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Abstract

In this paper, we consider a bivariate process (Xt, Yt)t∈Z which, conditionally on a signal (Wt)t∈Z,
is a hidden Markov model whose transition and emission kernels depend on (Wt)t∈Z. The resulting
process (Xt, Yt,Wt)t∈Z is referred to as an input-output hidden Markov model or hidden Markov
model with external signals. We prove that this model is identifiable and that the associated maxi-
mum likelihood estimator is consistent. Introducing an Expectation Maximization-based algorithm,
we train and evaluate the performance of this model in several frameworks. In addition to learn-
ing dependencies between (Xt, Yt)t∈Z and (Wt)t∈Z, our approach based on hidden Markov models
with external signals also outperforms state-of-the-art algorithms on real-world fashion sequences.
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1 Introduction

A hidden Markov model (HMM) is a bivariate pro-
cess (Xt, Yt)t∈Z where (Xt)t∈Z is a hidden Markov

process and (Yt)t∈Z is an observed process such
that at each time s ∈ Z, the conditional law
of Ys given (Xt)t∈Z depends only on Xs. Such
models, introduced in the late 1960s, have been
largely studied and applied in many disciplines,
see for instance (Douc et al, 2014; Chopin et al,
2020; Särkkä, 2013) and references therein. As
the process (Xt)t∈Z is not observed, the maxi-
mum likelihood estimator (MLE) is intractable in
most cases. The Expectation Maximization (EM)
algorithm, introduced in (Dempster et al, 1977),
overcomes this issue and provides a very appealing
framework to infer these models with latent states.
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Variants of the EM algorithms have also been pro-
posed to perform for instance online learning, see
(Andrieu and Doucet, 2003; Cappé and Moulines,
2009; Le Corff and Fort, 2013), or inference of
seasonal hidden Markov models (Touron, 2019).

Numerous theoretical results have been pro-
vided for hidden Markov models and their exten-
sions. General identifiability results have been first
obtained in (Gassiat et al, 2015) for HMMs with
finite state space using the spectral method intro-
duced in (Hsu et al, 2012). This result establishes
that given the law of a triplet of observations,
the transition matrix of the hidden states and the
emission densities, i.e. the conditional densities of
the observations given the states, can be iden-
tified up to a common permutation. This result
was then extended by (Touron, 2019; Gassiat and
Rousseau, 2016) to provide a theoretical justifica-
tion of the use of nonparametric finite translation
HMMs and of HMMs with seasonality. Finally, the
work of (Gassiat et al, 2020) generalizes the iden-
tifiability guarantees to nonparametric translation
HMMs with continuous state space, without any
assumption on the distribution of the noise, and
under a light tail assumption on the distribution
of the latent variables.

The consistency of the MLE for HMMs has
also been widely studied since the first result of
(Baum and Petrie, 1966), where consistency is
proved when both (Yt)t∈Z and (Xt)t∈Z take values
in a discrete space. A notable extension is proved
in (Leroux, 1992) in the case where only (Xt)t∈Z is
assumed to be discrete. A general result, valid for
a large class of nonlinear state space models and
encompassing linear Gaussian state space mod-
els and finite state models, is then established in
(Douc et al, 2011). Additional results have also
been proposed to analyze several extensions of
HMMs. For instance, the authors of (Juang and
Rabiner, 1985) introduce the autoregressive hid-
den Markov model. In this model, at each time
t, the conditional law of Yt given all the available
information depends of Xt but also on some past
values denoted Ys:t−1 with s < t. Another HMM
variant can be found in (Touron, 2019) where
seasonal components are included in the law of
(Xt)t∈Z and (Yt)t∈Z. For both extensions, identi-
fiability of the model and consistency of the MLE
have been proved, see (Touron, 2019; Douc et al,
2004).

Despite all these results, recent state-of-the-
art forecasting models are for a large part
based on recurrent neural networks (Hochreiter
and Schmidhuber, 1997; Salinas et al, 2020) or
sequence to sequence deep learning architectures
(Vaswani et al, 2017; Li et al, 2019). Intrinsi-
cally designed to deal with numerous heteroge-
neous data and include external signals, these new
approaches overcome some limitations of HMMs
and reach unprecedented accuracy levels in vari-
ous frameworks and for numerous data sets, see
for instance (Lim et al, 2021; Salinas et al, 2020;
David et al, 2022). However, these results have a
cost: i) most of the recent state-of-the-art models
are black boxes as the final forecast usually cannot
be explained ; ii) very few theoretical guarantees
exist for such deep learning architecture-based
algorithms.

Regarding this new signal processing con-
text, a main limitation of HMMs is the absence
of theoretical results concerning the inclusion
of meaningful external signals in the transition
and emission kernels. In this paper, we consider
bivariate processes (Yt, Xt)t∈Z with (Yt)t∈Z the
observation process and (Xt)t∈Z a discrete hidden
process. Conditionally on an observed external sig-
nal (Wt)t∈Z, it is assumed that (Yt, Xt)t∈Z is a
hidden Markov model so that at each time t ∈ Z,
the transition matrix of the hidden process and the
emission law of the observation sequence depend
on (Wt,Wt+1). Such models are inspired by the
Input-Ouput models introduced in (Bengio and
Frasconi, 1994), where a recurrent architecture is
used to combine a discrete hidden state repre-
senting a past context and some input variables
for sequence processing. The contextual HMMs of
(Radenen and Artieres, 2012) also provide numer-
ical insights of the benefit of adding external
variables in the setting of Gaussian HMMs.

In this paper, we prove the identifiability of
HMMs with external signals (Theorem 1) and the
consistency of the associated MLE (Theorem 3).
Then, we implement the MLE using the EM algo-
rithm and show on a synthetic data set that it
can recover the true set of parameters and that
the addition of external signals does not prevent
an efficient training process. Finally, we evalu-
ate the proposed method on real world retail
times series using the fashion data set introduced
in (David et al, 2022). This data set gathers
the evolution of thousands of fashion items on
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social media and provides for each of them an
external signal representing the behaviour of influ-
encers. Using this additional influencers signal as
an external signal in our new framework, we run
experiments on a sample of fashion time series
with challenging dynamics. Our approach outper-
forms state-of-the-art algorithms, including deep
learning architectures on several time series and
illustrates the potential of HMMs with external
signals.

The paper is organized as follows. Section
2 extends the identifiability result of HMMs to
HMMs with external signals following (Touron,
2019). Then, the consistency of the MLE is proved
in Section 3 following (Douc et al, 2014, Chapter
13). Section 4 describes our experiments using a
synthetic data and some real-world fashion time
series. Finally, a general conclusion and some
research perspectives are given in Section 5.

Notations.

For any vector v of size m ⩾ 1, diag(v) is the diag-
onal matrix in R

m×m whose diagonal is given by
v. By convention, one-dimensional vectors are row
vectors in this paper. Given a sequence (Yt)t∈Z,
for any s ∈ Z and all r ∈ Z such that r < s, write
Yr:s = (Yr, · · · , Ys) with the convention Ys:s = Ys.
For any finite set A, let | A | be the cardinality of
A. Consider a finite measurable space (X,X ). For
any transition matrixQ defined on X×X, any mea-
surable function h defined on X and any A ∈ X ,
write for all x, x′ ∈ X,

Q(x, h) = Qh(x) =
∑

x′∈X

Q(x, x′)h(x′) and

Q(x,A) =
∑

x′∈X

Q(x, x′)1A(x
′) ,

where 1A is the indicator function of the set A. In
addition, for all sequences of transition matrices
{Qk}k∈Z, and all r ⩽ s, write for all xr ∈ X and
any measurable function h defined on X,

Qr,s(xr, h) = Qr,sh(xr)

=
∑

xr+1:s∈Xs−r

Qr(xr, xr+1)

× · · · ×Qs−1(xs−1, xs)h(xs)

with the convention Qs,s = Id and Qk = Qk,k+1.

2 Identifiability of HMMs
with external signals

Let (Wt)t∈Z be a sequence of external variables
taking values in a measurable space (W,W). We
assume that all variables Wt, t ∈ Z, have the same
support, and without loss of generality, we assume
this support to be the whole space W. These aux-
iliary variables may account for the history of
some additional time series, or any other avail-
able information. Let (Yt)t∈Z be the sequence of
observations taking values in a measurable space
(Y,Y) with Y a Polish space. We consider mod-
els in which there exists a hidden process (Xt)t∈Z

taking values in a finite space X such that if P is
the distribution of the process (Wt, Xt, Yt)t∈Z, the
pair (X,P) satisfies the following assumptions.

