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Abstract

Likelihood profiling is an efficient and powerful frequentist approach for parameter es-
timation, uncertainty quantification and practical identifiablity analysis. Unfortunately,
these methods cannot be easily applied for stochastic models without a tractable likeli-
hood function. Such models are typical in many fields of science, rendering these classical
approaches impractical in these settings. To address this limitation, we develop a new
approach to generalising the methods of likelihood profiling for situations when the like-
lihood cannot be evaluated but stochastic simulations of the assumed data generating
process are possible. Our approach is based upon recasting developments from gener-
alised Bayesian inference into a frequentist setting. We derive a method for constructing
generalised likelihood profiles and calibrating these profiles to achieve desired frequentist
coverage for a given coverage level. We demonstrate the performance of our method on
realistic examples from the literature and highlight the capability of our approach for the
purpose of practical identifability analysis for models with intractable likelihoods.

1 Introduction

Uncertainty quantification is an essential tool for parameter estimation and prediction in all
fields sciences (Box, 1976; Psaros et al., 2023; Volodina and Challenor, 2021). In most settings,
statistical analysis relies on a sensible likelihood function to be constructed for the model of
interest. When this likelihood function is tractable, a variety of standard tools are available to
perform statistical analysis, the most appropriate of which will be problem dependent. In the
classical setting, maximum likelihood estimation is typically used for parameter estimates and
uncertainty is quantified through an estimate of the confidence sets (Casella, 2002; Pawitan,
2001; Wasserman, 2014). For Bayesian analysis, both parameter estimation and uncertainty
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quantification are performed together via sampling of the posterior distribution (Gelman et al.,
2013; McElreath, 2020).

However, stochastic models are routinely relied upon to describe complex phenomena in
many scientific disciplines including, astronomy (Lemos et al., 2023; Zhao et al., 2022), sys-
tems biology (Browning et al., 2020; Székely and Burrage, 2014; Wilkinson, 2018), climatology
(Palmer, 2019; Peleg et al., 2019), ecology (Adams et al., 2020; Black and McKane, 2012; Shoe-
maker et al., 2019), epidemiology (Chinazzi et al., 2020; Li et al., 2020), geology (Wang et al.,
2022; Vasylkivska et al., 2021), and particle physics (Brehmer, 2021; Kiss et al., 2023). Since
such models rarely have tractable likelihood functions, methods that avoid direct evaluation
of the likelihood function are required. In Bayesian settings, approximate Bayesian computa-
tion (Sisson et al., 2018; Beaumont, 2010), Bayesian synthetic likelihood (Price et al., 2017),
pseudo-marginal methods (Warne et al., 2020a; Andrieu et al., 2010), and more recently deep
learning methods (Cranmer et al., 2020; Papamakarios et al., 2019; Kelly et al., 2023) are fre-
quently utilised to perform sampling of the posterior or an approximation thereof. There are
also classical methods that use alternative estimators to the maximum likelihood estimator or
methods that are simulation-based, such as M -estimators (Hüber and Ronchetti, 2009; Shapiro,
2000), and bootstrap sampling (Efron, 1979; Kleiner et al., 2014). However, many classical ap-
proaches rely on large data sample asymptotics to obtain confidence sets. Such requirements
are almost never satisfied in practice, and therefore the resulting estimates are often overcon-
fident (Sprott, 2008; Pawitan, 2000). Furthermore, these standard approaches completely fail
when parameter identifiability cannot be guaranteed (Raue et al., 2009; Simpson et al., 2020).

Likelihood profiles provide a means of estimating parameters and confidence sets that i)
typically have better small sample behaviour than Wald-style confidence intervals; ii) can handle
asymmetric confidence sets; and iii) can be used in cases when there is practical parameter non-
identifiability (Browning et al., 2020; Hines et al., 2014; Murphy et al., 2022; Raue et al., 2009;
Roosa and Chowell, 2019). In this work, we extend the likelihood profiling approach into
the simulation-based inference setting where the likelihood cannot be evaluated explicitly. We
construct a new estimator, called the maximum generalised likelihood estimator (MGLE). This
estimator is based upon a generalisation of the likelihood in the sense of generalised Bayesian
inference (Bissiri et al., 2016; Matsubara et al., 2022b). The approach involves construction
of generalised likelihood profiles and applies bootstrap samples to calibrate the profiles to an
appropriate scale and obtain confidence sets through setting thresholds (Pawitan, 2000, 2001).
Demonstrations of our approach are provided for several intractable stochastic models that
arise in ecological and biological applications. Compared with standard bootstrap sampling,
the generalised likelihood profile has improved coverage characteristics and may be employed
to assess practical identifiability for parameters of interest.

