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Abstract
Recent studies have emphasized the connection between machine learning feature importance measures and total order
sensitivity indices (total effects, henceforth). Feature correlations and the need to avoid unrestricted permutations make the
estimation of these indices challenging.Additionally, there is no established theory or approach for non-Cartesian domains.We
propose four alternative strategies for computing total effects that account for both dependent and constrained features.Our first
approach involves a generalized winding stairs design combined with the Knothe-Rosenblatt transformation. This approach,
while applicable to a wide family of input dependencies, becomes impractical when inputs are physically constrained. Our
second approach is a U-statistic that combines the Jansen estimator with a weighting factor. The U-statistic framework allows
the derivation of a central limit theorem for this estimator. However, this design is computationally intensive. Then, our third
approach uses derangements to significantly reduce computational burden. We prove consistency and central limit theorems
for these estimators as well. Our fourth approach is based on a nearest-neighbour intuition and it further reduces computational
burden.We test these estimators through a series of increasingly complex computational experiments with features constrained
on compact and connected domains (circle, simplex), non-compact and non-connected domains (Sierpinski gaskets), we
provide comparisons with machine learning approaches and conclude with an application to a realistic simulator.

Keywords Feature importance · Constrained features · Winding stairs · U-statistics

1 Introduction

Determining feature importance is a crucial task in machine
learning and statistical investigations. In machine learning, it
is an integral part of post-hoc explainability (Murdoch et al.
2019; Fisher et al. 2019), where it helps us understand the
degree to which a model relies on the available features. This
understanding has two final objectives (Genuer et al. 2010;
Bénard et al. 2022). The first objective is dimensionality
reduction, which involves screening out features that do not
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contribute to the model’s predictions. The second objective
is identifying the features that are most important for further
modeling efforts or data collection by domain experts.

Over the years, several feature importance measures have
been developed to perform this task. On the one hand, in
machine learning, a particularly important family is rep-
resented by Breiman’s permutation importance measures
(Breiman 2001). Breiman originally defines them based on
the notion of mean decrease accuracy (MDA) (Bénard et al.
2022). The intuition is as follows: A given machine learn-
ing model (e.g., a random forest) is fitted to a feature-target
dataset, yielding a given predictive accuracy. The values of
a specific feature are then permuted to break its relation to
the target. The predictive accuracy is then reassessed for this
perturbed dataset. The difference between the new (possi-
bly degraded) and the original accuracies provides us with
an indication about the importance of the feature. However,
(Bénard et al. 2022, Proposition 2) show that there is no con-
sensus on the exact mathematical formulation of the mean
decrease accuracy and they prove that alternative software
implementations yield different values. On the other hand,
in statistics, a central role is played by measures of statisti-
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cal association. Several indicators have been developed over
the years: From the original Pearson linear correlation coef-
ficient (Pearson 1895), to the new correlation coefficient of
Chatterjee (2021). In this family, a significant role is played
by the so-called total order sensitivity effects (Homma and
Saltelli 1996)—total effects for short.

Total effects are defined as the difference between the
variance of the target and the portion that remains after all
features have been fixed with the exception of the feature of
interest. Homma and Saltelli (1996) show that, when features
are independent, the total effect of a given feature equals
the sum of all terms in the ANOVA expansion associated
with that feature. Also, we can calculate total effects as the
expectation of the squared difference of the values of the
model output in two points that differ only in the value of
the feature of interest. The new point can be obtained by
a simple permutation of the values of the features in the
dataset. This formulation is known as the Jansen’s estimation
method (Jansen et al. 1994; Jansen 1999) and has inspired the
so-called pick-and-freeze designs. In the class of pick-and-
freeze estimators the one proposed by Janon et al. (2014) is
proven to be asymptotically efficient.

Hart and Gremaud (2018) show that even in the case of
dependent features, total effects retain an interpretation from
a relative error perspective. Under a squared loss function,
a total index is the expected loss increase for approximating
the input–output mapping with a function that does not con-
tain the terms associated with the feature of interest. Also,
Bénard et al. (2022) show that total effects are closely related
to Breiman’s mean decrease accuracy. In particular, (Bénard
et al. 2022, Proposition 2) show that the different software
implementations do not converge to the total effects but to a
quantity whose bias increases with dependence, and is poten-
tially amplified by interactions. They propose corrections so
that the calculation of Breiman’s mean decrease accuracy
indeed converges to a total effect in the case the machine
learning model is a random forest.

The presence of statistical dependence complicates the
calculation of total effects (we refer to Da Veiga et al. 2021,
Ch. 5 for a thorough account). First, the interpretation in
terms of the correspondence with the sum of terms in the
ANOVA decomposition is lost. Second, also the possibility
to use a Jansen-type estimator is not straightforward. In fact,
while under independence the new points can be obtained
with unrestricted permutations, the presence of dependencies
challenges such procedure. The problem is similar to the one
signalled by Hooker et al. (2021) in the machine learning lit-
erature: unrestricted permutations may make the new points
fall in regions that are far from where the data lie, forcing the
machine learning model to extrapolate. These difficulties are
compounded when features are not only dependent but also
constrained on non-Cartesian supports. Constraints arise in
applications when physical or business reasons require fea-

tures to be located in certain regions. Here, an unrestricted
permutation could lead to a feature that falls outside a given
constraint, making the evaluation of the model not only at
risk of extrapolation, but also meaningless. Furthermore, if
constraints give rise to disconnected feature domains, they
make the functionalANOVAexpansion ill-definedOwen and
Prieur (2017). Kucherenko et al. (2017) propose a numerical
approach based on the combination of rejection sampling and
quadrature for the calculation of variance-based indices, with
focus on numerical aspects. However, a statistical analysis of
possible estimators with constrained inputs is missing.

Our goal is to address the estimation of total effects
with both dependent and constrained features, considering
numerical as well as theoretical aspects. Here we assume, as
typically encountered in sensitivity analysis, that the input
distribution is known. In Sect. 6 we discuss alternatives for
standardmachine learning settings, where only a data sample
is available to estimate feature importance.

We proceed as follows. First, we extend the estimator of
Jansen (1999) to the case of dependent inputs. We show that
it is still possible to estimate total effects under input depen-
dence using a Jansen-like approach if the new value of the
feature is obtained under conditional independence. We then
propose a generalized winding stairs design based on the
Knothe-Rosenblatt transform that can be used in association
with a vast family of input dependencies. However, while
this design conceptually pushes the boundaries of available
methods for dependent inputs, it becomes impractical when
inputs are constrained.

We then introduce a new estimator of total indices by
applying a weighting factor (called density quotient) to the
extended Jansen’s estimator. We show that the density quo-
tient can be reinterpreted as a block-copula density, that
vanishes when inputs are outside the constraints and that
becomes unity when inputs are independent. We then formu-
late aU -statistic version of the estimator and obtain a central
limit theorem. However, the new U -statistic estimator turns
out to be computationally expensive as it requires the evalua-
tion of the model at n2 points. We then propose an alternative
estimator based on a single permutation that reduces com-
putational burden. We consider first the simplest estimator
with the permutation given by a one-shift in the coordinate
of interest and prove a central limit theorem of this estima-
tor.We then extend the result for general derangements in the
coordinate of interest. To further abate computational burden,
we also introduce a nearest-neighbour estimator that makes
the estimation cost independent of the number of features.

We derive analytical expressions for the estimators in the
case of linear models and Gaussian inputs. We then chal-
lenge the estimators on test cases of increasing complexity,
startingwith Cartesian domains with dependent features, and
moving to connected non-Cartesian domains (e.g., circle and
simplex) to disconnected non-Cartesian domains (such as
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non-overlapping triangles and Sierpinski gaskets), we also
provide comparison tests with machine learning approaches
and finally conclude with an application to a realistic simu-
lator, the flood example of de Rocquigny (2006).

2 Total effects: bridging old and new

In this section, we review total effects from a fresh perspec-
tive. We discuss the covariance representation of total effects
and establish a linkwith an early result by Fréchet.We under-
line the role of conditional independence in the estimation of
total effects with independent as well as dependent inputs.
The analysis allows us to propose a new estimator for total
effects with dependent inputs based onwinding stairs and the
Knothe-Rosenblatt transformation. In Sect. 2.2, we highlight
the roles of conditional independence for such a represen-
tation. In Sect. 2.3, we propose a new estimator based on
winding stairs and on the Knothe-Rosenblatt transformation
for the case in which input dependence can be expressed via
a Gaussian copula.

2.1 A Fréchet perspective

Let us consider a reference probability space (�,B(�),Pr),
where B(�) is a Borel σ -algebra. Let also X , Y be random
variables on (�,B(�),Pr), with supports X , Y . We let X =
(X1, X2, . . . , Xd) be a d-dimensional random vector in R

d ,
so that X ⊆ R

d and consider a univariate Y , with Y ⊆ R.
For the moment, we make the further assumption that the
support of X is Cartesian, that is X = X1 × X2 × · · · × Xd ,
where Xi is the support of Xi , i = 1, 2, . . . , d. We denote
the cumulative distribution function and probability density
functions of X and Y by FX (x), fX (x) and FY (y), fY (y),
respectively. For notation simplicity, we regard X and Y as
continuous in the remainder. We suppose that Y has finite
second moment,V[Y ] < ∞. Let u ⊆ [d] = {1, . . . , d}, e.g.,
u = {i1, i2, . . . , ik} with k ≤ d. Let xu correspond to the
|u|-dimensional vector whose components are indexed by u,
and x−u the (d−|u|)-dimensional vector whose components
are indexed by the complement of u, −u = [d] \ u. For a
single factor i , we have u = i andwewrite the all-but-one set
[d] \ {i} as −i . The total effect of Xu is defined as (Homma
and Saltelli 1996)

τu = E[V[Y |X−u]] = V[Y ] − V[E[Y |X−u]]. (1)

The literature has also introduced the normalized total effect
as Tu = τu/V[Y ]. Using an argument of Fréchet (1934), we
find the following useful equalities.

Lemma 1 Let Y ′ be a replicate of Y conditionally indepen-
dent on X−u, i.e., Y and Y ′ have same distribution and satisfy

Pr(Y · Y ′|X−u) = Pr(Y |X−u)Pr(Y ′|X−u). Then,

τu = V[Y ] − cov(Y ,Y ′) = 1
2 E

[(
Y − Y ′)2] . (2)

Proof The proof is postponed to “Appendix A.1”. ��
The first equality in (2) substitutes the possibly high-

dimensional nonlinear regression E[Y |X−u] in (1) with a
covariance operation. When replacing the regression surface
by Y ′, the error term Y ′ − E[Y |X−u] is uncorrelated to Y ,
because cov(Y ,Y ′ − E[Y |X−u]) = 0. The second equality
can be interpreted as a generalization of Jansen’s equality for
total effects (Jansen et al. 1994; Jansen 1999) that does not
require feature independence.

In simulation and machine learning Y is often a function
of X , Y = g(X), g : X → R. Suppose that g is square
integrable, and that it can be decomposed as

g(x) = g0 +
∑

u∈2[d],u 
=∅
gu(Xu), (3)

with 2[d] the power set of [d], g0 = E[Y ], and gu(xu) =
E[Y |Xu = xu] −∑

v⊂u gv(xv). Under input independence,
we can expandV[Y ] via the well-known functional ANOVA
decomposition (Efron and Stein 1981; Sobol’ 1993; Oakley
and O’Hagan 2004; Sun et al. 2021)

V[Y ] =
∑

u∈2[d],u 
=∅
V[gu(Xu)] (4)

with V[gu(Xu)] the variance of gu(Xu) in (3). In Homma
and Saltelli (1996), Saltelli and Tarantola (2002), the total
effect of input X j is defined as the sum of all terms in the
right hand side of (4) that contain index j and it is shown
that

τu = E[V[Y |X−u]] = V[Y ] − V[E[Y |X−u]]
=

∑

v∈2[d],v∩u 
=∅
V[gv(Xv)]. (5)

However, this identity does not hold if features are statis-
tically dependent. Under dependence, τu remains defined
as in (1) and enjoys an interpretation in terms of the L2

approximation error, as established in Hart and Gremaud
(2018). In an argument similar to Rabitz and Alış (1999),
Hart and Gremaud (2018) consider that the space L2 can
be decomposed into a direct sum L2(X ) = M−u ⊕ M⊥−u
where M−u contains all L2 functions which solely depend
on x−u and M⊥−u is its orthogonal complement. In general,
for dependent features, M⊥−u 
= Mu . Then we can write
g(x) = g0 + g−u(x−u) + g⊥−u(x) with g−u ∈ M−u and
g⊥−u ∈ M⊥−u . If we ask the question of how accurately
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g(x) − g0 can be approximated without the features in xu ,
then the answer is

‖g − g0 − g−u‖2L2 =
∥∥∥g⊥−u

∥∥∥
2

L2

= ‖g − g0‖2L2 − ‖g−u‖2L2 .

