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Abstract.In social sciences, studies are often based on questionnaires asking par-
ticipants to express ordered responses several times over a study period. We present a
model-based clustering algorithm for such longitudinal ordinal data. Assuming that an
ordinal variable is the discretization of an underlying latent continuous variable, the model
relies on a mixture of matrix-variate normal distributions, accounting simultaneously for
within- and between-time dependence structures. The model is thus able to concurrently
model the heterogeneity, the association among the responses and the temporal depen-
dence structure. An EM algorithm is developed and presented for parameters estimation,
and approaches to deal with some arising computational challenges are outlined. An
evaluation of the model through synthetic data shows its estimation abilities and its ad-
vantages when compared to competitors. A real-world application concerning changes in
eating behaviors during the Covid-19 pandemic period in France will be presented.

Keywords.Model-based Clustering. Ordinal longitudinal data. Three-way data.
Mixture models. Matrix-variate Gaussians.

1 Context

In many areas of humanities and social sciences, the studies are based on questionnaires.
The most common kind of questions, and therefore collected data, are ordinal, as for
instance in marketing studies where people are asked to evaluate some products or services
on an ordinal scale (Dillon, Madden, and Firtle, 1994). Ordinal data occur when the
categories are ordered (Agresti, 2010). Ordinality is a characteristic of the meaning of
measurements (Stevens, 1946), and distinct levels of an ordinal variable differ in degree
of dissimilarity more than in quantity (Agresti, 2010).

Often, these questionnaires are completed by participants several times over the study
period. The researchers then analyse these questionnaires to determine typical behaviours
within the studied population, being especially interested in their time evolution. Nonethe-
less, modelling temporal evolution is far from trivial. The most basic approach consists in
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performing analyses independently at each temporal phase, and then trying a posteriori
to find links between these different analyses, by seeking from one phase to the other to
find similar or different typical behaviours. An example is Selosse, Jacques, Biernacki,
and Cousson-Gélie, 2019, clustering of ordinal data for an application in psychology. The
ideal way to cluster temporal data would be to account for the temporal evolution, mod-
elling all the responses to the questionnaires at the same time. We propose a model-based
clustering technique aiming at facilitate such temporal analysis, by grouping together the
units behaving similarly in time.

Over the decades, research has produced a vast number of different approaches to
clustering. From our prospective, probabilistic (or model-based) clustering offers the
advantage of clearly stating the assumptions behind the clustering algorithm, and allows
cluster analysis to benefit from the inferential framework of statistics to address some
of the practical questions arising when performing clustering: determine the number of
clusters, detecting and treating outliers, assessing uncertainty in the clustering (Bouveyron
et al., 2019).

Our model proposes to cluster all the ordinal responses at the same time, grouping
together the units behaving similarly in time. Moreover, it also aims at being easily
understandable and interpretable by practitioners with non-statistical background.

1.1 Related works

Although ordinal data are certainly the type most encountered in questionnaires, they
are either transformed according to a Likert scale (Likert, 1932) into quantitative data
(Lewis et al., 2005), or transformed into nominal data by ignoring the order (Vermunt and
Magidson, 2005). In the first case, even if there is a whole literature on the construction
of Likert scales, the introduction of a notion of distance between categories necessarily
brings a bias in the analysis (Liddell and Kruschke, 2018). In the second case, less often
used nevertheless, one loses essential information by not taking into account the notion
of order within the categories.
Ordinal data do not have metric information. One classical model to treat ordinal data
as in a ordinal-scale model are the traditional ordered-probit models (McKelvey and Za-
voina, 1975, Winship and Mare, 1984, Becker and Kennedy, 1992). This model describes
the probability of a ordinal response as the cumulative normal probability between two
thresholds on an underlying latent continuous distribution, generally chosen to be Gaus-
sian. This model is generally regarded as one of the standards in both frequentist and
Bayesian frameworks (Lynch, 2007, Kruschke, 2015).
More recently, other approaches to deal with such kind of data has been developed. In
the clustering context we are interested in, the examples spans from D’Elia and Piccolo,
2005, that introduces the CUB model, later developed through the R package CUB (Ian-
nario and Piccolo, 2016), to Giordan and Diana, 2011 and more recently Ranalli and
Rocci, 2016; Fernandez, Arnold, and Pledger, 2016. In a co-clustering context, the R
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package ordinalClust (Selosse, Jacques, and Biernacki, 2021) makes use of the BOS
(Binary Ordinal Search) distribution introduced by Biernacki and Jacques, 2016 and ex-
tended for co-clustering by Jacques and Biernacki, 2018. A mixture of item response
models was developed to for ordinal response data in the Bayesian framework by McPar-
land and Gormley, 2013, to be later expanded in the frequentist paradigm and to handle
mixed data in McParland and Gormley, 2016. More recently, Corneli, Bouveyron, and
Latouche, 2020 proposed a new model that relies on latent continuous random variables
to perform co-clustering.

Similarly, several approaches to clustering longitudinal data were developed. In Mc-
Nicholas and Murphy, 2010 the authors developed a model-based clustering framework
for longitudinal continuous data by using Gaussian mixture models and applying the
modified Cholesky decomposition to the group covariance matrices. Doing this, the new
derived elements can be interpreted as generalized auto-regressive parameters and inno-
vation variances. Moreover, a series of possible constraints are presented in order to give
rise to more parsimonious models. In the context of generalized linear latent variable
models (GLLVMs), Cagnone and Viroli, 2018 introduced a methodological framework
that includes two levels of latent variables: one continuous hidden variable for dimension
reduction and clustering and a discrete random variable accounting for the dynamics mod-
elled through a latent Markov model. In the R package mixAK (Komárek and Komárková,
2014) the basis for clustering is a mixture of multivariate generalized linear mixed models.
In Vávra and Komárek, 2023 a mixture distribution is additionally assumed for random
effects.

An other approach to clustering longitudinal data consists in arranging the data in
a three-way format and modelling them through a matrix-variate mixture model. This
approach offers the advantage of accounting for the overall time-behavior, grouping to-
gether the units that have a similar pattern across and within time. While not being new
(Basford and McLachlan, 1985), matrix-variate distributions have recently gained atten-
tion, and mixtures of matrix-normals (MMN) have been developed and applied both in a
frequentist framework in Viroli, 2011a and within a Bayesian one by Viroli, 2011b, where
it was used to cluster Italian provinces based on a longitudinal crime-related score. From
a frequentist point of view, these models represent a natural extension of the multivariate
normal mixtures to account for temporal (or even spatial) dependencies, and have the ad-
vantage of being also relatively easy to estimate by means of EM algorithm (a nice short
description of the EM application to MNN is provided in §2.1 of Wang and Melnykov,
2020). Anderlucci and Viroli, 2015 extends on the work of McNicholas and Murphy, 2010
and incorporates the idea of the modified Cholesky decomposition in the matrix-variate
regression model developed by Viroli, 2012, elaborating a family of more parsimonious
models. More recently, in Doğru, Bulut, and Arslan, 2016, Gallaugher and McNicholas,
2018 and Melnykov and Zhu, 2018, 2019 extensions for non-normal skewed matrix-variate
mixture model have been proposed and applied. An attempt to generalize the class of
parsimonious models derived by the decomposition of the covariance matrices in a mixture
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of matrix-normal model has been carried out (Sarkar et al., 2020). A new comprehensive
R package to apply this family to clustering continuous three-way data (Zhu, Sarkar, and
Melnykov, 2022) has been proposed, endeavoring the creation of a mclust (Scrucca et al.,
2016) for three-way continuous data.

1.2 The idea

As we aims at develop a model easily understandable and interpretable by practitioners
with non-statistical background, we found matrix-variate distributions particularly fit, as
shown in Alaimo et al., 2023. Moreover, as noticed in Anderlucci and Viroli, 2015, the use
of matrix-variate distributions allow to drop the conditional independence assumption,
frequently implied in longitudinal latent variable models.

Despite the efficacy of matrix-variate distributions, up to now these methods have only
been applied to continuous data. We introduce a Mixture for Ordinal Matrices (MOM)
model, aiming at expanding the use to matrix-variate mixtures to ordinal data in an
unsupervised learning context.

In the following Sections 2 and 3 we will detail our model and the EM algorithm to
perform inference. In Section 4 the results on synthetic data are presented to assess the
performance of the model. Finally, in Section 5 an application on real data concerning
grocery shopping preferences by a French sample during the Covid-19 pandemic period is
outlined.