2 Background

A common approach to frequentist statistical inference for many problems is to use the like-
lihood function to form both point and interval estimates (Cox, 2006; Pawitan, 2001; Sprott,
2008). As is well known, the likelihood function treats an assumed family of generative proba-
bility models for the data as a function of the parameter for fixed data. The profile likelihood is
defined in terms of the likelihood function and allows for targeting parameters of interest (Cox,
2006; Pawitan, 2001; Pace and Salvan, 1997; Sprott, 2008). However, while there have been
attempts to develop axiomatic pure likelihood approaches to inference (Edwards, 1984; Royall,
2017), the primary frequentist justification of likelihood-based inference, besides its ease of use
and parameterisation invariance, is its good repeated sampling performance for many problems.
This performance includes asymptotic optimality arguments that hold under certain restricted
conditions (Le Cam, 1990; Severini, 2000). Parameterisation invariance and natural respect
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for parameter constraints motivate using likelihood and profile likelihood for inference in finite
samples (Pawitan, 2001; Pace and Salvan, 1997; Sprott, 2008). Importantly, in addition to its
good properties for standard problems, profile likelihood is also a reliable tool for structural
and practical identifiability analysis (Raue et al., 2009; Simpson et al., 2020).

Despite good reasons for using a likelihood-based approach to frequentist inference, there is
no necessity within frequentist inference to base estimation on the model likelihood function.
This recognition and a desire to produce robust or more convenient estimation procedures has
led to the development of numerous approaches to frequentist inference that do not use the
likelihood. Many of these are natural generalisations of likelihood-based inference, particularly
M -estimation (for ‘Maximum-likelihood-like estimation’) and Z-estimation introduced by Hu-
ber (1964) and the closely related theories of estimating equations (Durbin, 1960; Godambe,
1960), inference functions (McLeish and Small, 1988; Lindsay and Qu, 2003), quasi-likelihood
(McCullagh and Nelder, 1989; Wedderburn, 1974), and minimum distance estimation (Parr and
Schucany, 1980; Wolfowitz, 1957).

Many of the above methods generalise the theory of likelihood-based point estimation and
the associated asymptotic theory of ‘Wald-style’ (Wald, 1939; Shapiro, 2000) intervals based
on the sampling distribution of a point estimator. The bootstrap (Efron, 1979) is a natural,
more sophisticated form of constructing intervals from point estimates and their sampling dis-
tributions. An approach like the bootstrap also fits naturally with simulation-based inference:
given an M -estimator or similar, we can, for example, simulate the estimator’s sampling distri-
bution by using a plug-in best estimate of the parameters. We can then use this distribution
to form bootstrap confidence intervals. Related ideas on simulation-based inference appear
in the econometrics literature (Contoyannis et al., 2004; Geweke, 2000; Winker et al., 2007;
Gourieroux et al., 1996). However, confidence intervals in such approaches are still typically
based on a point estimator and its sampling distribution. This means neglecting some of the
comparatively desirable properties of full-likelihood-based methods in small samples (Meeker
and Escobar, 1995; Pawitan, 2000). Methods analogous to those that use more information
from the full likelihood than just the maximum likelihood estimate, including profile likelihood
inference, have received less attention. Notable exceptions include the concept of empirical
likelihood (Owen, 1988, 1990), profile estimating equations (Bellio et al., 2008; Li and McCul-
lagh, 1994; Liang and Zeger, 1995), and recent work by Dalmasso et al. (2020) on approximate
computation via odds ratio estimation (ACORE). We also recently considered profiling a spe-
cial (approximately Gaussian) class of ‘surrogate’ likelihood functions that can be applied to
simulation-based inference when an approximation to the simulation model is available (Simp-
son et al., 2022). In addition, the work of Ionides et al. (2017) on simulation-based profile
likelihood inference relates closely to ours. However, they look at calibrating Monte Carlo es-
timates of the implicit likelihood function of the model. In contrast, we consider the situation
of inference using a deterministic loss derived from properties of the model. In this sense our
approach results in a different but likelihood-like estimation function.

Given this context, here we present a simple approach to simulation-based frequentist infer-
ence in the style of M -estimation that more closely follows the methodology of profile likelihood.
In particular, we consider the so-called generalised likelihood function as it arises in generalised
Bayesian inference (Bissiri et al., 2016; Matsubara et al., 2022b). Though in the broader context
outlined above, such a function is just one way of generalising a likelihood function, it has some
appealing properties motivating its use in the Bayesian literature (Matsubara et al., 2022a).
Here we explore its use in the frequentist context and evaluate its performance in terms of its
ability to achieve good interval coverage and precision. We propose a simple bootstrap proce-
dure to first calibrate the generalised likelihood function’s single unknown parameter. We then
use the resulting function like a standard likelihood function to carry out likelihood-based-like
inference, aiming to take advantage of its potential for improvements on Wald-style intervals.
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We focus, in particular, on profiling generalised likelihood functions to obtain confidence inter-
vals for interest parameters.

