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Abstract

A substantial body of work in the last 15 years has shown that expectiles consti-
tute an excellent candidate for becoming a standard tool in probabilistic and statistical
modeling. Surprisingly, the question of how expectiles may be efficiently calculated
has been left largely untouched. We fill this gap by, first, providing a general outlook
on the computation of expectiles that relies on the knowledge of analytic expressions
of the underlying distribution function and mean residual life function. We distinguish
between discrete distributions, for which an exact calculation is always feasible, and
continuous distributions, where a Newton-Raphson approximation algorithm can be
implemented and a list of exceptional distributions whose expectiles are in analytic
form can be given. When the distribution function and/or the mean residual life is
difficult to compute, Monte-Carlo algorithms are introduced, based on an exact calcu-
lation of sample expectiles and on the use of control variates to improve computational
efficiency. We discuss the relevance of our findings to statistical practice and provide
numerical evidence of the performance of the considered methods.

MSC 2020 subject classifications: 62G05, 62G08, 60E05, 90C25
Keywords: Control variates, Exact computation, Expectiles, Monte-Carlo sampling,
Newton-Raphson method, Quadratic convergence.

1 Introduction

Expectiles are least squares analogs of quantiles and define an important probabilistic
concept that characterizes a probability distribution just as the quantile function does. The
expectiles of a given probability distribution x4 on R, endowed with its Borel o—algebra,
are obtained by minimizing the following asymmetric squared loss problem:

& = argmin / (e (= 0) =, (2))pa(de), with 1,(2) = |7 — Ly 2% and 7 € (0,1). (1)
0ER R

The expectile &, is well-defined, finite and unique for each 7 € (0,1) if and only if 4 has a
finite first moment, i.e. [ [z|u(dz) < co. In this case, & /o = [  p(dz) is the expectation
of u, and two probability distributions with finite first moment are equal if and only if they
have the same expectiles: the latter property was first noted by Newey and Powell (1987),
for sufficiently regular distributions. The original motivation for the use of expectiles was
to test for homoskedasticity and conditional symmetry in linear regression problems.
The concept of expectiles has recently gathered substantial momentum for a number
of reasons, including the fact that they induce the only law-invariant, coherent (Artzner
et al., 1999) and elicitable (Gneiting, 2011) risk measure, and they also define the only



M —quantiles (Breckling and Chambers, 1988) that are coherent risk measures, see Bellini
et al. (2014) and Ziegel (2016). Expectiles can thus be viewed as canonical risk measures
for their ability to simultaneously abide by the diversification principle in finance and
insurance and to be backtested in a straightforward manner. For these reasons and other
probabilistic merits, including the fact that they account for both the frequency of tail
observations and their values, unlike quantiles which only rely on frequencies, as well as
various angles of interpretation they benefit from (see nine of them in Philipps, 2022),
considerable effort has gone into expectile estimation and inference over the past 15 years.
Prominent among many statistical works are the contributions of Taylor (2008), Kuan
et al. (2009) and Sobotka and Kneib (2012) from a methodological perspective, Holzmann
and Klar (2016) and Kratschmer and Zahle (2017) for deep asymptotic results about the
estimation of expectiles of fixed order 7, or Daouia et al. (2018, 2020, 2021) and Girard
et al. (2021) for the estimation of tail expectiles, obtained as 7 1 1, in heavy-tailed models
that describe well the tail structure of many actuarial, financial and environmental data.