2 Model

2.1 Preliminaries

Let Z ∼ MN (J×T )(M,Φ,Σ), that is a matrix-variate normal distribution where M ∈
RJ×T is the matrix of means, Φ ∈ RT×T is a covariance matrix containing the variances
and covariances between the T occasions or times and Σ ∈ RJ×J is the covariance matrix
containing the variance and covariances of the J variables. The matrix-normal probability
density function (pdf) is given by

f(Z|M,Φ,Σ) = (2π)−
TJ
2 |Φ|−

J
2 |Σ|−

T
2 exp

{
−1

2
tr[Σ−1(Z −M)Φ−1(Z −M)⊺]

}
. (1)

The matrix-normal distribution represents a natural extension of the multivariate normal
distribution, since if Z ∼ MN (J×T )(M,Φ,Σ), then vec(Z) ∼ MVN JT (vec(M),Φ ⊗ Σ),
where vec(.) is the vectorization operator and ⊗ denotes the Kronecker product. The
property of rewriting the general covariance matrix Ψ ∈ RJT×TJ as Ψ = Φ ⊗ Σ is called
separability condition. Then, the mean and the variance of the matrix-normal distribution
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are:

E(vec(Z)|M,Φ,Σ) = vec(M) and V(vec(Z)|M,Φ,Σ) = Σ⊗ Φ. (2)

Being a special case of the multivariate normal distribution, the matrix-normal distribu-
tion shares the same various properties, like, for instance, closure under marginalization,
conditioning and linear transformations (Gupta and Nagar, 2000). The separability con-
dition of the covariance matrix has two advantages. First, it allows the modeling of the
temporal pattern of interest directly on the covariance matrix Φ. Second, it represents
a more parsimonious solution than that of the unrestricted Φ ⊗ Σ. Indeed, for that
case the number of independent elements to compute would be JT (JT + 1)/2, against
J(J +1)/2+T (T +1)/2 for the matrix-variate one. For example, setting J = T = 5, one
would have to estimate 325 elements in the multivariate case against 30 elements in the
matrix-variate one.

Introduced by Viroli, 2011a, the pdf of the finite Mixture of Matrix-Normals (MMN)
model is given by

f(Z|π,Θ) =
K∑
k=1

πkϕ
(J×T )(Z|Mk,Φk,Σk),

where ϕ(J×T ) represents the density function of a J×T -dimensional matrix-variate normal,
K is the number of mixture components, π = {πk}Kk=1 is the vector of mixing proportions,
subject to constraint

∑K
k=1 πk = 1 and Θ = {Θk}Kk=1 is the set of component-specific

parameters with Θk = {Mk,Φk,Σk}.

2.2 The Mixture of Ordinal Matrices model

Let denote by yijt the observation of the j-th variable for the i-th unit at time t (i =
1, . . . , N ; j = 1, .., J and t = 1, . . . , T ), that is: imagine to observe N units and measuring
J different ordinal variables T times throughout the course of the study. Let us reorganize
this data in a random-matrix form such that Y = {Yi}Ni=1 is a sample of J × T -variate
matrix observations Yi = (yijt) ∈ NJ×T . The ordered classes are coded by non-negative
integers such that each ordinal variable J the ordinal levels are {1, 2, . . . , Cj}.
Then, we can assume that each variable yijt is the manifestation of an underlying latent
continuous variable zijt which follows a Gaussian distribution, as done in the clustMD
model (McParland and Gormley, 2016). At this point, we can assume that each observed
ordinal matrix Yi is indeed the manifestation of a latent continuous random matrix Zi,
which follows a matrix-normal distribution.
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NJ×T ∋ Yi =


yi,1,1 · · · yi,1,t · · · yi,1,T
...

. . .
... · · · ...

yi,j,1 · · · yi,j,t · · · yi,j,T
... · · · ...

. . .
...

yi,J,1 · · · yi,J,t · · · yi,J,T

←− Zi =


zi,1,1 · · · zi,1,t · · · zi,1,T
...

. . .
... · · · ...

zi,j,1 · · · zi,j,t · · · zi,j,T
... · · · ...

. . .
...

zi,J,1 · · · zi,J,t · · · zi,J,T

 ∈ RJ×T

To map from Yi to Zi, let γj denote a Cj + 1 -dimensional vector of thresholds that
partition the real line for the j-th ordinal variable that has Cj levels and let the threshold
parameters be constrained such that −∞ = γj,0 ≤ γj,1 ≤ . . . ≤ γj,Cj

= ∞. If the latent
zijt is such that γj,c−1 < zijt < γj,c then the observed ordinal response, yijt = c.

So, by assuming that each Zi follows a matrix-normal distribution, we can then cluster
our data by means of finite Mixture of Matrix-Normals. In addition to Zi, we introduce
a latent binary K-dimensional vector that indicate whether the unit i belongs to the k-th
cluster, ℓi = (ℓi1, . . . , ℓiK), such that ℓik = 1 if the i-th unit belongs to the k-th cluster.

Moreover, let define OJ×T the set of all possible ordinal matrices of size J × T whose
general row j takes values in {1, . . . , Cj}. Each element of OJ×T is called a response
pattern, that is each element of the set represents one of the possible configuration (pat-
tern) of the J × T ordinal matrix, given the levels Cj. Let R be the cardinality of OJ×T .
Each response pattern Yr ∈ OJ×T is generated by a portion Ωr of the latent space RJ×T

according to thresholds γ := {γj}Jj=1. Let the binary vector Ỹi = (Ỹi1, . . . , ỸiR) be one-hot

encoding of Yi such that if the r-th pattern is observed then Ỹir = 1 and any other entry
in the vector equals zero. We can derive the joint density of Zi, Ỹi, ℓi as:

f(Ỹi, Zi, ℓi) = f(Ỹi|Zi, ℓi)f(Zi|ℓi)f(ℓi).

Assuming that:

ℓi ∼M(1,π), π := (π1, . . . , πK)

Zi|ℓik = 1 ∼MN (J×T )(Zi|Θk), Θk := {Mk,Φk,Σk},
Ỹi|Zi, ℓik = 1 ∼M(1, ξi), ξi := (1Ω1(Zi), ...,1ΩR

(Zi)),
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we get:

f(ℓi) =
K∏
k=1

πℓik
k ;

f(Zi|ℓi) =
K∏
k=1

[
ϕ(J×T )(Zi|Θk)

]ℓik
;

f(Ỹi|Zi, ℓi) =
R∏

r=1

1Ωr(Zi)
Ỹir ,

whereM indicate the multinomial distribution and 1Ωr(Zi) is the indicator function
that equals 1 when the elements in Zi have values that determine the r-th pattern. Hence,
when Ỹir = 1, the vector ξi is a vector whose r-th element equals 1 and all the others
equal 0. In the following, Z := {Zi}Ni=1, ℓ := {ℓi}Ni=1 and Θ := {Θk, πk}Kk=1 will indicate
the ensembles of Zi, ℓi and of the parameters, respectively. Finally, let Ỹ := {Ỹi}Ni=1 be
the collection of the observed response pattern vectors Yi.

3 Inference

3.1 Thresholds

3.1.1 Identifiability

A key point is of course the choice of the thresholds γ. Imagine to observe a sample
of ordinal categories c = 1, . . . , Cj for variable j and to work in the same framework
as Section 2. Let consider each variable separately in an univariate case for the sake of
simplicity. Then, assume that each observation derive from the discretization of an un-
derlying continuous variable following a normal distribution with parameters (µj, σ

2
j ), and

consider the Cj − 1 dimensional thresholds vector γj as parameters to estimate together
with the ones of the ones of the underlying normal. Then, the parameters set would be
θ = (µj, σ

2
j , γj), the parameter space Θ = (R,R+,R), and our model P = {pθ; θ ∈ Θ},

with pθ(y = c) = p(γj,c−1 ≤ z ≤ γ,jc), z ∼ N(µj, σ
2
j ). It is clear that such a model would

not be identifiable as there is no bijecton θ 7→ pθ. For instance, for a number of ordinal
categories Cj = 2, θ1 = (1.5, 1, 1.5) and θ2 = (0, 1, 0) would yield the same distribution
(pθ1 = pθ2).

This simple example shows that we cannot aim at estimating the thresholds and the
latent distribution parameters at the same time without incurring in some identifiability
issues. Different strategies come to mind to overcome this problem.
Indeed, one solutions is to fix either the thresholds or the parameters Θ. In our case,
being clearly the parameters of the mixture the quantity of interest, we decided to fix the
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thresholds as outlined in Section 3.1.2. However, it is also possible to go for a “mixed
strategy”, partially fixing some of the distribution parameters and of the thresholds, to
then estimate the rest, as done in as done in Millsap and Yun-Tein, 2004.