3 Methods

In this section, we present our approach for parameter and confidence set estimation when
the likelihood is intractable. We let θ = (θ1, θ2, . . . , θd)

T ∈ Θ ⊆ Rd be a vector of d ≥ 1
model parameters and let y = (y1, y2, . . . , yn)T be the data consisting of n ≥ 1 points. For the
setting of interest, the likelihood function for the model L(θ; y) = π(y | θ) cannot be evaluated
directly. However, we assume: 1) it is possible to generate exact realisations from the model,
ys ∼ π(· | θ), and 2) that we can evaluate an appropriate loss function `y : Θ → R+ directly.
We will discuss different options for this loss function throughout this section, however, the
main qualitative conditions we require are 1) as n→∞ the minimum value of the loss function
is in the neighbourhood of the true parameter θ0 that generated y, and 2) the loss function
increases away from this neighbourhood of θ0.

3.1 The maximum generalised likelihood esitmator

For a suitable loss function `y(θ), and tuning parameter δ > 0, we define the function

L̃δ(θ; y) = e−δ`y(θ). (1)

Note that if the loss function is chosen to be `y(θ) = −δ−1 logL(θ; y), then we arrive at
L̃δ(θ; y) = L(θ; y) as a special case. In this sense, we refer to Equation (1) as the generalised
likelihood function in the same way that the generalised posterior distribution is defined by
Bissiri et al. (2016) and Matsubara et al. (2022b).

Given this generalised likelihood function, we can consider parameter estimation by using
a maximum generalised likelihood estimator (MGLE),

θ̂MGLE = argmax
θ∈Θ

L̃δ(θ; y) = argmax
θ∈Θ

e−δ`y(θ) = argmin
θ∈Θ

δ`y(θ). (2)

Importantly, we note that the distribution of the estimator, θ̂MGLE, for random data is un-
affected by the value of tuning parameter δ. Hence δ is a arbitrary positive number for the
purpose of point parameter estimation. However, as we demonstrate in section ??, the inclusion
of δ enables us to rescale L̃δ(θ; y) appropriately to obtain confidence intervals at a prescribed
targeted coverage in a similar way to the application of thresholds to likelihood profiles (Raue
et al., 2009; Pawitan, 2001).

Assuming a fixed value for δ, then for any injective function of the parameters, τ = f(θ)
with τ ∈ Rq for q ≥ 1, we share the invariance property of the maximum likelihood, that is
τ̂MGLE = f(θ̂MGLE). This can be shown by following arguments identical to that of Zehna (1966)
in the context of the standard maximum likelihood estimator. We can construct a generalised
likelihood induced by the transformation τ = f(θ),

L̃δ(τ ; y) = sup
θ∈Θ:f(θ)=τ

L̃δ(θ; y).

By definition, we have that L̃δ(τ ; y) ≤ supθ∈Θ L̃δ(θ; y) = L̃δ(θ̂MGLE; y), then it follows that

supτ∈Rq L̃δ(τ ; y) = L̃δ(τ̂MGLE; y) = L̃δ(θ̂MGLE; y). Furthermore, our definition in fact ensures
the generalised likelihood is fully invariant under bijective transformations as the above reduces
to L̃δ(τ ; y) = L̃δ(θ; y) when θ is a unique inverse of τ .
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While there is a wide variety of loss functions for which L̃δ(θ; y) is likelihood-like in the
sense described in Section 2, we restrict ourselves to loss functions that fall within the family
of minimum kernel discrepancy estimators (Oates, 2022). By doing this we ensure asymptotic
consistency of the MGLE.

3.2 Generalised likelihood profiles and confidence sets

If we partition the parameter vector, θ into a vector of interest parameters, φ ∈ Φ and nuisance
parameters ψ ∈ Ψ such that θ = (φ,ψ) and Θ = Φ ×Ψ, then we can define the generalised
likelihood profile of the interest parameters by optimising out the nuisance parameters using

L̃δ(φ; y) = sup
ψ∈Ψ

L̃δ((φ,ψ); y). (3)

Typically, the profile will be evaluated for a grid of M points {φj}Mj=1. Just as in standard
likelihood profiles, the accuracy of the profile relies on the resolution of the grid which may
be difficult to assess a priori (Simpson et al., 2021). Thus, adaptive mesh refinements may
be necessary in general. For the numerical examples in this work, we focus on 1-dimensional
profiles only and use regular grids in each axis. For example, if the ith dimension of θ is of
interest, then we set φ = θi and ψ = (θ1, . . . , θi−1, θi+1, . . . , θd), and define the grid over the
domain [Li, Ui] as θji = Li + (j− 1)∆θi for j ∈ [1, 2, . . . ,M ] with ∆θi = (Ui−Li)/(M − 1). Our
methods, however, are completely applicable to higher-dimensional parameters of interest.