One key difficulty in working with expectiles is that they are rarely available in closed
or analytic form. Indeed, it is a simple exercise to show that the loss function giving rise
to the expectile &; in (1) is differentiable, so that & must cancel the first derivative of this
loss function. As a consequence, the Tth expectile is the unique x satisfying the equation

ple) =1—7, with p(z) = /

e - (= ) oy ), m = /Rtu(dt) — i (2)

It follows that, as observed by Jones (1994), expectiles are themselves quantiles of the
transformed distribution function E defined by E(z) = 1 — ¢(x)/(2¢(z) + £ — m), built
on the function ¢ which is very closely related to the so-called mean residual life function.
The issue at play here is that while E is explicit in a wide range of commonly used
probabilistic models, it is very often impossible to invert in closed or analytic form, even if
the distribution function of y can be inverted to produce explicit quantiles. An instructive
example is the Pareto distribution with extreme value index v > 0, having distribution
function  +— 1 — 2~/ for & > 1, for which characterization (2) leads to the equation

(1= =7 = (=gt —aer =1 =0,

This equation cannot, in general, be solved in closed form for every 7 € (0,1): for example,
when 1/ is an integer greater than or equal to 5, it is well-known (as a consequence of
Galois theory) that it cannot be solved in radicals. By contrast, it is immediate that the 7th
quantile of this Pareto distribution is ¢, = (1—7)77. It is even more complex to work with
expectiles in other examples such as the Weibull distribution, whose quantiles are known in
simple closed form but whose mean residual life function can in general only be expressed
in terms of the upper incomplete gamma function. Despite these difficulties, the question
of how to compute expectiles for a given distribution has been left largely untouched, even
though it is crucial when it comes to assessing the quality of expectile estimation methods
in practice. The state of the art in expectile computation appears to be mainly based
on solving Equation (2) through either a bisection search, implemented in the R package
expectreg (Otto-Sobotka et al., 2022), or, in the R package ExtremeRisks (Padoan and
Stupfler, 2020), using quasi-Newton techniques that are only valid for a very small set of
distributions. When the function ¢ is intractable, the approach in ExtremeRisks resorts
to naive Monte-Carlo sampling together with a quasi-Newton method.

Our contribution is to provide more efficient strategies for the calculation of expec-
tiles. We first attack this problem by reformulating Equation (2) as a fixed point equation
(called identification equation in Z-estimation) involving the function ¢. We then show



that, for discrete distributions, the function ¢ is piecewise linear with explicit coefficients,
so that the identification equation consists of a collection of linear equations, one and one
only of which has a solution. As such, expectiles of a discrete distribution can always
be exactly calculated. Then, we note that for distributions having a continuous density
function with respect to the Lebesgue measure, the identification equation amounts to
finding the unique root of a convex function. This motivates a Newton-Raphson algo-
rithm which is readily implemented when ¢ is explicitly determined or at least can be
accurately calculated using standard software: this encompasses, among many others, the
logistic, Weibull and Gaussian distributions, as well as their mixtures. We show that this
Newton-Raphson algorithm has quadratic convergence and will therefore converge faster
than existing methods, whose convergence is linear. We also show that, in the challenging
scenario of extreme expectile calculation for heavy-tailed distributions, the relative error
of the Newton-Raphson approximation converges quadratically, which provides the right
scale on which to measure the accuracy of the Newton-Raphson algorithm for tail expec-
tiles. We moreover discuss a list of exceptional continuous distributions whose expectiles
can be expressed in closed or analytic form, by solving low-degree polynomial equations
or transcendental equations derived from (2). In doing so, we expand upon preliminary
work undertaken by Koenker (1993), Zou (2014) and Bellini and Di Bernardino (2017),
where only a handful of such distributions appeared. These expressions are useful in or-
der to check that expectile computation algorithms are correct, and in certain statistical
simulation contexts where the exact value of the expectile must be known.