3.1.2 Choice of thresholds

As written in Section 1.1, assuming underlying continuous variables categorized according
to some thresholds is not new and there are several ways of specifying such thresholds.
In McParland and Gormley, 2016 the thresholds γ = {γj}Jj=1 are fixed relying on data,
by setting them as γj,c = φ−1(δj,c), where δj,c is the proportion of variable j which is less
than or equal to level c and φ is the standard normal cumulative distribution function.
With this assumption, the ordinal distribution of clusters will have the same global shape,
not necessarily uni-modal, which makes clusters interpretation harder.

On the other hand, in Corneli, Bouveyron, and Latouche, 2020 thresholds are fixed
arbitrarily (keeping equidistant the classes) as γj = (1.5, 2.5, . . . , Cj − 0.5) and Cj is
assumed to be equal for all variables, proposing a scale conversion pre-processing algorithm
(Gilula et al., 2019) for cases when this does not hold true. The advantages of such an
approach is that an underlying space is related with the range of the ordinal entries,
leading to easily interpretable results. Another result of equidistant thresholds is that
it produces monotonicity around the mode, creating more separated and interpretable
clusters. In the following work this approach will be followed.
It is important to remark that this choice of thresholds does not impose any constraint
on the distribution of the ordinal levels, but the monotonic behaviour around the mode.
Finally, it is also worth noting that the thresholds are fixed and do not change over time.

3.2 EM-algorithm

The EM algorithm (Dempster, Laird, and Rubin, 1977) is an iterative algorithm alter-
nates two steps: the expectation step (E-step) and the maximization step (M-step). It

start from an initialization Θ̂
(0)

of the parameters. Then, let denote with the superscript
(s+ 1) the parameters estimated in the current step and with (s) the ones computed in
the previous step.

The E-step consists of evaluating Q(Θ, Θ̂
(s)
) := E(logLC(Θ; Ỹ,Z, ℓ)|Θ̂

(s)
, Ỹ), that is

the expectation of the complete log-likelihood conditioned on the parameters computed
in the previous step and on the observed data. In the M-step the parameters are up-

dated by maximizing the expected log-likelihood found on the E step, that is Θ̂
(s+1)

:=

argmax
Θ

Q(Θ, Θ̂
(s)
).

The iteration process is repeated until convergence on the log-likelihood is met.
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3.3 Complete Likelihood

The complete log-likelihood can be written as

logLC(Θ; Ỹ,Z, ℓ) =
N∑
i=1

{
R∑

r=1

Ỹir1Ωr(Zi)+
K∑
k=1

ℓik

[
log(πk)−

TJ

2
log(2π)− J

2
log(|Φk|)−

T

2
log(|Σk|)−

1

2
tr[Σ−1

k (Zi −Mk)Φ
−1
k (Zi −Mk)

⊺]

]}
.

3.4 E-step computation

Conditioning on the parameters computed in the step (s), at the step (s+1) the value of
Q(Θ,Θ(s)) is:

Q(Θ,Θ(s)) := E(logLC(Θ; Ỹ,Z, ℓ)|Θ̂
(s)
, Ỹ) =

E

(
N∑
i=1

{
R∑

r=1

Ỹir1Ωr(Zi) +
K∑
k=1

ℓik

[
log(π̂

(s)
k )− TJ

2
log(2π)− J

2
log(|Φ̂(s)

k |)−

T

2
log(|Σ̂(s)

k |)−
1

2
tr[Σ̂

−1(s)
k (Zi − M̂

(s)
k )× Φ̂

−1(s)
k (Zi − M̂

(s)
k )⊺]

]}∣∣∣∣∣Θ̂(s)
, Ỹ

)
= (3)

N∑
i=1

R∑
r=1

Ỹir E(1Ωr(Zi)|π̂(s), Θ̂
(s)
, Ỹ)+ (4)

N∑
i=1

K∑
k=1

E(ℓik|π̂(s), Θ̂
(s)
, Ỹ)×[

log(π̂
(s)
k )− TJ

2
× log(2π)− J

2
log(|Φ̂(s)

k |)−
T

2
log(|Σ̂(s)

k |)

]
− (5)

N∑
i=1

K∑
k=1

1

2
E(ℓiktr[Σ̂−1(s)

k (Zi − M̂
(s)
k )× Φ̂

−1(s)
k (Zi − M̂

(s)
k )⊺]|Θ̂

(s)
, Ỹ) (6)

We can treat each of the three expectations separately, and we get for (4)

E(1Ωr(Zi)|Θ̂
(s)
, Ỹ) = P(Zi ∈ Ωr|Θ̂

(s)
, Ỹi).

Since we are conditioning on Ỹi, the observed response pattern is known and therefore
the probability of Zi belonging to Ωr is equal to 1 when Ỹir = 1 and 0 otherwise.
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For (5), we can write

E(ℓik|Ỹir = 1, Θ̂
(s)
) = P(ℓik = 1|Ỹir = 1, Θ̂

(s)
)

=
P(ℓik = 1|Θ̂

(s)
)P(Y R

ir = 1|ℓik1, Θ̂
(s)
)

P(Y R
ir = 1|Θ̂

(s)
)

=
π
(s)
k

∫
Ωr

f(Z|Θ(s)
k )dZ∑K

k=1 π
(s)
k

∫
Ωr

f(Z|Θ(s)
k )dZ

=: τ
(s+1)
ik ,

(7)

where the integral can be approximated through a Monte-Carlo approach applied on the
vectorized reparametrization of the matrix-variate distribution.

On the other hand, (6) is less straightforward, and we will need some tricks to deal
with it. As done in McParland and Gormley, 2016, we can break down as

P(ℓik = 1|Θ̂
(s)
, Ỹ)×

E(tr[Σ̂−1(s)
k (Zi − M̂

(s)
k )× Φ̂

−1(s)
k (Zi − M̂

(s)
k )⊺]|ℓik = 1, Ỹ, Θ̂

(s)
). (8)

By opening the matrix product in the second term we get:

Σ̂
−1(s)
k (Zi − M̂

(s)
k )Φ̂

−1(s)
k (Zi − M̂

(s)
k )⊺ =

Σ̂
−1(s)
k ZiΦ̂

−1(s)
k Z⊺

i − Σ̂
−1(s)
k ZiΦ̂

−1(s)
k M̂⊺

k − Σ̂
−1(s)
k M̂

(s)
k Φ̂

−1(s)
k Z⊺

i + Σ̂
−1(s)
k M̂kΦ̂

−1(s)
k M̂⊺

k . (9)

It is easy to realize that its solution requires the computation of E(Zi|ℓik = 1, Θ̂
(s)
, Ỹir =

1) and of the expectation of a matrix quadratic forms, specifically for E(ZiΦ̂
−1(s)
k Z⊺

i |ℓik =
1, Θ̂

(s)
, Ỹir = 1). As we will in Section 3.5, we will also need to compute E(Z⊺

i Σ̂
−1(s+1)
k Zi|ℓik =

1, Θ̂
(s)
, Ỹir = 1) for the M-step. The computation of the expectation of Zi and of such

quadratic form necessitates in turn to compute the moments of a truncated matrix-variate
Gaussian. However, that is a complex task, so we will need to work the issue around.

We can bypass the problem concerning the expectation of Zi by defining with zi ∈
RJT×1 the vectorized version of Zi and computing

E(zi|ℓik = 1, Ỹir = 1, Θ̂
(s)
) =: m

(s+1)
ik (10)

through the use of a Monte Carlo approach and specifically the use of a Gibbs sampler
to sample from a truncated multivariate normal distribution. Moreover, the samples
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generated to calculate the first moment m
(s+1)
ik can be reused to compute the matrix

S
(s+1)
ik := E(ziz⊺i |ℓik = 1, Ỹir = 1, Θ̂

(s)
) ∈ RJT×JT , that can be approximated by calculat-

ing the inner product of the vectors used to compute m
(s+1)
ik then calculating the sample

mean of these inner products.

Subsequently, we can find E(ZiΦ̂
−1(s)
k Z⊺

i |ℓik = 1, Θ̂
(s)
, Ỹir = 1) by computing it element-

by-element. In order to do that, we can define D
(s+1)
ik := E(ZiΦ̂

−1(s)
k Z⊺

i |ℓik = 1, Θ̂
(s)
, Ỹir =

1)), φ̂
(s)
k,gd as the (g, d)th element of Φ̂

−1(s)
k . Then, the (h, t)th element of Z⊺

i Φ̂
−1(s)
k Zi would

be
∑T

d=1

∑T
g=1 zi,hgφ̂

(s)
k,gdzi,td and we would get

D
(s+1)
ik := E(ZiΦ̂

−1(s)
k Z⊺

i |ℓik = 1, Θ̂
(s)
, Ỹir = 1))

= E

(( T∑
d=1

T∑
g=1

zi,hgφ̂
(s)
k,gdzi,td

)
h,t
|ℓik = 1, Θ̂

(s)
, Ỹir = 1

)

= E

(( T∑
d=1

T∑
g=1

zi,hgzi,tdφ̂
(s)
k,gd

)
h,t
|ℓik = 1, Θ̂

(s)
, Ỹir = 1

)

=
( T∑

d=1

T∑
g=1

S
(s+1)
ik,[(g−1)J+h,(d−1)J+t]φ̂

(s)
k,gd

)
h,t
, (11)

where in we make use of the the elements of Sik.

