0 1 0 −1 0 −1 1
{3} 0 0 0 1 0 −1 −1 1
{12} 0 0 0 0 1 0 0 −1
{13} 0 0 0 0 0 1 0 −1
{23} 0 0 0 0 0 0 1 −1
V 0 0 0 0 0 0 0 1















.

Remark 1. It is worthwhile to observe that in each row of zeta matrix there is 0 or 1 if
the set corresponding to that row is a subset of the set corresponding to the column; for
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example, first line has 1 in each position because ∅ is a subset of every D ⊆ V , while fourth
line has 1 only in the positions corresponding to the sets {3}, {13}, {23} and V = {123}
which contains {3}, ecc... While in Möbius matrix in each column there is 0 if the set
corresponding to that column is not a subset of the set corresponding to the row and there
is 1 or −1 if it is a subset, the sign alternating between sets of odd and even cardinality.

We can now state the following lemma:

Lemma 2.1. Let πP(V ) be the positive probability vector of the MBV expressed in eq.(1) and
let θP(V ) be the parameter vector of the same MBV expressed in the exponential form of eq.
(2), then it holds that:

πP(V ) = exp(Z t
V θP(V )) and θP(V ) = Mt

V log(πP(V )),

where log and exp are taken entrywise and ∗t is the transpose of ∗..

The proof of this Lemma is in [13] Par. 4.3.
Note that πP(V ) is component-wise positive, i.e. its component are probabilities, pD > 0,

while the vector θP(V ) has real value components.
Again in the case p = 3 we use Lemma 2.1 to explicitly give the relation between the two

parameters’ vectors:















θ0
θ1
θ2
θ3
θ12
θ13
θ23
θ123















=















1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
1 −1 −1 0 1 0 0 0
1 −1 0 −1 0 1 0 0
1 0 −1 −1 0 0 1 0
−1 1 1 1 −1 −1 −1 1





























log(p000)
log(p100)
log(p010)
log(p001)
log(p110)
log(p101)
log(p011)
log(p111)















It is interesting, to express the above equality component-wise:






θ0 = log(p000)
θ1 = log(p100/p000)
θ2 = log(p010/p000)
θ3 = log(p001/p000)
θ12 = log(p110p000/p100p010)
θ13 = log(p101p000/p100p001)
θ23 = log(p011p000/p010p001)
θ123 = log(p111p100p010p001/p000p110p101p011).

(5)

We can now state the main result which formally establishes the connection between
conditional independence relationship (hence graph structure) and the support of vector
θP(V ).

Theorem 2.1. For a MBV (X1, . . . , Xp) with distribution given in eq.(1) with positive prob-
ability π, let θ = Mt

V log(π). Then, for a pair of disjoint non-empty subsets A and B of V
the following conditions are equivalent
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(i) XA ⊥⊥ XB|XV \(A∪B)

(ii) for every D ⊆ V such that both A ∩D 6= ∅ and B ∩D 6= ∅ it holds that θD = 0

This theorem coincides with Theorem 4.2 of [13] from where its proof can be taken.
For clarity, here we only give an idea of the proof for the simple case p = 3, proving that
X1 ⊥⊥ X2|X3 iff θ12 = 0 ∧ θ123 = 0. From equation (5) we have that

θ12 = log

(
p110p000
p100p010

)

= log

(
p11|0p00|0
p10|0p01|0

)

,

where, for example, p11|0 is a short for P (X1 = 1, X2 = 1|X3 = 0), hence

θ12 = 0 ↔
P (X1 = 1, X2 = 1|X3 = 0)P (X1 = 0, X2 = 0|X3 = 0)

P (X1 = 1, X2 = 0|X3 = 0)P (X1 = 0, X2 = 1|X3 = 0)
= 1, (6)

expression (6) is the conditioned odd ratio of variables X1 and X2. Since it is well known
that odd ratio equals to one is equivalent to independence, we have that

θ12 = 0 ↔ X1 ⊥⊥ X2|X3 = 0.