H1 The conditional law of {(Xt, Yt)}t∈Z given

(Wt)t∈Z satisfies

• for all t ∈ Z, for all k ∈ X,

P(Xt+1 = k | (Xs)s⩽t, (Ws)s∈Z)

= P(Xt+1 = k | Xt,Wt,Wt+1) ,

• For all t ∈ Z and for all measurable set A ∈ Y,

P (Yt ∈ A | (Xs)s∈Z, (Ws)s∈Z)

= P(Yt ∈ A | Xt,Wt) .

A graphical model to illustrate H1 is displayed
in Figure 1.

H2 For all t ∈ Z, for all wt−1, wt, wt+1 ∈ W,

all xt−1, xt, xt+1 in X and all A ∈ Y⊗3, the

limit limε→0 P(Xt−1:t+1 = xt−1:t+1, Yt−1:t+1 ∈ A |
Wt−1:t+1 ∈ B(wt−1:t+1, ε)) exists and there exist

functions

(w, x) ∈ W × X 7−→ πt,w(x),

(w,w′, x, x′) ∈ W ×W × X× X 7−→ Qt|w,w′(x, x′)

and

(w, x,A) ∈ W × X× Y 7−→ νt|w,x(A)

such that πt,w is a probability vector on X, Qt|w,w′

is a transition matrix on X × X, νt|w,x is a

probability measure on (Y,Y) and

lim
ε→0

P(Xt−1:t+1 = xt−1:t+1, Yt−1:t+1 ∈ A |
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Fig. 1: Graphical model of a latent data models with external signals satisfying H1.

Wt−1:t+1 ∈ B(wt−1:t+1, ε))

=: P(Xt−1:t+1 = xt−1:t+1, Yt−1:t+1 ∈ A |

Wt−1:t+1 = wt−1:t+1)

= πt−1,wt−1
(xt−1)Qt−1|wt−1,wt

(xt−1, xt)

×Qt|wt,wt+1
(xt, xt+1)

×

∫

A

⊗t+1
s=t−1νs|ws,xs

(dyt−1:t+1). (1)

In particular, for all t ∈ Z, for all xt, xt+1 ∈ X

and for all wt, wt+1 ∈ W,

πt,wt
(xt) = lim

ε→0
P(Xt = xt | Wt ∈ B(wt, ε)) ,

Qt|wt,wt+1
(xt, xt+1) = lim

ε→0
P(Xt+1 = xt+1 |

Xt = xt,Wt:t+1 ∈ B(wt:t+1, ε)) ,

and for all measurable set A ∈ Y,

νt|wt,xt
(A) = lim

ε→0
P(Yt ∈ A |

Xt = xt,Wt ∈ B(wt, ε)) .

The conditional law of the process (Xt, Yt)t∈Z

given (Wt)t∈Z is the law of a hidden Markov model
with transition matrices Qt|Wt,Wt+1

and emission
densities (νt|Wt,k)k∈X, t ∈ Z.

H3 For all t ∈ Z, for all wt, wt+1 ∈ W, Qt|wt,wt+1

is invertible, and for all wt ∈ W, (νt|wt,xt
)xt∈X are

linearly independent.

H4 For all t ∈ Z and for all k ∈ X and wt ∈ W,

πt,wt
(k) > 0.

Theorem 1 Assume that (X,P) satisfies H1-4 with

parameters

ϑ = {πt,wt , Qt−1|wt−1,wt
, νt|wt,x}t∈Z,x∈X,wt−1,wt∈W .

Let (X̃, P̃) be such that |X̃| ⩽ |X| and satisfying

Assumptions H1-2 with parameters

ϑ̃ = {π̃t,wt , Q̃t−1|wt−1,wt
, ν̃t|wt,x}t∈Z,x∈X,wt−1,wt∈W .

If for all t ∈ Z, the distribution of

(Wt−1:t+1, Yt−1:t+1) is the same under P and P̃,

then |X̃| = |X| and there exists a family of bijections

(σt,w)t∈Z,w∈W, where σt,w : X −→ X̃, such that for

all t ∈ Z, x, x′ ∈ X and wt−1, wt ∈ W,





πt−1,wt−1
(x) = π̃t−1,wt−1

(σt−1,wt−1
(x)),

Qt−1|wt−1,wt
(x, x′)

= Q̃t−1|wt−1,wt
(σt−1,wt−1

(x), σt,wt(x
′)),

νt|wt,x = ν̃t|wt,σt,wt
(x) .

Proof For all t ∈ Z and wt−1, wt, wt+1 in W, the lim-

its P(· | Wt−1:t+1 = wt−1:t+1) and P̃(· | Wt−1:t+1 =
wt−1:t+1) from (1) define probability distributions
of (Xt−1:t+1, Yt−1:t+1) depending on wt−1:t+1. We
write E[· | Wt−1:t+1 = wt−1:t+1] the conditional
expectation under the probability distribution P(· |
Wt−1:t+1 = wt−1:t+1). Moreover, since P(Yt−1:t+1 ∈

A | Wt−1:t+1 ∈ B(wt−1:t+1, ε)) = P̃(Yt−1:t+1 ∈ A |
Wt−1:t+1 ∈ B(wt−1:t+1, ε)) for all wt−1, wt, wt+1

in W and ε > 0, the distribution of Yt−1:t+1 is the
same under under P(· | Wt−1:t+1 = wt−1:t+1) and

P̃(· | Wt−1:t+1 = wt−1:t+1). We may then extend the
identifiability results for hidden Markov models given
in (De Castro et al, 2017; Gassiat et al, 2015) to hid-
den Markov models with external signals following the
same steps as in the proofs introduced in (Touron,
2019).

Let (ϕn)n∈N be a sequence of measurable functions
on (Y,Y) such that for all probability measures ν1, ν2
on (Y,Y), if for all n ∈ N,

∫
Y
ϕndν1 =

∫
Y
ϕndν2, then

ν1 = ν2. As Y is a Polish space, the existence of such
a sequence (ϕn)n∈N is ensured. Let k ∈ X, m ⩾ 1 and
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a, b, c ∈ {1, ...,m}. For all wt−1, wt, wt+1 in W, all
t ∈ Z, define the matrix Ot,wt ∈ R

m×K by

(Ot,wt)a,k = E[ϕa(Yt) | Xt = k,Wt = wt] . (2)

For all a, b, c ∈ {1, ...,m}, consider also:

Lt,wt(a) = E[ϕa(Yt) | Wt = wt] ,

Nt,wt−1:t(a, b) =

E[ϕa(Yt−1)ϕb(Yt) | Wt−1:t = wt−1:t] ,

Pt,wt−1:t+1
(a, c) =

E[ϕa(Yt−1)ϕc(Yt+1) | Wt−1:t+1 = wt−1:t+1] ,

Mt,wt−1:t+1
(a, b, c) =

E[ϕa(Yt−1)ϕb(Yt)ϕc(Yt+1) | Wt−1:t+1 = wt−1:t+1] .

For greater conciseness, the dependency on m of all
these matrices is kept implicit. The first step of the
proof is to write, for all wt−1, wt and wt+1 in W and
b ∈ {1, . . . ,m}, the known quantities Lt,wt , Nt,wt−1:t ,
Pt,wt−1:t+1

and Mt,wt−1:t+1
(., b, .) as functions of the

quantities to be identified: πt,wt , (Os,ws)t−1⩽s⩽t+1,
Qt−1|wt−1,wt

, Qt|wt,wt+1
and (νs|ws,x)t−1⩽s⩽t+1. For

all a ∈ {1, . . . ,M}, wt ∈ W,

Lt,wt(a) =
∑

xt∈X

πt,wt(xt)

× E[ϕa(Yt) | Xt = xt,Wt = wt]

=
∑

xt∈X

πt,wt(xt)(Ot,wt)a,xt .

We obtain similarly, for all wt−1, wt and wt+1 in W,

Lt,wt = Ot,wtπ
⊤
t,wt

, (3)

Nt,wt−1:t = Ot−1,wt−1
diag(πt−1,wt−1

)

×Qt−1|wt−1,wt
O

⊤
t,wt

, (4)

Pt,wt−1:t+1
= Ot−1,wt−1

diag(πt−1,wt−1
)

×Qt−1|wt−1,wt
Qt|wt,wt+1

O
⊤
t+1,wt+1

,

(5)

and for all b ∈ {1, . . . ,m},

Mt,wt−1:t+1
(., b, .) = Ot−1,wt−1

diag(πt−1,wt−1
)

×Qt−1|wt−1,wt
diag(Ot,wt(b, .))