As written above, we would also need to compute E(Z⊺
i Σ̂

−1(s+1)
k Zi|ℓik = 1, Θ̂

(s)
, Ỹir =

1), which we can do by following the same reasoning. By defining C
(s+1)
ik := E(Z⊺

i Σ̂
−1(s+1)
k Zi|ℓik =

1, Θ̂
(s)
, Ỹir = 1) and by denoting by σ̂

(s+1)
k,gd the (g, d)th element of Σ̂

−1(s+1)
k . Then, the

(h, t)th element of Z⊺
i Σ̂

−1(s)
k Zi is

∑J
d=1

∑J
g=1 zi,ghσ̂

(s+1)
k,gd zi,dt, and we get

C
(s+1)
ik := E(Z⊺

i Σ̂
−1(s+1)
k Zi|ℓik = 1, Θ̂

(s)
, Ỹir = 1)

= E

(( J∑
d=1

J∑
g=1

zi,ghσ̂
(s+1)
k,gd zi,dt

)
h,t
|ℓik = 1, Θ̂

(s)
, Ỹir = 1

)

= E

(( J∑
d=1

J∑
g=1

zi,ghzi,dtσ̂
(s+1)
k,gd

)
h,t
|ℓik = 1, Θ̂

(s)
, Ỹir = 1

)

=
( T∑

d=1

T∑
g=1

S
(s+1)
ik,[(h−1)J+g,(t−1)J+d]σ̂

(s+1)
k,gd

)
h,t
. (12)

Finally, this means that computing Q(Θ, Θ̂
(s)
) requires to compute:
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• E(ℓik|Ỹir = 1, Θ̂
(s)
) =: τ

(s+1)
ik ,

• E(zi|ℓik = 1, Ỹir = 1, Θ̂
(s)
) =: m

(s+1)
ik ,

• E(ziz⊺i |ℓik = 1, Ỹir = 1, Θ̂
(s)
) =: S

(s+1)
ik , whose elements are required for the compu-

tation of D
(s+1)
ik and C

(s+1)
ik .

3.5 M-step

By taking the first derivatives of Equation 3, the maximum likelihood estimators of the
parameters are given by

π̂
(s+1)
k =

∑N
i=1 τ̂

(s+1)
ik

N
(13)

M̂
(s+1)
k =

∑N
i=1 τ̂

(s+1)
ik M̂

(s+1)
ik∑N

i=1 τ̂
(s+1)
ik

(14)

where M̂
(s+1)
ik := E(Zi|ℓik = 1, Ỹir = 1, Θ̂

(s)
) = E(vec−1

J×T (zi)|ℓik = 1, Ỹir = 1, Θ̂
(s)
) =

vec−1
J×T (mik), and vec−1

J×T is the inverse of the vectorization function, i.e. the function
mapping from a JT -dimensional vector to a J × T matrix. The two covariance matrices
are interdependent and require the computation of C

(s+1)
ik and D

(s+1)
ik . The updating of

the covariance matrices is obtained through:

Σ̂
(s+1)
k =

∑N
i=1 τ

(s+1)
ik [D

(s+1)
ik − M̂

(s+1)
k Φ̂

−1(s)
k M

⊺(s+1)
ik −M

(s+1)
ik Φ̂

−1(s)
k M̂

⊺(s+1)
k + M̂

(s+1)
k Φ̂

−1(s)
k M̂

⊺(s+1)
k ]

T
∑N

i=1 τ
(s+1)
ik

,

(15)

Φ̂
(s+1)
k =

∑N
i=1 τ

(s+1)
ik [C

(s+1)
ik − M̂

⊺(s+1)
k Σ̂

−1(s+1)
k M

(s+1)
ik −M

⊺(s+1)
ik Σ

−1(s+1)
k M̂

(s+1)
k + M̂

⊺(s+1)
k Σ̂

−1(s+1)
k M̂

(s+1)
k ]

J
∑N

i=1 τ
(s+1)
ik

.

(16)

It is worth to remark that the computation of Σ̂
(s+1)
k and Φ̂

(s+1)
k relies on D

(s+1)
ik and

C
(s+1)
ik , respectively. The two quantities in turn rely on the elements of Φ̂

(s)
k and Σ̂

(s+1)
k , as

shown in Equation 11 and Equation 12. This means that in the algorithm one needs to
compute first D

(s+1)
ik , then Σ̂

(s+1)
k , and C

(s+1)
ik and Φ̂

(s+1)
k subsequently. The updating order

of the parameters can be exchanged, but it is important to use the updated parameters
coherently.
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3.6 Initialization

To find the initial values of Θ̂
(0)

mentioned in Section 3.2, our proposal is the following.
Identity matrices are chosen for the initialization of the covariance matrices Φk and Σk,
while πk = 1/K. For the initialization of Mk, two solutions are proposed and tested in
Section 4.2. The first is a Kmeans++ (Arthur and Vassilvitskii, 2007) initialization, that
is performed on the vectorized data. The second is a multiple random initialization: the
mean matrices Mk are chosen by uniform sampling K matrices among the N observed
data matrices. Since the EM algorithm is not guaranteed to converge toward a global
optimum, the algorithm is applied multiple times and the results with the highest log-
likelihood is selected. For simulations in Section 4.2, 5 random initialization proved to be
enough, but for more complex setting a higher number might be needed.

3.7 Selection of the number of cluster K

The number of cluster K is selected by minimizing the BIC (Schwarz, 1978) criterion.
The BIC for a number of cluster k is defined as

BICk := −2 logLO(Θ; Ỹ ) + νk log(N),

where νk is the total number of model parameters:

νk := k[1 + JT + J(J + 1)/2 + T (T + 1)/2]− 1, (17)

and LO(Θ; Ỹ ) is the observed likelihood of the model, that is

LO(Θ; Ỹ ) :=
N∏
i=1

R∏
r=1

(
K∑
k=1

πk

∫
Ωr

f(Z|Θk)dZ

)Ỹir

.

To select the model with the optimal K, the algorithm needs to be executed for every
k = 1, ..., K and the model with the lowest BICk is chosen.

3.8 Classification

Finally, a criterion for the classification of the units must be established. The criterion
we use is the maximum conditional allocation probability. Defining with the superscript c
the step at which the convergence has been reached or the maximum number of iterations
attained, the observation i will be allocated to the cluster h = argmax

h
τ
(c)
ih .

4 Evaluation

This section presents numerical experiments on simulated data in order to illustrate the
behavior of the proposed model regarding the influence of the initialization procedure and
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sample size, the robustness to different noise ratio in the data, the model selection and
in comparison with its continuous counterpart when used on ordinal data treated like
quantitative data.
The algorithm has been implemented in R.

4.1 Simulation Setup

100 different samples have been simulated for increasing number of unitsN ∈ {300, 1500, 3000},
with K = 3, J = 5, T = 5, π = (0.3, 0.4, 0.3) and Cj = 5 levels ∀j = 1, . . . , J . Each
sample has been drawn from a matrix-variate Gaussian and then discretized according to
the thresholds chosen in Section 3.1.2.Concerning the distributions’ parameters, identity
matrices were chosen for matrices Φk and Σk for every cluster, while the mean matrices
Mk were selected so that there would be a partial overlap among the clusters, in order to
avoid triviality. However, estimating theoretically the overlapping area in such a setting
is complex endeavour. That is why we evaluate an approximated “optimal” Adjusted
Rand Index (ARI) (Rand, 1971), by comparing the classification obtained using the true
model parameters with the known groups. Thus, the mean matrices Mk are chosen so
that this estimated optimal ARI would be around 0.85. Note that we would expect the
study to show convergence to this number as the sample size increases. This setting led
to the choice of M1 = 1.75 · 151

⊤
5 ,M2 = 2.5 · 151

⊤
5 and M3 = 3.25 · 151

⊤
5 , where 15 is a

5-dimensional vector whose elements are all 1.
Moreover, three scenarios are derived from this setting by adding some noise fraction
within the clusters by simulating a proportion τ of units using a uniform distribution on
levels Cj, allocated to the three clusters proportionally to the clusters’ size: 0 (scenario
1), 0.1 (scenario 2), 0.2 (scenario 3).
The two different kinds of initialization described in Section 3.6 have been tested.