(6)

If we consider the L2 norm weighted with the density of X ,
then we regain (1) from (6), because g−u(x−u) = E[g(X)−
g0|X−u = x−u].

Conditional independence plays a central role in deriving
(2): it is this property that enables one to replace E[Y |Xu]
by Y ′ in (2). We show that it also plays a central role in
estimating τu under input dependence via winding stairs and
pick-and-freeze designs.

2.2 Conditional independence and total effect
estimation

The gold standard for obtaining estimates for total effects
under input independence is the Sobol’ method, i.e., a pick-
and-freeze design paired with Jansen’s estimator (Jansen
1999). Let X , X ′ be d-dimensional input vectors. For u ⊆
[d], we use the notation X ′

u : X−u to denote the d-
dimensional vector whose components indexed by u are
taken from X ′ and whose components indexed by −u are
taken from X . Now, let X ′

u be a replicate of Xu , indepen-
dent of Xu conditionally on X−u . Then, (X ′

u : X−u) and X
are identically distributed and Y = g(X) and Y ′ = g(X ′

u :
X−u) are identically distributed and conditionally indepen-
dent given X−u . The second equality in Eq. (2) can then be
rewritten as

τu = 1
2 E

[(
g(X) − g(X ′

u : X−u)
)2]

. (7)

By Lemma 1, Eq. (7) is true even under feature dependence.
However, independence makes the design of an estimator for
τu straightforward. One generates two independent samples
of size n from the input distribution. Let us denote them by
X A = (X A,i )i=1,...,n and XB = (XB,i )i=1,...,n . The columns
of these sample matrix blocks are recombined, copying input
realizations for factor(s) j ∈ u from the second sample (B)
into the first sample (A) to form pick-and-freeze input sam-
ple blocks XB

u : X A−u . The model is then evaluated to obtain
the output samples Y A = g(X A) and Y BA

u = g(XB
u : X A−u).

Combining them via Jansen’s equality, we obtain the estima-
tor

τ̂PFu = 1

2n

n∑
i=1

(
g(X A,i ) − g(XB,i

u : X A,i
−u )

)2

= 1

2n

(
Y A,i − Y BA,i

u

)2
.

(8)

After the introduction of this design in Sobol’ (1993),
Homma and Saltelli (1996), works such as Saltelli et al.
(2000), Sobol’ et al. (2007), Gatelli et al. (2009), Gamboa
et al. (2016) and Prieur and Tarantola (2017) have developed
it further refining several aspects. Most of these works rely
on the independence assumption, while we remove it in the
remainder of this section.

Under conditional independence not only the conditional
probability measure can be written in product form, but the
joint density also factors into the product of two terms, see
“Appendix A.1” for further details. As a direct consequence
for the Jansen’s estimator, when considering the joint distri-
bution of Xu, X ′

u and X−u , we obtain the following result.

Proposition 2 Let X ′ be a replicate of X, conditionally inde-
pendent given X−u. Letting Y = g(Xu : X−u) and Y ′ =
g(X ′

u : X−u), then Y is a replicate of Y ′ conditionally inde-
pendent given X−u. Written in density terms, we find two
interchangeable representations of the total effect,

τu =1

2

∫

Rd+|u|

(
g(x ′

u : x−u) − g(xu : x−u)
)2 ·

fu|−u(xu |x−u) f (x
′
u : x−u)dx

′
udxudx−u

=1

2

∫

Rd+|u|

(
g(xu : x−u) − g(x ′

u : x−u)
)2 ·

fu|−u(x
′
u |x−u) f (xu : x−u)dx

′
udxudx−u .

(9)

The second term in (9) is the numerator of Eq. (2.11) in
(Kucherenko et al. 2012, p. 939). Equation (9) is an essential
ingredient for the estimation of total Sobol’ indices under
feature dependence. In the next section, we exploit Equation
(9) to create a generalized design. In Sect. 3, we use it for
the definition of total effect estimators in the presence of
constrained (i.e., non-Cartesian) input domains.

2.3 Winding stairs for dependent inputs with
Gaussian Copula

We propose a new estimation strategy that combines Propo-
sition 2 with the Knothe–Rosenblatt transformation (Knothe
1957; Rosenblatt 1952). This transformation is proposed in
the works of Mara and Tarantola (2012), Mara et al. (2015)
and Li and Rabitz (2017) in association with the challeng-
ing task of computing variance-based sensitivity indices in
the presence of dependent features. Formally, the Knothe–
Rosenblatt transformation implies the following equations:

U1 = F1(X1),

U2 = F2|1(X2|X1),

. . .

Ud = Fd|1,...d−1(Xd |X1, . . . Xd−1),

(10)
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where F1(X1) is the marginal cumulative distribution func-
tion of X1, F2|1(X2|X1) the conditional distribution function
of X2 given X1, etc. The transformation maps the depen-
dent set of features X into the independent set of variables
U uniformly distributed in the unit hypercube. As a result,
the transformed featuresU are independent. Considering the
mapping fromU toY one can apply the theory and algorithms
of the functional ANOVA expansion under independence.
One can calculate global sensitivity indices on the indepen-
dent coordinates in U . However, the transformation has two
main drawbacks. The transformation is not unique, as there
are as many transformations as the possible orderings of the
features. The values of the global sensitivity measures and
the corresponding ranking are then dependent on the chosen
order. Moreover, results hold for the transformed variables
U and reinterpreting results back on the X features is not
straightforward.

We propose an intuition to use the Knothe–Rosenblatt
transformation for calculating total indices that avoids the
rank dependence on the feature ordering and allows us to
remain within the original feature space. The key is to com-
bine these two facts. The first is that, by Proposition 2, the
total effects τ j are associated with the conditional density
f j |− j . The second is that this coincides with the density
of the last term in (10). Then, if this last term is available
from the transformation, we can draw realizations of an inde-
pendent standard uniform random variable and apply the
inverse transformation t j : u �→ x j = F−1

j |− j (u|X− j =
x− j ). This transformation is, indeed, the inverse of the
last term in (10) (up to a re-ordering of input variables):
we have an X j which is conditional on all the remaining
features.

We exploit this fact to introduce a generalized winding
stairs total effect estimator for the case of dependent fea-
tures. The term winding stairs originates with Jansen et al.
(1994). Please see also Chan et al. (2000) and Owen and
Hoyt (2021) for further reviews. Assume that X (0) is a ran-
dom copy of X , and U is a random vector of d independent
standard uniformly distributed random variables, indepen-
dent of X (0). In the classical winding stairs design, under
independence, the j th column in the feature sample matrix
is replaced by an independent copy of X j . Under depen-
dence, using Lemma 1, we can cyclically replace the j th
entry in the input vector with a conditionally independent
one. A way to obtain this conditionally independent sample
is by a Knothe–Rosenblatt transformation of the following
form: In the j th step, the j th component of X (0) is altered
via

X ( j)
� =

⎧⎪⎨
⎪⎩
F−1
j |− j

(
Uj

∣∣∣∣X ( j−1)
− j

)
, for � = j,

X ( j−1)
� , otherwise.

(11)

for �, j = 1, 2, . . . , d. When sampling, we obtain blocks
of the type X ( j) = (X ( j)

j : X ( j−1)
− j ) for j = 1, . . . , d. By

construction, Y ( j) = g(X ( j)) is a replicate of Y ( j−1) condi-
tionally independent given X− j . By Lemma 1, we obtain the
following winding stairs total effect expression:

τWS
j = 1

2
E

[(
Y ( j) − Y ( j−1)

)2]
, j ∈ [d]. (12)

The associated estimator is a variant of (8). As observed
in Goda (2021), the winding stairs estimator is a sample aver-

age, so that the empirical variance of 1
2

(
Y ( j) − Y ( j−1)

)2
is

approximating the variance of the estimator τ̂WS
j in (12).

The computational cost associated with the calculation
of a global sensitivity measure is expressed in terms of the
required number of model evaluations. For a winding stairs
design, the cost is n(d +1), where n is the sample size and d
is the input dimensionality (see the first row in Table 1, which
reports the computational cost of all the estimators discussed
in this work). The cost corresponds to the fact that for each
of the n sampled locations we vary the inputs one-at-a-time.

In general, closed-form expressions for the Rosenblatt
transformation are unavailable. However, analytical formu-
las exist when the input dependence is modeled via Gaussian
copulas. Specifically, let � j , j = 1, . . . , d be transfor-
mations from the marginal distribution of each input into
the standard normal distribution and let Z j be a stan-
dard normal random variable independent of X . Then there
exist linear combinations such that the random vectors[
�1(X1) . . . �d(Xd)

]
and

[
�1(X1) . . . γ

( j)
j Z j +∑

� 
=i
γ

( j)
� ��(X�) . . . �d(Xd)

]
(13)

are identically N (0, �) distributed and conditionally inde-
pendent given X− j . These linear combinations can be
extracted from a Cholesky decomposition of a reordered
covariance matrix where the j th row/column is moved to the
last position (see the proof of Theorem 14 in “Appendix A.5”
for the computation of the coefficients γ

( j)
� in the linear com-

bination in (13)). Hence (11) becomes

X ( j)
j =�−1

j

⎛
⎝γ

( j)
j Z j +

∑
� 
= j

γ
( j)
� ��

(
X ( j−1)

�

)⎞
⎠

= t j (	
−1(Z j )|X ( j−1)

− j ),

(14)

where 	 is the standard normal cumulative distribution
function. From a numerical viewpoint, the computational
cost associated with the winding stairs approach amounts
at n(d + 1) model evaluations. This cost is explained as fol-
lows: we sample n random values of X and then consider
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Table 1 Computational costs
for the estimation of all d total
effects with constrained inputs,
block sample size n

Design Reference Cost

Generalized winding stairs Equation (12) n(d + 1)

Mix-and-reweight, U -statistics Proposition 5 d · n2 − d · n + n

Shift-and-reweight Theorem 8 n(d + 1)

Derange-and-reweight Theorem 10 n(d + 1)

Reweight with nearest-neighbour Equation (26) n

one-at-a-time variations in each input for each of the n val-
ues.

This design generalizes a winding stairs approach to
dependence structures that include the broad family of
Gaussian copulas. However, for cases in which the Knothe–
Rosenblatt transformation is not available, the generalized
winding stairs design becomes impractical. This happens as
soon as features do not leave on a support which is Cartesian.
We then introduce alternative approaches that allow to gen-
eralize Lemma 1 to more complex dependence structures in
the next sections.

3 Total effects under feature dependence via
reweighting

Our purpose in this section is to introduce an estimation
strategy that allows us to relax the traditional condition of
a Cartesian domain, that is, we allow for X 
= X1 × X2 ×
· · · × Xd . We assume that the features are distributed with a
joint density f such that f (x) > 0 if x ∈ X and f (x) = 0 if
x /∈ X . In order to use an estimation strategy with a classical
pick-and-freeze design, we start with the following defini-
tion.

Definition 3 Let X ′ be an independent copy of X . We call
the function

ιu(X
′, X) = f (X ′

u : X−u)

fu(X ′
u) f−u(X−u)

(15)

the density quotient of X on X for the feature list u.

By Proposition 2, the density quotient in (15) satisfies

ιu(X
′, X) = fu|−u(X ′

u |X−u)

fu(X ′
u)

= f−u|u(X−u |X ′
u)

f−u(X−u)

= ι−u(X , X ′).