×Qt|wt,wt+1
O

⊤
t+1,wt+1

. (6)

The second step is to prove that Ot,wt can be
computed using the known quantities Lt−1,wt−1

,
Nt,wt−1:t , Pt,wt−1:t+1

and Mt,wt−1:t+1
. Assumption H3

and the definition of the sequence (ϕn)n∈N yield that
for all wt−1, wt and wt+1 in W, there exists m0 > K,
such that for all m ⩾ m0, Ot−1,wt−1

, Ot,wt and
Ot+1,wt+1

have full rank. Consider now that m ⩾

m0. Under H3 and H4, Qt−1|wt−1,wt
, Qt|wt,wt+1

and
diag(πwt−1) are invertible. Then, using (5), it follows
that the matrix Pt,wt−1:t+1

has rank K. Write the
singular value decomposition of the matrix Pt,wt−1:t+1

:

Pt,wt−1:t+1
= UΣV ⊤

, (7)

where U and V are matrices in R
m×K containing

the singular vectors associated with non-zero singu-
lar values of Pt,wt−1:t+1

and Σ is a K × K diagonal
matrix. As Pt,wt−1:t+1

has rankK, the diagonal matrix

Σ = U⊤Pt,wt−1:t+1
V contains the K nonzero singular

values of Pt,wt−1:t+1
. It is important to note that this

decomposition is not unique as the order of the singu-
lar values is not fixed. For all b ∈ {1, ...,m} and for all
wt−1, wt and wt+1 in W, define:

Bt,wt−1:t+1
(b) = (U⊤

Pt,wt−1:t+1
V )−1

× U
⊤
Mt,wt−1:t+1

(., b, .)V . (8)

Using (5) and (6), for all b ∈ {1, ...,m},

Bt,wt−1:t+1
(b) = (U⊤

Ot−1,wt−1
diag(πt−1,wt−1

)

×Qt−1|wt−1,wt
Qt|wt,wt+1

×O
⊤
t+1,wt+1

V )−1
U

⊤
Ot−1,wt−1

× diag(πt−1,wt−1
)Qt−1|wt−1,wt

× diag(Ot,wt(b, .))Qt|wt,wt+1

×O
⊤
t+1,wt+1

V

= (Qt|wt,wt+1
O

⊤
t+1,wt+1

V )−1

× diag(Ot,wt(b, .))

×Qt|wt,wt+1
O

⊤
t+1,wt+1

V .

Defining R = (Qt|wt,wt+1
O⊤

t+1,wt+1
V )−1, yields, for

all b ∈ {1, ...,m},

diag(Ot,wt(b, .)) = R
−1

Bt,wt−1:t+1
(b)R . (9)

By (9), for all (α1, ..., αm) ∈ R
m, the eigenvalues

of
∑m

b=1 αbBt,wt−1:t+1
(b) are the diagonal values of

the matrix diag(
∑m

b=1 αbOt,wt(b, .)) = diag(αOt,wt).
Since Ot,wt has rank K, there exist α ∈ R

m such
that Bt,wt−1:t+1

=
∑m

b=1 αbBt,wt−1:t+1
(b) has distinct

eigenvalues. Therefore, the eigenvalue decomposition
of Bt,wt−1:t+1

is unique up to permutation and scaling
of the columns of R. By computing the eigenvectors of
Bt,wt−1:t+1

, we can finally compute R up to permuta-
tion and scaling of its columns. Therefore, the vectors
Ot,wt(b, .) can be recovered for all b ∈ {1, ...,m} up
to a common permutation of their components. As
Mt,wt−1:t+1

(., b, .) and Pt,wt−1:t+1
are the same when

computed under P and P̃,

(Ot,wt).,x = (Õt,wt).,σt,wt−1:t+1
(x)

for some permutation σt,wt−1:t+1
. From its definition

in (2), the matrix Ot,wt does not depend of wt−1 and
wt+1. Consequently, σt,wt−1:t+1

only depends on wt

and we write σt,wt so that

(Ot,wt).,x = (Õt,wt).,σt,wt
(x) . (10)

We can similarly recover Ot−1,wt−1
and Ot+1,wt+1

up
to permutations σt−1,wt−1

and σt+1,wt+1
by consider-

ing the conditional law of the triplets Yt−2:t and Yt:t+2

given Wt−2:t and Wt:t+2.
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The last part of the proof is to show that the
remaining quantities πt−1,wt−1

, Qt−1|wt−1,wt
and

(νs|ws,x)t−1⩽s⩽t+1 can also be identified up to the
permutations (σs,ws)t−1⩽s⩽t+1. For all s ∈ {t −

1, t, t+1}, let Us be aK×mmatrix such that U⊤
s Os,ws

is invertible. Such a matrix exists as soon as Os,ws has
full rank, which is the case since we assumed m ⩾ m0.
Using (3),

Lt−1,wt−1
= Ot−1,wt−1

π
⊤
t−1,wt−1

and

πt−1,wt−1
= ((U⊤

t−1Ot−1,wt−1
)−1

U
⊤
t−1Lt−1,wt−1

)⊤ .

Given a permutation σ, we write Πσ the associated
permutation matrix, that is the matrix whose j-th col-
umn has a 1 in row σ(j) and 0 elsewhere for all j.
In particular, given a matrix A, the columns of AΠσ

are the columns of A permuted according to σ. Since
the matrix Lt−1,wt−1

is the same under P and P̃,
Equation(10) yields

Lt−1,wt−1
= Ot−1,wt−1

π
⊤
t−1,wt−1

= Õt−1,wt−1
π̃
⊤
t−1,wt−1

= Ot−1,wt−1
Πσt−1,wt−1

π̃
⊤
t−1,wt−1

,

which brings that π̃t−1,wt−1
= πt−1,wt−1

Πσt−1,wt−1
.

Likewise,

Nt,wt−1:t = Ot−1,wt−1
diag(πt−1,wt−1

)

×Qt−1|wt−1,wt
O

⊤
t,wt

,

which yields

Qt−1|wt−1,wt
=diag(πt−1,wt−1

)−1

× (U⊤
t−1Ot−1,wt−1

)−1

× U
⊤
t−1Nt,wt−1:tUt(O

⊤
t,wt

Ut)
−1

.

Moreover, since the matrix Nt−1,wt−1:t
is

the same when computed under P and P̃

and noting that diag(πt−1,wt−1
Πσt−1,wt−1

) =

Π⊤
σt−1,wt−1

diag(πt−1,wt−1
) Πσt−1,wt−1

,

Nt,wt−1:t = Ot−1,wt−1
diag(πt−1,wt−1

)

×Qt−1|wt−1,wt
O

⊤
t,wt

= Õt−1,wt−1
diag(π̃t−1,wt−1

)

× Q̃t−1|wt−1,wt
Õ

⊤
t,wt

= Ot−1,wt−1
Πσt−1,wt−1

× diag(πt−1,wt−1
Πσt−1,wt−1

)

× Q̃t−1|wt−1,wt
(Ot,wtΠσt,wt

)⊤ ,

= Ot−1,wt−1
diag(πt−1,wt−1

)

×Πσt−1,wt−1
Q̃t−1|wt−1,wt

Π⊤
σt,wt

O
⊤
t,wt

,

which gives

Q̃t−1|wt−1,wt
= Π⊤

σt−1,wt−1
Qt−1|wt−1,wt

Πσt,wt

Therefore, under H1-4, if for all t, all wt−1,
wt, wt+1 in W, the distribution of Yt−1:t+1 given
Wt−1:t+1 = wt−1:t+1 is the same under two sets of
parameters, then for all x, x′ ∈ X,

πt,wt(x) = π̃t−1,wt−1
(σt−1,wt−1

(x)) ,

Qt−1|wt−1,wt
(x, x′)

= Q̃t−1|wt−1,wt
(σt−1,wt−1

(x), σt,wt(x
′)) ,

(Ot,wt).,x = (Õt,wt).,σt,wt
(x) .

The last equality provides that for every m ⩾ m0,
Ot,wt

= Õt,wt
Πσt,wt

. By definition of the sequence
(ϕn)n∈N, this implies that for all wt ∈ W, for all k ∈ X:

νt|wt,k = ν̃t|wt,σt,wt
(k)

and this result concludes the proof. □

3 Consistency

We consider hidden Markov models with exter-
nal variables as defined in Section 2 and satisfying
Assumptions H1-4. We assume that for all t ∈ Z,
wt, wt+1 in W, and k ∈ X, the transition matri-
ces and emission distributions of the model are
entirely parameterized by some θ ∈ Θ, where Θ is
a closed parameter space, and written Qθ

t|wt,wt+1

and νθ
t|wt,k

. In addition, we introduce the following
assumptions.