Finally, we use a difference between observed log-likelihood at step (s+ 1) and (s) as
stopping criterion, setting this difference to be lower than 0.001 as stopping rule.

Regarding the algorithm setup, we set to 100 iterations as the burn-in period of Gibbs
sampler in the E-step, and a thinning equal to 2 to prevent too correlated samples. The
number of simulated samples is set to 100. Computation time for one iteration on 2.40
GHz 11th Gen Intel Core i5-1135G7 with 16 Go RAM for one step of the algorithm
with Kmeans++ initialization is about 8 seconds for N = 300 and about 80 seconds for
N = 3000.

4.2 Influence of initialization & sample size

This first experiment aims at studying the ability of MOM to recover the simulated model
depending on the type of initialization of the EM algorithm. Figure 1 shows the quality
of estimated partitions assessed by means of ARI. We recall that an ARI of 1 indicates
that the partition provided by the algorithm is perfectly aligned with the simulated one.
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Conversely, an ARI of 0 indicates that the two partitions could as well be some random
matches. On the graph, the optimal ARI (≈ 0.85) according to the simulation scheme
is represented by a horizontal line. The boxplots do not seem to show any significant
difference in the median values of the ARI measurements between the two initialization
methods, but for sample size equal to 300 there seems to be a greater variability in the
results, probably steaming from the smaller sample size.
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Figure 1: Influence of initialization. The horizontal line represents the estimated optimal
ARI.

Overall, from a partitioning point of view, the two initialization techniques do not seem
to produce significantly different results. We decided to measure their performance also
by computing the Mean Absolute Percentage Error (MAPE) on their estimation of the
distribution parameters. The MAPE calculates the average percentage difference between
the actual and predicted values of a variable, therefore providing a relative measure of
error. For a sample of N units, for a generic parameter θ it is expressed through the
formula:
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MAPE =
1

N

N∑
i=1

∣∣∣∣∣θi − θ̂i
θi

∣∣∣∣∣ ,
where θ̂i is the estimated parameter and θi is the true parameter. MAPE has some

limitations, such as the fact that it cannot be used when actual values are zero or close to
zero. This is why for the covariance matrices only the diagonal elements are considered.
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Figure 2: MAPE for increasing N

Results are shown in Figure 2. There seems not to be a clear difference between the
two initializations.
Concerning the influence of the sample size, the model behaves as expected: as the sample
size increases, the partitioning capabilities improve and tend towards the optimal error.
The same happens when we observe the errors concerning the parameter estimations for
both the initialization procedures.

Globally, there not seems to be a significant difference in terms of performance results
for the two initialization procedures regarding the partitioning capabilities. The only
biggest difference seems to be the slightly lower variability of the estimates produced by
the random initialization. Nonetheless, it is worth noticing that the random initialization
is to some extent a greedy procedure which requires to compute the algorithm several times
with the purpose of selecting the best result, and therefore, depending on the number of
random initializations chosen, it can easily become time-consuming and computationally
costly.
In the following, given the similarities in performance and the computational advantages,
we will carry out most of the analysis using only the Kmeans++ initialization.

16



4.3 Robustness to noise

As written in Section 4.1, we also simulated some noisy data to study the behaviour
of MOM when the underlying normality assumption is not fully respected. ARIs for
different noise proportions were measured and the results are visible in Figure 3. We
decided to measure two quantities: the overall ARI for all the units and the ARI just for
the non-noisy ones.
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Figure 3: ARI for increasing noise proportions and increasing N.
The red (left) box plots is for non-noisy units (0.1 and 0.2 of noise), the black (right) for

all units.

As we would expect, the overall quality of partitioning estimates decreases as the level
of noise increases, indicating that MOM is actually disturbed by the noise.

Interestingly, for N large enough, the model proofs itself robust and it classes perfectly
non-noisy data, reaching the optimal ARI, represented by the horizontal black line in the
graph. For N = 300, the noise disturbs the model estimate, and we do not get an ARI
as close to the optimal one as for bigger samples, but still overall better for non-noisy
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data. The clustering of matrix-normally distributed data therefore seems a bit disturbed
by noise when N is small, but it corrects when N increases. This may be due to the fewer
non-noisy units left to the model to infer the parameters from.

4.4 Model selection

Following the setup described in Section 4.1, by varying N ∈ {300, 1500, 3000} and adding
increasing noise ratios τ ∈ {0, 0.1, 0.2}, 9 different scenarios have derived for testing the
model selection capabilities. We recall that for each scenario and each N , 100 data sets
have been drawn. Model selection has been performed through BIC, as described in
Section 3.7. The results are shown in Table 1.

For N = 300, all the simulated data sets yield a lower BIC for K equal to 2 than 3.
However, for larger sample sizes, the model with K = 3 is selected for each synthetic data
sets in each scenario. The model seems therefore sensitive to sample sizes as small as 300,
and seems prone to select a value for K smaller than the actual one for small samples.
In this context, it is worth recalling that the BIC is asymptotically consistent. Therefore,
one may not be surprised to the fact that for small sample sizes it encounters some issues
in selecting the true model.

Scenario τ = 0 Scenario τ = 0.1 Scenario τ = 0.2
N/K 1 2 3 4 5 6 N/K 1 2 3 4 5 6 N/K 1 2 3 4 5 6
300 0 100 0 0 0 0 300 0 100 0 0 0 0 300 0 100 0 0 0 0
1500 0 0 100 0 0 0 1500 0 0 100 0 0 0 1500 0 0 100 0 0 0
3000 0 0 100 0 0 0 3000 0 0 100 0 0 0 3000 0 0 100 0 0 0

Table 1: Frequency of selection of each model K by MOM through BIC among the 20
simulated data sets, for increasing N. The actual value for K is 3. Kmeans++ initializa-
tion.

Looking at the performances in selecting the right K in presence of noise, we can
say that overall the model seems able to handle well some noise in the data, provided
a sufficient number of remaining non-noisy units to draw its inference from is given. It
keeps optimal classification results for units which follow the distributional assumption
and selects the correct model even for τ = 0.2.
At the same time, the presence of noise makes more extreme the problem of selection of
K for small sample size described in the previous paragraph, as the model has even fewer
non-noisy units to compute the parameters from.

4.5 Comparison with competitors

Finally, we compared the results obtained for the MOM model to the ones given by its
continuous version, the Mixture of Matrix-Normals (MMN) (Viroli, 2011a), mentioned
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in Section 1.1, by treating our ordinal data as continuous ones, as frequently done by
practitioners. Moreover, we compared our model against a plain mixture of multivariate
normal distributions as well, applied on the vectorized version of the data. To do so, we
used the R package mclust (Scrucca et al., 2016).
The hyper-parameters of the competitors have been set to be similar to the one of the
MOM in terms of convergence and covariance matrix parametrization. Hence, in both
cases the stopping rule is given by the absolute difference of two consecutive log-likelihoods
being less than 1× 10−3 and the two covariance matrices for MMN and the single one for
mclust are fully parametrized.
Moreover, we think it is worth mentioning that we tried to perfom the comparison also
with the package clustMD, by again running the algorithm on the vectorized version of
the data. However, the algorithm was not able to produce any meaningful result. We
believe this may be due mainly to the different way the package chooses its thresholds, re-
sulting in computational issues by clustMD for data generated as described in Section 4.1.

In Figure 4 the results for the partitioning task are shown. The difference in the ARI
measurement is negligible for N = 300 for the two matri-variate model, but increases as
N increases. On the other hand, mclust is outperformed consistently.

The difference between MOM and MMN is clearer when comparing the MAPE values
for the parameters estimation. As shown in Figure 5, the distance in error increases as N
increases for M and Σ, but the same does not happens for the diagonal of Φ, for which
the MMN method seems to perform better, even if the difference dims as the sample size
increases.

5 Real Data

5.1 Data

After the evaluation of the model through simulations, a real data application concern-
ing preferences for grocery shopping during the Covid-19 pandemic in France (François-
Lecompte et al., 2020) has been performed. The surveys consists of 78 questions for the
first survey (T1), 73 questions for the second (T2) and 55 questions for the remaining
three surveys (T3, T4, T5). The answers are mainly on an ordinal scale, and has been
conduced at 5 period during the two years of pandemic’s intermittent lockdowns to a
French sample. The five period at which the surveys has been conduced are: March 26
- April 5, 2020 (beginning of the 1st lockdown); April 30 - May 11, 2020 (end of the 1st

lockdown); June 9 - June 16, 2020 (post-lockdown); October 28 - November 9, 2020 (be-
ginning of the 2nd lockdown); March 5 - March 25, 2021 (just before the 3rd lockdown). As
part of a preliminary analysis on the data, we have selected 11 questions coming from 3
macro-area of questioning (quoted as Q5, Q8 and Q12). The total number of participants
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Figure 4: ARI for MOM, MMN and mclust. Kmeans++ initialization for MOM and
MMN.

answering for these 11 questions at each of the 5 surveys is 337. Translated to English,
the questions are the following:

• Q5: In the last month, you would say that you have preferred in your purchases. . .