For continuous distributions whose distribution function and/or mean residual life func-
tion is difficult to compute, we provide another angle of attack by revisiting Monte-Carlo
computation. More precisely, if one can simulate independent data points X1, ..., X, from
the distribution p, then sample expectiles derived by solving (1) for the empirical distribu-
tion fi, = % Yo, dx, (where dx;, is the Dirac probability mass at X;) are nothing but least
asymmetrically weighted squares (LAWS) estimators of the true expectiles, known to be
consistent and asymptotically normal under reasonable conditions. We first leverage the
fact that these LAWS estimators are expectiles of a discrete uniform distribution, in order
to show that they can be exactly calculated, therefore bypassing the use of iteratively
reweighted least squares or quasi-Newton methods for their calculation, which is prevalent
in the state of the art. We then show that if the expectation m of the distribution is
known, the performance of this Monte-Carlo approach can be substantially improved by
using the expectation as a control variate. When the target expectile is extreme, lying in
the right tail of u, we construct an analogous algorithm based on the use of a suitably
chosen extreme quantile as control variate. We quantify the improvement in the variance
of Monte-Carlo sample expectiles in both settings. We illustrate the performance of these
algorithms in examples spanning compound Poisson processes, time series and stochastic
differential equations, all chosen for their relevance to financial and actuarial practice.

The paper is organized as follows. We start by investigating the calculation of expectiles
using their characteristic equation in terms of the mean residual life in Section 2. We
then introduce and study Monte-Carlo algorithms based on the LAWS estimator of the
target expectile in Section 3. Both sections are illustrated by theoretical and finite-sample
examples of application of our results and algorithms. We conclude with a discussion of
our work and potential extensions in Section 4. Appendix A contains all mathematical
proofs, Appendix B provides the details of the calculations for some of our examples, and
Appendix C gives a catalog of expectile functions of continuous distributions, including
a list of exceptional cases where expectiles can be found in closed or analytic form. Our



methods have been incorporated into the R package Expectrem!.

2 Expectile computation with the mean residual life

Let p be a probability measure on R endowed with its Borel oc—algebra, and assume that
p has a finite first moment, i.e. [p |z[u(dz) < co. The characterization of & (where
7 € (0,1)) as the critical point of the loss function in (1) leads to (2), or equivalently to
21 —1
1—7
This means that &, is the unique solution of a fixed point equation or, equivalently, the
unique root of the function

p(&) +m =&, (3)

2r—1
1—71

gr T > o(z) +m—z.

We note that, in this expression, the function ¢ is equivalently rewritten as

f]Rt]l{t>a:} p(dt) _ )
p((@, +00))

The quantity F(z) = u((z, +00)) is nothing but the probability P(X > ) if X is a random
variable having distribution u, 7.e. the survival function associated to u, and

1) Jatlise n(d)
al(w,+00)) ~ pl(a, +00))

is the so-called mean residual life e(x) above level z, obtained by subtracting x to the
expected shortfall ES(z) = E(X | X > x) (also called conditional Value-at-Risk in actuarial
mathematics). In other words, the functions ¢ and g, have a closed or analytic form as
soon as the survival function and mean residual life/expected shortfall related to p do.

Solving the nonlinear equation (3) in closed or analytic form is in general impossible,
even if ¢ and g, can be written in closed or analytic form. For discrete distributions,
however, the functions ¢ and g, are in fact piecewise linear, which makes it possible to
compute expectiles exactly, and also to give explicit formulae for the expectiles of a number
of classical distributions. This is the focus of the next section.

P(@) = [ 1100y () = (2, 459)) = (. +0) (

—r=EX|X>z)—z=EX —z|X >z) =e(x)

2.1 Discrete distributions: Exact computation

A general result for the computation of expectiles of discrete distributions is the following,
where we allow the set of indices I to be of the form {1,...,n} (distribution on a finite
set), N (for one-tailed discrete distributions with countable support) or Z (for two-tailed
discrete distributions).