H5 The process (Yt,Wt)t∈Z is stationary and

ergodic.

Note that we do not assume the model parame-
ters Qθ

t|wt,wt+1
and νθ

t|wt,k
to be the same for all t ∈

Z. Most works on maximum likelihood estimation
assume that the distribution of the observations
belongs to the proposed parametric family of dis-
tributions. In many cases, it is unlikely that this
assumption is satisfied. In this section, we only
assume that H5 holds but we do not assume that
(Yt)t∈Z has a distribution satisfying Assumptions
H1-4. Consequently, we introduce P∗ the true dis-
tribution of {(Yt,Wt)}t∈Z and E

∗, the expectation
under this distribution.

H6

1. There exists a probability measure λ on (Y,Y)
such that for all x ∈ X, all w ∈ W, all t ∈ Z

and all θ ∈ Θ, νθ
t|w,x

has a density with respect

to λ denoted by fθ
t|w,x

.
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2. There exists σ− > 0 such that, for all x, x′ ∈ X,

all (w,w′) ∈ W
2, all t ∈ Z and all θ ∈ Θ,

Qθ
t|w,w′(x, x′) > σ−.

3. For all t ∈ Z, y ∈ Y, all w ∈ W and all θ ∈ Θ:

0 <
∑

x∈X
fθ
t|w,x

(y) < ∞.

H7 b+ := supθ,t supxt,yt,wt
fθ
t|wt,xt

(yt) < ∞ and

for all t ∈ Z, E∗[| ln(b−(t, Yt,Wt) |] < ∞, where

b−(t, yt, wt) := infθ
∑

xt∈X
fθ
t|wt,xt

(yt).

Consider also the following family of probabil-
ity distributions on X:

D = {π probability distribution on X ;

∀x ∈ X, π(x) > σ−} .

For any initial distribution π ∈ D, any θ ∈ Θ and
any r, s ∈ Z such that r < s, let Lθ

π,r:s be the con-
ditional likelihood function of the s − r + 1 first
observations of the hidden Markov model with
external variables associated with initial distribu-
tion π at time r and parameter θ:

Lθ
π,r:s(yr:s | wr:s) =

∑

xr:s∈Xr−s+1

π(xr)f
θ
r|wr,xr

(yr)

×

s
∏

p=r+1

Qθ
p−1|wp−1,wp

(xp−1, xp)f
θ
p|wp,xp

(yp) .

Under H1-4, and following the demonstration
introduced in (Douc et al, 2014, Chapter 13), it
is possible to establish the strong consistency of
the maximum likelihood estimator conditionally
to the external variables defined as

θ̂n,π,W0:n−1
∈ argmax

θ∈Θ
Lθ
π,0:n−1(Y0:n−1 | W0:n−1) .

(11)
Since Lθ

π,r:s(Yr:s | Wr:s) is the likelihood of a hid-
den Markov model, the loglikelihood of the obser-
vations Y0:n−1 conditionally to the external signals
W0:n−1, denoted by ℓπ,n(θ) = ln Lθ

π,0:n−1(Y0:n−1 |
W0:n−1), can be decomposed as follows using H1:

ℓπ,n(θ) = ln Lθ
π,0:n−1(Y0:n−1 | W0:n−1)

=

n−1
∑

t=0

ln Lθ
π,0:t(Yt | Y0:t−1,W0:n−1)

=

n−1
∑

t=0

ln Lθ
π,0:t(Yt | Y0:t−1,W0:t) , (12)

with the convention Lθ
π,0:0(Y0 | Y0:−1,W0) =

Lθ
π,0(Y0 | W0) =

∑

x0∈X
π(x0)f

θ
0|W0,x0

(Y0). We

first show that the limit limm→∞ Lθ
π,−m:t(Yt |

Y−m:t−1,W−m:t) exists P
∗-a.s. and does not

depend on π. Writing Lθ(Yt | Y−∞:t−1,W−∞:t)
this limit, it forms an ergodic stationary sequence
and we introduce the following approximation of
ℓπ,n(θ):

ℓsn(θ) =

n−1
∑

t=0

lnLθ(Yt | Y−∞:t−1,W−∞:t) , (13)

where the superscript s stands for stationary.
Using Birkoff’s theorem with this new sequence,
we can prove that there is a constant ℓ(θ)
such that limn→∞ n−1 lnLθ

π(Y0:n−1 | W0:n−1) =
ℓ(θ), P∗-a.s. . The last step of the proof amounts

to establishing that limn→∞ d(θ̂n,π,w0:n−1
,Θ∗) = 0

with Θ∗ = argmaxθ∈Θ ℓ(θ).

Proposition 2 Under Assumptions H5-H7,

for all (yt, wt)t∈Z, π ∈ D, (Lθ
π,−m:t(yt |

y−m:t−1, w−m:t))m⩾0 has a finite limit, which does

not depend on the initial distribution π, denoted

by Lθ(yt | y−∞:t−1, w−∞:t). Moreover, the limit

limn→∞ n−1 ∑n−1
t=0 lnLθ(Yt | Y−∞:t−1,W−∞:t)

exists P
∗-a.s. and

lim
n→∞

sup
θ∈Θ

sup
π∈D

n
−1 | ℓπ,n(θ)− ℓ

s
n(θ) |= 0 , P

∗
-a.s. ,

(14)

where ℓπ,n(θ) =
∑n−1

t=0 lnLθ
π,0:t(Yt | Y0:t−1,W0:t) and

ℓsn(θ) =
∑n−1

t=0 lnLθ(Yt | Y−∞:t−1,W−∞:t).

Proof The proof follows the same steps as the proof
of (Douc et al, 2014, Proposition 13.5) and is given in
Supplementary material 1.1. □

The last part of the proof is to use the Birkhoff
ergodic theorem so as to conclude the strong
consistency of the conditional MLE θ̂n,π,w0:n−1

.

H8 for all t ∈ Z, all (xt−1, xt) ∈ X
2, all

(wt−1, wt) ∈ W
2 and all yt ∈ Y, the functions

θ 7→ Qθ
t−1|wt−1,wt

(xt−1, xt) and θ 7→ fθ
t|wt,xt

(yt)
are continuous.

Theorem 3 Under H5-H8, For any sequence of esti-

mators (π̂n)n taking values in D, P∗-a.s.,

lim
n→∞

d(θ̂n,π̂n,w0:n−1
,Θ∗) = 0 , (15)
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with Θ∗ = argmax
θ∈Θ

ℓ(θ) and ℓ(θ) = E
∗[lnLθ(Y0 |

Y−∞:−1,W−∞:0)].

Proof The proof follows the same steps as the proofs
of (Douc et al, 2014, Theorems 13.7 and 8.42) and is
given in Supplementary material 1.2. □

4 Experiments

We propose to use an Expectation Maximization
algorithm to learn the parameters of the pro-
posed models, see (Dempster et al, 1977). Let
(Xt, Yt,Wt)t⩾1 be a HMM with external signals
and K hidden states. An EM-based algorithm can
be derived to maximize the loglikelihood function
θ 7→ log pθ(Y1:N | W1:N ) for some N ⩾ 1. Given a
current parameter estimate θk−1, the pivotal idea
of this algorithm is to replace the loglikelihood of
the observations by the surrogate quantity:

θ 7→ Q(θ, θk−1)

= Eθk−1
[log pθ(X,Y | W) | Y,W]

with X = (Xt)1⩽t⩽N , Y = (Yt)1⩽t⩽N , W =
(Wt)1⩽t⩽N and pθ(X,Y | W) the joint den-
sity of (X,Y) conditionally to the external signal
W. The new parameter estimate is then obtained
following the two steps:

1. compute θ 7→ Q(θ, θk−1) ;
2. set θk as one of the maximizers of θ 7→

Q(θ, θk−1).

As the latent states take values in {1, . . . ,K},
the conditional distribution of X given (Y,W)
can be computed explicitly using the Baum-Welch
forward-backward algorithm, see for instance
(Douc et al, 2014). Therefore, step (i) can be
performed as it is. For step (ii), as a maximizer
of θ 7→ Q(θ, θk−1) is not always straightfor-
ward to compute, the generalized EM (GEM)
approach (Dempster et al, 1977) is used. Given
θk−1, an optimizer is used to find a θk verifying
Q(θk, θk−1) ⩾ Q(θk−1, θk−1). This less restric-
tive variation, despite a potential slowdown, still
ensures the convergence of the EM algorithm.

4.1 Simulated data

Assume first that K = 2 and consider the follow-
ing hidden Markov models.

