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Abstract

Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to
the field of single-index models to estimate the directions. Compared with other
well-established methods, the HSIC based method requires relatively weak condi-
tions. However, its performance has not yet been studied in the prevalent high-
dimensional scenarios, where the number of covariates can be much larger than the
sample size. In this article, based on HSIC, we propose to estimate the possibly sparse
directions in the high-dimensional single-index models through a parameter reformu-
lation. Our approach estimates the subspace of the direction directly and performs
variable selection simultaneously. Due to the non-convexity of the objective function
and the complexity of the constraints, a majorize-minimize algorithm together with
the linearized alternating direction method of multipliers is developed to solve the
optimization problem. Since it does not involve the inverse of the covariance matrix,
the algorithm can naturally handle large p small n scenarios. Through extensive
simulation studies and a real data analysis, we show that our proposal is efficient
and effective in the high-dimensional settings. The Matlab codes for this method are
available online.
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1 Introduction

Let Y € R be an univariate response and X € RP be a p x 1 predictor. The single-
index model, as a practically useful generalization of the classical linear regression model,

considers the following problem

Y = g(87X, 0), (L1)

where 3 is a p x 1 vector, € is an unknown random error independent of X, and ¢ is a link
function. Letting span(3) denote the column subspace spanned by (3, then the goal of the
single-index model is to estimate span(3) without specifying or estimating the link function
g. To our best knowledge, Li and Duan (1989) firstly studied this problem and proposed
to estimate span(8) under the linearity condition that E(X|37X) is a linear function of
BTX. This linearity condition applies to the marginal distribution of X and is common in
the regression modelling.

Later, Cook (1994, 1998) introduced Sufficient Dimension Reduction (SDR), which
expands the concept of the single-index model. SDR aims to find the minimal subspace
S C RP? such that Y 1 X|PsX, where L stands for independence and Ps denotes the
projection operator to the subspace S. Under mild conditions (Cook, 1996; Yin et al.,
2008), such a subspace exists and is unique. We call it the central subspace and denote
it by Syx and its dimension by d = dim(Syx), which is often far less than p. When the
central subspace is one dimensional (in other words, d = 1), the corresponding regression
problem is just the single-index model (1.1). Many methods have been proposed to estimate
the central subspace (Li, 1991; Cook and Weisberg, 1991; Xia et al., 2002; Cook and Ni,
2005; Zhu and Zeng, 2006; Li and Wang, 2007; Wang and Xia, 2008; Cook and Forzani,
2009; Zeng and Zhu, 2010; Yin and Li, 2011; Ma and Zhu, 2012). For a comprehensive list
of references on SDR methods, please refer to Ma and Zhu (2013).

Unfortunately, one drawback of the SDR methods mentioned above is that the estimated
linear combinations contain all the original predictors, which often makes it difficult to
interpret the extracted components. To improve interpretability, numerous attempts have

been made to perform variable selection and dimension reduction simultaneously, including



Cook (2004), Ni et al. (2005), Li et al. (2005), Li (2007), Li and Yin (2008) and Chen et al.
(2010). It is known that these methods perform well when the number of covariates p is
less than the sample size n, but do not work under the scenario p > n. To tackle the
difficulty, Yin and Hilafu (2015) suggested sequential procedures for SDR, and Lin et al.
(2018) proposed the high-dimensional sparse Sliced Inverse Regression (SIR). Moreover,
Wang et al. (2018) introduced a reduced-rank regression method for estimating the sparse
directions, and Tan et al. (2018b) proposed a convex formulation for fitting sparse SIR in
high dimensions. Additional recent approaches to high-dimensional SDR. can be found in
Qian et al. (2019) and Tan et al. (2020).

In this article, motivated by the work of Zhang and Yin (2015) and Tan et al. (2018b),
we develop a new approach for high-dimensional single-index models via Hilbert-Schmidt
Independence Criterion (HSIC). The proposed method can perform variable selection and
can handle the large p small n scenarios simultaneously. In comparison to existing high-
dimensional sparse SDR methods, it requires relatively weak conditions. The key idea is
to reformulate the HSIC based single-index model by estimating the orthogonal projection
BB" onto the subspace span(3) rather than span(8) itself, with the constraints of the
nuclear norm relaxing the normalization constraint. Based on the reformulation, a lasso
penalty on the orthogonal projection 83" is then introduced to encourage the estimated
solution to be sparse. The numerical studies indicate the superiority of the proposed
method.