– (1) Seasonal products

– (2) Products ”Bio”

– (3) Local products

– (4) Fair trade products

– (5) Bulk products (excluding fruit and vegetables)

• Q8: Choose the appropriate answer for each item

– (1) About the foods, you have the impression of wasting
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Figure 5: MAPE results for parameter matrices. MOM vs MMN. Kmeans++ init.
Note the difference in the scales.

– (2) You have paid attention to the expiration dates

– (3) You have prepared anti-waste cooking recipes

• Q12: Would you say

– (1) This period is ideal to rethink our way of consuming

– (2) This period is ideal to test more environmentally responsible ways of living

– (3) This period is ideal to learn how to consume less

For each question, the participant have to answer on an ordinal scale 7 levels: for the
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macro-group Q5 and Q8 the range is from 1 for “much less than before confinement” to
7 for “much more than before confinement”, while for the macro-group Q12 from 1 for
“high disagreement” to 7 for “high agreement”. In all of the cases the 4th level express
some form of “neutrality”.
It is worth noticing that the item Q8(1) is an inverse item. As we will see, this will not
impact our clustering, as our model is able to handle such items without the need to reverse
them, but it is necessary to keep in mind their nature at the moment of interpretation,
as it would impact the direction of the correlation with the other items.

So, to sum up, we have N = 337 units for J = 11 variables (questions) and T = 5
times.

5.2 Results

After performing our clustering algorithm with a number of clusters K ranging from 1 to
6 using Kmeans++ initialization, the model with the lowest BIC is with K = 3 (Figure
B1). The number of units in first cluster is 124, in the second one they are 149 and
in the third 64. The estimated parameters are reported in Table A1 for the mean M ,
Table A3 for the time covariances Φ and in Table A5 for the variable covariances Σ. To
gain interpretability, covariances matrices have been transformed in correlation matrices
in Table A2 for Φ and in Table A4 for Σ. In the tables the questions are named using
their codes. Moreover, the correlation matrices Φ and Σ are represented by correlation
plots in Figures 8 and 9, respectively.

Figure 6 represents the 337 units (individuals) using a non-metric MDS (Venables
and Ripley, 2002), specifically through the function isoMDS of the R package MASS. In
non-metric MDS only the order of dissimilarities is important rather than the amount
of dissimilarities, that makes it suitable to be used for ordinal data, as in our case. For
this representation, the temporal structure has been discarded and we have transformed
our units from 11× 5-dimensional matrices to 55-dimensional vectors. Each individual is
represented by a circle whose color depends on its cluster.

Figure 7 plots, using the same non-metric MDS, the cluster means at each of the 5
times. Such plot allows to visualize the time evolution of each cluster.

5.3 Interpretation

Even if data are represented by means of a dimensionality reduction technique, discarding
the temporal structure of data, we can see on Figure 6 that the clusters are well separated.
In particular, Cluster 2 is between Cluster 1 and Cluster 3. This fact can be confirmed
by looking more finely at Table A1. Moreover, from Figure 7 it is possible to visualize the
comprehensive evolution in time for the clusters means. Indeed, one can see that Cluster
2 and Cluster 3 starts relatively close to one another, but Cluster 2 then evolves and
approaches Cluster 1 in T3, to then stabilizing on a more intermediate space. Cluster 1
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Figure 6: Units represented through isoMDS and colored by cluster allocation.

appears to be the most stable one, moving itself on a confined area of the graph. Cluster
3, despite starting on values close to Cluster 2, evolves differently from the others.

In the following, we give a summary description for each cluster and we will try to draw
some interpretations. We will start by interpreting Clusters 1 and Cluster 3, which are
the most characteristic, to finish with Cluster 2, which could be seen as an intermediary
cluster between the other two.

• Cluster 1: 124 units.

– Correlation in time: the cluster is characterized by a fading correlation of
T1 with other times and by generally higher correlations than other clusters,
with the exception of just a small rift between T2 and T4.

– Means: this is the cluster with overall lowest and most stable mean values,
around neutrality level. The only values lower than neutrality are for Q8(1),
an inverse item.
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Figure 7: Evolution in time of cluster means. Representation through isoMDS.
Numbers represent the time and the colors indicate the clusters.

– Correlation among questions: generally positive correlations or feeble ones,
the cluster is mainly characterized by some positive correlations between macro-
area Q5 and Q12, and some negative correlations between those areas and
Q8(1).

We can characterize Cluster 1 as the cluster with overall neutrality-level and stable
means. Indeed, considering that levels range from 1 to 7 as detailed in Section 5.1,
the values tend to be around the “neutrality” level, the level coded as 4. Therefore,
the cluster is actually a cluster composed by people who were generally neutral with
respect to the questions, and did not evolve on this neutrality much during the study
period.
Looking at Table A1, it is evident that the questions that discriminate the most
among the clusters in terms of average level of response are the ones in Q12, the
ones regarding rethinking our lifestyle, as they show different average levels for each
cluster. For cluster 1, the average response shows neutrality even in that regard.
This cluster is also the ones that has the highest correlations between Q8(3), anti-
wasting recipes, and questions in Q5 group. Overall, observing the behaviour of the
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correlations, seems clear that Cluster 1, despite being the most neutral cluster in
terms of average responses, could be defined as the most consistent cluster, since
responses that regarding preferences for sustainable grocery shopping are positively
correlated with preparations anti-waste recipes and rethinking our way of life.
The generally positive correlations among some of the other questions may indicate a
certain coherence around the neutrality, given that preference for a more sustainable
grocery shopping is positively correlated to the anti-wasting behaviours and the
belief that the pandemic period should inspire a change in the life habits. This
signals that the subjects’ responses to those topics move likewise within the cluster.
In other words, Cluster 1 did not really change its habits (as level 4 means ”as
before”) and appears not to have felt very impacted by the health crisis, as the
neutral level on rethinking its way of life may indicate.

• Cluster 3: 64 units.

– Correlation in time: Cluster 3 seems defined by two correlations blocks; one
composed by T1 and T2 and the second by T3,T4 and T5.

– Means: with respect to the other clusters, this cluster is characterized by the
highest levels for the macro-area Q12 and the lowest values for Q8(1), coherent
with the inverse item.

– Correlation among questions: the cluster is the most varied one compared
to the other clusters. Intra-macro-area correlations are weaker as well. Some
noteworthy negative correlation between Q8(2) and Q5(2) and between Q12(3)
and Q5(3).

Cluster 3 also has generally neutrality-level values for most of questions belonging
to Q5 and Q8 macro-groups throughout the study period, as Cluster 1, despite
having some lower values for Q8(1) and some higher ones for Q5(3). The main
difference is however in the Q12 macro group, the one we can define as composed
by the “rethinking-way-of-life” questions. Cluster 3 has remarkably high values
here, meaning that this group of people really found that the pandemic period was
stimulating a reflection on our lifestyle. As it turns out, this opinion fades as we
advance towards T3 to then re-approach higher levels. It is interesting to observe
that T3 corresponds to the beginning of June 2020, that is after the end of the
first lockdown, while T4 is at the end of October and beginning of November 2020,
after the summer and at the beginning of the second lockdown, and that T5 is in
March 2021, when the country was approaching a third lockdown. So, apparently,
the second lockdown brings back a reflection on how to live. It seems that people
need crises to reflect on their lifestyle.
In this cluster we also observe some negative correlations between question Q12(3),
concerning less consumption, and Q5(3), which measures the preference for local
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products, and also between Q8(2), paying attention to expiring dates, and Q5(2)
and Q5(4), the preference for “bio” products and fair trade ones. This may signal
that the people composing this cluster who pay more attention to buy “local” (such
as going to the local markets), “bio” and sustainable fair product may also be the
ones who tend to be less concerned regarding consuming less, probably because they
already satisfy their concerns by orienting their grocery shopping to more sustainable
products. They satisfy their concerns for consuming less by consuming better.

• Cluster 2: 149 units.

– Correlation in time: cluster 2 presents notably overall fading correlations in
time.

– Means: responses for macro-areas Q5 and Q8 show levels around neutrality,
while for macro-area Q12 the levels are middle-high, intermediary between the
other two clusters.

– Correlation among questions: cluster characterized by generally low cor-
relations among questions of different macro-areas. Some weak negative corre-
lations among Q12(3) and Q5(5) and Q8(2).