Hidden Markov Model (hmm).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij with
Qi1 = exp(Pi1)/(1+ exp(Pi1)) and Pi1 = ωi1 ∈ R.
For all t ⩾ 1, the conditional distribution of Yt

given {Xt = k} is Gaussian with mean µk ∈ R

and variance σ2
k > 0.

Seasonal Hidden Markov Model (shmm).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(t)
with Qi1(t) = exp(Pi1(t))/(1 + exp(Pi1(t))) and
Pi1(t) = ωi1 + ωi3 cos(2πt/T ) + ωi4 sin(2πt/T ),
with ωi1, ωi3, ωi4 in R. For all t ⩾ 1, the condi-
tional distribution of Yt given {Xt = k} is Gaus-
sian with mean µk(t) = δk1 + δk3 cos(2πt/T ) +
δk4 sin(2πt/T ), with δk1, δk3, δk4 in R, and vari-
ance σ2

k > 0.

Hidden Markov Model with External
Signals (hmm-es).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(Wt)
with Qi1(Wt) = exp(Pi1(Wt))/(1 + exp(Pi1(Wt)))
and Pi1(Wt) = ωi1 + ωi2Wt, with ωi1, ωi2 in R.
For all t ⩾ 1, the conditional distribution of Yt

given {Xt = k} and Wt is Gaussian with mean
µk(Wt) = δk1 + δk2Wt, with δk1, δk2 in R, and
variance σ2

k > 0.

Seasonal Hidden Markov Model with
External Signals (shmm-es).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i,Wt) =
Qij(t,Wt) with Qi1(t,Wt) = exp(Pi1(t,Wt))/(1 +
exp(Pi1(t,Wt))) and Pi1(t,Wt) = ωi1 + ωi2Wt +
ωi3 cos(2πt/T )+ωi4 sin(2πt/T ), with ωi1, ωi2, ωi3,
ωi4 in R. For all t ⩾ 1, the conditional distribu-
tion of Yt given {Xt = k} and Wt is Gaussian with
mean µk(t,Wt) = δk1 + δk2Wtδk3 cos(2πt/T ) +
δk4 sin(2πt/T ), with δk1, δk2, δk3, δk4 in R , and
variance σ2

k > 0 > 0.

A first simulated time series is generated using
a hidden Markov model with external signals and
seasonal components as defined above (shmm-es).
As external signal (Wt)t⩾1, a signal of the fashion
dataset introduced in (David et al, 2022) is used to
provide a realistic setting. The external sequence
is smoothed using a moving average with a sliding
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window of length 8 and divided by the mean of
the first year to rescale the signal. In addition,
the smoothed signal is duplicated to simulate an
arbitrary long sequence (Yt)t⩾1. Figure 2 displays
the resulting external signal duplicated 4 times to
reach the length of 1000 time steps. We define a
set of parameters θ∗ of a shmm-es with T = 52:

π∗ =
(

π∗
1 1− π∗

1

)

=
(

0 1
)

δ∗ =

(

δ∗11 δ∗12 δ∗13 δ∗14
δ∗21 δ∗22 δ∗23 δ∗24

)

=

(

3. 0.8 2.5 4.
−1.1 −0.1 −1.5 3.5

)

σ∗ =
(

σ∗
1 σ∗

2

)

=
(

0.5 0.25
)

ω∗ =

(

ω∗
11 ω∗

12 ω∗
13 ω∗

14

ω∗
21 ω∗

22 ω∗
23 ω∗

24

)

=

(

0.5 0.9 0.7 0.5
−2. −0.2 −0.6 0.7

)

We set T = 52 according to the weekly sea-
sonality of the external signal. Using this set of
parameters and the external sequence (Wt)t⩾1,
a sequence of (Xt)t⩾1 and (Yt)t⩾1 is generated,
see Figure 2. Using the Expectation Maximization
algorithm, 10 hmm, shmm, hmm-es and shmm-es

are fitted on a training set of length 10000 with
different initial parameters θ0 = (ω0, δ0, σ0). For
each initial parameter estimate, the EM algorithm
is run for 1000 iterations. A test set of length
250 is generated and used to evaluate the differ-
ent approaches. As we provide a single simulated
sequence, the parameter π is not learned and fixed
at the true parameter π∗ during the training. In
order to reproduce results and trainings on sim-
ulated sequences, a complete code in Python is
publicly provided1.

We first evaluate the performance of the EM
algorithm to estimate the true set of parame-
ters θ∗. Figure 3 displays the true functions t 7→
µ1(t,Wt), t 7→ µ2(t,Wt), t 7→ Q11(t,Wt) and t 7→
Q22(t,Wt) and the estimations by the shmm-es.
A complete overview of the final learned parame-
ters by the EM-based algorithm for the shmm-es

model can be found in Table A1. Additional exper-
iments to analyze the impact of the sequence
length and the initial parameters are also summa-
rized in Appendix A.1. Secondly, the forecasting
accuracy of hmm, shmm, hmm-es and shmm-es is
evaluated. For each trained model. A set of 1000

1https://github.com/etidav/hmm with external signals

predictions of the test set is generated, the aver-
age prediction is computed and evaluated using
the mean absolute error (MAE), the mean squared
errror (MSE) and the mean absolute scaled error
(MASE):

MAE =
1

h

h
∑

j=1

| YN+j − ŶN+j |

MSE =
1

h

h
∑

j=1

(YN+j − ŶN+j)
2

MASE =
N − T

h

∑h

j=1 | YN+j − ŶN+j |
∑N−T

i=1 | Yi − Yi−T |
,

where N represents the train set length, h the
horizon and T the seasonality length. Table 1 sum-
marizes the mean and the standard deviation over
the 10 repetitions for the 4 approaches and the
3 metrics. Finally, Figure 4 shows predictions of
each method on the test set. This first experiment
illustrates two main results. Firstly, as the true
set of parameters was correctly recovered for the
shmm-es model, the EM algorithm is efficient to
estimate parameters of models with external sig-
nals. Secondly, Table 1 shows that hmm-es and
shmm-es methods are able to leverage the external
signal and outperform their concurrent methods
hmm and shmm.

4.2 Fashion time series forecasting

An interesting application of HMM with exter-
nal signals can be found in the fashion and retail
industries. It is crucial for these domains to accu-
rately forecast the consumers future behaviours
in order to make optimal inventory decisions and
avoid massive wastes. However, fashion dynamics
appear to be really volatile with nonlinear changes
of dynamics resulting from the apparition of new
tendencies. By taking into account behaviour of
influencers as external signals, it becomes possible
to better anticipate these changes.

4.2.1 Application to a single time series

A sequence1 from the fashion dataset intro-
duced in (David et al, 2022) was selected as it
shows a sudden change of level, seasonality and

1This sequence is referred to as ”eu-female-top-325”.

https://github.com/etidav/hmm_with_external_signals
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Fig. 2: Example of external signal sequence (orange) and associated simulated sequence using a shmm-es

model with parameter θ∗ (black).

Fig. 3: Comparison of the true functions µ1(t,Wt) and µ2(t,Wt) and the estimations with the shmm-es

model (left). Comparison of the true functions Q1(t,Wt) and Q2(t,Wt) and the estimations with the
shmm-es model (right). For the functions µ1(t,Wt) and µ2(t,Wt), estimations are almost perfect: the
true functions and the learned ones are combined.

noise intensity as illustrated in Figure 5. Sev-
eral models are trained using this time series.
hmm, shmm, hmm-es and shmm-es described in
Section 4.1 are considered in this first application.
We also consider an autoregressive HMM (ar-
hmm), an autoregressive HMMwith seasonal com-
ponents (ar-shmm), an autoregressive HMM with
external signals (ar-hmm-es) and an autoregres-
sive HMM with seasonal components and exter-
nal signals (ar-shmm-es). A complete descrip-
tion of these additional models can be found
in Appendix A.3.2. To fairly compare and eval-
uate HMM-based methods, several benchmarks
are also evaluated. Four statistical benchmarks
are proposed: snaive, thetam, tbats, ets. Complete
descriptions and references for these models can
be found in (Hyndman et al, 2015). A recur-
rent neural network (RNN) model (Hochreiter and

Schmidhuber, 1997) denoted lstm is also consid-
ered. Finally the hybrid model hermes introduced
in (David et al, 2022) is added in the pool of
benchmarks. Combining the strengths of statis-
tical approaches and RNNs, this model achieved
impressive results on the fashion dataset and
demonstrated the benefit of the inclusion of influ-
encers signal. As all the previous benchmarks
do not include the external signal, variations of
lstm and hermes using external signal and called
lstm-es and hermes-es are also considered.