With condition θ12 = 0 true, we can rewrite the last equation of (5) obtaining

θ123 = log

(
p111p001
p101p011

)

− log

(
p110p000
p100p010

)

︸ ︷︷ ︸

θ12=0

= log

(
p11|1p00|1
p10|1p01|1

)

,

hence with θ12 = 0, with the same argument we get θ123 = 0 ↔ X1 ⊥⊥ X2|X3 = 1.
Theorem 2.1 is strategic for the problem of learning conditional independence relationship

among variables of a MBV, indeed if we consider A = {i} and B = {j}, it follows that
Xi ⊥⊥ Xj |XV \{i,j} iff θD = 0 for all D super set of {i, j}. Since for most application, it is not
meaningful to include higher-order interaction terms without incorporating the lower-order
interactions, here and in the majority of literature, the hierarchical hypothesis is considered.
In particular, for a hierarchical exponential model, whenever an interaction term is fixed to
zero then all higer-order iteraction terms involving the same variables are also zero. More
formally, for a hierarchical exponential model, for every nonempty D ⊆ V it holds:

θD = 0 → θE = 0 for all E ⊇ D (7)

or equivalently,

θD 6= 0 → θE 6= 0 for all E ⊆ D with E 6= ∅.

With this hypothesis, in the simple case p = 3, the model

p(x1, x2, x3) = exp (θ0 + θ1x1 + θ2x2 + θ3x3 + θ13x1x3 + θ23x2x3)

is plausible, while the following one is not

p(x1, x2, x3) = exp (θ0 + θ1x1 + θ2x2 + θ3x3 + θ13x1x3 + θ23x2x3 + θ123x1x2x3) .
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3 Method for learning a binary undirected graph

There are many proposals in statistical literature for learning binary graphs, but in this work
we are interested only in those considering the problem of learning graph structure as well
as estimating parameter θP(V ). Of course, the second task is more ambitious because, once

we have a good estimator θ̂P(V ), by applying Theorem 2.1, the graph structure is obtained

considering its support, i.e. Ê = {(i, j) : θ̂ij 6= 0}. Hence we formulate our problem as
that of estimating parameter θP(V ) of a hierarchical and positive MBV, given a sample of n

independent realizations, {(X
(i)
1 , ..., X

(i)
p )}i=1,...,n .

3.1 Logistic regression approach

One of the most widely used method is the one proposed in [12] where an l1-regularized
logistic regression is applied for learning an Ising model under high dimensional regime.
The Ising model is a MBV with no-interaction terms of order greater than two and with
support {−1,+1}p instead of {0, 1}p. Here we briefly describe their proposal to adapt it to
our context. In [12] the authors consider the conditional distribution of variable Xj given
the rest XV \{j}. From the properties of MBV it is true that p(Xj|XV \{j}) is still a Bernoulli
variable with probability of success given by the following expression

p(Xj = 1|XV \{j}) =
exp(

∑

D∋j θD
∏

i∈D\{j} xi)

1 + exp(
∑

D∋j θD
∏

i∈D\{j} xi)
. (8)

Then, it is possible to see the variable Xj as the response in a logistic regression problem
in which all the other variables XV \{j} as well as all their possible interaction terms play the
role of covariates. Under this set-up, the method for estimating the neighborhoods of node
j is based on computing a grouped Lasso-regularized logistic regression with group sparsity
governed by condition in eq. (7).

In the simple case p = 3, for j = 1 equation (8) reduces to

p(X1 = 1|x2, x3) =
exp (θ1 + θ12x2 + θ13x3 + θ123x2x3)

1 + exp (θ1 + θ12x2 + θ13x3 + θ123x2x3)
, (9)

and the group structure in this case is {θ12, θ123} ∪ {θ13, θ123} = {θ12, θ13, θ123}.
Of course to learn all the graph it is necessary to perform such analysis for each node

j ∈ V . However, since in each logistic regression, the number of covariates is 2p−1 this
method can become expensive from a computational point of view and this is why in the
literature it has been explored only for Ising model, i.e. models without interactions of order
higher than two; for such a model the representation given in eq. (2) simplifies to

p(x1, . . . , xp) = exp(θ0 +
∑

i∈V

θixi +
∑

i<j

θij xixj).

and the logistic regression for the generic variable Xj simplifies to

p(Xj = 1|XV \{j}) =
exp(θj +

∑

i 6=j θijxi)

1 + exp(θj +
∑

i 6=j θijxi)
.
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Under a sparsity hypothesis on the graph structure, the following penalized maximum
likelihood estimator is evaluated for each node j ∈ V

θ̂·j = argminθ

{

−
1

n

n∑

k=1

log(p(x
(k)
j |x(k)

1 , x
(k)
j−1, x

(k)
j+1, ..., x

(k)
p ) + λ

∑

i 6=j

|θij |

}

(10)

As a theoretical support of such method, in [12], under certain assumptions, the authors
prove that solution of (10) consistently estimates N±(j) = {sign(θij) : i ∈ N(j)} the signed

set of node j neighbourhood. The reason why the authors do not consider θ̂·j as estimate
of the θ·j lies in the fact that they solve problem (10) for each node j ∈ V independently of

the other nodes so that θ̂ij 6= θ̂ji. For this reason in [7] two procedures for symmetrizing this
method are proposed. The first procedure works in the following way:

θ̂ij = θ̂ji =

{
θ̂ij if |θ̂ij | > |θ̂ij |

θ̂ji if |θ̂ij | ≤ |θ̂ij |
, (11)

similarly, the second procedure works in the following way:

θ̂ij = θ̂ji =

{
θ̂ij if |θ̂ij | < |θ̂ij |

θ̂ji if |θ̂ij | ≥ |θ̂ij |
. (12)

In [7] these procedures are referred ”Wainwright-min” and ”Wainwright-max”, and the sec-
ond is proved to be always superior to the first. That’s why in this paper we consider only
procedure (12) but we call it L-N-M (Logistic-Neighborhood-Max). This is the procedure
used in Section 4 for comparisons.

3.2 The proposed method

In this section we propose a new procedure which has the advantage to be simple and there-
fore computationally much more convenient with respect to the N-L-M method, moreover
its theoretical property are obtained under much more general conditions. Before presenting
our procedure, let us state the following lemma at the population level

Lemma 3.1. Let πP(V ) be the positive probability vector of MBV expressed in eq.(1) and
let θP(V ) be the parameter vector of its exponential form expressed in eq. (2), then for each
D ∈ P(V ) it holds

i) pDmin = minD′⊆D pD′ > 0 and pDmax = maxD′⊆D pD′ < 1

ii) θD =
∑2|D|−1

i=1 log
pDe,i

pDo,i

where De ⊆ D s.t. |D \De| is even and Do ⊆ D s.t. |D \Do| is odd (| ⋆ | cardinality of
set ⋆).

Proof. Since πP(V ) is positive by hypothesis we have 0 < pD < 1 ,∀D ⊆ V , hence i) is
easily proved by contradiction. To prove the second claim, we use the Möbius inversion
formula of Lemma 2.1, i.e. θP(V ) = Mt

V log(πP(V )), and Remark 1 hence it holds

θD =
∑

D′⊂D

(−1)|D\D′|log(pD′).
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Since the number of subsets D′ of D such that |D \ D′| is even is equal to the number of
subsets D′ of D such that |D \D′| is odd, by using log function properties we easily obtain
claim ii). �

Let us come back to the inferential problem. Given a sample of size n > p, let us define,
for each D ∈ P(V ), the empirical frequency by the following formula

p̂
(n)
D =

1

n

n∑

i=1

1(X
(i)
j = 1, ∀j ∈ D,X

(i)
j = 0, ∀j /∈ D), (13)

where 1(·) is the indicator function. We can now explicitly give expression of the proposed
estimator,

θ̂
(n)
D =

2|D|−1

∑

i=1

log

(

p̂
(n)
De,i

p̂
(n)
Do,i

)

(14)

with p̂
(n)
D given in (13).

Using the empirical formulation above and the low of large numbers, we can now state a
consistency result for the proposed estimator.

Theorem 3.1. Given a sample of size n > p of a positive MBV expressed in exponential
form by eq.(2), ∀D ∈ P(V ) it holds

i) limn→∞θ̂
(n)
D = θD,P− a.s.

ii) limn→∞E[(θ̂
(n)
D )k] = θkD, for any k ≥ 1. In particular, limn→∞Var[(θ̂

(n)
D )] = 0

Proof. By the strong law of the large numbers, as n → ∞, it follows p̂
(n)
De,i

→ pDe,i
and

p̂
(n)
Do,i

→ pDo,i
, P − a.s.. We then prove i) by the continuity of the logarithm. In order to

prove the second claim, let us first give the following elementary inequalities:

pDmin

pDmax

≤
p̂
(n)
De,i

p̂
(n)
Do,i

≤
pDmax

pDmin

,

which holds P− a.s. for any n > p. Since the logarithm is increasing, it then follows

−2|D|−1log
pDmin

pDmax

≤ θ̂(n) ≤ 2|D|−1log
pDmax

pDmin

, P− a.s.

i.e.

|θ̂(n)| ≤ 2|D|−1log
pDmax

pDmin

, P− a.s. for any n > p.