While the MGLE does not depend on δ, construction of a meaningful generalised likelihood
profile will require Equation (3) to be evaluated, thus the tuning parameter δ is required.
This leads to the question of how this parameter should be chosen. We propose that δ be
calibrated in such a way that the confidence set obtained by the generalised likelihood profile
has approximately the correct coverage in a frequentist setting given the usual likelihood ratio-
based threshold from Wilks’ theorem (Pawitan, 2001).

We proceed as follows, given θ̂MGLE as given in Equation (2), generateK simulated bootstrap
datasets from the model,

yk ∼ π(· | θ̂MGLE), k = 1, 2, . . . , K.

Then, for a given value of δ, we can estimate the coverage at θ̂MGLE. We do this by estimating
the MGLE and generalised likelihood profiles, that is, we obtain, for k ∈ [1, 2, . . . K],

θ̂kMGLE = argmin
θ∈Θ

`yk(θ) and {L̃δ(φjk; yk)}
M
j=1,

where {φjk}Mj=1 is the grid for the parameters of interest and L̃δ(φ
j
k; yk) = supψ∈Ψ L̃δ((φ

j
k,ψ); yk).

The (1−α)100% confidence set can then be determined by Φk
(1−α)100%CI = {φjk : log L̃δ(φ

j
k; yk) >

ck} with ck = −δ`yk(θ̂kMGLE) − τα and τα is the appropriate cut-off at the α significance level.

The empirical coverage can then be estimated by, Cemp(δ) = 1
K

∑K
k=1 1Φk

(1−α)100%CI
(φ̂MGLE) where

φ̂MGLE are the parameters of interest at the MGLE.
Unfortunately, in practice we do not know the asymptotic distribution of the generalised

likelihood equivalent of the likelihood ratio-test for a given δ, and we cannot expect the usual
threshold, τα, obtained through Wilks’ theorem to yield the desired coverage properties. There-
fore we have no analytical method to select τα. Instead, we optimise

δ∗ = argmin
δ∈R+

|Cemp(δ)− (1− α)|,

given the usual τα = 1
2
F−1
χ2
dim(φ)

(1 − α) as per Wilks’ theorem where F−1
χ2
dim(φ)

(·) denotes the

quantile function of the χ2 distribution with degrees of freedom equal to the dimensionality of
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the interest parameters φ. Thus we arrive at the interpretation for δ as a tuning parameter to
calibrate the generalised likelihood to the threshold given by Wilks’ theorem.

3.3 Calibration of δ tuning parameter

Since the MGLE is invariant to the choice of δ (Equation (1)), then we have the property,

L̃δ(φ; y) = sup
ψ∈Ψ

e−δ`y((φ,ψ)) = sup
ψ∈Ψ

[
e−`y((φ,ψ))

]δ
=

[
sup
ψ∈Ψ

e−`y((φ,ψ))

]δ
=
[
L̃1(φ; y)

]δ
.

As a result, we need not recompute the generalised profiles as we optimise δ for any given target
coverage at the MGLE. Instead we need only compute the profile of interest once for each of
the simulated datasets Y = [y1,y2, . . . ,yK ] with δ = 1, then perform optimisation for δ. To
implement this, we define the function,

C(δ; τα, φ̂MGLE, {θ̂kMGLE}Kk=1, {L̃1(·; yk)}Kk=1) =
1

K

K∑
k=1

1[ck,∞)

(
δ log L̃1(φ̂MGLE; yk)

)
, (4)

with ck = −τα − δ`yk(θ̂
k
MGLE) for each k ∈ [1, 2, . . . , K]. We then define a step size ∆δ and

grid resolution Mδ and then find δ∗ ∈ [0,∆δ, 2∆δ, . . . ,Mδ∆δ] such that the absolute difference
between Equation (4) and the target coverage 1−α is minimised. Of course, more sophisticated
optimisation approaches could be used in this case, however, the computational cost of this grid
search is negligible compared to the computational cost of optimisations required for the K+ 1
MGLEs and generalised likelihood profiles for which we apply the interior-point method as
implemented in MATLAB’s fmincon (Byrd et al., 2000). This calibration process proceeds as
given in Algorithm 1.

Algorithm 1 Calibration process for generalised likelihood profiles.