For HMM-based models and statistical bench-
marks, a complete code is publicly avail-
able2. Concerning the training of the HMM
approaches, additional information can be found
in Appendix A.4. For lstm, lstm-es, hermes and

2https://github.com/etidav/hmm with external signals

https://github.com/etidav/hmm_with_external_signals
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Table 1: MASE, MSE and MAE accuracy of the 4 hmm approaches considered using a synthetic time
series. For each method, 10 trainings are done with different initialisation parameter. The mean and the
standard deviation over the 10 iteration is displayed for each approach

MASE MAE MSE

mean std mean std mean std

hmm 1.354 0.016 4.833 0.056 31.124 0.368
shmm 0.903 0.005 3.222 0.017 15.582 0.193
hmm-es 1.245 0.008 4.446 0.027 26.346 0.327
shmm-es 0.737 0.008 2.630 0.029 14.102 0.346

Fig. 4: 1000 simulation and average prediction of hmm, shmm, hmm-es and shmm-es models on the test
set.

Fig. 5: Time series ”eu-female-top-325” from (David et al, 2022) representing an emerging fashion trend
on social media with its linked influencers external signal. The influencers sequence is smoothed using a
moving average with a sliding window of length 8.



Springer Nature 2021 LATEX template

hermes-es, pre-trained models on the fashion
dataset introduced in (David et al, 2022) are
directly used without retraining. We evaluate our
candidates on a 1-year forecasting task. The 52
points of 2020 are hidden during the training pro-
cedure and used to evaluate the accuracy of the
models. For each model, a forecast of the test set
is computed and the three metrics MAE, MSE
and MASE are used to evaluate the prediction.
In addition, for HMM-based models, ten inde-
pendent training procedures are performed and
standard variations over the 10 replications are
provided for the three metrics. Results are sum-
marized in Table 2. In this challenging framework,
the 4 statistical benchmarks do not reach the
same performance as models with external sig-
nals. The same remark can be made with the
hmm and shmm approaches. However, the inclu-
sion of the external signal considerably improves
the performance of the HMM-based model and
they achieve a level of accuracy comparable to
RNN-based models hermes-es and lstm-es trained
on the whole fashion dataset and using external
signal. Predictions of the best HMM model ar-

shmm-es, the statistical method tbats and the two
state-of-the-art models hermes-es and lstm-es are
displayed in Figures 6-7.

4.2.2 Application on a sample of time

series

In this section, the different approaches are com-
pared using 10 sequences from the fashion dataset
introduced in (David et al, 2022). Name and addi-
tional materials concerning these trends can be
found in Appendix A.3. For each time series, the
same models and training process as in Section
4.2.1 are considered. Table 3 summarizes the
results on each sequence in terms of MASE. The
inclusion of the external signal always largely
improves the accuracy of the HMM models. ar-
hmm-es method reaches the highest level of accu-
racy over the 10 time series followed by hmm-es,
lstm-es,hermes-es and ar-shmm-es.

• On the first fashion sequence, HMMs includ-
ing the influencers signal leveraged the influ-
encers external signals resulting in a significant
improvement of the accuracy compared to the
benchmark models.

• Conversely, on the seventh fashion sequence,
as the first increase of the external signal led

to a decrease of the main sequence in the
train set, HMM models using the influencers
signal showed difficulties to leverage the exter-
nal signal. Consequently, even simple statistical
models like ets or tbats outperformed the HMM-
based models on this specific sequence.

• As the 10 fashion sequences are short and some
of them do not have a strong seasonal compo-
nent, seasonal variations of HMMs did not reach
the best global level of accuracy.

Finally, over the 10 time series, HMMs includ-
ing the external signal show the same high level
of accuracy than benchmarck models like hermes-

es and lstm-es while these two benchmarks have
several thousand of parameters, have been train
on the whole fashion dataset gathering 10000
time series and include the external signal. It
reveals that on these 10 specific sequences, the
new HMM approach is better suited and better
leverages the influencers signal while maintaining
theoretical properties and interpretability. Multi-
ples figures displaying predictions of the different
models on the fashion sequences can be found in
Appendix A.5.

5 Conclusion

The motivation of this paper is to establish the-
oretical guarantees for a family of latent data
models including external signals in the transi-
tion matrices and the emissions laws. We showed
that under several assumptions, the identifiabil-
ity and convergence results known in the HMM
literature can be extended to these models. In
addition of the theoretical guarantees, numerous
experiments were done on simulated data and real
world time series. Several HMMs including exter-
nal signal were tested on a long-term forecasting
task and compared to statistical and RNN-based
alternatives. Final results highlighted that includ-
ing external signals in HMMs allows to learn
meaningful dependencies and improve forecasting
performance. On some real world sequences, they
even outperformed state-of-the-art models.

However, as a HMM with external signals has
to be trained for each new sequences, our approach
remains computationally expensive to train. Con-
sequently, a future work will be to design a HMM
framework able to be trained on a large dataset,
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Table 2: MASE, MSE and MAE accuracy on the fashion time series eu-female-top-325. Bold values
provide the best performance for the benchmarks and for the HMMs-based approaches.

MASE MAE(10−3) MSE(10−6)
mean std mean std mean std

thetam 1.73 - 0.87 - 1.04 -
ets 1.59 - 0.80 - 0.89 -
tbats 1.25 - 0.63 - 0.68 -
snaive 1.09 - 0.55 - 0.51 -
lstm-es 0.97 0.20 0.49 0.10 0.50 0.19
lstm 0.78 0.11 0.39 0.06 0.28 0.09
hermes 0.70 0.05 0.35 0.02 0.23 0.02
hermes-es 0.67 0.04 0.34 0.02 0.22 0.01

hmm 1.99 0.01 1.01 0.01 1.78 0.03
shmm 1.95 0.01 0.99 0.01 1.61 0.02
hmm-es 0.98 0.07 0.60 0.04 0.52 0.06
ar-hmm 0.95 0.01 0.58 0.01 0.62 0.01
ar-hmm-es 0.80 0.13 0.49 0.08 0.40 0.09
ar-shmm 0.77 0.07 0.47 0.04 0.43 0.09
shmm-es 0.62 0.04 0.38 0.02 0.24 0.02
ar-shmm-es 0.56 0.08 0.35 0.05 0.24 0.07

Fig. 6: ar-shmm-es predictions of the last year of the time series eu-female-top-325. 1000 simulation are
calculated and displayed in grey and for each point, the mean over the 1000 predictions is displayed in red.

to learn complex shared dynamics and finally
leverage high dimensional external signals.



Springer Nature 2021 LATEX template

Fig. 7: tbats, hermes-es, lstm-es and ar-shmm-es predictions on the last year of the time series eu-female-
top-325. for ar-shmm-es, 1000 predictions are calculated and for each point, the mean (in red) is displayed.

Table 3: MASE of the benchmarks and HMM models on the 10 fashion time series. For the RNN-based
and HMM-based approaches, as 10 training were done, standard variation of the final MASE over the 10
replications is also provided. Bold values provide the best performance for the benchmarks and for the
HMMs-based approaches.

ts 1 ts 2 ts 3 ts 4 ts 5 ts 6 ts 7 ts 8 ts 9 ts 10 total

snaive 5.91 1.25 1.36 0.46 1.09 0.98 2.44 0.73 0.87 0.45 1.55
thetam 4.93 0.76 0.63 1.15 1.73 0.84 0.86 1.33 0.38 0.57 1 .32
tbats 5.04 0.80 0.73 0.61 1.25 0.65 1.40 0.83 0.51 0.32 1.21
ets 4.90 0.45 0.69 0.64 1.59 0.62 1.33 0.79 0.48 0.44 1.19
lstm 5.35 ±0.53 0.69 ±0.20 0.92 ±0.20 0.83 ±0.22 0.78 ±0.11 0.70 ±0.05 1.54 ±0.13 1.22 ±0.42 0.59 ±0.05 0.31 ±0.02 1.29
hermes 5.50 ±0.12 0.54 ±0.06 0.85 ±0.15 0.55 ±0.06 0.70 ±0.05 0.75 ±0.03 1.98 ±0.13 0.73 ±0.05 0.60 ±0.03 0.28 ±0.01 1.25
hermes-es 4.70 ±0.38 0.68 ±0.27 0.76 ±0.11 0.65 ±0.11 0.67 ±0.04 0.61 ±0.05 1.64 ±0.23 0.70 ±0.07 0.59 ±0.03 0.27 ±0.01 1.13
lstm-es 4.18 ±0.54 0.80 ±0.21 0.88 ±0.17 0.77 ±0.30 0.97 ±0.20 0.54 ±0.08 1.18 ±0.18 0.87 ±0.22 0.51 ±0.03 0.29 ±0.02 1.10