Cluster 2, as already said, seems composed by subjects whose answers to the ques-
tionnaires can be seen as intermediate between the Cluster 1 and Cluster 3. Levels
for questions in the Q5 group tend to be lower at the beginning of the inquiry to
then have a slight increase over the study period. Questions of the macro-group
Q12, that we saw characterized cluster 3 for their high levels in the answers, have
an high level for this cluster at the beginning as well, even if not as high as cluster 3.
Yet, their value tend towards the “neutrality” approaching T3, to then have a slight
increase. We can think of these subjects as people that highly agreed with changing
their way of life at the beginning of the inquiry, to then become more and more
disaffected as the strict lockdown period gives way to reestablish a more ’ordinary’
way of life.
One characteristic of Cluster 2 is that there are not clearly strong correlations out-
side macro-area blocks, ans even for block Q8 they are not as strong as other clusters.
This may indicate heterogeneity in the answers’ patterns to the questioners outside
the blocks, giving rise not so strong correlations.
Some weak negative correlations between Q12(3) and Q5(2) and between Q8(2)
and Q5(2) may signal a similar behaviours as in Cluster 3 regarding satisfying their
concerns for consuming less by consuming better, even if less pronounced.

Finally, there are some comments to be made about Q8(1) and intra-group corre-
lations. As said in Section 5.1, Q8(1) is an inverse item, and it has indeed negative
correlations with other questions. The question asks whether the respondent has the im-
pression to waste. Its negative correlation with questions in Q5 and Q12 group, even if
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only slightly sometimes, means that people that in general have the impression of wast-
ing food are the ones that report lower values regarding preferences for “sustainable”
grocery shopping and rethinking our way of consuming, while, vice-versa, subjects whose
responses have higher values regarding buying local and seasonal product, like people who
go to local markets, tend to have a lower impression of wasting, probably because they
actively try not to. This indeed connects to the general negative correlation that question
Q8(1) and Q8(3) have: as Q8(3) asks whether the respondent has prepared anti-wasting
recipes, the negative correlation seems natural.
On a final note, it is worth pointing out that the cluster that has the lowest correlations
for Q8(1) is Cluster 2, as maybe it contains people that try to buy locally and seasonal
but do not arrive at making the effort to prepare anti-waste recipes.
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Figure 8: Clusters’ corr-plots among time.
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Figure 9: Clusters’ corr-plots among variables.

6 Conclusions

In this work we have presented a novel approach for modeling longitudinal ordinal data
with unobserved heterogeneity. The model presented does not require the conditional
independence assumption and respects the the true nature of ordinal data. The matrix-
variate structure allows for a more parsimonious modelling. Also, it can explicitly model
the temporal structure and the association among the responses, that can vary among
clusters. An EM algorithm to perform inference has been proposed and described. The
efficacy of the algorithm has been tested on synthetic data under different sample sizes and
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different noise ratios. We proved the goodness of this framework to cluster longitudinal
ordinal data and to get cluster that are easy to interpret and to work with even by
non-statisticians.

However, the proposed model has some limitations. In this paper we focused only
on the simplest structure of matrix-normal distribution. While considerably more parsi-
monious than a mixture of multivariate normal distributions, the model seems sensitive
to small sample sizes, as seen in Section 4.4, since, as the number of clusters increases,
the number of parameters to estimate can still became troublesome. To improve this
aspect,the covariance matrices can be further decomposed to obtain more flexible and
parsimonious models, as done for example in Anderlucci and Viroli, 2015 and in Sarkar
et al., 2020.Besides, by applying a modified Cholesky decomposition on the time-related
covariance matrix, one would obtain new matrices whose elements can be interpreted as
generalized auto-regressive parameters and innovation variances, as shown by McNicholas
and Murphy, 2010. Moreover, EM algorithm can be leveraged to extend the model to
deal with incomplete data under the missing at random (MAR).

Furthermore, typically the data collected in questionnaires are not just ordinal, but
rather mixed. Consequently, our final aim is to extend the proposed model to handle
longitudinal mixed data, following the frame proposed by McParland and Gormley, 2016.
Finally, one could as well think of implying, with proper adjustments, different underlying
continuous distributions, such as heavy-tailed (Tomarchio, Punzo, and Bagnato, 2020),
skewed (Gallaugher and McNicholas, 2018, Melnykov and Zhu, 2018) or t-student (Doğru,
Bulut, and Arslan, 2016) distributions to endow the clustering model with different desired
properties.
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Appendices

A Tables

Table A1: Clusters’ means over time. The estimated parameter π̂ = (0.37,0.44,0.19)

Cluster 1 Cluster 2 Cluster 3
Questions T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
Q5(1) 3.99 4.16 4.20 4.22 4.17 3.80 4.08 4.22 4.21 4.18 4.27 5.04 4.92 4.59 4.85
Q5(2) 3.60 3.77 4.02 4.02 4.15 3.72 3.79 4.10 4.07 4.13 3.83 4.36 4.48 4.35 4.47
Q5(3) 3.89 4.22 4.19 4.42 4.35 3.73 4.03 4.35 4.30 4.25 4.49 5.43 5.16 5.23 5.28
Q5(4) 3.51 3.78 3.95 3.98 4.03 3.49 3.78 3.99 3.97 3.98 3.53 4.08 4.26 4.34 4.44
Q5(5) 3.32 3.64 3.86 4.14 4.03 3.37 3.61 3.96 4.00 4.11 3.69 3.78 4.21 4.30 4.39
Q8(1) 3.36 3.42 3.61 3.66 3.64 3.30 3.49 3.70 3.70 3.57 2.15 2.26 2.55 3.03 2.74
Q8(2) 4.06 4.17 4.08 4.10 4.03 4.04 4.23 3.99 4.05 3.97 4.12 4.00 4.06 4.15 4.11
Q8(3) 4.12 4.16 4.15 4.19 4.09 4.05 4.27 4.07 4.14 4.08 4.35 4.76 4.53 4.49 4.64
Q12(1) 4.30 4.53 3.73 4.10 4.23 6.69 6.15 4.66 5.14 4.92 7.20 7.10 6.36 6.76 6.59
Q12(2) 4.13 4.50 3.53 3.94 4.15 6.69 6.38 4.49 5.56 5.18 7.22 6.93 6.08 6.61 6.65
Q12(3) 4.38 4.41 3.67 4.10 4.02 6.49 6.07 4.70 5.69 5.29 7.32 6.72 6.04 6.48 6.24
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Table A2: Clusters’ time correlation

Cluster 1 Cluster 2 Cluster 3
T / T T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
T1 1.00 0.28 0.18 0.16 0.09 1.00 0.25 0.09 0.11 0.12 1.00 0.20 0.19 0.09 0.09
T2 0.28 1.00 0.23 0.17 0.25 0.25 1.00 0.21 0.19 0.11 0.20 1.00 0.25 0.12 0.17
T3 0.18 0.23 1.00 0.25 0.27 0.09 0.21 1.00 0.21 0.16 0.19 0.25 1.00 0.19 0.23
T4 0.16 0.17 0.25 1.00 0.25 0.11 0.19 0.21 1.00 0.17 0.09 0.12 0.19 1.00 0.33
T5 0.09 0.25 0.27 0.25 1.00 0.12 0.11 0.16 0.17 1.00 0.09 0.17 0.23 0.33 1.00

Table A3: Clusters’ time covariances

Cluster 1 Cluster 2 Cluster 3
T / T T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
T1 1.34 0.36 0.20 0.17 0.09 1.17 0.30 0.09 0.10 0.12 1.50 0.32 0.27 0.13 0.14
T2 0.36 1.25 0.25 0.18 0.26 0.30 1.22 0.21 0.19 0.11 0.32 1.78 0.38 0.19 0.28
T3 0.20 0.25 0.88 0.21 0.23 0.09 0.21 0.84 0.17 0.13 0.27 0.38 1.33 0.26 0.33
T4 0.17 0.18 0.21 0.87 0.22 0.10 0.19 0.17 0.81 0.14 0.13 0.19 0.26 1.42 0.49
T5 0.09 0.26 0.23 0.22 0.85 0.12 0.11 0.13 0.14 0.86 0.14 0.28 0.33 0.49 1.48
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Table A4: Clusters’ variables correlation