Given data y, data generating process π(y | θ), loss function `y(θ), interest parameter φ,
profile grid resolution M , and target significance level α ∈ (0, 1);
Estimate MGLE, θ̂MGLE ← argminθ∈Θ `y(θ);
Estimate the profile L̃1(·; y) using Equation (3) over Φ using a grid of resolution M ;
for k ∈ [1, 2, . . . , K] do

Generate simulated data yk ∼ π(· | θ̂MGLE);
Estimate MGLE, θ̂kMGLE ← argminθ∈Θ `yk(θ);
Estimate the profile L̃1(·; yk) using Equation (3) over Φ using a grid of resolution M ;

end for
Obtain threshold as per Wilks’ theorem, τα ← 1

2
F−1
χ2
dim(φ)

(1− α);

δ∗ ← 0, and C∗ ← 1;
for δ ∈ [∆δ, 2∆δ, . . . ,Mδ∆δ] do

Cδ ← C(δ; τα, φ̂MGLE, {θ̂kMGLE}Kk=1, {L̃1(·; yk)}Kk=1);
if |Cδ − (1− α)| < |C∗ − (1− α)| then

C∗ ← Cδ, and δ∗ ← δ;
end if

end for

Once Algorithm 1 has been executed, we can obtain an approximation for the (1−α)100%
confidence set for parameters of interest under the real data y, that is Φ∗(1−α)100%CI = {φj :

log L̃δ∗(φj; y) > c∗} with c∗ = −δ∗`y(θ̂MGLE)− τα.
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For the examples presented in this manuscript, we verify the empirical coverage properties
hold independently of the data used as a part of the calibration process. To validate this,
we consider B simulated datasets under a set of known true parameter vector θtrue, that is,
y1,y2, . . . ,yB ∼ π(· | θtrue). For each simulated dataset, yb, we obtain an MGLE, θ̂bMGLE, and
a calibrated profile, L̃δ∗(·; yb) where δ∗ is the tuning parameter calibrated for y. The emprical
coverage for φtrue at significance level α, Cα, is then estimated using,

Cα =
1

B

B∑
b=1

1[c∗b ,∞)

(
log L̃δ∗(φtrue; yb)

)
, (5)

where c∗b = −τα − δ∗`yb(θ̂
b
MGLE) for each b ∈ [1, 2, . . . , B]. Crucially, note that Equation (5)

estimates the proper coverage for φtrue rather than the bootstrap coverage for φ̂bMGLE that forms
the basis of the calibration process. For our numerical experiments in Section 4, we estimate
the proper coverage in this manner for several sets of θtrue, but we do not do this exhaustively
over all possible θtrue (See Discussion in Section 5 for some possible ways to assess the coverage
over all θtrue).

4 Results

In this section, we demonstrate our generalised likelihood profile approach for parameter estima-
tion, uncertainty quantification and assessment of practical identifiability. We first demonstrate
the accuracy of the method using an intractable statistical model commonly used in ecology
that has accurate approximations available. We then move to a stochastic model used in the
study of stochastic advection-diffusion-reaction processes in biology based on the work of Carr
et al. (2019), Ellery et al. (2012) and Simpson et al. (2021). The second represents a realistic
use case for our approach since one can only obtain an analytical approximation to the moments
of a particle lifetime.

4.1 Conway–Maxwell–Poisson model

The Conway-Maxwell-Poisson (CMP) model (Conway and Maxwell, 1962) is an extension of
the Poisson distribution that can accommodate underdispersed and overdispersed count data.
Applications for this model are especially useful in ecological studies (Kolb et al., 2020; Lynch
et al., 2014; Wu et al., 2013). The probability mass function for a single observation y given
parameter θ = (λ, ν)T is:

π(y | θ) =
π̃(y | θ)

Zθ
,where π̃(y | θ) =

λy

(y!)ν
,

with λ > 0 and ν > 0. The normalising constant Zθ =
∑∞

y=0 π̃(y | θ) does not have a
closed form expression, except for certain special cases. However, the normalising constant
can be computed to high accuracy with little computational effort (Sellers and Shmueli, 2010),
and facilitates comparison of our proposed generalised likelihood method with an accurate
approximation of the true profile likelihood.

Following Matsubara et al. (2022a), we avoid evaluation of the intractable normalising
constant Zθ using the discrete Fisher divergence (DFD) as the loss function (Xu et al., 2022).
The discrete Fisher divergence, in the one-dimensional data setting as considered here, between
the statistical model conditioned on θ, π(· | θ), and the empirical distribution of the data, πn,
is given by

`y(θ) = DFD(π(· | θ)||πn) =
1

n

n∑
i=1

(
π(y−i | θ)

π(yi | θ)

)2

− 2

(
π(yi | θ)

π(y+i | θ)

)
. (6)
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Note that the intractable normalising constants cancel in the ratio. For this example, we use
the notation y+i = yi + 1 and y−i = yi− 1, unless yi = 0 in which case we set y−i = max{yk}nk=1,
i.e. the maximum value of the dataset.

Matsubara et al. (2022a) embed the DFD within a generalised Bayes framework to conduct
approximate Bayesian inferences without invoking the θ-dependent normalisation constant. In
order to calibrate the scaling parameter, Matsubara et al. (2022a) firstly generate B bootstrap
estimates of θ from datasets that are generated from the model with the value of θ that
minimises the DFD based on the observed dataset. Then, Matsubara et al. (2022a) compute
the scaling parameter that minimises the Fisher divergence between the generalised posterior
and the empirical bootstrap sample. Here we show that δ can instead be calibrated using our
profile likelihood approach.