To illustrate, for a Cartesian domain and independent inputs,
we have ιu(X ′, X) = 1. Also, we have a compact expression
for the case in which the dependence among two features can
be expressed via a Gaussian copula.

Example 4 Under a bivariate Gaussian copula, the density
quotient for pairwise dependence can be obtained in a com-
pact form as follows. Let Xi and X j be two random variables
with a rank-correlation of �. Setting ui = Fi (xi ) and
u j = Fj (x j ), (Joe 2014, Sect. 4.3.1) derives the density
of the bivariate Gaussian copula as

ιi (ui , u j ; �) = φ(	−1(ui ),	−1(u j ); �)

φ(	−1(ui ))φ(	−1(u j ))

= 1√
1 − �2

e
−�

2(1−�2)

(
�(z2i +z2j )−2zi z j

)
, (16)

where one uses the transformation zi = 	−1(ui ) =
	−1(Fi (xi )). The right hand side in (16) is the density quo-
tient for a bivariate Gaussian copula.

Proposition 5 Let X and X ′ be i.i.d. random vectors. The
following equality holds:

τu = E
[
ιu(X

′, X)
(
g(Xu : X−u) − g(X ′

u : X−u)
)2]

. (17)

Given n independent copies Xi of X, i = 1, 2, . . . , n, then
an unbiased estimator of τu is

τ̂Uu,n = 1

2n(n − 1)

n∑
i=1

∑
j 
=i

f (X j
u : Xi−u)

fu(X
j
u) f−u(Xi−u)

·
(
g(Xi

u : Xi−u) − g(X j
u : Xi−u)

)2
. (18)

Proof See “Appendix A.2” for the proofs of all results stated
in this section. ��

Equation (18) combines a brute-force double-loop sam-
ple design together with Jansen’s estimator modified by an
importance sampling weight. The Jansen’s approach would
yield an estimator based on a pick-and-freeze design. How-
ever, a pure pick-and-freeze sample would imply generating
the data from the product of their marginal distributions
ignoring the probabilistic dependence generated by the pres-
ence of constraints. The density quotient in Proposition 5
introduces a correction factor that allows one to generate
the data from the (correct) joint distribution. Moreover, the
density quotient allows us to consider non-Cartesian input
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domains, as it vanishes for points outside the region where
the inputs are defined. If features are independent we regain
Jansen’s classical estimator, because the density quotient is
identically equal to one.

Lemma 6 The mix-and-reweight estimator (18) of Proposi-
tion 5 is a U-statistic of order 2.

We call the design associated with Proposition 5 mix-and-
reweight. This design is associated with a computational cost
of dn2 − nd + n evaluations (Table 1, second row). The cost
depends quadratically on n, while the cost of the winding
stairs design depends linearly on it. We can derive a central
limit theorem for the mix-and-reweight estimator from the
general theory of U -statistics (Hoeffding 1948).

Lemma 7 Let δ1 = V[E[	s(W1,W2)|W1]] and δ2 =
V[	s(W1,W2)] with 	s defined by (51) and (52). Assume
that V[δ2] < +∞. Then

V[̂τUu,n] = 2

n(n − 1)
(2(n − 2)δ1 + δ2) = 4

n
δ1

+O(n−2). (19)

If δ1 
= 0 then the U statistic is non-degenerate and√
n(̂τUu,n − τu) → N (0, 4 δ1).

Equation (19) in Lemma 7 provides us with the asymptotic
variance of themix-and-reweight estimator. Empirically, one
way to calculate this variance is to make use of the plug-in
Jackknife estimator by Helmers (1991) (see also Bose and
Chatterjee 2018, p. 106), defined as

V̂[̂τUu,n] = 4

n

n − 1

(n − 2)2
·

n∑
i=1

⎛
⎝ 1

n − 1

∑
j 
=i

	s(Xi
u, X

j
−u) − τ̂Uu,n

⎞
⎠

2

. (20)

Alternatively, we can derive a bootstrap distribution of the
estimator τ̂Uu,n from the sample of 	s(Xi

u, X
j
−u).

We find earlier accounts on the use of reweighting tech-
niques in sensitivity analysis. Let us mention the estimation
of first-order and total Sobol’ indices in Sparkman et al.
(2016) in which the already available sample of simulations
is reweightedwith importance sampling.Moreover, in Badea
andBolado (2008, Sect. 5.4), the authors discuss reweighting
and rejection techniques to measure the potential impact of
small changes in the input probability distribution on the out-
put mean. In Kucherenko et al. (2017), a rejection technique
to handle non-Cartesian input domains is implemented.

4 Derangement and shift estimators

The mix-and-reweight estimator of Lemma 7 possesses the
clear theoretical advantages associated with the notion of
U -statistics. However, the associated estimation cost may
turn into a notable disadvantage in practical applications.
To reduce the cost for estimating τu under input constraints,
we propose two new estimators based on derangements and
shifts. The intuition here is to take the difference between
a given realization and another one (for instance randomly
picked) instead of taking the differences against all other
realizations.

We proceed as follows. Given a sample of size n, we
introduce the cyclic shift-by-one of {1, . . . , n} defined by
sn(i) = i + 1 for i < n, and sn(n) = 1. We also define the
acyclic shift-by-one by san−1(i) = i + 1 for i < n − 1, and
san−1(n − 1) = n. Here, san−1(·) is a fixpoint-free map from
{1, . . . , n−1} to {2, . . . , n}. Based on this idea, we introduce
the shift-and-reweight total effect estimator for input j given
by

τ̂ S
j,n = 1

2n

n∑
i=1

ι j (X
sn(i), Xi )·

(
g(Xi

j : Xi
− j ) − g(Xsn(i)

j : Xi
− j )

)2
.

(21)

In the next result, we prove a central limit theorem for this
estimator.

Theorem 8 Let X be a sample of size n subject to the joint
density f . Then, τ̂ S

j,n is an unbiased estimator of τ j . In addi-

tion, assume that σ 2
j = E[V 1

j V
1
j ]+2E[V 1

j V
2
j ] < +∞ with

V i
j =

1

2
ι j (X

sn(i), Xi )
(
g(Xi

j : Xi
− j )−g(Xi+1

j : Xi
− j )

)2
.

Then τ̂ S
j,n defined by (21) satisfies the following central limit

theorem:

√
n
(
τ̂ S
j,n − τ j

)
−−−−→
n→+∞ N (0, σ 2

j ). (22)

Proof See “Appendix A.3” for the proofs of results stated in
this section. ��
Theorem 8 holds for the unnormalized version of the total
index estimator. For the normalized version, let us define the
shift-and-reweight normalized total effect estimator as

T̂ S
j = τ̂ S

j,n

ŜY ,n
, (23)

where ŜY ,n is the empirical n-sample variance of Y . A central
limit theorem for the normalized estimator in (23) can be
deduced using the so-called δ-method.
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Corollary 9 Let X be a sample of size n subject to the joint
density f . Assume V [Y ] < +∞ and σ 2

j < +∞, with σ 2
j

defined in Theorem 8. Then we have:

√
n
(
T̂ S
j,n − Tj

)
−−−−→
n→+∞ N

(
0, σ 2

norm, j

)

where σ 2
norm, j = ρT

j � jρ j with ρ j = 1
V[Y ]

[
1, 2Tj E[Y ],

−Tj
]T

and

� j =
⎛
⎝
V[V 1

j ] cov(V 1
j ,Y

1) cov(V 1
j , (Y

1)2)

∗ V(Y 1) cov(Y 1, (Y 1)2)

∗ ∗ V[(Y 1)2]

⎞
⎠ ·

Theorem 8 deals with a cyclic shift-by-one strategy. How-
ever, the analyst may consider more general shifts or permu-
tations. To define the corresponding estimator, we proceed
as follows. Let (πn)n≥1 be a sequence of derangements
(fixpoint-free permutations) of {1, . . . , n}. Then the derange-
and-reweight total effect estimator for input j is defined as

τ̂ D
j,n = 1

2n

n∑
i=1

ι j (X
πn(i), Xi ) ·

(
g(Xi

j : Xi
− j ) − g(Xπn(i)

j : Xi
− j )

)2
. (24)

Theorem 10 Let X be a sample of size n subject to the joint
density f . Then, the derange-and-reweight estimator in (24)
is unbiased. In addition, suppose that there exists δ > 0 such

that E
[
|V 1

j |2+δ
]

< +∞ with V 1
j defined as in Theorem 8

and lim
n→+∞m1+δ

n n−δ/2 → 0, with mn the number of cycles of

πn. Then we have the following central limit theorem:

√
n
(
τ̂ D
j,n − τ j

)
−−−−→
n→+∞ N (0, σ 2

j ) (25)

where σ 2
j = V[V 1

j ] + 2 cov(V 1
j , V

2
j ) with

V i
j = 1

2

f j,− j (X
i+1
j : Xi

− j )

f j (X
i+1
j ) f− j (Xi

− j )
·

(
g(Xi

j : Xi
− j ) − g(Xi+1

j : Xi
− j )

)2
.

Theorem 10 proves a central limit result for the derange-and-
reweight estimator (24).

Remark 11 The assumption that in the limit limn→+∞ m1+δ
n

n−δ/2 → 0 holds does not seem too technical. Indeed, a
permutation πn of {1, . . . , n} decomposes into cycles and a
classical result in combinatorics lets us expect 1+ 1

2 +· · ·+ 1
n

cycles per permutation, and this harmonic series is approxi-
mately log(n).

Remark 12 It is possible to compute confidence intervals
by block-bootstrapping. It is important to implement boot-
strapping with blocks, in order to preserve the 1-dependence
structure (see, e.g., Lahiri (2003) and references therein).

The shift-and-reweight and the derange-and-reweight esti-
mators are associated with a computational cost equal to
n(d + 1), the same as the winding stairs approach (Table 1,
rows three and four).

5 Nearest-neighbour estimation

The designs we have introduced thus far (listed in rows 1
to 4 of Table 1) are based on Jansen’s intuition. We observe
that, in a simulation setting, the costs in Table 1 are an upper
bound: whenever the density quotient vanishes, there is no
need to evaluate the model at those coordinates and we can
save computational time. However, the estimators built on
these designs are not given data. Indeed, given a design X
and the evaluations of the model at X , the computation of all
the estimators listed in rows 1 to 4 of Table 1 requires the
simulator to be run at new design points (e.g., for the shift
estimator, at points defined as Xsn(i)

j : Xi
− j , j = 1, . . . , n).

This is the reason why, while the costs of the most efficient
estimators are linear in the sample size, they depend on the
number of features (d) and thus can be exposed to the curse
of dimensionality. We propose below a nearest-neighbour
approach to get rid of the dependence of the cost in the input
space dimension d. The construction is as follows. Consider
two observations x and x ′, and consider the recombined point
(x ′

j : x− j ). The first step is the evaluation of the density
quotient ι j (x ′, x) at this point. If the density quotient is non-
negligible, then select the point which is closest to (x ′

j : x− j )

with respect to some predefined Euclidean metric from the
available data. More precisely, the point is the solution of

k∗ = argmin
k∈[n]

{∥∥∥xk, j − x ′
j

∥∥∥
2

2
+ ∥∥xk,− j − xi,− j

∥∥2
2

}
. (26)

Hence, we use g(x ′
j : x− j ) ≈ g(xk∗) in (18). Other-

wise, if the quotient is small, we set the contribution of
ι j (x ′, x) × (g(x ′

j : x j ) − g(x))2 equal to zero. This step
can be implemented by setting a threshold on the value of
the density quotient and considering as negligible all values
of the density quotient below the threshold.

All the required information for applying this design is
contained in a sample generated by a once-through pass of a
Monte Carlo simulation.

The nearest-neighbour approach serves here as a meta-
model, predicting model outputs for the mixed input sample.
This is a different use of the nearest-neighbour intuition than
in Broto et al. (2020), Plischke et al. (2022), where nearest-
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neighbour is used to select a conditional stratum (seeDevroye
et al. (2013, 2018) for theoretical results). At this stage, also
due the presence of the density quotient threshold, we do
not furnish any theoretical results for our estimator based on
(26). We will then evaluate this strategy based on empirical
comparisons in a series of experiments in which we compare
the performance of this design with the other estimators in
Table 1.