The main contributions of our work are summarized as the follows. First, our method
extends the HSIC-based single-index regression (Zhang and Yin, 2015) to adapt to sufficient
variable selection and large p small n situations via a smart reformulation. Second, mo-
tivated by the majorization-minimization principle, we design a computationally fast and
efficient algorithm, called MM-LADMM, to solve the non-convex constrained optimization
problem. Third, a cross-validation procedure is developed to select the sparsity tuning pa-
rameter. Last but not least, our method can be naturally extended to multivariate response
regression models where few methods work.

Although the proposed algorithm draws some inspiration from Tan et al. (2018b), it



is significantly more complicated and tricky due to the fact that the objective function in
our method is inherently non-convex while theirs is simply linear. Moreover, the cross-
validation scheme for selecting the sparsity tuning parameter in Tan et al. (2018b) relies
on the assumption that the distribution of X|Y follows a normal distribution, while our
method utilizes a kernel method to estimate the link function which perfectly avoids this
assumption.

The rest of the article is organized as follows. Section 2 reviews the background of the
HSIC-based single-index method and then introduces the sparse single-index regression
via HSIC. Section 3 details our proposed algorithm. In Section 4, we conduct extensive
simulation studies and a real data analysis. A short conclusion and some technical proofs
are provided in Section 5 and Appendix, respectively.

The following notations will be used in our exposition. Let || - || denote the ¢ norm
of a vector and | - [|[p denote the Frobenius norm of a matrix, respectively. Let Ppxy =
1n(n"En)"'n" X denote the projection operator which projects onto span(n) relative to the
inner product (a,b) = a'Eb, and Q) =I — Pyx), where I is the identity matrix. The
trace of a matrix A is denoted by tr(A), and the Euclidean inner product of two matrices
A, B is denoted by (A, B) = tr(ATB). We use [(,-¢) to denote the indicator function, and

Amax(+) the largest eigenvalue of a matrix.

2 Methodology

2.1 Review of Single-Index Regression via HSIC

Gretton et al. (2005a, 2007, 2009) proposed an independence criterion, called the Hilbert-
Schmidt independence criterion, to detect statistically significant dependence between two
random variables. HSIC for univariate X and Y, denoted by H(X,Y), has the population
expression

HX,)Y)=E[K(X - X"LY =Y+ E[K(X — X")| E[L(Y = Y")]

(2.1)
—2E{E[K(X — X")|X]E[L(Y =Y")|Y]},



where X’ and Y’ denote independent copies of X and Y, and K(-) and L(-) are certain
positive definite kernel functions. From (2.1), H(X,Y") exists when the various expectations

over the kernels are finite, which is true as long as the kernels K(-) and L(-) are bounded.
Remark 1. A commonly used kernel is the Gaussian kernel (see Kankainen, 1995), i.e.,

—(X — X')?

K(X — X') :=exp < 307 ﬂ) .

) and L(Y —=Y") ::exp( 572
9y

To facilitate computation, we present and implement our method using the Gaussian kernel
throughout the article. However, we note that the proposed method can be extended to other

kernels without much issue.

According to Gretton et al. (2005b), for certain kernels, H(X,Y) defined in (2.1) char-
acterizes the distance between the joint distribution of X,Y and the product of their
marginal distributions. Hence, H(X,Y) equals 0 if and only if the two random variables
are independent, which makes possible its application in the field of SDR. Indeed, under
mild conditions, Zhang and Yin (2015) showed that solving (2.2) with respect to a general

p X 1 vector B would yield a basis of Sy|x, or in other words, the single-index direction:

B =argmax H(3'X,Y), (2.2)
BTEB=1
where ¥ denotes the covariance matrix of X. Notice that (2.2) may not have a unique
solution in terms of 3, but span(3), which we are really interested in, is unique.