shmm 6.80 ±0.44 0.56 ±0.02 1.05 ±0.27 0.95 ±0.01 1.95 ±0.01 0.46 ±0.07 2.69 ±0.01 0.84 ±0.01 0.62 ±0.01 0.36 ±0.04 1.63
hmm 5.48 ±0.01 0.83 ±0.02 0.75 ±0.02 1.09 ±0.01 1.99 ±0.01 0.65 ±0.01 2.61 ±0.01 1.32 ±0.01 0.75 ±0.13 0.65 ±0.01 1.61
ar-shmm 5.54 ±0.23 0.31 ±0.01 0.80 ±0.15 0.42 ±0.01 0.77 ±0.07 0.99 ±0.02 2.60 ±0.04 0.75 ±0.01 0.84 ±0.08 0.81 ±0.05 1.38
ar-hmm 5.55 ±0.01 0.48 ±0.05 0.54 ±0.01 0.60 ±0.01 0.95 ±0.01 1.22 ±0.04 1.84 ±0.81 0.64 ±0.08 0.79 ±0.16 0.69 ±0.01 1.33
shmm-es 4.67 ±0.99 0.36 ±0.03 0.66 ±0.06 0.43 ±0.04 0.62 ±0.04 1.11 ±0.13 2.89 ±0.66 0.81 ±0.06 0.58 ±0.07 0.59 ±0.15 1.27
ar-shmm-es 4.57 ±0.53 0.46 ±0.22 0.64 ±0.07 0.46 ±0.02 0.56 ±0.08 0.62 ±0.04 2.72 ±0.59 0.79 ±0.05 0.51 ±0.06 0.52 ±0.15 1.18
hmm-es 2.89 ±0.34 0.52 ±0.01 0.54 ±0.02 0.42 ±0.02 0.98 ±0.07 0.43 ±0.12 2.84 ±0.26 0.92 ±0.01 0.53 ±0.06 0.61 ±0.01 1.07
ar-hmm-es 3.04 ±0.50 0.41 ±0.05 0.64 ±0.16 0.40 ±0.01 0.80 ±0.13 0.81 ±0.03 2.21 ±0.74 0.90 ±0.02 0.54 ±0.04 0.62 ±0.01 1.04

Appendix A Additional
numerical
results

A.1 shmm-es-generated time series

In addition to Figure 3, Table A1 provides a com-
plete description of the final parameters recovered
by the shmm-es depending on the length of the
sequence used during training. In each case, final

parameters values and percentages of errors com-
pared to the real parameters are displayed. Con-
sider a parameter x∗ and x̂ its estimate, we call
percentage of errors the following quantity: 100×(|
x∗−x̂ | /x∗). In each scenario (δ11, δ12, ..., δ22) and
(σ11, σ22) are efficiently recovered. Some param-
eters of the transition matrices, even in the case
where a sequence of 100000 time steps is used,
are not perfectly learned. However, using larger
training sequences considerably improves the esti-
mation for most of them.
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Table A1: shmm-es final parameters depending of the train set size. the final values are displayed and
percentages of errors compared to the true parameters are computed.

true parameter length=1000 length=10000 length=100000

mean % error mean % error mean % error

δ11 3.0 3.0 <1% 2.99 <1% 3.0 <1%
δ12 0.8 0.8 <1% 0.8 <1% 0.8 <1%
δ13 2.5 2.5 <1% 2.49 <1% 2.5 <1%
δ14 4.0 3.98 <1% 4.0 <1% 4.0 <1%
δ21 -1.1 -1.12 1% -1.07 3% -1.1 <1%
δ22 -0.1 -0.09 8% -0.11 8% -0.1 1%
δ23 -1.5 -1.54 3% -1.51 1% -1.5 <1%
δ24 3.5 3.57 2% 3.49 <1% 3.49 <1%
σ1 0.25 0.24 4% 0.25 1% 0.25 <1%
σ2 0.5 0.5 1% 0.51 1% 0.5 <1%
ω11 0.5 0.52 3% 0.32 35% 0.46 8%
ω12 0.9 0.91 1% 1.02 13% 0.92 2%
ω13 0.7 0.49 30% 0.66 6% 0.7 <1%
ω14 0.5 0.51 3% 0.53 6% 0.56 12%
ω21 -2.0 -2.48 24% -2.0 <1% -2.0 <1%
ω22 -0.2 -0.01 95% -0.21 7% -0.19 5%
ω23 -0.6 -0.8 34% -0.63 6% -0.62 4%
ω24 0.7 0.88 26% 0.79 12% 0.72 2%

As the EM algorithm is strongly impacted
by the initialisation of the parameters, a second
experiment is done so as to evaluate the impact of
the initialisation on the shmm-es learning. Three
trainings are run with a sequence of length 10000.
For the first one, an initialisation of θ0 is sampled
with Gaussian distributions with mean (ω∗, δ∗, σ∗)
and standard deviations equal to 0.5. For the sec-
ond one, the Gaussian standard deviations are set
to 1 and for the last one, increased to 2. Table A2
displays final parameters values recovered by the
shmm-es in the 3 scenarios as well as a percentage
of error defined above. In all scenarios, the EM
algorithm converges and accurately retrieves the
true set of parameters of the shmm-es model.

A.2 hmm-generated time series

A second simulated time series is generated using
a simple HMM as defined in Section 4.1. The true
set of parameters of the model θ∗ is:

π∗ =
(

π∗
1 1− π∗

1

)

=
(

0 1
)

δ∗ =

(

δ∗11
δ∗21

)

=

(

−1.
2.

)

σ∗ =
(

σ∗
1 σ∗

2

)

=
(

1 0.25
)

ω∗ =

(

ω∗
11

ω∗
21

)

=

(

−0.8
−1.4

)

.

Using this set of parameters, a sequence of (Xt)t⩾1

and (Yt)t⩾1 of length 10000 is generated and a
sample of length 1000 is displayed in Figure A1.
Using the Expectation Maximization algorithm
and with the same protocol as in Section 4.1, a
hmm, shmm, hmm-es and shmm-es are trained.
In order to fit the hmm-es and the shmm-es

approach, the generated external signal (Wt)t⩽1

displayed in Figure 2 is used. With this exper-
iment, we evaluate the ability of HMM with
external signals to recover the true set of parame-
ters in the case where the external signal (Wt)t⩾1

is not involved in the HMM dynamics. Table A3
shows the mean of the final parameters over the 4
trains and the percentage of error associated. The
true set of parameters is well recovered by the four
candidates. As the time series is generated with a
simple HMM, the two models using the external
signal learned parameters near 0 for the external
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Table A2: shmm-es final parameters depending of the initialization method. The first method use
Gaussian distribution centred at the true parameter values with the standard deviation set at 0.5. For the
second method, the standard deviation is increased to 1 and for the last one, increased to 2. A simulated
sequence with length equal to 10000 is used to train a shmm-es model for each initialization method.
With the 3 resulting set of parameters, the final values are displayed and percentages of errors compared
to the true set of parameters are computed.

true parameter Init. std=0.5 Init. std=1 Init. std=2

mean % error mean % error mean % error

δ11 3.0 2.99 <1% 2.99 <1% 2.99 <1%
δ12 0.8 0.8 <1% 0.8 <1% 0.8 <1%
δ13 2.5 2.49 <1% 2.49 <1% 2.49 <1%
δ14 4.0 4.0 <1% 4.0 <1% 4.0 <1%
δ21 -1.1 -1.07 3% -1.07 3% -1.07 3%
δ22 -0.1 -0.11 8% -0.11 7% -0.11 7%
δ23 -1.5 -1.51 1% -1.51 1% -1.51 1%
δ24 3.5 3.49 <1% 3.49 <1% 3.49 <1%
σ1 0.25 0.25 1% 0.25 1% 0.25 1%
σ2 0.5 0.51 1% 0.5 <1% 0.5 <1%
ω11 0.5 0.32 35% 0.32 35% 0.32 35%
ω12 0.9 1.02 13% 1.02 13% 1.02 13%
ω13 0.7 0.66 6% 0.66 6% 0.66 6%
ω14 0.5 0.53 6% 0.53 6% 0.53 6%
ω21 -2.0 -2.0 <1% -2.0 <1% -2.0 <1%
ω22 -0.2 -0.21 7% -0.21 7% -0.21 7%
ω23 -0.6 -0.63 6% -0.64 6% -0.64 6%
ω24 0.7 0.79 12% 0.79 12% 0.79 12%

Fig. A1: Simulated hidden sequence (Xt)t⩾1 (red) and simulated main sequence (Yt)t⩾1 (black) using a
HMM model with parameter θ∗.
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signal dependencies and seasonal variations did
not learn artificial seasonal effects.