6 The link between total indices and
Breiman’s permutation importance with
feature constraints

There is a close link betweenMDA j and τ j visible in Hooker
et al. (2021, Theorem 2) and discussed in great detail in
Bénard et al. (2022). In this section, we extend the relation-
ship to the case in which inputs are constrained. Consider
the problem of training an input–output mapping of the type
h(X , θ), h : X ×R

q → R, where θ is a q-dimensional vector
of auxiliary parameters. Let L(Y , g(X; θ)), L : R×R a loss
function. The training problem can be defined as finding

θ∗ = argminθ E[L(Y , g(X; θ))]. (27)

We letE[L(Y , g(X; θ∗))] denote the nominal (and minimal)
expected loss function for the machine learning problem.
Then, Breiman’s importance of feature X j is defined as

MDA j = E[L(Y , g(X ′
j : X− j ; θ∗))]

−E[L(Y , g(X; θ∗))], (28)

whereE[L(Y , g(X ′
j : X− j ; θ∗))] is the expected loss thatwe

incur if feature X j is permuted (using the model trained on
the original data). The intuition is that if the machine learn-
ing model relies heavily on X j for its predictions, then the
loss in predictive accuracy should be high and consequently
the difference between the nominal loss and the loss after
permutation should be significant. After feature permutation
we expect a decrease in model prediction accuracy, so that
the expected loss after feature permutation is larger than the
nominal expected loss, yielding MDA j ≥ 0.

Williamson et al. (2021, 2023) propose the following
quantity as a model-agnostic variable importance measure:

MDAW
j = E[L(Y , g j (X− j ; θ∗∗))]

−E[L(Y , g(X; θ∗))], (29)

where g j (X− j ; θ∗∗) is the retrained predictor after feature
X j has been eliminated from the dataset and g(X; θ∗) is the
model trained with all features in the dataset. The variable
importancemeasure in (29) is called dropped variable impor-
tance in Hooker et al. (2021) and leave-one-out-covariate

(LOCO) in Lei et al. (2018). Notice that, if the model coeffi-
cient of determination R2 is taken as a performance measure
in (29), then MDAW

j is the total index of X j . The main
difference between the approach to variable importance in
(29) and the feature importance in (28) is that the latter
permutes the feature and uses the same model, while in
the former one deletes the feature from the dataset and
then uses a newly retrained model. The advantage of the
remove-and-retrain approach is that it handles dependence
and constraints. However, in case retraining is expensive the
approach might become computationally heavy. The compu-
tational issues related to retraining are also noted in Lundberg
and Lee (2017), who propose alternatives to avoid retrain-
ing in their introduction of the SHAP variable importance
measure. Breiman’s approach to permute features and use
the same model may then be computationally convenient.
However, Breiman’s strategy is exposed to unrestricted per-
mutations (Hooker et al. 2021), which could lead to violating
the constraints.

Of relevance to us are also Eqs. (3.1) and (6.2) of Fisher
et al. (2019). Fisher et al. (2019) formulate Breiman’s impor-
tance in terms of model reliance, as a ratio between the
expected loss after permutation over the expected loss before
permutation. Using our notation, the definition of model
reliance in their Eq. (6.2) would read

MR j = E[ι j (X ′, X)L(Y , g(X ′
j : X− j ; θ∗)]

E[L(Y , g(X; θ∗))] . (30)

Rewritten in difference terms, (30) yields a dependence-
aware version of (28)

MDAFR
j = E[ι j (X ′, X)L(Y , g(X ′

j : X− j ; θ∗)]
−E[L(Y , g(X; θ∗))]. (31)

Proposition 13 Consider MDAFR
j in (31). If L(Y , g(X)) is

a squared loss function and g(X; θ∗) is a perfect predictor,
then MDAFR

j = τ j .

Proof The proof is postponed to “Appendix A.4”. ��
Proposition 13 then suggests that, also under feature con-
straints, total indices can be reinterpreted in terms of mean
decrease of a model’s accuracy.

Another popular alternative from the machine learning
literature to measure variable importance is the model-X
knockoffs fromCandès et al. (2018).Model-Xknockoffs pro-
vide valid inference from finite samples in settings in which
the conditional distribution of the response is unknown, but
the input probability distribution (pdf) is known, or at least
approximated. The approach relies on the construction of
knockoff variables as far as on the proposition of feature
statistics allowing false discovery rate control. In the frame-
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work of complex input dependence structure and complex
input–output realisation these tasks are non trivial.

7 Analytical total effects for linear models
with Gaussian features

In this section, we derive analytical expressions for the val-
ues of total effects to be used as benchmarks in numerical
experiments. In doing so, we also derive a formula for the
density quotient in the case of Gaussian copulas.

Let us consider a linear mapping between Y and X , Y =
β0 + βT X , X ∈ Rd , β0 ∈ R, β ∈ R

d and let the features be
normally distributed with mean μ and variance-covariance
matrix�. Under this assumption all conditional distributions
are Gaussian and all conditional expectations are linear. The
pair (X ,Y ) is then also Gaussian with augmented covariance

matrix, �′ =
(

� �β

βT � βT �β

)
.

Letm be a positive integer. Let u, v,w be pairwise disjoint
index sets from [m]. For anym-dimensionalmultivariate nor-
mal distribution Z ∼ N (μ, �), the conditional distribution
of Zu+v given Zw = zw is

N (μu+v + �u+v,w�−1
w,w(zw − μw),

�u+v,u+v − �u+v,w�−1
w,w�w,u+v). (32)

Here, the correlationmatrix in (32) is given in formof a Schur
complement. We assume that the submatrix selected by w is
invertible.

For a multivariate Gaussian distribution, the conditional
independence u ⊥⊥ v|w holds if and only if �u,v =
�u,w�−1

w,w�w,v , as in this case the correlation matrix in (32)
is block-diagonal, i.e.

[
�u,u �u,v

�v,u �v,v

]
−
[
�u,w

�v,w

]
�−1

w,w

[
�w,u �w,v

]

=
[
�u,u − �u,w�−1

w,w�w,u 0
0 �v,v − �v,w�−1

w,w�w,v

]
.

Theorem 14 GivenY = β0+βT X, X ∼ N (μ,�), X ∈ Rd ,
the unnormalized main and total effects are given by

S j = βT

(
�[d], j�T[d], j

� j, j

)
β, (33)

Tj = β2
j

det(�)

det(�− j,− j )
. (34)

The output variance is V[Y ] = βT�β.

Proof The proof is postponed to “Appendix A.5”. ��

Alternative computations are offered in Mara and Tarantola
(2012) for the case d = 3. These results can also be retrieved
from the proof of (Owen and Prieur 2017, Theorem 4.1).

The proof of Theorem 14 (see “Appendix A.5”) provides
analytical formulas for main and total effects for linear mod-
els with Gaussian features. For the mix-and-reweight and
the derange-and-reweight approaches, we obtain the density
quotient

ιu(x
′, x) =

√
det(�u) det(�−u)

det(�)
·

e− 1
2 ((x ′

u :x−u)−μ)T (�−1−(�−1
u :�−1−u ))((x

′
u :x−u)−μ), (35)

where (· : ·) is the out-of-order composition of vectors and
block diagonal matrices. The expression for the density quo-
tient readily generalizes to the case in which the factors are
distributed with generic marginals correlated via a Gaussian

copula. In the bivariate case, setting μ = 0 and � =
(
1 �
� 1

)

in (35) yields (16).

8 Experiments

In this section, we study the numerical implementation of
the designs discussed in this work, using examples with
constraints of growing complexity. The experiments are orga-
nized as follows. In Sect. 8.1, we start with linear models
and correlated inputs to test the consistency of all estimators
by comparison with the analytical benchmarks developed in
Sect. 7. In Sect. 8.2, we provide a detailed study of reweight-
ing estimators on the Ishigami function, a popular test case for
sensitivity analysis. In Sect. 8.3, we study the case of inputs
constrained to a circle and total Sobol’ indices are estimated
with nearest-neighbour anddouble-loop approaches, because
a winding stairs approach becomes infeasible. In Sect. 8.5
inputs are constrained by a non-connected domain (two sep-
arate triangles). Section 8.4 reports results for the case in
which inputs are constrained on a simplex, based on the case
study in Gilquin et al. (2015). Section 8.6 reports results
for the constraint represented by Sierpinski gaskets. Finally,
Section 8.8 reports results for a realistic simulator. All exper-
iments are run on personal computer with an Intel(R) i7-3770
CPU at 3.40GHz and 8GB RAM, using MatLab R2022a.
We rely on the MatLab k-d-tree implementation for the
nearest-neighbour search. In all the experiments we imple-
mented the nearest-neighbour approach (see Sect. 5) with the
low threshold equal to zero.

Because themethods are associated with different compu-
tational costs (third column in Table 1), to make experiments
comparable, we fix the overall budget of the experiment
and then calculate the corresponding sample size n. To
illustrate, given a budget of B = 10,000 model runs, for a
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Fig. 1 Total effects (unnormalized) for the linear model, including confidence bounds (gray areas): Winding stairs (panels A and E), U -statistics
estimator (panelsB and F), shift-and-reweight (panelsC andD), derange-and-reweight (panelsG andH). The analytical total effects are represented
by solid lines

d = 3 variable model we have sample sizes respectively of
nwinding stairs = 2500 for the generalized winding stairs and
the shift(derange)-and-reweight designs, and nU-statistic = 58
for the U-statistic design, while the entire budget is available
for the nearest-neighbour design nnearest-neighbour = B =
10000.

8.1 Linear model with normal and correlated inputs

In this section, we consider a parameterization of a linear
model with correlated inputs, for which analytical expres-
sions are discussed in Sect. 7 (Theorem 14). Our goal is to
test the performance of all estimators in Table 1. We use
as a test case the model discussed in Kucherenko et al.
(2012). One sets Y = g(X1, X2, X3) = X1 + X2 + X3

with X ∼ N (0, �), and correlation matrix � =
(

1 0 0
0 1 �σ

0 �σ σ 2

)
.

In the experiments, we set σ = 2 and assess the effect
of increasing correlations, letting � vary between [−1, 1].
We hypothesize a computational budget restriction, with
a fixed budget B = 1680 and derive back the corre-
sponding basic sample sizes n from Table 1. With d = 3
input factors, we find to nU-statistic = 24, nWinding Stairs =
nReweighting = 420, and nnNearest-Neighbour = 1680. We per-
form the calculations with this given budget B for � ∈
{−0.9,−0.75,−0.6, . . . , 0.6, 0.75, 0.9}. We also test the
effect of changing the sample generator, comparing crude

Monte Carlo (MC) and randomized Quasi-Monte Carlo
(RQMC). We randomize the sequence generation process
employing theMatLabSobol’ scrambler discussed inOwen
(1997) and Matoušek (1998). Figure1 shows the results.

Each of the panels in Fig. 1 report the values of the
total indices for each input τ1, τ2, and τ3, respectively. The
horizontal axis reports the values of the correlation coef-
ficients. The analytical values are displayed as continuous
lines, and the estimates as dashed lines. Confidence intervals
are displayed as shaded areas around the point estimates.
To compute them, for the U -statistics approach, we use the
asymptotic normality result of Lemma 7 together with plug-
in estimates for the estimator variance. For the winding stairs
approach we follow Goda (2021). For the shift-and-reweight
approach (panels C and D) and for the derange-and-reweight
approach (panels G and H) we use the upper and lower 2.5%
quantiles from a block-bootstrap. We also used a normal
approximation from the asymptotic results of Theorem 8
or Theorem 10 to compute confidence intervals. The results
were similar and are therefore not reported here.