Claim ii) then follows by i) and the dominated convergence theorem. �
The proposed method can be summarized into three steps, the last one being necessary

only in the case of sparseness hypothesis on the graph structure:

step 1: evaluate π̂P(V ) = (p̂D)D⊆V by (13)
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step 2: evaluate θ̂ = Mt
V log(π̂)

step 3: perform a threshold on entries of θ̂

This learning procedure is simple and its computational cost is really negligible with
respect to the iterative method one has to adopt to solve problem in eq. (10); on the other
hand, the proposed procedure can be applied only in low dimensional regime, i.e. when the
number of data is much higher than the dimension of the problem (n >> p). This last
limitation is due to the fact that small errors of approximation of the empirical frequencies
as estimates of the true frequencies become large approximation errors in the estimate of θ,
due to the logarithm’s derivative. Another advantage of the proposed procedure with respect
to the N-L-M method is that one can incorporate into estimator θ̂P(V ) any a prior knowledge
of the true θP(V ); for example if one knows that terms above some degree are zero, one can
set them to zeros; if one know that the maximum degree of j-th graph node is d, then in the
third step of the procedure one can set to zero the entries of vector (θ̂ij)i 6=j which are below
the p−d/p-th empirical quantile. When a priori information are not sufficient for the choice
of threshold in the third step, it is necessary to perform a model selection procedure, as CV
for example, being this always true for choice of the regularization parameter λ in N-L-M
procedure.

Finally, since we have stressed the analogies at the population level between MBV and
MGV, it is also worthwhile to stress that the proposed method is analogous to the method
for learning Gaussian Graphical model, which consists of the following three steps:

step 1: evaluate the empirical covariance matrix

step 2: numerically invert the empirical covariance matrix to get an estimate of the precision
matrix

step 3: perform a threshold on the precision matrix elements.

This method is described in detail in subsection 7.3.2 of [5], however the analogy with
the proposed one is very clear.

4 Numerical experiments

In this section we show some numerical experiments to study the performance of the proposed
method. Before presenting results it is necessary to specify indexes we used to measure
performance.

Since we are interested both in reconstructing the structure of the graph and in estimating
the parameters’ vector, we calculate two different indexes of performance. The first index
measures how the method correctly estimates the structure of the graph and it is defined as:

accuracy = (TP + TN)/(TP + TN + FN + FP ), (15)

where
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TP is the number of edges present in the graph and correctly identified (i.e. θij 6=

0 ∧ θ̂ij 6= 0),

TN is the number of edges not present in the graph and correctly identified (i.e.
θij = 0 ∧ θ̂ij = 0),

FN is the number of edges present in the graph and not correctly identified (i.e.
θij 6= 0 ∧ θ̂ij = 0) and

FP is the number of edges not present in the graph and not correctly identified (i.e.
θij = 0 ∧ θ̂ij 6= 0).

Note that measure in (15) is a scaled measure inherit from the binary classification literature,
0 ≤ accuracy ≤ 1, being more accurate methods with higher accuracy.

The second index measures how the method correctly estimates the parameters’ vector
and it is defined as the relative l2-norm error:

Err = ‖θ − θ̂‖2/‖θ‖2. (16)

Let us describe the specific setting we chose for numerical experiments. For computational
reasons, being the L-N-M method too heavy for a general MBV, we concentrate our attention
on model with only second order interactions. We propose three examples of different sizes,
namely p = 5, 10, 15. For the first case p = 5, we considered example proposed in [12] where
6 out of 10 parameters θij are randomly chosen with mixed coupling, i.e. θij = ±0.5 with
equal probability. The second and the third examples, are obtained analogously but with
different degree of sparsity. Specifically, in the second example 12 out of 45 parameters
θij are no zero, while in the third example 18 out of 105. For each of the examples we
consider five different sample sizes all respecting a low dimensional regime. For the proposed
procedure the threshold in step 3 was chosen among few quantiles (0.2, 0.4, 0.5, 0.6, 0.7)
using the a prior sparseness hypothesis, since this information does not offer a way to chose
the regularization parameter λ for the N-L-M method, for the latter we applied a 10-fold
CV procedure to select the best λ for each node.

Results are reported in Table 1, along with the run time of both methods on a workstation
i7 8700. It is clear that the proposed procedure does not improve in terms of accuracy, but it
furnishes very important improvements both in terms of estimation error and computational
time, more significant the higher the sample size is. From our experimentations it comes out
that the proposed procedure become competitive in low dimensional regime when n > 30p,
when this requirement is not full fished the procedure is not competitive (results not showed).

Matlab codes to reproduce results are available at http://www.iac.cnr.it/∼danielad/software.html.