Theorem 2.1. Assume that p is a discrete distribution with finite first moment, supported
on the set {a;, i € I}, where the a; are arranged in increasing order, with probability mass
function p; = u({a;}) > 0 for any i € I. Fiz 7 € (0,1). Then there is a unique index
i = i(7) such that the inequalities

> ki Prlai — ay) -
Y ke k(@i — ag) + > ps ;i pr(ak — ai) —

Zk<i+1 pk(az’+1 - ak)

<
Zk‘<i+1 pk(aiﬂ - ak:) + Zk>i+1 pkz(akz - &i+1)

! Available on GitHub at https://github.com/AntoineUC/Expectrem
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hold. With this index 1,

T ksiPrak + (L =7) Y gipean (27 = 1) 3y pear + (1= 7) Yopeg Prak
T ksiPk+(1—7) qupk 2r =1 puipe+1—7

It should be noted that since the inequalities in Theorem 2.1 involve the tail probability
p((a;, +00)) = > 4o, pr and the tail mean ), pray of the distribution p, they can be
used to search for the relevant index ¢ = i(7), and therefore to give an explicit value of the
expectile & when the survival function and expected shortfall of the distribution p are
explicit. Even when this is not the case, one can always find the index ¢ = i(7) numerically
and therefore compute the exact value of &.

We draw two corollaries of Theorem 2.1. The first one deals with the case when the
support of p is finite with n elements, in which case there are at most n — 1 inequalities
to check in order to calculate the exact value of the expectile.

& =

Corollary 2.1. Assume that pu is a distribution supported on the finite set {a;, 1 <i < n},
where a1 < ag < -+ < ay, with probability mass function p; = p({a;}) > 0. Fiz 7 € (0,1).
Then there is a unique index i = i(7) € {1,...,n — 1} such that the inequalities

Zk; 1pk( — ag) <r
Zk 1pk( - akz) + Zk:i-ﬁ-l pk(ak - ai) N

S prlaiv — ag)

< -
> ket Pr(a@ivt —a) + 370 o pr(ak — aiy1)
hold. With this index 1,
¢ — T2 i Prak + (1 — 7) > hey PrOk @@=k pka+(1—7) Zk 1 Pk
. —
Y e e+ (1= 7) Yy pi 2r—1)> Pk +1—

The second corollary focuses on the setting where the distribution is not only supported
on a finite set but is also uniform. This is relevant to expectile estimation in statistical ap-
plications, where only a finite sample of observations from a given distribution is available;
if the underlying distribution is continuous, then the (realized) empirical distribution of
the observations is discrete and uniform on the set of data points (see Example 2.6 below).

Corollary 2.2. Assume that p is the uniform distribution on the set {a;, 1 < i < n},
where a1 < ay < --- < an. Fix 7 € (0,1). Then there is a unique indexr i = i(T) €
{1,...,n — 1} such that the inequalities

- ‘
2:1(‘% — ag) <7< Z;c:l(ai-&-l —ay)
— < :
Z;c:l(ai —ag) + Zzziﬂ(ak —a;) 22:1(%'4-1 —ag) + ZZ:iJrz(ak — Git1)

hold. With this index 1,

T hmizr @k + (1 —7) 22:1 ak _ T D heiv1 @k + (1= 7) 22:1 ak
T(n—1i)+ (1 —7)i ™ — (217 — 1)i '

fﬂ':

We give below a few examples as applications of the above results.

Example 2.1 (Bernoulli and Rademacher distributions). For the Bernoulli distribution
with parameter p € (0,1), it immediately follows from Corollary 2.1 that

TP
2r—1p+1—-71

& = for any T € (0,1).
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In particular, the expectile function of the Bernoulli distribution with parameter 1/2 is
& = 7, and for the Rademacher distribution putting equal probability 1/2 on the values
1 and —1, the expectile function is {&; = (14 7)/2.

Example 2.2 (Distribution supported on a set with three elements). Let u be the proba-
bility distribution on {0, 1,2} with u({1}) = p and u({2}) = ¢, with p,¢ > 0 and p+¢ < 1.
Then, from Corollary 2.1,

™(p +29) forTgl—iq )
£ = @r-Dp+qg+1-7 l-p
T 2 1—
et (1=7)p otherwise.

2r—1)g+1—-71

Appendix B contains more general expressions when p is the distribution on a set of three
points {a, b, c} as well as an application to the distribution of the sum of two independent
Bernoulli random variables.