Figure 1 shows that the point estimates fromQMCdesigns
(using scrambled sequences) generally perform better than
those from a plain Monte-Carlo design, while the confidence
bounds are comparable. Preliminary tests showed that the
shift-and-reweight approach is not working well with QMC
design. Instead, we replaced the shift with a permutation, and
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Table 2 Averaged mean squared errors (with respect to �) of the dif-
ferent methods and sampling designs for the Linear Model using 20
repetitions

Factor 1 2 3

Winding stairs MC 5.38e−03 2.52e−03 4.09e−02

Winding stairs QMC 1.40e−04 7.61e−05 1.48e−03

U statistics MC 6.19e−02 1.99e−02 5.91e−01

U statistics QMC 1.43e−02 9.88e−03 9.14e−02

Derange MC 1.04e−02 5.02e−03 5.73e−02

Derange QMC 2.32e−03 2.17e−03 3.41e−02

NN derange MC 3.27e−03 1.28e−03 2.53e−02

NN derange QMC 7.47e−04 7.41e−04 1.11e−02

a derange-and-reweight approach has been used for panels
G and H. Considering the mean squared error for different
simulations one can conclude that for this example, a QMC
design is an advantage for U -statistics and winding stairs
methods, while the impact is not so clear on the derange-and-
reweight methods (both with reevaluations and with nearest-
neighbour approximations of the mixed sample).

In this example, investing the computational budget into
one large sample and using a nearest-neighbour metamod-
eling approach seems to offer a good performance, only to
be beaten by winding stairs QMC design that, as already
remarked, is not necessarily available for general dependence
in form of constraints of the input features (these visual find-
ings are corroborated by corresponding mean squared errors,
see Table 2).

8.2 The Ishigami function with correlations under a
Gaussian copula

We further test the proposed designs on a well-known test
case in simulation experiments (Kucherenko et al. 2012). The
domain is still Cartesian, the input–outputmapping, however,
presents interactions. Our goal is to obtain additional insights
on the performance of the estimators used in the previous
case study, and especially to test their behavior with respect
to the random sample generator. The input–output mapping
is Y = g(x1, x2, x3) = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1)
with Xi uniformly distributed on [−π, π ].As in (Kucherenko
et al. 2012, Sect. 7.3), we introduce a statistical depen-
dence between X1 and X3 by a pairwise Gaussian copula.
We let the rank correlation coefficient ρ(X1, X3) range
from ρ(X1, X3) = −0.9 to ρ(X1, X3) = 0.9. There is
no closed-form solution for the total indices at a generic
value of ρ(X1, X3). However, in the uncorrelated case,
ρ(X1, X3) = 0 the total indices are analytically known, with
values T1 = 0.56, T2 = 0.44 and T3 = 0.24, respectively.

For the winding stairs estimator, we use the inverse
Knothe–Rosenblatt transformation detailed in Example 4.

For the reweight estimators, we implement the rank cor-
relation using (14). We fix a budget of about B = 8200
simulations. This yields a basic sample size of n = 2048
for the generalized winding stairs and weight and derange
approach, of n = 53 for the U -statistic and n = 8192 points
for the nearest-neighbour estimator. We generate the sample
first with crude MC and then with QMC.

The panels in Fig. 2 show the estimates of the normalized
total effects T1, T2, T3 as a function of the correlation between
X1 and X3 for thewinding stairs,mix-and-reweight, derange-
and-reweight and nearest-neighbour designs, respectively. In
the upper row, we use crudeMC to generate the input sample,
while we use QMC in the lower row. The panels in the first
row show that, when using crudeMC, thewinding stairs (first
panel) and derange-and-reweight (third panel) designs yield
comparable estimates. However, the mix-and-reweight esti-
mator (second panel) yields highly unstable estimates, while
the nearest-neighbour design yields more stable estimates. In
the absence of correlations, at ρ(X1, X3) = 0, the estimates
for all designs are close to the analytical values.

The panels in the second row show that, when usingQMC,
the winding stairs andU -statistic estimates exhibit increased
regularity, while methods with a random derangement do
not. This can be due to the random derangements break-
ing the properties of low discrepancy sequences. Despite the
greater regularity of the U -statistic estimates as a function
of ρ(X1, X3), its estimates are upward biased for T1 and
most notably for T2, compared to the other approaches. A
reason may be that at n = 53, the QMC Sobol’ sequence
does not populate a Latin Hypercube and the projections on
the marginals are not uniform. To fill in a Latin Hypercube,
we would need to increase the basic sample size to the next
power of 2, n = 64. However, these additional eleven points
in the sample block would propagate into a new budget of
B = 12160, a nearly 50% increase in computational cost.
Lastly, the rightmost panels show that the nearest-neighbour
estimator performs similarly with both sample generation
methods.

8.3 Features constrained on a circle

In the previous two test cases, the input domain was the
Cartesian product of the individual input supports and the
dependence structure was determined by probabilistic cor-
relations. In this section, we continue the investigation of
the performance of the estimators for an example in which
the dependence structure cannot be modeled by a Gaussian
copula. Specifically, we consider the inputs constrained on a
circle. We consider the two-dimensional input–output map-
ping

Y = g(X1, X2) = (X1 − 1) · (X2 − 1), (36)
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Fig. 2 Ishigami function with rank correlation: normalized total (Ti ) indices depending on the rank correlation ρ∗(X1, X3). Total budget: 8200
model evaluations. Upper row: crude Monte Carlo sampling, lower row: Quasi Monte Carlo sampling

Fig. 3 Uniform inputs
constrained within a circle (left),
model response (right)

with X1 and X2 uniformly distributedwithin a circle of radius
π centered at the origin.

This geometry rules out the application of a design based
on the Knothe–Rosenblatt transform for calculating total
effects. In fact, we would need to find the quantile function
corresponding to the marginal cdf of X1,

x �→ 2

πR2

(
x

2

√
max{0, R2 − x2} + R2

2
·

arcsin
(
min

{
1,max

{
−1,

x

R

}})
+ πR2

4

)
,

and plug this into the conditional quantile function of x2,
(u, x) �→ 2(u− 1

2 )
√
R2 − x2. Even for this simple geometry,

this seems to be a tantalizing task. Conversely, in this case,
we can find the density quotient analytically. Assuming a
uniform unconstrained density fX (x) on the square of side

2R enclosing the circle of radius R, the joint density is x �→
1C (x) fX (x)∫
C fX (x)dx

and the marginal distributions can be obtained

accordingly. For the present test case, where the circle of
radius R is centered at the origin, the density quotient is

ι1(x1, x2) = ι2(x2, x1) = πR2

4
·

1{x21 + x22 ≤ R2}√
max

{
0, R2 − x21

}·
√
max

{
0, R2 − x22

} . (37)

Because the output density can be computed analytically,
calculation with symbolic software (Mathcad Prime 8 in our
case) yields unnormalized total effects τ1 = τ2 = 6.53.
The equality follows by the problem symmetry. We use the
experiments to investigate the rate of convergence of the
nearest-neighbour and derange-and-reweight estimators. We
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Fig. 4 Mean squared errors for the unnormalized total effects over both
factorswith alternative sample generators, depending on the sample size
(number of model evaluations) using basic sample sizes from 28 to 220

also test the effect of the random number generator and use
both Monte Carlo and quasi-Monte Carlo alternatives in our
experiments. Because we have seen a poor performance of
the shift-and-reweight estimator together with quasi-Monte
Carlo sampling, we do not consider this estimator in these
experiments. Figure3 shows an input sample of size n =
1024 (left panel) and themodel output response (right panel).
For randomized QMC, two approaches are used: the scram-
bled sequence of Matoušek (1998) and Owen (1997) and
a “mingled” Halton sequence with linear scrambling (Bay-
ousef and Mascagni 2019).

The mean squared errors which are averaged over all
factors follow a O(n−1) convergence rate for all sampling
strategies, as seen in Fig. 4, where the diagonal of the dashed
triangle evidences the n−1 convergence rate.

The estimators therefore are of rate O(n−1/2), as for stan-
dard Monte Carlo estimation.

We observe a similar convergence rate across the alterna-
tive generators. A reason may be that the shifting strategy
interferes with the regularity of the QMC structure, thus
reducing the advantage of using a QMC generator in this
context. Furthermore, a constraint may introduce disconti-
nuities which are not compatible with functions of bounded
variation in the sense of Hardy and Krause and in this case
the Koksma–Hlawka Theorem does not provide an improved
convergence rate.

8.4 Features constrained on a simplex

We have seen in the previous sections that the shift-and-
reweight estimator does not combinewellwith a quasi-Monte
Carlo sampling. We propose here a preprocessing consisting
in permuting the order of the quasi-Monte Carlo realizations.
With such a preprocessing, the mean squared error of the
shift-and-reweight estimator combined with QMC remains

Fig. 5 An input constraint in form of a simplex condition

consistent with the Monte Carlo approximation error, and
regain similar performance to the derange-and-reweight esti-
mator.

We perform a series of tests for a setting in which it is still
possible to obtain the total indices analytically via a sym-
bolic calculation software (we used Maple software). More
precisely, we consider features constrained on a simplex:

{(x1, . . . , xd) ∈ [0, 1]d : xd−1 ≤ xd)}. (38)

Figure5 provides a visualization of the constraint for the
case d = 3. The density quotient between all pairs of inputs
is constant and equal to one, except for the last two features:
ι(xd−1, xd) = 1{xd−1≤xd }

2(1−xd−1)xd
.

As numerical test cases, we consider two models (with
d = 3 and d = 4) introduced in Gilquin et al. (2015),
where the authors tested a new space-filling sampling strat-
egy for estimating grouped Sobol’ indices in the framework
of constrained inputs (see Jacques et al. 2006), as well as the
well-known Sobol’ g-function. These models are described
hereafter, together with the corresponding analytical values
for total Sobol’ indices under the simplex constrained given
by (38):

• g(x) = −x1 + x1x2 − x1x2x3 + x1x2x3x4 with T =
(0.6300, 0.4861, 0.0064, 0.0064);

• g(x1, x2, x3) = x1x2−x3 withT = (0.125, 0.125, 0.375);
• Sobol’ g-function with parameter vector a = (0, 1, 3, 6),

such that T = (0.7659, 0.2357, 0.0522, 0.0172).
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Fig. 6 MSE at increasing sample sizes for total effect estimation for models with a simplex constraint on the inputs

Thenumerical experiments aim to compare estimates obtained
with the shift-and-reweight estimator with data generated
either with a Monte Carlo sampling or with a quasi-Monte
Carlo sampling (here a scrambled Sobol’ sequence) with
preprocessing. The preoprocessing consists of a random per-
mutation of the sample realizations. We report results for the
themean squared errors (average over 20 replicates) in Fig. 6.
For comparison, the figure also reports the estimates of the
nearest-neighbour estimator with crude Monte Carlo sam-
pling. The results demonstrate that preprocessing restores
the performance of the shift-and-reweight estimator alsowith
a quasi-Monte Carlo data-generation. However, there is no
advantage in combining a shift-and-reweight estimator with
quasi-Monte Carlo sampling rather than with crude Monte
Carlo. Moreover, in two out of three examples the nearest-
neighbour approach presents the best performance, while for
the Sobol’ g-functions the three estimators perform similarly,
with a slightly better performance for the shift-and-reweight
estimator.