5 Real data application

Allergy is the result of an inadequate immune response with a genetic or atopy predisposi-
tion, at least 20% of the population of industrialized countries suffers from different forms
of allergies. The development of allergy is a complicated and not completely understood
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Table 1: mean accuracy, error and runtime(sec) over 10 independent simulations. Results
are obtained using p=5 and different sample sizes.

n accuracy Err runtime(sec)

M-I L-N-M M-I L-N-M M-I L-N-M
p=5
n=150 0.86(0.03) 0.84(0.04) 0.95(0.56) 0.99(0.01) 0.00(0.01) 13.57(0.47)
n=300 0.88(0.03) 0.89(0.04) 0.42(0.37) 0.98(0.01) 0.00(0.00) 4.74(0.14)
n=500 0.92(0.03) 0.95(0.03) 0.25(0.05) 0.97(0.01) 0.00(0.00) 5.09(0.16)
n=1000 0.93(0.02) 0.99(0.02) 0.18(0.07) 0.96(0.00) 0.00(0.00) 5.88(0.16)
n=5000 0.94(0.01) 1.00(0.01) 0.09(0.01) 0.95(0.00) 0.00(0.00) 13.58(0.47)
p=10
n= 300 0.99(0.00) 0.99(0.00) 0.78(0.28) 0.99(0.00) 0.01(0.01) 342.51(5.16)
n= 600 0.99(0.00) 1.00(0.00) 0.34(0.20) 0.98(0.00) 0.02(0.00) 12.34(0.24)
n= 900 0.99(0.00) 1.00(0.00) 0.38(0.22) 0.98(0.00) 0.02(0.00) 13.57(0.32)
n= 10000 0.99(0.00) 1.00(0.00) 0.34(0.05) 0.97(0.00) 0.11(0.00) 58.74(0.81)
n=50000 1.00(0.00) 1.00(0.00) 0.12(0.03) 0.97(0.00) 0.35(0.04) 342.51(5.16)
p=15
n=500 1.00(0.00) 1.00(0.00) 0.39(0.14) 0.99(0.00) 0.85(0.14) 1187.19(18.74)
n=1000 1.00(0.00) 1.00(0.00) 0.37(0.11) 0.99(0.00) 1.07(0.02) 19.86(0.24)
n=10000 1.00(0.00) 1.00(0.00) 0.23(0.02) 0.98(0.00) 5.93(0.03) 112.79(1.43)
n=50000 1.00(0.00) 1.00(0.00) 0.20(0.00) 0.98(0.00) 13.90(0.15) 613.39(8.38)
n=100000 1.00(0.00) 1.00(0.00) 0.20(0.00) 0.98(0.00) 35.95(0.96) 1187.19(18.74)

process, a step towards understanding it is offered by the molecular analysis of allergens.
However, molecular analysis requires time and economic resources, so before proceeding with
this type of investigation researcher try to understand through cross-reactivity studies which
associations exist between different allergens. The association between one allergen and an-
other can be interpreted as a relationship of conditional dependence between the variables
that record presence/absence of allergies for different allergens. Therefore, the data analysis
presented in this section regards the problem of learning the undirected graph underlying
the MBV distribution which describes the presence/absence of 5 of the most common aeroal-
lergens. In particular, we analyzed a sample of 200 children between 3 and 12 years who had
symptoms of inflammation of the upper and lower respiratory tract. The data was collected
at the Department of Pediatric Allergology of the Policlinico Umberto I in Rome, Italy. For
each child the positivity was measured for the most common aeroallergens (grasses, dust
mites, olea, parietaria, alternaria) by means of prick tests evaluated after 15-20 min expo-
sure with positive results defined as a wheal ≥ 3mm diameter. Figure 5 shows the results
of applying our procedure to this aeroallergens data set. It is informative to examine the
different graphs we obtained choosing different threshold in step 3 of our procedure. In
particular, starting from the left upper graph, where no threshold is applied we end up to
the bottom right graph where 75% of the edge are killed by the threshold. The graphs in
panels 1, 2, 3 and 4 of Figure 5 are nested each other since the type of threshold chosen acts
progressively zeroing more and more terms. Hence, from this type of analysis, researchers
may decide as a first instance to analyze the molecular similarities between olea (O) and
parietaria (P) as well as between olea (O) and alternaria (A).

This is just a real example of how the proposed method can be used, which obviously does
not pretend to be completely resolutive but at least it allows to get quite reliable solutions
when the dimensional data regime is low.
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Figure 1: Aeroallergens network estimated from pediatric records of 200 children with
symptoms of respiratory track inflammation. Allergens are abbreviated like grasses (G),
dust mites (M), olea (O), parietaria (P) and alternaria (A). Four different solutions are
obtained applying our procedure with four different thresholds (expressed in quantile of
estimated θ̂ij)
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