Let {(X;,Y;):i¢=1,...,n} be an i.i.d sample of random vectors (X,Y’), and 3 and
oy be the sample covariance matrix and sample variance of X and Y, respectively. The
sample estimate of H(B'X,Y), denoted by H,(3"X,Y), is the sum of three U-statistics
(see Serfling, 1980; Gretton et al., 2007):

n

H,(8'X,Y) = ZKU Z KB ,k+% > Ey(B)Lu, (23)

3,j=1 i,7,k=1 ,7,k,l=1



where

Ki;(B) := exp (‘wT(X" - Xﬂ'))g) and L;; := exp (_(Y—_YJ)Q> (2.4)

28733 265
for 4,5 € {1,...,n}. Hence, the estimator of a basis for the central subspace Sy x is
B, = argmax H, (3" X,Y). (2.5)
BTxp8=1

Then, the central subspace is estimated as span(3,), and the estimated index is 3, X.
Zhang and Yin (2015) established the consistency and asymptotic normality of the above

estimator.

2.2 Sparse Single-Index Regression via HSIC

To reduce model complexity and thus to improve interpretation, especially in high-dimensional
scenarios, a common assumption is that only a few number of the covariates are active in

the single-index regression. Therefore, by (2.2), the single-index direction can be solved by

B =argmax H(B'X,Y),

st. 728 =1, ||1Blo < s,

where ||3||o denotes the number of the non-zero elements in 8 and s indicates the number
of the active predictors.

A natural estimator of 3 is then

B, = argmax H,(B8'X,Y), (2.6)

st. 888 =1, ||8llo < s,

where H,,(3"X,Y) is defined in (2.3). Thus, the central subspace is estimated as span(3,),
and the estimated index is B! X. In addition, the estimated active predictors are those
associated with non-zero coefficients.

However, solving (2.6) directly is absolutely not trivial. Indeed, the optimization (2.6)



with o norm is known to be an ‘NP hard’ problem, since it would require searching through
all (’S’) sub-vectors of B satisfying the equality constraints, which takes exponential time
in s. Moreover, the objective function of B in (2.6) may not be convex and the equality
constraint function is not an affine transformation, which together make the optimization

problem much trickier.

3 Algorithm

3.1 Problem Reformulation

To solve the sparse single-index regression via HSIC (2.6) efficiently, we reform the op-
timization as the follows. Firstly, instead of using (2.3), we utilize an equivalent form
(see Gretton et al., 2007; Wu and Chen, 2021) of H,(8'X,Y), obtained by replacing the
U-statistics with V-statistics

1 1 & -
H,(BTX,Y) = ﬁtr(KJLJ) =3 > Ki(B)Ly (3.1)
ij=1
to facilitate optimization, where K and L are the n x n matrices with entries K;;(8) and
Lij defined in (2.4), and J =T —n"'11" with 1 denoting a n x 1 vector of ones. Here, L;;
denotes the (i, j)-th entry of the product matrix L = JLJ.
Given (3.1) and letting TT = 883", the HSIC-based single-index regression procedure

(2.5) can then be reformulated as the following minimization problem:

n

' 1 (IL,Z) \ -
s 5o ()1,

4,j=1

st SVHISY? € B,

(3.2)

where Z;; = (X; — X,)(X; — X;)T, B = {2122 . BT88 = 1}, and M is the set
of p X p symmetric positive semi-definite matrices. In this new formulation, our focus is
changed to directly estimate the orthogonal projection IT onto the subspace spanned by 3
instead of estimating the basis 3 directly.



To further achieve variable selection, we add an ¢; penalty term on II to (3.2) to

encourage a sparse estimate:

. ] — (IL, Zi;)\ -
lgIIélAr}l — ﬁ ZleXp (—T) Lij + )\HHHM
27.7:

(3.3)
st tr(SYAIRY?) <1,

where ||IL||; = >_, ; [TL;| and A > 0 is a tunning parameter. The ¢; penalty on IT encourages
a sparse estimate for 3, and a convex relation with the nuclear norm on S22 g
implemented on the equality constraint to facilitate computation. Similar work can be
found in sparse principal component analysis, canonical correlation analysis, and sliced
inverse regression (Vu et al., 2013; Gao et al., 2017; Tan et al., 2018a,b, 2020). We note
that (3.3) may still not be a canonical convex optimization problem, since the objective
function of IT may not be convex, which inspires us to further explore the properties of the
objective function and then turn to the majorization-minimization principle (Lange et al.,
2000; Hunter and Lange, 2004) to obtain a good optimizer; see the following subsection for

algorithmic details.