8.5 Features constrained on two disconnected
triangles

In this section, we further challenge the estimators with
experiments for a test case inwhich the inputs are on a discon-
nected domain. We hypothesize the input–output mapping
as g(x1, x2) = (x1 − 1) · (x2 − 1) and let the features lie
in the 2-dimensional region X = {(x1, x2) ∈ [0, 1]2 : x2 ≤
1
2 − x1 ∨ x2 ≤ 1 − 1

4 x1} (Fig. 7). We assign a uniform den-
sity f12 = 4 within the triangles, which vanishes outside the
triangles. It is possible to compute analytically the marginal
and conditional densities of the inputs, as well as the density
quotients. From this knowledge, the values of the total indices
can be analytically obtained and are equal to T1 = 0.037 and
T2 = 0.27 (the total variance is 0.117). In the next series of

Fig. 7 An input domain in the form of two separate triangles. About
500 points remain in the domain after rejection

numerical tests, we employ random sampling with rejection,
starting from a uniform distribution on the unit square. Fig-
ure7 provides a visualization of the input space, when the
data are generated using crude Monte Carlo after sampling
2000 points, and about 1

4 of the points are left in the domain.
We perform a series of experiments at increasing sample

sizes, from n = 474 to n = 3522 as reported in Table 3 (due
to rejection sampling the sample sizes do not form a regu-
lar progression). We then apply the shift-and-reweight, the
derange-and-reweight and the nearest-neighbour estimators.
Because the first two estimators produce similar results, we
only display the values of the shift-and-reweight estimates.
The estimator variances in Table 3 are computed from a plug-
in estimator as per Lemma 7.
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Table 3 A product model on the
support formed by two separate
triangles, normalized total
effects, shift-and-reweight
method of Theorem 8

Size Runs Plain Monte Carlo Nearest-Neighbour

T1 T2 σ(T1) σ (T2) Runs T1 T2 σ(T1) σ (T2)

0.037 0.27 10−2 0.037 0.27 10−2

474 960 0.0328 0.2447 0.5575 3.7109 474 0.0330 0.2445 0.5545 3.7247

701 1445 0.0325 0.2401 0.5041 3.0781 701 0.0320 0.2396 0.5028 3.0652

990 2063 0.0376 0.2768 0.4063 2.4153 990 0.0375 0.2768 0.4060 2.4113

1969 3953 0.0471 0.2592 0.3825 1.7471 1969 0.0473 0.2595 0.3858 1.7512

3522 7138 0.0401 0.2475 0.2603 1.3221 3522 0.0400 0.2476 0.2580 1.3237

The values in Table 3 show that the estimators exhibit
similar accuracy, with a decreasing variance of the estimates.
However, the nearest-neighbour estimator is associated with
a much lower computational cost. We believe this good per-
formance is allowed by the low dimension of the input space
and we are to challenge it in later experiments (Sect. 8.7).

8.6 Features constrained on the Sierpinski gasket

In this section, we consider experiments in which the struc-
ture of the feature support is progressively complicated. We
start with a Cartesian support and remove parts of the sup-
port to move towards a disconnected structure until we reach
a Sierpinski gasket, that contains holes and is not star-shaped
connected. Figure8 provides a visualization of the regions.

The second and third domains are created by cutting cor-
ners of the unit square. The former (second panel) consists of
all points on the [0, 1]with the exclusion of the pairs (x1, x2)
such that x1 + x2 > 3/2, the latter (third panel) also excludes
points of the type x1 + x2 < 1/2. The fourth domain approxi-
mates a fractal structure, the Sierpinski gasket, by excluding
all realizations (x1, x2) that satisfy the following three con-
ditions for k = 1, 2, . . . , 5:

• mod(2k−1(x1 + x2), 2) > 1,
• mod(2k−1x1, 2) ≤ 1, and
• mod(2k−1x2, 2) ≤ 1,

where x �→ mod(x, 2) = x −2
⌊ x
2

⌋
denotes the rest after an

integer division by 2.
We consider a mapping of the form Y = X1 + βX2,

with β varying in {−2,−1, 0, 1, 2} for the experiments.With
this test case we aim to unveil some of the subtleties that
appear when the input domain becomes increasingly more
disconnected.

It is possible to derive the expression of the density
quotient semi-analytically. Let x1, x2, x ∈ [0, 1]. For the
cut-one-corner constraint, joint density is defined by

f OC
12 (x1, x2) = 7

8
· 1
{
x1 + x2 ≤ 3

2

}
(39)

and marginal densities by

f OC
1 (x) = f OC

2 (x) = 7

8
·
(
1 −

(
x − 1

2

)+)
. (40)

For the cut-two-corners domain, joint density is given by

f TC12 (x1, x2) = 3

4
· 1
{
1

2
≤ x1 + x2 ≤ 3

2

}
(41)

and marginal densities by

f TC1 (x) = f TC2 (x) = 3

4
·
(
1 −

∣∣∣∣x − 1

2

∣∣∣∣
)

. (42)

The rejection rate is present in both the marginal distribu-
tions and the joint one, so that the inverse of the rejection
rate is a multiplicative constant in the density quotient. For
the Sierpinski gasket, the joint distribution is the product of
indicator functions of the complements of the Sierpinski sets
listed above. From these distributions, we can calculate the
density quotient by marginal integration.

The shapes of the constraints rule out an approachbasedon
the winding stairs design. We are then left with reweighting
(shift or derange) and nearest-neighbour approaches. To pro-
ceed with numerical experiments, we use a rejection method.
We generate data using crude Monte-Carlo sampling, and
reject feature realizations that do not satisfy the constraints.
For the cut-one-corner and cut-two-corners domains, we start
with a sample of size n = 10240 on the [0, 1]2 full Carte-
sian domain. After rejection of realizations falling outside
the domain, we are left with samples of sizes n = 8938
and n = 7690, respectively for the the cut-one-corner and
cut-two-corners domains. These numbers are in line with the
theoretical acceptance rates of 7/8 and 3/4, respectively. For
the Sierpinski gasket, the first step in the rejection process
retains half of the observations,while each further step retains
3/4 of the observations. Hence after five iterations, we reach

a sample size of n ≈ 1
2 · ( 34

)4
n0, where n0 is the starting

sample size. In this experiment, we start with an initial sam-
ple size of n0 = 50000 and, after rejection, we are left with
n = 7932 observations.
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Fig. 8 Feature constraints: left one-corner, center two-corner, right Sierpinski with depth k = 5

Fig. 9 Sierpinski marginal density derivation: evolution of the marginal integral with rejections

Figure 9 shows the empirical marginal densities of the
features. Iteration k = 1 removes 1/2, the further iterations
k > 1 remove each 1/4 of the mass. One needs to rescale
these curves to obtain the marginal probability densities
for both factors which are then piecewise linearly defined.
The two-corner design and the Sierpinski gasket both sat-
isfy cov(X1, X2) = −0.5 and have roughly the same input
variances. In a linear model, only the input variances and
covariances enter into the computation of total effects; thus,
we expect similar values of the normalized total indices for
the two corners and the Sierpinski gasket cases.

Table 4 reports the results obtained with the shift-and-
reweight and the nearest-neighbour approaches. The result-
ing values indicate only small differences in the estimates.
Similar values are also obtained with the derange-and-
reweight estimator (not reported). Overall, the estimators
exhibit a similar performance. The results in Table 4 can
then be used to obtain some further indications about the
behavior of total indices under constraints. For the fully con-
nected domain, it is T1 + T2 = 1, as expected for a linearly
additivemodel with independent inputs. However, we cannot
expect this equality to hold when the inputs are constrained,
as constraints make the inputs statistically dependent. For
instance, for the two-corners domain and β = −2 we find
T1 + T2 = 0.56, while for β = 2, we find T1 + T2 = 1.26.
Similar values are obtained for the Sierpinski gasket. Results
for the case β = 0 are also interesting. The total effect of X2

is zero which correctly asserts that X2 is inactive. However,
the fact that the total effect of X1 is less than 1 is due to input

dependence, and must not be erroneously interpreted as the
presence of an interaction in the model.

8.7 Comparison tests withmachine learning
approaches

The previous experiments have focused on a computer mod-
eling setting. Indeed, by construction, the estimators we
discussed are well suited for a setting in which the model
and data distributions are known to the analyst. However, we
have seen inSect. 6 that there are links betweenour estimators
and feature importance measures of the machine learning lit-
erature. In the present section, we present experiments aimed
at shedding initial light on the behaviour of our estimators in
comparison with the remove-and-retrain estimator discussed
by Hooker et al. (2021) and Williamson et al. (2021, 2023).
We also aim to address the performance of our estimators
for problems of larger dimensionality than in the previous
sections.

As a first test case, we consider the following version of
the Bratley et al. (1992) function defined as:

g(x) =
d∑

i=1

(−1)i
d∏
j=i

xd+1−i , (43)

with inputs constrained on a simplex defined from (38) with
d = 10. For this test case, it is possible to obtain the value
of the total indices analytically, still using analytical calcula-
tions from Maple. We start with a sample of of size 100,000
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Table 4 Estimates of the normalized total effects for the linear model Y = X1 + βX2 (S&R: shift-and-reweight, NN: nearest-neighbour method)

β Full design One corner Two corners Sierpinski

S&R NN S&R NN S&R NN S&R NN

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

−2 0.20 0.80 0.20 0.80 0.15 0.63 0.16 0.63 0.11 0.45 0.11 0.44 0.11 0.42 0.11 0.43

−1 0.50 0.50 0.50 0.50 0.37 0.38 0.38 0.38 0.25 0.26 0.25 0.25 0.25 0.25 0.26 0.25

0 1.01 0 1.00 0 0.92 0 0.93 0 0.74 0 0.76 0 0.75 0 0.77 0

1 0.50 0.50 0.50 0.50 0.60 0.61 0.60 0.60 0.72 0.77 0.74 0.74 0.77 0.76 0.76 0.75

2 0.20 0.80 0.20 0.80 0.22 0.92 0.23 0.91 0.24 1.02 0.25 0.99 0.26 1.01 0.25 1.00

generated using crude Monte Carlo, with independent inputs
and employ the rejection method to implement the simplex
constraint. For the remove-and-retrain estimator, we proceed
as follows. We use an artificial neural network (with 10 hid-
den layers) as machine learning model. The accuracy of the
neural network is high, with a coefficient of model deter-
mination R2 close to unity. As foreseen by the algorithm,
we then remove each feature, retrain the neural network and
measure the difference in R2. The resulting value is an esti-
mate of the total indices of the features. The analytical values,
as far as the results obtained with the derange-and-reweight
method, the nearest-neighbour method and the remove-and-
retrain method are reported Table 5.

Let us now analyze the results. For the derange-and-
reweight estimator (D&R), we observe estimates very close
to the analytical values, and an overall estimation time
of 28s (last column). The estimates obtained with the
nearest-neighbour design (NN) are distorted. Moreover, the
estimation is notably time-consuming due to the long time
required by the nearest neighbour search. The deteriorated
performance shows that the increased dimensionality neg-
atively impacts this estimator. Finally, the estimates of the
remove-and-retrain estimator (MM) are accurate, although
one obtains negative values for features X1, X2 and X3,
whose analytical values are close to zero. Overall, the analy-
sis takes 323s, due to the retraining of the machine-learning
model.

We then report results for a second test case, namely,

y = sin

(
π

d∑
i=1

xi

)
, (44)

with inputs still constrained on the simplex defined from (38)
with d = 10. By construction the total indices of the first
8 features are equal and the last two. Analytically, we find
T1 = T2, · · · = T8 = 0.595, and T9 = T10 = 0.332.

To study the performance of the estimators, we generate
a first sample of size n = 2, 000 and after rejecting the real-
izations violating the constraint we are left with about half
of the realizations (987). Results are presented in Table 6.

The derange-and-reweight approach (D&R) provides esti-
mates close to the analytical values, while the nearest-
neighbour estimates (NN) are again distorted. They are equal
to about half of the analytical values for all inputs. How-
ever, they still signal that X9 and X10 are less important
than the other eight features. The reject-and-retrain estimator
(MM) shows a poor performance in this case, with several
negative estimates, and fails in indicating the true feature
importance in this case. We believe the reason is the poor fit
of the machine-learning model. In fact, the neural network
achieves an R2 of about 7%, signaling that the emulator does
not capture the input–output mapping in this test case.

In conclusion, the results in these two experiments seem
not to recommend the nearest-neighbour design as the input
space dimension increases, because it produces biased esti-
mates. Themain advantage of the reject-and-retrain estimator
is that it can be applied both in a simulation and in a purely
data-driven context because it does not require knowledge
of the density quotients. However, it has to be considered
with caution because its performance strongly depends on
having an accurate machine-learning model, whose training
time might make the estimation computationally expensive.

8.8 Application: the floodmodel of De Rocquigny
(2006)

In this section, we apply the estimators to a realistic example,
the flood model in de Rocquigny (2006) and Chastaing et al.
(2012). The model calculates the maximum annual overflow,
given eight input features (Table 7).