We consider n = 2000 samples from the CMP model, y1, y2, . . . , yn ∼ π(· | λ, ν) , with λ = 4
and ν = 2. The MGLE is then obtained through numerical optimization of Equation (2) with
the DFD (Equation (6)) substituted for the loss function. Univariate generalised likelihood
profiles are generated over uniform discretisations of M = 100 points over sensible ranges for
the two interest parameters, 1 ≤ λ ≤ 20, and 1 ≤ ν ≤ 8, respectively. The procedure in from
Section 3.2 is applied using K = 100 bootstrap samples, then calibrate profiles with significance
level α = 0.05 and threshold of τα = −1.92 to obtain 95% confidence intervals. In addition,
standard MLE and likelihood profiles are estimated for comparison using the accurate numerical
approximation for the normalising constant Zθ.

The resulting normalised profiles are shown in Figure 1. Note that the width of the con-
fidence intervals obtained under our GLP calibration method are wider than those under the
true profile. This is reasonable, since the MGLE will not be as efficient as the MLE. However,
even though the confidence intervals obtained with the generalised likelihood profiles are wider
than those of the accurate approximation of the true MLE, they are obtaining the correct cov-
erage as shown in Figure 2. This accurate coverage property is a direct result of our calibration
process (Algorithm 1).

Figure 1: Comparison of a generalised likelihood profile (solid blue) with a standard likelihood
profile (dashed red) using an accurate numerical approximation for Zθ for the CMP model.
The 95% confidence interval threshold of τ0.05 = −1.92 is indicated (dashed black). The true
parameters used to generate the data are λ = 4, and ν = 2 (dotted red).

It is important to note that models like the CMP model are not the target application
for our new method. Rather the types of problems that are the focus of this paper are when
the likelihood is not available at all, not even point-wise up to a normalising constant. So
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there is no expectation that our method would outperform the standard MLE here, actually
we would expect the opposite. The fact that confidence intervals are still reasonable for a
tractable problem and that the observed coverage is very accurate demonstrates the utility of
this approach for intractable models.

Figure 2: Coverage comparison between our calibration process (solid blue) and standard like-
lihood profile (solid red) using an accurate numerical approximation for Zθ. Observed coverage
is estimated using B = 500 independent datasets generated from the Conway–Maxwell-Poisson
model using the true parameters.

4.2 Stochastic model of biased diffusive transport

We now consider a biased nearest-neighbour random walk with movement and death events
on a one-dimensional interval 0 < x < L (Ellery et al., 2012). Space is discretised to give N
lattice sites with uniform spacing ∆x = L/(N − 1), so that lattice site i is located at position
xi = (i−1)∆x for i = 1, . . . , N . Time is also discretised uniformly, into intervals of duration ∆t,
with time step j occurring between times t = (j − 1)∆t and t = j∆t. An absorbing boundary
applies at x = 0 (lattice site 1) while a reflecting boundary applies at x = L (lattice site N).
Throughout, without loss of generality, we assume ∆t = 1 and ∆x = 1 (i.e., L = N − 1).

The random walk begins by releasing a particle at one of the N lattice sites and ends when
the particle leaves the simulation, either through absorption or a death event. During each
time step, for internal lattice sites, i = 2, . . . , N − 1, the particle undergoes a movement event
with probability pm or a death event with probability pd otherwise the particle remains at rest
with probability 1− pm − pd. If a movement event occurs the particle moves to the right with
probability pr and to the left with probability 1− pr. The boundary lattice sites are dealt with
differently (i) at the reflective boundary (i = N), a movement event is aborted with probability
pr, (ii) at the absorbing boundary (i = 1), a movement event results in a particle is absorbed
with probability one and removed from the simulation.

Let Ti be the random variable denoting the lifetime of a particle released at position xi.
The k-th raw moment of Ti is given by

E
[
T ki | θ

]
=
∞∑
j=0

tkjπ(tj | xi,θ),

where π(tj | xi,θ) is the probability mass that a particle released at lattice site i is removed after
j time steps (i.e. at time t = j∆t), and θ = (pm, pd, pr)

T are the model parameters. Standard
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arguments (Ellery et al., 2012) show that for small values of ∆x and ∆t, E
[
T ki | θ

]
is well

approximated by Mk(xi,θ), where Mk(x,θ) is a continuous function satisfying the boundary
value problem:

D
d2Mk(x,θ)

dx2
− vdMk(x,θ)

dx
− dMk(x,θ) = −kMk−1(x,θ), (7)

Mk(0,θ) = 0,
dMk(L,θ)

dx
= 0,

withM0(x,θ) = 1 and the diffusivity, drift and decay coefficients identified asD = (∆x)2pm/(2∆t),
v = ∆xpm(1− 2pr)/∆t and d = pd/∆t, respectively.