Remark 2. If the kernel is chosen as the product kernel, we can naturally extend the above
method to settings where the response is multivariate. That is, for a g-dimensional response

Y = (Y1,...,Y,)", we use the product kernel to compute j)ij in (3.3):
Ly -y =T —[Yi -V
v vy = e (FH00).

’

where Y' = (Y,,... ,Y;;)T is an independent copy of Y. Qur simulation shows that this

extension works quite well. See Studies 5 and 6 in the following numerical study.

3.2 The MM-LADMM Algorithm

In this subsection, we propose an efficient optimization algorithm for solving the problem
(3.3). Let f(IT) denote the objective function of the problems (3.2). Although f(IT) may

not be convex, it is differentiable and has Lipschitz continuous gradient over a bounded

8



convex set. We state properties of the objective function f(IT) in the following proposition,

whose proof is given in the Appendix.

Proposition 3.1. f(II) is differentiable, and its derivative function is

1 <« I1.Z,)\ -
ij=1
or equivalently,
1
V() = EXT (diag(C1,) — C) X, (3.5)

where C is a n x n matriz with the entry c;; = exp(—(I1, Z;;)/2) Li;, 1, is a n x n matriz
with the entry 1, and X = [Xy,...,X,]". Moreover, V f(I1) is Lipschitz over the set
D= {Ile M : tr(ZVIIX?) < 1}.

Remark 3. [t is worth noting that we would like to use the expression form (3.5) instead of
(3.4) to calculate the derivative function V f(II). Plus, the Lipschitz continuity property of
f(II) motivates us to design a method for performing the optimization from the viewpoint

of the majorization-minimization principle (Lange et al., 2000; Hunter and Lange, 2004).
Since the objective function f(II) has a Lipschitz continuous gradient over the bounded
set D, there exists a positive constant L < oo such that

(D) < F(ET) + (X1 — L,V f()) + £ 101 — FE3. (3

for all IT € D and IT € D. Thus, the right hand side of (3.6) is a majorizing function of
f(II) at IT (i.e., the right hand side of (3.6) is greater than or equal to f(IT) for all IT € D
with equality at IT = II). This suggests the following Majorize-Minimize (MM) iteration
to solve the problem (3.3):

L
10— argimin { (1) + (- T, 9701) + 11— 103 + N[, .

eD
L r _ 1 o] |
= argmin — [|[IT — [IIV — =V f(TI") ||| + A|[TT]|1, (3.7)
oep 2 L -




where TIU*Y) and TI) are the (r 4 1)-th and r-th iterates of the optimization variable IT,

respectively. By the property (3.6), we can easily obtain
FATCHDY 1 XTI < F(IT0) 4+ XTI, for all 7,

which means that iterates generated from the algorithm are guaranteed to monotonically
decrease the objective function value. Hunter and Lange (2004) showed that the sequence
{I1(M}, 50 obtained by the iterative formula (3.7) converges to a critical point of the problem
(3.3). The MM algorithm is a simple and well-applicable algorithmic framework for solving
such problems. The key challenge in making the proposed algorithm numerically efficient
lies in solving the subproblem (3.7).

The subproblem (3.7) is a quadratic problem with a convex constraint, so any local min-
imum can be guaranteed to be a global minimum. We employ the Linearized Alternating
Direction Method of Multipliers algorithm (LADMM, Zhang et al., 2011; Wang and Yuan,
2012; Yang and Yuan, 2013) to solve it. This algorithm can allow us to tackle the diffi-
culty caused by the interaction between the penalty term and the constraints. We give the
derivation details of solving the subproblem (3.7) through this algorithm in the Appendix.
In practice, we find that this algorithm can solve the subproblem quite efficiently.

Algorithm 1 presents the entire algorithm flow to solve the problem (3.3). It has two
loops: an outer loop in which the MM algorithm approximates the original problem (3.3)
iteratively by a series of convex relaxations, and an inner loop in which the LADMM al-
gorithm is used to solve each convex relaxation (3.7). In the inner loop, the update of II
performs soft-thresholding, and the update of H is via a projection operator which needs
to compute a singular value decomposition and modify the obtained singular values with
a monotone piecewise linear function. For specific details about the projection operator,
please refer to Proposition A.1 in the Appendix. Matlab codes for implementing the algo-

rithm are available at https://github.com/runxiong-wu/sHSIC.
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Algorithm 1: MM-LADMM Algorithm for Solving (3.3)
Input: {(X;,Y;):i=1,...,n}, the tuning parameter A, the Lipschitz constant L,
the LADMM parameters p>0and 7= 4p)\? (ﬁ))
1 Initialize II® € M and HO = 21/2[10)3:1/2,
2 repeat r=0,1,2,...
3 Initialize primal variables ITy = II), Hy = H™, and dual variable Ty = 0;
4 repeat j =0,1,2, ...