We assume the same dependence structure in the input
features as inChastaing et al. (2012). The correlation between
the pair of features (1,2) is set to 0.5, and the correlation
between (3,4) and (7,8) to 0.3 each, via Gaussian copula.
The density quotients for each pair are given in (16).

We calculate total indices with the derange-and-reweight
approach of Theorem 8 and nearest-neighbour, fixing a bud-
get of B = 9000 model evaluations. The basic sample size
is then n = 1000 Monte Carlo realisations. The correlation
structure in the basic sample is implemented via the Iman-
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Table 5 Performance results for the 10-dimensional model described in (43) (Ana.: analytical results, D&R: derange and reweight, NN: derange
with nearest-neighbour, MM: metamodel fit using a feed-forward neural network with 10 hidden layers)

Type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 [s]

Ana 0.0001 0.0001 0.0006 0.0013 0.0046 0.013 0.040 0.118 0.359 0.821

D&R 0.0002 0.0001 0.0006 0.0014 0.0049 0.013 0.041 0.119 0.358 0.814 28

NN 0.0398 0.0399 0.0405 0.0411 0.0437 0.051 0.073 0.133 0.310 0.676 139

MM −0.0002 −0.0000 −0.0001 0.0009 0.0044 0.013 0.041 0.122 0.356 0.827 323

The size of the MC sampling is 49808

Table 6 Performance for the 10-dimensional model described in (44) (Ana.: analytical results, D&R: derange and reweight, NN: derange with
nearest-neighbour, MM: metamodel fit using a feed-forward neural network with 10 hidden layers)

Type X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 [s]

Ana 0.595 0.595 0.595 0.595 0.595 0.595 0.595 0.595 0.332 0.332

D&R 0.624 0.610 0.601 0.596 0.579 0.640 0.559 0.615 0.328 0.299 0.51

NN 0.309 0.283 0.240 0.300 0.300 0.306 0.248 0.267 0.205 0.198 0.89

MM −0.216 −0.292 −0.340 −0.311 0.012 −0.294 −0.326 0.006 −0.671 −0.502 12.1

The size of the MC sampling is 987

Table 7 Flood model feature
list

No. Symb Description Unit Distribution and truncation

1 Q Maximal annual flow rate m3

s Gumbel(1013,558) on (500,3000)

2 Ks Strickler coefficient − Normal(30,8) on (15,+∞)

3 Zv River downstream level m Triangular(49,50,51)

4 Zm River upstream level m Triangular(54,55,56)

5 Hd Dyke height m Uniform(7,9)

6 Cb Bank level m Triangular(55,55.5,56)

7 L Length of river stretch m Triangular(4990,5000,5010)

8 B River width m Triangular(295,300,305)

Fig. 10 Sensitivity results for the flood model (error bars represent the
95% confidence band)

Conover method (Iman and Conover 1982; Mainik 2015).
Main effects are estimated from this basic sample using a
discrete cosine transformation Plischke (2012) with 8 har-
monics. A jackknife is used to derive confidence bounds. For
nearest-neighbour, a Monte Carlo sample of size n = 9000
(same budget) is used. Because of the different scales in the
inputs, we standardize the input sample using the empirical
standard deviations as scaling factors. Figure10 displays the
results in the form of a barplot, reporting the main and total

effects for each feature, as well as the error bands on top
of the bars. The error bands for the main effects and for the
shift/derangement approach are calculated as 1.96 times the
square root of the plug-in variance estimates, using a nor-
mal approximation for a 5% confidence bound. Regarding
the feature ranking, Feature 6 (Hd ) is identified as the most
important, followed by Features 1 (Q), 3 (Zv), 2 (Ks) and
7 (Cb); the remaining features play a minor role. This result
is in accordance with the findings in Chastaing et al. (2012).
The values of the main effects and total effects (estimated
with the derange-and-reweight approach) are close. Because
Feature 6 is stochastically independent of the remaining fea-
tures, this equality signals that Hd is not involved in relevant
interactions. In contrast, features 1 and 2 are noticeably dif-
ferent under main and total effects, with total effects larger
than their main effects. Also, if ranked according to main
effects, Feature 3 would rank secondmost important, switch-
ing place with Feature 1. Overall, the derange-and-reweight
approach that evaluates the model at the mixed realizations
shows comparable results to the nearest-neighbour approach.
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However, the nearest-neighbour approach seems to exhibit a
bias for the least important inputs. By the theoretical results
of Devroye et al. (2018) for dimensions larger than four,
the nearest-neighbour estimator bias dominates the estima-
tor variance.One insight gained from this application is to use
both a derangement and a nearest-neighbour approach, when
possible, to confirm the estimates of both methods. This is
because the former is less affected by bias as dimensionality
increases.

9 Final remarks

Estimating total effects under feature dependence and con-
straints is a challenging task. We have proposed a set of
estimators that accommodate increasingly complex con-
straints. For all estimatorswe have addressed both theoretical
and numerical aspects. We have first analyzed the per-
formance of a winding stairs approach that relies on a
Knothe–Rosenblatt transformation for the case of dependent
features. While the estimator accommodates a broad family
of input dependences, it becomes inapplicable in the presence
of non-Cartesian domains.

We have then studied estimators based on pairing Jansen’s
design with a reweighting factor. We have formulated a
U-statistic estimator, for which a central limit theorem is
immediately derived. To abate the computational burden, we
have proposed two alternatives based on shifts and derange-
ments, for which we have proven central limit theorems.
We have also considered a nearest-neighbour approach for
which, however, theoretical results seem out of reach. We
have tested the behavior of the estimators through numerous
experiments with feature constraints of increasing complex-
ity.

We have also studied the connection of these approaches
with the calculation of feature importance measures in the
machine-learning literature. On the theoretical side, we have
derived the link between total indices under constraints
and Breiman’s permutation feature importance measures.
We have compared our approach with the removal-and-
retrainmethodofWilliamson et al. (2023),whose importance
measures are, in fact, total indices. We have seen that
our method and removal-and-retrain produce similar results
when the machine learning model captures well the sim-
ulation response. However, when the performance of the
machine learning model is poor the removal-and-retrain
method fails in computing total Sobol’ indices. This investi-
gation is, however, preliminary and future research is needed
to come to more definitive result. In this perspective, future
research aims at further studying the performance of the
method in a data-driven context. We expect some challenges
to emerge. On the one hand, the nearest-neighbour approach
is expected to suffer from the curse of dimensionality, as

our experiments have shown. On the other hand, estimation
accuracy is expected to depend on the accurate calculation
of density ratios, which, instead, are known in the simulation
context. There, a starting point is also thework of Fisher et al.
(2019), where density ratios are approximated.
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A Proofs

A.1 More on conditional independence

In this appendix we detail more the role of conditional inde-
pendence for the computation of total Sobol’ indices. In
particular, we provide the proof of Lemma 1, Proposition
2 stated in Sect. 2.

Proof of Lemma 1 From Fréchet (1934) we know that:

V[E[Y |X−u]] = E[E[Y |X−u]2] − E[Y ]2
= E[E[Y · E[Y |X−u] − E[Y ]2|X−u]] = cov(Y ,E[Y |X−u]).

Then, we deduce the following covariance representation of
τu :

τu = E[V[Y |X−u]] = V[Y ] − cov(Y ,E[Y |X−u]). (45)

Now, let Y ′ be an independent replicate of Y conditionally on
X−u . As a consequence of conditional independence, E[Y ·
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Y ′|X−u] = E[Y |X−u]E[Y ′|X−u]. Hence

cov(Y ,Y ′) = E[E[Y · Y ′ − E[Y ]2|X−u]]
= E[E[Y |X−u] · E[Y ′|X−u]] − E[Y ]2 = V[E[Y |X−u]],

so that

τu = V[Y ] − cov(Y ,Y ′) = 1
2

(
V[Y ] + V[Y ′])− cov(Y ,Y ′)

= 1
2 E

[(
Y − Y ′)2]

where V[Y ] = V[Y ′] as both are identically distributed. ��
Let us shed somemore light on conditional independence.

For this, let Z be a general m-dimensional random vector
that takes its values on a Cartesian product space. Again
for notation simplicity, we assume that the joint probability
distribution of Z has a density function h(z) with respect to
Lebesgue measure. For u, v two disjoint subsets of [m] =
{1, 2, . . . ,m}, we denote the disjoint union of u and v by
u + v.

Definition 15 Let u, v, w be pairwise disjoint index sets in
[m]. Then Zu and Zv are conditionally independent given Zw

(u ⊥⊥ v|w, for short) if for all zu ∈ Zu , zv ∈ Zv , zw ∈ Zw,
the density h satisfies

hu+v|w(zu+v|zw) = hu|w(zu |zw) · hv|w(zv|zw). (46)

Multiplying (46) by hw(zw) we find

hu+v+w(zu+v+w) = hu|w(zu |zw) · hv|w(zv|zw)hw(zw)

=
{
hv|w(zv|zw) · hu+w(zu+w),

hu|w(zu |zw) · hv+w(zv+w).
(47)

Proof of Proposition 2 The proof of Proposition 2 follows
straightforwardly from these observations.

A.2 Proof of the results stated in Sect. 3

Proof of Proposition 5 Consider an independent copy X ′ of
X . Projections onto index subsets u and −u keep indepen-
dence intact, i.e., X ′

u = Pu(X ′) and X−u = P−u(X) are
independent. The random vector obtained by glueing these
two vectors together therefore has a density fu · f−u , breaking
the inter-block dependence. Hence generally for a measur-
able function h : Rd → R, we have

E
[
h(X ′

u : X−u)
] =

∫∫
h(x ′

u : x−u) f−u(x−u) fu(x ′
u)dx−udx

′
u .

Now, in order to compare the expectation of h(X) with X
possibly being dependent, we split the argument X into two
arguments via projections onto subdimensions indexed by u

and −u, so that we may write the joint density as product of
marginal and conditional density,

E
[
h(Xu : X−u)

]

=
∫∫

h(xu : x−u) fu|−u(xu |x−u) f−u(x−u)dxudx−u .

Considering all three terms in a function h2 : R|u|×R
d−|u|×

R
|u| → R and taking its expectation then leads to

E
[
h2(Xu, X−u, X

′
u)
]

=
∫∫∫

h2(xu, x−u, x
′
u) fu|−u(xu |x−u) f−u(x−u)

fu(x
′
u)dxudx−udx

′
u .

Let us now consider the weighted Jansen’s estimator,

h2(Xu, X−u, X
′
u)

= 1

2

fu,−u(X ′
u : X−u)

fu(X ′
u) f−u(X−u)

(
g(Xu : X−u) − g(X ′

u : X−u)
)2

.

Then by (9),

E[h2(Xu , X−u , X ′
u)]

= 1

2

∫∫∫
fu,−u(x ′

u : x−u)

fu(x ′
u) f−u(x−u)

(
g(xu : x−u) − g(x ′

u : x−u)
)2 ·

fu|−u(xu |x−u) f−u(x−u) fu(x ′
u)d(xu , x−u , x ′

u)

= 1

2

∫∫∫
fu|−u(x ′

u |x−u)
(
g(xu : x−u) − g(x ′

u : x−u)
)2 ·

fu|−u(xu |x−u) f−u(x−u)d(xu , x−u , x ′
u) = τu . (48)

The last equality follows from (9). By definition, a sample
consists of realizing n independent copies of X . Hence two
different copies of X , Xi and X j , i, j = 1, . . . , n, i 
= j , are
independent. Then, an estimator of τu is

τ̂Uu,n = 1

n(n − 1)

n∑
i=1

∑
j 
=i

h2(X
i
u, X

i−u, X
j
u), (49)

which yields (18). ��
Proof of Lemma 6 Let us define the random vector W =
(W1,W2) = (Xu, X−u) (the random vector X split accord-
ing to the index set u). Let Wi , i = 1, . . . , n, be identical
copies of W . We then write the estimator as follows:

τ̂Uu,n = 1

n(n − 1)

n∑
i=1

∑
j 
=i

	(Wi ,W j )

=
(
n

2

)−1 n∑
i=1

∑
j>i

φs(Wi ,W j ) (50)
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with

	s(Wi,W j )= 1
2

(
	(Wi,W j )+	(W j,Wi )

)
, (51)

	(Wi,W j )

= 1
2 iu(W

i
1,W

j
2 )
(
g
(
W j

1 : W j
2

)
− g

(
Wi

1 : W j
2

))2
.