Example 2.3 (Uniform distribution on {1,...,n}). Fix n > 2. For the uniform distri-

bution on {1,...,n}, solving the inequalities of Corollary 2.2 is equivalent to finding the
unique index i € {1,...,n — 1} such that
i(i — 1) i(i + 1)

< .
i-D+m—-n—i+t1l) ~ i+ +m—i)(n—i—1)
This is equivalent to finding the unique solution (known to exist, by Corollary 2.2) to the
inequalities P(i +1) < 0 < P.(7) for i € {1,...,n — 1}, where P: is the polynomial
P (z) = (21 — 1)2® — {27(n + 1) — 1}z + mn(n + 1).
Straightforward calculations, found in Appendix B, then entail
([ mn(n+1)— (27 — 1)z ](|z-] + 1)
2mn — 221 — 1) |z, |
2r(n+1)—1—4r(l—71)(n+1)(n—1) +1
221 —-1) ’

when 7 # 1/2

& = with z, =

n(n+1)
2

Example 2.4 (Geometric distribution). For the geometric distribution with success prob-
ability p € (0,1), namely, u({k}) = p(1 — p)*~! for any positive integer k, the inequalities
of Theorem 2.1 read as

(L-p)—(=pi) . __ (A=p™—(1-p(i+1))

20l=p) =1 —pi) = " 2(1—p)* = (1-p(i+1))
Solving these inequalities is equivalent to finding the index ¢ > 1 such that h.(i + 1) <
0 < h,(i), where

when 7 =1/2.

he(z) = (27 = 1)1 = p)* = (1 = 7)(px — 1).
Straightforward calculations, found in Appendix B and involving the transcendental equa-
tion defining the main branch of the Lambert W function, reveal that

2r-DA-plla+pla)+1-7

T e At 1)

—p)l/p _ _
with z, = — — 1 wl— (1—-p)/Plog(l —p)2r —1 '
p log(1-p) P 1—r



The main branch of the Lambert function is available numerically in R using (for instance)
the gs1 package (Hankin et al., 2023), acting as a wrapper for the GNU Scientific Library.

Example 2.5 (Poisson distribution). For the Poisson distribution with parameter A > 0,
namely, u({k}) = e"* ¥ /k! for any nonnegative integer k, the inequalities of Theorem 2.1
are

iF\(i) — AF\(i — 1) (t+1)F\(i+1) — AF)\(7)

2GFNG) - MG — 1)) — (=N = S 2+ DEG+ 1) - @) — G+ 1)

where F)\(i) = ZZ:O %e"\ denotes the distribution function of the Poisson distribution,
which is readily calculated using the function ppois in base R. It follows that

T— (27 = )F\(ir — 1) (27 — 1)N'7 /!
T—(2r —1)Fy(ir) A <1 * Ted — (21— 1) ZT:O )\k/k:!> ’

ET:)\

where i, is the unique nonnegative integer ¢ such that

(27 — 1)(iF5(i) — AFx(i — 1)) = 7(i — \) > 0
and (27 — 1)((i + D)F(i +1) = AFA(1) —7(i +1— \) < 0.

Example 2.6 (Sample expectiles). Suppose that Xi,..., X, are independent random
draws from a distribution p having a continuous distribution function, and consider the
empirical probability measure [, = %Z?:l dx, where ¢, is the Dirac probability mass
at a. Then the 7th sample expectile is the 7th expectile of the empirical measure i, that

is,

Em = argmin/(m(a: —0) — () fin(dx) = argminz |7 — H{Xigg}’ (X; — 9)2.
oer  JR ber =

This is the so-called Least Asymmetrically Weighted Squares (LAWS) estimator of &-.
Since F' is continuous, there are no ties within the X; with probability 1, so that, according
to Corollary 2.2,

s _T D kit Xk + (L= 7) 2221 Xken

e ™ — (217 — 1)i
where X1, < Xo., < -+ < Xy, are the order statistics of the sample (X;,...,X,), and
i =1in(7) € {1,...,n — 1} is the unique index such that the inequalities
kzl(Xz:n an) S -