max

1)
5 temp<—L+T{H(T)—w;
6 temp < temp —i—L [H- S 1 > + 821/2(H- — I‘-)ﬁl/2 ;
L+rLl7 7777 T s ’
A
7 IT;; < Soft (temp, F) where Soft(-,-) denotes the soft-thresholding
T

operator: Soft(A,b) = {Soft(A;;,b)} = {sign(A4;;) max(|A;;| —b,0)} for a
matrix A = (4;5). ;

8 H,,, «+ Pr(XV?1I0;,13"2 +T;), where Py is defined in Proposition A.1 in
the Appendix;

9 T« [+ SV200,, 322 — Hj

10 until stopping criterion met;

11 H(TJFI) — Hj+1, H(rJrl) < Hj+1, I‘(T+1) < Fj+1;
12 until stopping criterion met;
Output: ,8 = the leading eigenvector of TI+D.

3.3 Tuning Parameter Selection

The tuning parameter A in the proposed method determines the sparsity level of the es-
timate. Motivated by Tan et al. (2018b), we use an M-fold cross-validation procedure to
select X\. Let C,...,C)y denote M equally sized and mutually disjoint subsamples of the
whole dataset. The cross-validation procedure utilizes each single subsample as the test
data and the remaining M — 1 subsamples as the training data to compute the prediction
error for each A. Specifically, given a fixed A, the corresponding overall prediction error is

computed as

M|O |ZZ{Y B(Y|X = X)},

=1ieCp

where |C,,| denotes the cardinality of the set C,, and E(Y|X = X;) is an estimate of
E(Y|X = X;) from the training data. The working tuning parameter is the one which

minimizes the prediction error.
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We use the Nadaraya-Watson kernel method to estimate the conditional expectation
E(Y|X). Recall that B is estimated by the top eigenvector of II. Given a new data X*,
the Nadaraya-Watson kernel estimator of the conditional mean E(Y|X = X*) is

. e v K(BT(X* X))
PR =X = Z S Kn(BT (X — X))

Y, (3.8)

where Kj(t) = K(t/h)/h is a kernel function with a bandwidth h. To facilitate com-
putation, we use a Gaussian kernel and take the cross-validation with the leave-one-out
estimate of the residual sum of squares to select the bandwidth. Notice that there is a trick
to compute the cross-validation function of A with a single fit. This trick vastly reduces the
computational complexity at the price of the increasing memory consumption. For specific
details, please refer to Fan and Gijbels (1996).

We note that Tan et al. (2018b) proposed a similar cross-validation procedure to se-
lect the sparsity tuning parameter. However, their approach is based on the framework
of principal fitted components (Cook and Forzani, 2008), which requires that the distri-
bution of X|Y should be normally distributed. Clearly, this assumption is not suitable
in our settings and in many real applications. The proposed procedure, which includes
the Nadaraya-Watson kernel estimate of the conditional mean, does not depend on the

distribution of X|Y" and thus avoids the assumption.

4 Numerical Study

4.1 Simulations

In this section, we compare the performance of our method with the one proposed by (Tan
et al., 2018b), which is, to our knowledge, one of the most competitive high-dimensional
sparse SDR approaches, under various simulation settings. We use two measures: the True
Positive Rate (TPR) and the False Positive Rate (FPR), to assess how well the methods
select variables. In particular, TPR is defined as the proportion of active predictors that

are correctly identified while FPR is defined as the proportion of irrelevant predictors that

12



are falsely identified. Hence, an estimate with a bigger TPR and a smaller FPR is better.
Furthermore, we calculate the absolute correlation coefficient (corr) between the true single
index and its estimate to evaluate accuracy of the methods. Clearly, the larger the absolute
correlation coefficient, the better the estimate.