(52)

Hence, τ̂Uu,n defines a U -statistic of order 2 for τu =
E[	(Wi ,W j )] = E[̂τUu,n].

Proof of Lemma 7 The proof of (19) follows directly from
(50) using the computations in (Bose and Chatterjee 2018,
Sect. 1.2.1). The asymptotic normality is a consequence of
(Bose and Chatterjee 2018, Theorem 1.1).

A.3 Proof of the results stated in Sect. 4

Proof of Theorem 8 First, the i th realization and the sn(i)th
one in the input sample are independent. We thus deduce
from (48) that for any 1 ≤ i ≤ n,

1

2
E

[
ι j (X

sn(i), Xi )
(
g(Xi

j : Xi− j ) − g(Xsn(i)
j : Xi− j )

)2] = τ j

(53)

thus the estimator τ̂ j,n is unbiased. To prove the central limit
theorem, we first decompose τ̂ S

j,n as:

τ̂ S
j,n = n − 1

n
τ̃ j,n−1

+ 1

2n

f j,− j (X1
j : Xn

− j )

f j (X1
j ) f− j (Xn

− j )

(
g(Xn

j : Xn
− j ) − g(X1

j : Xn
− j )

)2

where τ̃ j,n−1 stands for the estimator built fromFormula (21)
on (X1, . . . , Xn−1) and by replacing the cyclic shift-by-one
sn by the acyclic one san−1. Then, τ̃ j,n−1 = 1

n−1

∑n−1
i=1 V i

j

and the sequence
(
V i
j

)
i≥n

is stationary and 1-dependent.

Thus, the limit
√
n(τ̃ j,n−1 − τ j ) → N (0, σ 2

j ) follows from
(Diananda 1954, Theorem 5). Finally, noting that

E

[∣∣∣∣
√
n
1

2n

f j,− j (X1
j : Xn

− j )

f j (X1
j ) f− j (Xn− j )

(
g(Xn

j : Xn
− j )

−g(X1
j : Xn

− j )
)2 ∣∣∣∣

]

= τ j√
n

−−−−→
n→+∞ 0 (54)

and applying Slutsky’s Theorem we get (22). ��

Proof of Corollary 9 The result follows from Theorem 8 and
by applying the Delta method (see, e.g., van der Vaart 1998).
First, by mimicking the proof of Theorem 8, it is possi-
ble to prove that for any α, β, γ , a central limit theorem
holds true for ατ̂ S

j,n + β 1
n

∑n
i=1 g(X

i ) + γ 1
n

∑n
i=1 g

2(Xi ).

It yields a central limit theorem for
(
U1,n,U2,n,U3,n

) =(
τ̂ S
j,n,

1
n

∑n
i=1 g(X

i ), 1
n

∑n
i=1 g

2(Xi )
)
, namely

√
n
((
U1,n,U2,n,U3,n

)T − θ j

)
−−−−→
n→+∞ N (0, � j )

with θ j = (τ j ,E[Y ],E[Y 2]) and

� j =
⎛
⎝
V[V 1

j ] cov(V 1
j ,Y

1) cov(V 1
j , (Y

1)2)

∗ V(Y 1) cov(Y 1, (Y 1)2)

∗ ∗ V[(Y 1)2]

⎞
⎠ ·

Then we can prove the central limit theorem for Tj ,
using the Delta method on ψ(x, y, z) = x

z−y2
and θ j =

(τ j ,E[Y ],E[Y 2]). More precisely, let ρ j denote the gradi-
ent ofψ at θ j .We have ρ j = ∇ψ(θ j ) = 1

V[Y ]
[
1, 2Tj E[Y ],

−Tj
]T . Thus

√
n
(
T̂ S
j,n − Tj

)
−−−−→
n→+∞ N (0, ρT

j � jρ j )·

It concludes the proof of Corollary 9. ��
Proof of Theorem 10 To prove that τ̂ D

j,n is unbiased, we use

the same arguments as the ones used to prove that τ̂ S
j,n

defined by (21) in Theorem 8 is unbiased, additionally not-
ing that πn(i) 
= i for all i = 1, . . . , n. To prove the
central limit theorem, we first decompose, for each n, the
permutation πn in cycles C1,n, . . . ,Cmn ,n . Let us arbitrar-
ily fix the first element in each cycle. We then form pn
blocks, with pn = max1≤k≤mn �k,n and �k,n the length of
cycle Ck,n . For each n, we re-order the Xi s so that the
first b1,n = mn re-ordered variables are the first element
of each cycle, the next b2,n re-ordered variables are the sec-
ond element of each cycle with length at least two and so
on until the n − ∑pn−1

v=1 bv,n last bpn ,n re-ordered variables
which are the last element in each cycle of length pn . Here,
1 ≤ bpn ,n ≤ . . . ≤ b1,n = mn . For each n, we denote the
re-ordered sequence of Xi s by Xi,n , 1 ≤ i ≤ n, n ≥ 1.
We then define Sv,n = ∑kv,n

i=kv−1,n+1 Ṽ
i,n
j , with k0 = 0,

kv,n = ∑v
w=1 bw,n and Ṽ

i,n
j defined as V i

j − τ j/
√
n but with

the Xi,ns in place of the Xi s. More precisely, we have to use
the trick in the proof of Theorem 8 by replacing first the last
variable Xi in cycleC1,n by Xn+1, . . ., the last variable Xi in
cycle Cmn ,n by Xn+mn . As limn→+∞ mn/

√
n = 0, we prove

that the remaining term decreases fast enough not to perturb
the result of the central limit theorem (see the proof of The-
orem 8 for more details). Now, as limn→+∞ mn/

√
n = 0,
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then pn ≥ n/mn ≥ √
n/mn → +∞. For each n ≥ 1, the

sequence
(
Sv,n

)
1≤v≤pn

is a sequence of 1-dependent vari-
ables. Then applying (Neumann 2013, Theorem 2.1), we get
the central limit theorem, as soon as there exists δ > 0 such
thatE[|V 1

j |2+δ] < +∞ for some δ > 0. Indeed, as variables
inside each block are centered, independent and identically
distributed,

pn∑
v=1

E
[
S2v,n

]
=

pn∑
v=1

bv,n

n
V
[
V 1
j

]
= V

[
V 1
j

]
< +∞.

Then, Assumption (2.1) in (Neumann 2013, Theorem 2.1)
is true due to the stationarity of V i

j V
i+1
j . Indeed, due to 1-

dependence,

V

[ pn∑
v=1

Sv,n

]

=
pn∑

v=1

V
[
Sv,n

]+ 2
∑

1≤v<w≤pn

cov
(
Sv,n, Sw,n

)

=
pn∑

v=1

bv,n
V[V 1

j ]
n

+ 2
pn−1∑
v=1

cov
(
Sv,n, Sv+1,n

)

= V[V 1
j ]

n

pn∑
v=1

bv,n + 2

n

pn−1∑
v=1

bv+1,n cov
(
V 1
j , V

2
j

)

= V[V 1
j ] + 2

n − mn

n
cov

(
V 1
j , V

2
j

)
−−−−→
n→+∞ σ 2

j < +∞.

Let us now prove that Assumption (2.2) of (Neumann 2013,
Theorem 2.1) holds. For any ε > 0 we have

pn∑
v=1

E
[
S2v,nI|Sv,n|>ε

]

≤
pn∑

v=1

E
[∣∣Sv,n

∣∣2+δ
] 2
2+δ (

Pr
(∣∣Sv,n

∣∣ > ε
)) δ

2+δ

(using Hölder Inequality)

≤ ε−δ

pn∑
v=1

E
[∣∣Sv,n

∣∣2+δ
]

(using Markov Inequality)

≤ ε−δ

pn∑
v=1

E
[( kv,n∑

i=kv−1,n+1

n−1/2|V i
j − τ j |

)2+δ
]

= ε−δ

pn∑
v=1

b2+δ
v,n

n1+ δ
2

E
[( kv,n∑

i=kv−1,n+1

b−1
v,n|V i

j − τ j |
)2+δ

]

≤ ε−δ

pn∑
v=1

b2+δ
v,n

n1+ δ
2

E
[ kv,n∑
i=kv−1,n+1

b−1
v,n|V i

j − τ j |2+δ
]

(using Jensen Inequality)

≤ 1

εδ

1

n1+ δ
2

pn∑
v=1

b1+δ
v,n

kv,n∑
i=kv−1,n+1

E
[
|V i

j − τ j |2+δ
]

≤ 1

εδ

1

n1+ δ
2

m1+δ
n

pn∑
v=1

bv,n E
[
|V 1

j − τ j |2+δ
]

(by stationarity of
(
|V i

j − τ j |
)
i≥1

)

≤ 1

εδ

m1+δ
n

n
δ
2

E
[
|V 1

j − τ j |2+δ
]

−−−−→
n→+∞ 0

The limit holds asE
[
|V 1

j |2+δ
]

< +∞ and lim
n→+∞

m1+δ
n√
nδ

→
0. This concludes the proof of Theorem 10. ��
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A.4 Link with Breiman’s permutation importance

Proof of Proposition 13 Let uswrite the squared loss function
as L(Y , g(X; θ)) = (Y − g(X; θ))2. Then, (31) becomes

MDAFR
j = E[ι j (X ′, X)(Y − g(X ′

j : X− j ; θ))2]
−E[(Y − g(X; θ))2]. (55)

Using the assumption that g(X; θ) is a perfect predic-
tor, we have Y = g(X; θ) for all values of X , so that
E[(Y − g(X; θ))2] = E[0] = 0. Then, (55) becomes

MDA j = E[ι j (X ′, X)(g(X , θ) − g(X ′
j : X− j ; θ))2] = τ j .

Hence total effects and MDA with a weighted squared loss
are the same. ��

A.5 Proof of Theorem 14

Proof of Theorem 14 Main effect: We consider the Gaussian
multivariate distribution of (X ,Y ). Setting u = {d + 1},
v = ∅, w = { j} in (32), then the variance of Y conditionally
on X j is

�Y ,Y−�Y , j�
−1
j, j� j,Y = βT�β−βT

(
�[d], j�−1

j, j� j,[d]
)

β,

(56)

using here the special structure of the augmentedmatrix. This
variance is constant (as it does not depend on the value of
X j ), so that E[V[Y |X j ]] = V[Y |X j ]. However, for main
effects we are interested in the variance of the conditional
expectation, so we have to subtract the value in (56) from the
total variance which yields (33).

Total effect: The Rosenblatt transform in the Gaussian
case uses the Cholesky decomposition of the covariance
matrix. The Cholesky matrix C = chol(�) is an upper tri-
angular matrix such that CTC = �. If Z ∼ N (0, I ) then
X = μ + CT Z ∼ N (μ,�). One can define the Cholesky
decomposition recursively,

chol(�) =
(

�
1/2
1,1 �

−1/2
1,1 · �1,−1

0 chol
(
�−1,−1 − �T

1,−1�
−1
1,1�1,−1

)
)

where the index −1 denotes all coordinates but the first
(if � is a scalar then chol(�) = �

1/2). By reordering the
input factors, we may assume without loss of generality that
j = d. Then define Y = β0 + βT (μ + CT Z) and Y ′ =
β0 + βT (μ + CT Z ′) with Z , Z ′ ∼ N (0, I ), differing only
in their last coordinate independent from each other. Then Y
andY ′ are identically (but not independently) distributed, and
we know from Sect. 2.2 that cov(Y ,Y ′) = 1

2 E[(Y −Y ′)2] =

1
2β

2
dC

2
d,d E[(Zd − Z ′

d)
2]. But Zd and Z ′

d are iid. standard

normal, i.e., 12 E[(Zd − Z ′
d)

2] = 1. We are left with the iden-
tification of the last diagonal entry of the Cholesky matrix.
Because of its hierarchical triangular structure, it keeps sub-

determinants intact, and Cd,d =
√

det�
det�−d,−d

. ��
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