Data from such a process will consist of m particle lifetimes for n unique initial particle
positions,

y =


t1|x1 t2|x1 · · · tm|x1
t1|x2 t2|x2 · · · tm|x2

...
...

. . .
...

t1|xn t2|xn · · · tm|xn

 ,
where ti|x ∼ π(· | x) is the ith sample of the particle lifetime given initial position x. For
our generalised likelihood construction, we apply the r-th order moment distance for the loss
function,

`y(θ) =
n∑
i=1

r∑
k=1

(Mk(xi,θ)− M̂k(xi,y))2

V̂k(xi,y)
, (8)

where

M̂k(xi,y) =
1

m

m∑
j=1

tkj |xi,

and V̂k(xi,y) is a non-parametric bootstrap estimate of Var
[
M̂k(xi,y)

]
. Note that the moment

distance in Equation (8) also falls within the minimum discrepancy framework of Oates (2022).
Unlike the CMP model, stochastic models such as this are truly intractable. Importantly,

the analytical expression for the boundary value problem (Equation (7)) is only strictly valid for
pr ≈ 0.5. Despite this, we show that our approach is robust and correctly highlights practical
identifiablity problems for strong bias to the right.

4.2.1 Identifiable case: unbiased random walk pr = 0.5

We generate synthetic data of n = 1, 000 particle lifetimes y = [t1, t2, . . . , tn] through stochastic
simulation with pm = 1, pd = 0.001 and pr = 0.5. Then we treat pm as fixed and known, then
perform our generalised likelihood profile approach for estimation of pd and pr. We apply our
MGLE and generalised likelihood profile approach to estimate 95% confidence intervals for the
death probability, pd, and right-movement bias probability, pr.

The results are shown in Figure 3. In Figure 3(A)–(B) the K = 100 bootstrap MGLEs
are shown to be concentrated around the MGLE related to the observed data indicating no
bias from the moment distance loss function (Equation (8)). The process of calibrating the
generalised likelihood profiles is shown in Figure 3(C)–(D) with optimal choices of δ∗ indicated
for both parameters of interest. Finally the calibrated profiles along with the 95% CI are
shown in Figure 3(E)–(F). Quantile-based bootstrap confidence intervals are also indicated for
comparison with a standard technique that is not based on the Wald interval. Such quantile-
bootstrap confidence intervals are estimated by taking the α/2 and 1−α/2 empirical quantiles
of the MGLE samples, {θ̂kMGLE}k=Kk=1 .
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Figure 3: Results of generalised likelihood profiles and comparison with quantile-based boot-
strap confidence intervals for the unbiased random walk case pr = 0.5. Distributions of the
unscaled MGLE from bootstrap datasets for (A) the death parameter and (B) the right bias pa-
rameter. (C) and (D) Calibration plot for the scale parameters targeting a coverage of 0.95. (E)
and (F) Generalised likelihood profiles for each parameter with comparison between calibrated
profile confidence intervals and quantile-based bootstrap confidence intervals.

For both parameters, confidence intervals estimated by the quantile-based bootstrap and our
generalised lieklihood profile contain the true parameters. However, we note the quantile-based
interval for pd does not contain zero, whereas our approach does. Given the distribution of the
bootstrap MGLE samples, the containing of zero in the confidence interval seems appropriate.

4.2.2 Non-identifiable case: biased random walk pr = 0.7

We now consider the case where the parameters of the data generating process lead to a
practically unidentifiable problem for the right movement bias parameter pr. We generate
synthetic data of n = 1, 000 particle lifetimes y = [t1, t2, . . . , tn] through stochastic simulation
with pm = 1, pd = 0.001 and pr = 0.7 that represents a strong movement bias away from
the absorbing left boundary. As with the unbiased case, we treat pm as a fixed and known
parameter, then perform our generalised likelihood profile approach for estimation of pd and
pr. For such a strong bias to the right, very few particles reach the absorbing boundary. This
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Figure 4: Results of generalised likelihood profiles and comparison with quantile-based boot-
strap confidence intervals for the biased random walk case pr = 0.7. Distributions of the
unscaled MGLE from bootstrap datasets for (A) the death parameter and (B) the right bias
parameter. (C) and (D) Calibration plot for the scale parameters targeting a coverage of
0.95. (E) and (F) Generalised likelihood profiles for each parameter with comparison between
calibrated profile confidence intervals and quantile-based bootstrap confidence intervals.

leads to observations in which almost all particle removals are related to death events since few
particles ever reach the absorbing boundary. This means we expect to obtain a precise estimate
for the death probability pd but parameter non-identifiability in pr.