Recall that II is an estimate of the orthogonal projection II, and the estimated vector
of coefficients B is obtained by computing the top eigenvector of II. When computing
TPR and FPR in practice, we truncated B by zeroing out its entries whose magnitude
is smaller than 10~*. For the method in Tan et al. (2018b), we use Tan’s code with
the default parameter setting. To compare the two methods fairly, the following 6 data
generating schemes are considered. For each scheme, we repeat 200 times to summarize

the corresponding estimates.

Study 1. This model is a classic linear regression model from Tan et al. (2018b):
Y = 8"X + 2,

where € ~ N(0,1), X = (X;,...,X,)" ~ N,(0,%) with X;; = 0.5 for
1 <1,7 <p,and X and € are independent. In this study, the central subspace
is spanned by the vector 3 = (1,1,1,0,... ,O)T/\/g with p—3 zero coefficients.

Study 2. This model is a nonlinear regression model from Yin and Hilafu (2015):
Y =1+4exp(B'X) +e,

where €, X and 3 are specified as those in Study 1.

Study 3. This model is from Chen et al. (2018):
Y = (B"X +0.5)2 +0.5¢,

where € and X are generated as those in Study 1. In this study, the central
subspace is spanned by the vector 3 = (1,1,1,1,0,...,0)" /2 with p — 4 zero

coefficients.

13



Study 4. This model is a mean function model similar to Zhang and Yin (2015):
Y = sin(B"X) + 0.2,

where € ~ N(0,1). The predictor X = (X1,..., X,)" is independent of ¢ and
defined as follows: the last p—1 components (Xa, ..., X,)" ~ N,_;(0,X) with
3, = 0.5 for 2 <, j < p and the first component X; = | Xy + X3| + 0.1,
where £ is an independent standard normal random variable. In this study,
the central subspace is spanned by the vector 3 = (1,1,1,0,...,0)" /+/3 with

p — 3 zero coefficients.

Study 5. This model is a multivariate response model combining Study 1 and Study 3:

Y: = 8"X + 2,

Yy = (B"X 4 0.5)% + 0.5¢,

where € ~ N(0,1). The predictor X = (Xy,...,X,)" is independent of € and
defined as those in Study 1 or 3. In this study, 8 = (1,1,1,1,0,...,0)" /2

with p — 4 zero coefficients.

Study 6. This model is a multivariate response model combining Study 3 and Study 4:

Y) = (B"X 4 0.5)%* 4+ 0.5¢,
Yy = sin(B'X) + 0.2¢,

where € ~ N(0,1). The predictor X = (X,..., X,)" is independent of ¢ and
defined as those in Study 4. In this study, 8 = (1,1,1,1,0,...,0)" /2 with

p — 4 zero coefficients.

The simulation results from Study 1 to Study 4 are summarized in Table 1. We can
see that although our proposed method is slightly better than the method of Tan et al.
(2018b) in terms of FPR in Study 1, it is worse than Tan et al. (2018b) in general. This

phenomenon is well explained by that the SIR method has the best performance in a classic

14



linear model. In Study 2, our method outperforms the other method slightly in general.
The reason is that the performance of the method in Tan et al. (2018b) relies on the
normality assumption of X|Y" while our method does not have this limit. In Study 3, the
mean function is nearly symmetric about 0, which causes serious problems to the method
of Tan et al. (2018b). However, our method is still valid in this setting. In Study 4, the
linearity condition about X is destroyed. Hence, in such a case it is not surprising that
our proposed method performs better than the comparison method. To summarize, our
proposed method performs quite well across all the four studies in the high-dimensional

setting.

Table 1: Summary of Studies 1-4. The mean, averaged over 200 datasets, are reported. All
entries are multiplied by 100.

n = 100,p = 150 n = 200,p = 150
Study 1 Study 2 Study 3 Study 4 Study 1 Study 2 Study 3 Study 4

Our method TPR 73.8 99.3 91.1 78.8 88.8 100 98.0 94.7
FPR 3.3 0.8 4.9 0.9 1.3 0.4 1.2 0.6

corr 708 95.3 84.3 82.5 83.7 98.3 95.9 87.9

Tan et al. (2018) TPR  76.7 98.7 66.3 43.8 97.8 100 67.9 29
FPR 3.6 14 37.5 8.9 2.6 1.1 2.6 0.7

corr  69.6 91.9 32.1 48.8 89.9 97.5 64 71.8

Studies 5 and 6 investigate the performance of the proposed method in multivariate
response models. As far as we know, it seems no apparent competitor in such scenarios.
The results are summarized in Table 2, and we can see that our proposed method works

fine even if the response is multivariate.