Cluster 1
J / J Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 1.00 0.23 0.45 0.18 0.15 -0.10 0.01 0.16 0.15 0.08 0.07
Q5(2) 0.23 1.00 0.31 0.47 0.34 0.01 0.06 0.05 0.11 0.10 0.01
Q5(3) 0.45 0.31 1.00 0.29 0.22 -0.11 0.02 0.16 0.16 0.09 0.09
Q5(4) 0.18 0.47 0.29 1.00 0.32 0.03 0.07 -0.00 0.08 0.07 0.02
Q5(5) 0.15 0.34 0.22 0.32 1.00 -0.01 0.04 -0.00 0.01 0.06 -0.02
Q8(1) -0.10 0.01 -0.11 0.03 -0.01 1.00 -0.05 -0.17 -0.09 -0.07 -0.05
Q8(2) 0.01 0.06 0.02 0.07 0.04 -0.05 1.00 0.19 0.07 0.09 0.04
Q8(3) 0.16 0.05 0.16 -0.00 -0.00 -0.17 0.19 1.00 0.09 0.05 0.07
Q12(1) 0.15 0.11 0.16 0.08 0.01 -0.09 0.07 0.09 1.00 0.58 0.50
Q12(2) 0.08 0.10 0.09 0.07 0.06 -0.07 0.09 0.05 0.58 1.00 0.48
Q12(3) 0.07 0.01 0.09 0.02 -0.02 -0.05 0.04 0.07 0.50 0.48 1.00

Cluster 2
J / J Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 1.00 0.24 0.43 0.22 0.24 -0.05 0.06 0.02 0.04 0.03 -0.02
Q5(2) 0.24 1.00 0.35 0.41 0.33 -0.08 -0.05 0.01 -0.01 -0.03 -0.01
Q5(3) 0.43 0.35 1.00 0.33 0.31 -0.05 -0.02 -0.02 -0.01 0.02 -0.02
Q5(4) 0.22 0.41 0.33 1.00 0.37 -0.02 0.00 0.04 -0.04 -0.03 -0.03
Q5(5) 0.24 0.33 0.31 0.37 1.00 -0.02 -0.00 -0.00 -0.02 -0.04 -0.07
Q8(1) -0.05 -0.08 -0.05 -0.02 -0.02 1.00 0.02 -0.09 -0.06 -0.01 0.00
Q8(2) 0.06 -0.05 -0.02 0.00 -0.00 0.02 1.00 0.13 -0.02 0.01 -0.08
Q8(3) 0.02 0.01 -0.02 0.04 -0.00 -0.09 0.13 1.00 0.03 -0.03 0.02
Q12(1) 0.04 -0.01 -0.01 -0.04 -0.02 -0.06 -0.02 0.03 1.00 0.48 0.37
Q12(2) 0.03 -0.03 0.02 -0.03 -0.04 -0.01 0.01 -0.03 0.48 1.00 0.42
Q12(3) -0.02 -0.01 -0.02 -0.03 -0.07 0.00 -0.08 0.02 0.37 0.42 1.00

Cluster 3
J / J Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 1.00 0.32 0.44 0.16 0.18 -0.15 -0.00 0.13 0.02 0.09 -0.05
Q5(2) 0.32 1.00 0.38 0.34 0.20 -0.00 -0.12 -0.01 -0.06 0.02 -0.05
Q5(3) 0.44 0.38 1.00 0.29 0.16 -0.12 0.01 0.10 0.01 0.11 -0.17
Q5(4) 0.16 0.34 0.29 1.00 0.25 -0.01 -0.08 0.07 0.06 0.03 -0.06
Q5(5) 0.18 0.20 0.16 0.25 1.00 -0.02 0.02 0.01 0.06 0.08 0.05
Q8(1) -0.15 -0.00 -0.12 -0.01 -0.02 1.00 0.00 -0.19 -0.08 -0.08 -0.01
Q8(2) -0.00 -0.12 0.01 -0.08 0.02 0.00 1.00 0.08 0.02 -0.02 -0.02
Q8(3) 0.13 -0.01 0.10 0.07 0.01 -0.19 0.08 1.00 0.07 0.07 0.01
Q12(1) 0.02 -0.06 0.01 0.06 0.06 -0.08 0.02 0.07 1.00 0.44 0.26
Q12(2) 0.09 0.02 0.11 0.03 0.08 -0.08 -0.02 0.07 0.44 1.00 0.21
Q12(3) -0.05 -0.05 -0.17 -0.06 0.05 -0.01 -0.02 0.01 0.26 0.21 1.00
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Table A5: Clusters’ variables covariances

Cluster 1
J / J Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 0.58 0.14 0.31 0.10 0.10 -0.06 0.00 0.08 0.15 0.08 0.07
Q5(2) 0.14 0.62 0.22 0.28 0.25 0.01 0.03 0.03 0.11 0.10 0.01
Q5(3) 0.31 0.22 0.84 0.20 0.18 -0.08 0.01 0.09 0.19 0.11 0.12
Q5(4) 0.10 0.28 0.20 0.56 0.22 0.02 0.03 -0.00 0.08 0.07 0.02
Q5(5) 0.10 0.25 0.18 0.22 0.83 -0.01 0.02 -0.00 0.01 0.08 -0.02
Q8(1) -0.06 0.01 -0.08 0.02 -0.01 0.62 -0.03 -0.09 -0.09 -0.08 -0.06
Q8(2) 0.00 0.03 0.01 0.03 0.02 -0.03 0.45 0.09 0.06 0.08 0.03
Q8(3) 0.08 0.03 0.09 -0.00 -0.00 -0.09 0.09 0.43 0.08 0.05 0.07
Q12(1) 0.15 0.11 0.19 0.08 0.01 -0.09 0.06 0.08 1.66 1.01 0.91
Q12(2) 0.08 0.10 0.11 0.07 0.08 -0.08 0.08 0.05 1.01 1.79 0.91
Q12(3) 0.07 0.01 0.12 0.02 -0.02 -0.06 0.03 0.07 0.91 0.91 2.00

Cluster 2
J / J Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 0.55 0.13 0.30 0.12 0.16 -0.03 0.03 0.01 0.04 0.03 -0.02
Q5(2) 0.13 0.58 0.25 0.23 0.23 -0.05 -0.02 0.01 -0.01 -0.02 -0.01
Q5(3) 0.30 0.25 0.89 0.23 0.27 -0.04 -0.01 -0.01 -0.01 0.03 -0.03
Q5(4) 0.12 0.23 0.23 0.56 0.25 -0.01 0.00 0.02 -0.03 -0.03 -0.03
Q5(5) 0.16 0.23 0.27 0.25 0.83 -0.01 -0.00 -0.00 -0.02 -0.04 -0.09
Q8(1) -0.03 -0.05 -0.04 -0.01 -0.01 0.79 0.01 -0.05 -0.07 -0.01 0.00
Q8(2) 0.03 -0.02 -0.01 0.00 -0.00 0.01 0.42 0.06 -0.02 0.01 -0.07
Q8(3) 0.01 0.01 -0.01 0.02 -0.00 -0.05 0.06 0.44 0.02 -0.03 0.02
Q12(1) 0.04 -0.01 -0.01 -0.03 -0.02 -0.07 -0.02 0.02 1.52 0.73 0.63
Q12(2) 0.03 -0.02 0.03 -0.03 -0.04 -0.01 0.01 -0.03 0.73 1.53 0.71
Q12(3) -0.02 -0.01 -0.03 -0.03 -0.09 0.00 -0.07 0.02 0.63 0.71 1.87

Cluster 3
J / J Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 0.90 0.26 0.42 0.13 0.16 -0.14 -0.00 0.12 0.02 0.08 -0.05
Q5(2) 0.26 0.74 0.33 0.24 0.16 -0.00 -0.09 -0.00 -0.05 0.02 -0.05
Q5(3) 0.42 0.33 1.01 0.24 0.15 -0.12 0.01 0.10 0.01 0.11 -0.19
Q5(4) 0.13 0.24 0.24 0.68 0.19 -0.00 -0.06 0.06 0.05 0.03 -0.06
Q5(5) 0.16 0.16 0.15 0.19 0.84 -0.02 0.01 0.01 0.06 0.08 0.05
Q8(1) -0.14 -0.00 -0.12 -0.00 -0.02 1.00 0.00 -0.18 -0.08 -0.08 -0.01
Q8(2) -0.00 -0.09 0.01 -0.06 0.01 0.00 0.87 0.08 0.02 -0.02 -0.02
Q8(3) 0.12 -0.00 0.10 0.06 0.01 -0.18 0.08 0.91 0.07 0.06 0.01
Q12(1) 0.02 -0.05 0.01 0.05 0.06 -0.08 0.02 0.07 1.05 0.46 0.30
Q12(2) 0.08 0.02 0.11 0.03 0.08 -0.08 -0.02 0.06 0.46 1.00 0.24
Q12(3) -0.05 -0.05 -0.19 -0.06 0.05 -0.01 -0.02 0.01 0.30 0.24 1.26
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Figure B1: Visualization of BIC for K as results of application on real data. Kmeans++
initialization.
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