The results are shown in Figure 4. In Figure 4(A)–(B) the K = 100 bootstrap MGLEs are
shown. We note that these are concentrated around the MGLE related to the observed data,
however, this MGLE for pr does not match the true parameter at pr = 0.7. However, there are
a few bootstap MGLEs concentrated around the true parameter. This bi-modality is a result
of the expected non-identifiability in pr. The process of calibrating the generalised likelihood
profiles is shown in Figure 4(C)–(D) with optimal choices of δ∗ indicated for both parameters
of interest. Finally the calibrated profiles along with the 95% CI are shown in Figure 4(E)–(F).
Quantile based bootstrap confidence intervals are also indicated for comparison.

Unlike the unbiased case, confidence intervals estimated by the quantile-based bootstrap
only contain pd. Whereas our generalised likelihood profile contains both true parameters.
Furthermore the practical non-identifiability of pr is strongly highlighted using our generalised
profile approach with the profile flattening out on the right portion of the domain well above
the 95% CI threshold. Therefore, we conclude our method can be employed for the purposes of
identifiability analysis for intractable likelihoods in the same way standard likelihood profiles
are used when the likelihood is available (Raue et al., 2009).
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4.2.3 Observed coverage

We also produce estimates of the observed coverage for our approach using data sets that are
independent of the calibration procedure. This is done for both parameters pd and pr under
several scenario for the true bias with pr ∈ [0.48, 0.5, 0.52]. In each case, we achieve observed
coverage that is extremely consistent with the target level of 1 − α. These results, shown in
Figure 5, along with those from the CMP model, demonstrates our approach obtains good
frequentist properties for a range of true parameters and model settings.

Figure 5: Coverage plots for our calibration process based on B = 500 independent datasets
generated from the biased random walk model using the true parameters. True parameters are
pm = 1, pd = 0.001, and (A) left movement bias pr = 0.48, (B) unbiased movement pr = 0.5,
(C) right movement bias pr = 0.52.

5 Discussion

In this work, we have developed a method for construction of profiles with similar properties
of standard profile likelihood approaches, however, without the need of evaluating a likelihood
function. Instead our approach is based on the concept of a generalised likelihood that requires
an appropriate loss function be defined. We define this generalised likelihood with a single
tuning parameter, δ, that enables the profiles built upon the generalised likelihood to be cali-
brated toward a target frequentist coverage. This tuning process avoids the implicit reliance on
an asymptotic assumption that is usually necessary. Through simulation studies, we show our
approach is well behaved and obtains accurate coverage for repeated sampling over different
models, true parameter sets, and datasets. Thereby we enable the use of likelihood profiles
for parameter estimation, uncertainty quantification, and identifiablity analysis for stochastic
models with intracable likelihoods that are ubiquitous in many fields of science.

Beyond generalised likelihood profiling, our calibration approach also has potential value
for generalised Bayesian inference (Bissiri et al., 2016; Matsubara et al., 2022b). For example,
once the generalised likelihood has been calibrated, L̃δ∗(θ; y), this, in turn could be applied as
part of a Bayesian posterior sampling. This would avoid the computationally intensive methods
currently applied to obtain Bayesian credible intervals in a generalised Bayesian setting (Syring
and Martin, 2019), that involves obtaining many posterior approximations. Our approach
could be uses as a pre-sampling conditioning of the generalised likelihood for the equivalent
generalised Bayesian inference problem.

To validate our method, we test the coverage properties of our estimator for repeated boot-
strap sample datasets generated with the true parameters θtrue. However, for very complex
models this may not be sufficient, and a modified calibration procedure could be required. A
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natural extension to ensure more robust calibration would be to specify a larger set of possible
θtrue and calibrate δ∗ in a minimax sense. That is, ensure the worst-case coverage is as close to
the target as possible. In addition we could consider quantile regression approaches as used in
the ACORE method (Dalmasso et al., 2020).

We also restricted our examples to use loss functions that lead to minimum discrepancy
kernel estimators (Matsubara et al., 2022a; Oates, 2022). We show that the invariance of our
estimator does not rely on this choice and applies for any loss function with a well defined
minimum. It remains to be explored what asymptotic consistency or central limit theorem
results could be obtained for more general loss functions. We suspect there could also be useful
links made to the work surrounding the use of surrogate models with correction transforma-
tions (Bon et al., 2022; Warne et al., 2021). This is a interesting line of future research that
could further inform the calibration process for practical applications.

Finally, we highlight the efficiency of our method. We only require a relatively small number
of bootstrap samples to implement our calibration process, for example, K = 100 in all of our
examples. Our approach is potentially more expensive than equivalent likelihood profiling
when the likelihood is available, however, it is still substantially cheaper than the equivalent
simulation-based inference approaches in the Machine Learning or Bayesian statistics literature.
While these two statistical problems are not directly comparable, our calibration procedure
offers a new approach for frequenstist statistics without likelihoods and provides insight into
potential performance gains for Bayesian inference with intractable likelihoods. Ultimately
our new statistical tools open the applicability of profile-based analysis to realistic intractable
stochastic models and provides a practical approach to scientific inquiry.
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