Table 2: Summary of Studies 5 and 6. The mean, averaged over 200 datasets, are reported.
All entries are multiplied by 100.

n =100,p =150 n =200,p =150
Study 5 Study 6 Study 5 Study 6

Our method TPR 99.8 98.9 100.0 100.0
FPR 0.7 2.7 0.4 1.7
corr 95.1 92.5 98.2 95.2
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4.2 Real Data Analysis

In this part, we evaluate the performance of our proposed method in a real dataset about
riboflavin (vitamin Bs) production with Bacillus subtilis, which is publicly available in
the R package hdi. This dataset was analyzed by Dezeure et al. (2015), Hilafu and Yin
(2017), and Shi et al. (2020) for high-dimensional analysis. It consists of a single real-valued
response variable which is the logarithm of the riboflavin production rate and p = 4088
predictors measuring the logarithm of the expression level of 4088 genes. The purpose is to
systematically search genomic features that contain sufficient information for the riboflavin
production rate prediction. We center the response and standardize all the covariates before
analysis.

The sample size n = 71 is small compared with the covariate dimension p = 4088. To
handle the ultrahigh dimensionality, we preselect the most significant 100 genes via the
sure independence screening procedure based on the distance correlation (Li et al., 2012).
Following the work of Hilafu and Yin (2017), we split the data into a training set of 50
samples and a test set of 21 samples. The training set is used to select features and estimate
the central subspace. To evaluate the performance in the test data, we fit a linear model
with the estimated single index as the predictor, rather than building a complex model.

Figures 1(a) and 1(b) show a good fit for both Tan et al. (2018b) and our method in
the training set data. Specifically, the method of Tan et al. (2018b) selects 23 genes with
the adjusted R? 78.7% while our proposed method only selects 21 genes with the adjusted
R? 76.7%. However, the predicted RMSE of Tan et al. (2018b) and our proposed method
in the test set data are 2.192 and 2.068, respectively. The scatterplots of the actual and
predicted values for the 21 test samples are displayed in Figures 1(c) and 1(d), for these
two methods, respectively. Hence, in terms of prediction, our method is slightly better

than that of Tan et al. (2018b).
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Figure 1: Panels (a) and (b) are the summary plots of Tan et al. (2018b) and our proposed
method in the training set, respectively; Panels (c¢) and (d) are the scatterplots of the actual
and predicted values for the testing samples, for the two methods, respectively.
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5 Conclusion

In this article, we develop an MM-LADMM algorithm to handle large p and small n scenar-
ios for single index regression, extending the HSIC based method of Zhang and Yin (2015)
to adapt to high-dimensional settings. The proposed approach estimates the basis of the
central subspace and performs sufficient variable selection simultaneously. Compared with
other high-dimensional sparse SDR methods, our method requires much weaker conditions.
To be specific, it requires very mild conditions on X and no particular assumptions on Y |X
or X|Y while retaining the model free property. The simulation studies showed that our
method is highly efficient and stable in both n > p and n < p scenarios.

There are several possible prospects for future research. It may be of interest to extend
the proposed method to multiple-index models, which is absolutely not trivial since it may
need a completely new algorithm design. Moreover, the current computational bottleneck of
our method is on solving the majorization step, which bears a computational complexity of
O(p?) per iteration. Thus, it will be also interesting to redesign a highly efficient algorithm
such that the proposed method is scalable to accommodate large-scale data. Finally, the
asymptotic properties of the proposed estimate, which are not covered in the current article,

are deserved to investigate in the future.