A.3 Fashion time series forecasting

A.3.1 Fashion sequences

In Section 4.2.2, ten sequences from the fashion
dataset were selected3. These time series were not
totally randomly selected but for the fact that
they display various dynamics including abrupt
changes of behaviours, which are difficult to fore-
cast. A smoothing is applied using a moving
average with a sliding window of length 8 to the
external signal associated with each time series.
Figure A2 displays the 10 sequences and their
external signals.

A.3.2 Model descriptions

In this section, a complete description of the HMM
approaches introduced in Section 4.2 is given.

Hidden Markov Model (hmm).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij with
Qi1 = exp(Pi1)/(1+ exp(Pi1)) and Pi1 = ωi1 ∈ R.
For all t ⩾ 1, the conditional distribution of Yt

given {Xt = k} is Gaussian with mean µk ∈ R

and variance σ2
k.

Seasonal Hidden Markov Model (shmm).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(t)
with Qi1(t) = exp(Pi1(t))/(1 + exp(Pi1(t))) and
Pi1(t) = ωi1+ωi3 cos(2πt/T )+ωi4 sin(2πt/T ). For
all t ⩾ 1, the conditional distribution of Yt given
{Xt = k} is Gaussian with mean µk(t) = δk1 +
δk4 cos(2πt/T ) + δk5 sin(2πt/T ) and variance σ2

k.

Auto Regressive Hidden Markov Model
(ar-hmm).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij with
Qi1 = exp(Pi1)/(1 + exp(Pi1)) and Pi1(Yt−52) =
ωi1 + ωi2Yt−52. For all t ⩾ 1, the conditional

3They are respectively named br-female-shoes-262, br-
female-texture-59, br-female-texture-82, eu-female-outerwear-
177, eu-female-top-325, eu-female-top-394, eu-female-texture-
80, us-female-outerwear-171, us-female-shoes-76, and us-
female-top-79.

distribution of Yt given {Xt = k} and Yt−52 is
Gaussian with mean µk(Yt−52) = δk1 + δk2Yt−52

and variance σ2
k.

Auto Regressive Seasonal Hidden Markov
Model (ar-shmm).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(t)
with Qi1(t) = exp(Pi1(t))/(1 + exp(Pi1(t))) and
Pi1(t) = ωi1 + ωi2 cos(2πt/T ) + ωi3 sin(2πt/T ).
For all t ⩾ 1, the conditional distribution of Yt

given {Xt = k} and Yt−52 is Gaussian with mean
µk(t, Yt−52) = δk1 + δk2Yt−52 + δk4 cos(2πt/T ) +
δk5 sin(2πt/T ) and variance σ2

k.

Hidden Markov Model with External
Signals (hmm-es).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(Wt−52)
with Qi1(Wt−52) = exp(Pi1(Wt−52)
)/(1 + exp(Pi1(Wt−52))) and Pi1(Wt−52) = ωi1 +
ωi2Wt−52. For all t ⩾ 1, the conditional dis-
tribution of Yt given {Xt = k} and Wt−52 is
Gaussian with mean µk(Wt−52) = δk1 + δk3Wt−52

and variance σ2
k.

Seasonal Hidden Markov Model with
External Signals (shmm-es).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈
(0, 1) and for t ⩾ 1, P(Xt+1 = j | Xt =
i,Wt−52) = Qij(t,Wt−52) with Qi1(t,Wt−52) =
exp(Pi1(t,Wt−52))/(1 + exp(Pi1(t,Wt−52))) and
Pi1(t,Wt−52) = ωi1+ωi2Wt−52+ωi3 cos(2πt/T )+
ωi4 sin(2πt/T ). For all t ⩾ 1, the conditional
distribution of Yt given {Xt = k} and Wt−52

is Gaussian with mean µk(t,Wt−52) = δk1 +
δk3Wt−52 + δk4 cos(2πt/T ) + δk5 sin(2πt/T ) and
variance σ2

k.

Auto Regressive Hidden Markov Model
with External Signals (ar-hmm-es).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(Wt−52)
with Qi1(Wt−52) = exp(Pi1(Wt−52))/(1 +
exp(Pi1(Wt−52))) and Pi1(Wt−52) = ωi1 +
ωi2Wt−52. For all t ⩾ 1, the conditional distri-
bution of Yt given {Xt = k}, Yt−52 and Wt−52

is Gaussian with mean µk(Yt−52,Wt−52) = δk1 +
δk2Yt−52 + δk3Wt−52 and variance σ2

k.
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Table A3: hmm, shmm, hmm-es and shmm-es final parameters. In each case, a training is done using
a simulated sequence of length 10000. The resulting set of parameters and the percentages of errors as
defined in Appendix A.1 are displayed. Rows of parameters representing external signal dependencies are
highlighted.

true parameter hmm shmm hmm-es shmm-es

mean % error mean % error mean % error mean % error

δ11 -1.0 -1.01 1% -1.01 1% -1.01 1% -1.0 <1%
δ12 - - - - - -0.0 - -0.0 -
δ13 - - - -0.06 - - - -0.06 -
δ14 - - - 0.02 - - - 0.02 -
δ21 2.0 2.01 <1% 2.01 <1% 2.01 1% 2.01 1%
δ22 - - - - - -0.0 - -0.0 -
δ23 - - - -0.0 - - - -0.0 -
δ24 - - - 0.0 - - - 0.0 -
ω11 -0.8 -0.87 8% -0.87 8% -0.83 4% -0.82 3%
ω12 - - - - - -0.01 - -0.02 -
ω13 - - - 0.03 - - - 0.02 -
ω14 - - - -0.04 - - - -0.05 -
ω21 -1.4 -1.42 2% -1.42 2% -1.44 3% -1.44 3%
ω22 - - - - - 0.01 - 0.01 -
ω23 - - - 0.01 - - - 0.02 -
ω24 - - - 0.03 - - - 0.03 -
σ1 1.0 1.0 <1% 1.0 <1% 1.0 <1% 1.0 <1%
σ2 0.25 0.25 <1% 0.25 <1% 0.25 <1% 0.25 <1%

Auto Regressive Seasonal Hidden Markov
Model with External Signals (ar-shmm-es).

For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1) and
for t ⩾ 1, P(Xt+1 = j | Xt = i) = Qij(t,Wt−52)
with Qi1(t,Wt−52) = exp(Pi1(t,Wt−52))/(1 +
exp(Pi1(t,Wt−52))) and Pi1(t) = ωi1+ωi2Wt−52+
ωi3 cos(2πt/T ) + ωi4 sin(2πt/T ). For all t ⩾ 1,
the conditional distribution of Yt given {Xt =
k}, Yt−52 and Wt−52 is Gaussian with mean
µk(t, Yt−52,Wt−52) = δk1+ δk2Yt−52+ δk3Wt−52+
δk4 cos(2πt/T ) + δk5 sin(2πt/T ) and variance σ2

k.

In a real world situation, the external signal,
depending on influencers, is not known in advance.
Consequently, a lag of one year (here 52 time
steps) is introduced i.e. the distribution of the
HMM at time t depends onWt−52. The same lag is
used in the Auto-regressive HMM as almost all the
fashion sequences show a strong yearly seasonality.

A.4 HMM-based model training

We propose a complete overview of the train-
ing process used in Section 4.2 for the HMM
approaches. For each HMM-based model, given
a fashion time series, the following estimation
procedure is used.

1. Parameter θ0 is randomly initialized.
2. A GEM is run for 10 iterations.
3. Using the resulting parameter, 10 predictions

of the last year of the train set are computed
and evaluated using a MSE.

4. The average MSE over the 10 forecasts is
computed

5. Steps 1-4 are repeated 30 times and the best
run is saved based on the average MSE com-
puted in step 4.

6. Starting with the initial parameter of the best
run, 500 iterations of the EM algorithm are run
and the final parameter θ̂ is saved.

The complete code is developed in Python and
Tensorflow and available at https://github.com/
etidav/hmm with external signals.

A.5 HMM-based model predictions

In this last section, in addition to Table 3, pre-
dictions of the best models on the 10 considered
fashion time series are displayed in Figure A3.

https://github.com/etidav/hmm_with_external_signals
https://github.com/etidav/hmm_with_external_signals
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Fig. A2: 10 fashion time series (black) and their associated external signals (orange).
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