A Technical Derivations

A.1 Proof of Proposition 3.1

Proof. We first compute the gradient function V f(II). Recalling the definition of f(IT),

we directly have
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Noting that C € R™™ with ¢;; = exp(—(IT, Zy;) /2)Li; and X = [X;, ..., X,]T, we have

1 n
Vi) = @Z%Zij
ij=1

1
= 53 2 (X = X)X = X;)"
ij=1
1 < T T T T
= 33 D o (XX XX - XX - XX])
ij=1

n

1
= - D o (XX - XX])
i,j=1

1 :
— EXT (diag(C1,) — C) X,

which establishes the first part of Proposition 3.1. Next, we prove the Lipschitz continuity
of Vf(IT) over the bounded set D = {IT € M : tr(X/2I1%"/2) < 1}. For any IT € D and
II e D, by the triangle inequality, we obtain

IV f(IT) = VF(II) ||

R~ (I1,Z;;)\ - R~ I1,Z) \ -
5ﬁ§:“pc“—7L)hﬂU‘55§3“P(‘ 7 )Lt

i,j=1 i,j=1

S o > 1Ll Zillr [exp (—T) — exp (—T

ij=1

1 & - (T1 — 11, Zy;)
o2 > 1Ll 1Zi5]le — 5

Y

ij=1

where the last inequality holds since |e* — e¥| < |z —y|, for any y < x < 0. Further, by the
Cauchy-Schwartz inequality, we know |(IT — II, Z;;)| < ||IT — II||g||Z;;||r. Thus, we finally

get
- I - N
VI = VID[e < Tz > L1125 13T — T |
ij=1
> i | Ligl| 23

- L ([
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where Y1 |Li;|||Zi;]|2/ (4n?) is a constant, which verifies the claim. O

A.2 Linearized Alternating Direction Method of Multipliers Al-

gorithm for Solving (3.7)

To implement the LADMM algorithm, we rewrite the subproblem in formula (3.7) as

2

+ ATl + 00 - Tte(y>1),

L 1
min = HH— [H(T) — sz(H(T))] ]

II,HeM

st.  SVIInt? — H.

This is equivalent to minimizing the following scaled augmented Lagrangian function,

2

+ ATy + 00 - Tige(rn)>1)
F

£,(T1,H,T) :g HH _ {Hw _ %W(Hm)]

+ LS s — H+ T,

where p is a small constant and I is the dual variable. The LADMM algorithm minimizes
the augmented Lagrangian function by alternatively solving one block of variables at a

time. In particular, to update II at the j-th iteration, we need to minimize

Llg_lgo L ol |
oo g

AT+ D SVPIIS 2~ H 4 17,
F

where H; and TI'; are the j-th estimates of H and I, respectively. However, there is no
closed-form solution for the above minimization problem. To tackle the difficulty, Fang
et al. (2015) proposed to linearize the quadratic term in the above problem by applying a

second-order Taylor expansion. Following their work, we obtain the update for IT:

2

+ ATy
F

IT;;, = argmin L HH — {H(T) — lVf(l'I(r))}
mem 2 L

+ p(IT — 10, SIS — 52 (H, — 1)8'%) + 2T - I .
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A

As suggested by Fang et al. (2015), we pick 7 > 4pA2__ (2) to ensure the convergence of

max

the LADMM algorithm. The above iterate can be written in the more familiar notation:

. L+T T pe A pe A
T, = arg min = |- { — 1, - 28,3 4 28w, - )52
L Vf(H(T)) 2
I — —] A TT
+ L+T [ L F + H “1

which has the closed-form solution

I =

T . . . . Vv (11 Y
P P 172 1/2} L (r) (IT*)
ft [H' =2ILY 4+ =¥7*(H, -T;)% + II

where Soft(-,-) implements the element-wise soft-thresholding on a matrix A = (A4;;):
Soft(A,b) = {Soft(A;;,b)} = {sign(A;;) max(|A;;| — b,0)}. Next, the update of H can be
obtained as

1 ~ A~
Hj;, = argmin _|H- (21/2Hj+121/2 + )l
He M, tr(H)<1

which has a closed-form solution according to the following proposition.

Proposition A.1. Let F = {H € M : tr(H) < 1} and Pr(W) = argming.» ||H —
W|%/2. If W has the singular value decomposition W = >0 wuu, , then Pr(W) =

P

(i — 0w

7

satisfying > 5 (w; — 0)4 < 1.

where (w; — 0%)y = max(w; — 0*,0) and 0% is the minimum value

The above proposition follows directly from Lemma 4.1 in Vu et al. (2013), Proposition
10.2 in Gao et al. (2017), and Proposition 1 in the Appendix of Tan et al. (2018b). Thus,
by Proposition A.1, we have

H,,, = Pr(ZY0,, 32 4+ 1)),
Finally, we update the dual variable by

Ly =T, + 3L, 372 — Hy
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