2;11 (Xi:n - Xk:n) + ZZ:Z'.H(Xk:n - in)
< Eazl(XiJrl:n - an)
> ket (Xt — X)) + ke o (Xien — Xi1:n)

hold. This means that, at the price of a numerical search for this index 4, the point es-
timate &, can be exactly computed. To the best of our knowledge, this had not been
noticed before in the statistical literature, with the preferred methods in R so far ap-
parently being either an iteratively reweighted least squares algorithm in the expectreg
package (Otto-Sobotka et al., 2022) or a quasi-Newton method via the optim routine using
the method="BFGS" argument in the ExtremeRisks package (Padoan and Stupfler, 2020).




Example 2.7 (Kernel expectile regression). Let (X1,Y7),...,(X,,Y,) be independent
random copies of a continuous random pair (X,Y) € R? x R. Let p, denote the condi-
tional probability distribution of Y given X = x (this is well-defined by disintegration of
probability measures on RP*1) and let F(-|x) be its distribution function. Let g be the
probability density function of X on RP and fix & € RP with g(x) > 0. Consider the
standard kernel estimator of F'(-|x):

1 " :B—Xi ~ 1 " QB—Xi
N 1y, ith Gn(z) = —— .
) 2 e K () with o) nh;K< i)

i=1

Fu(ylz) =

Here K is a kernel probability distribution function on RP and h,, is a (positive) band-
width, with g, being the Parzen-Rosenblatt estimator of g. Then the smoothed empirical
distribution iz, associated to Fj,(-|x) is discrete and its expectiles

£, n(@) = arg min / (15 — 0) — 1) Fimn (),
fcR R

called kernel regression expectiles (Girard et al., 2022; Daouia et al., 2023), can in fact
be exactly calculated, while the standard up to now in the literature seems to have been
restricted to Brent’s method via the uniroot function in R. Indeed, by Corollary 2.1, one
has

£ () = 7Y heiv1 K(® = X)) /Ton) Yiee + (1 —7) 22:1 K(( — X{gm))/Pn) Yien
T K (& = Xppen) /) + (L= 7) X4y K((& — Xpgen)/Pin)

where Xy, is the covariate value concomitant to the order statistic Y., (i.e. Xj.) = X

if and only if Y., = Yj), and i = iwn(T) € {1,...,n — 1} is the unique index such that
the following inequalities hold:

1 K (@ = Xjgang) /1n) (Vin — Yien)
hot K (@ = X)) /1) (Yien = Yien) + Y ohziir K (@ = Xpgen)) /) (YVien — Yien)
- et K (@ = Xipen))/Fin) Vi 1:n — Vi) |
> k=1 (@ = X)) /1) Vit — Yin) + 250 K((@ = X)) /o) Vien — Yi1n)

<rT

2.2 Continuous distributions: A Newton-Raphson algorithm

The computation of expectiles for a continuous distribution is in general more difficult,
and apart from a few exceptions, has to be done numerically. It is easy to show that, when
T < 1/2, the 7th expectile £, = &-(p) is linked to the (1 — 7)th expectile of the probability
measure v, uniquely determined by its values on half-lines as v((—o0,t]) = u([—t, +00)),
as & (pn) = —&—+(v). Therefore, we focus in this section on the case where 7 > 1/2 and
the distribution function F': x — p((—o0,z]) related to p is continuous.

Since p(z) = [ F(t)dt with F = 1 — F, the function ¢ is absolutely continuous
and nonincreasing, and so is the function g, whose unique root is &,. A simple idea to
calculate &; is then to use a bisection search. This is the current standard in the R package
expectreg (Otto-Sobotka et al., 2022), whose routines rely on a bisection search and
on a closed form of the function g,, or at least on the latter being written in terms of
standard special functions available in R. However, the reliance on a bisection search makes
these routines not only relatively slow, but also inaccurate for large 7, because interval
bounds for the bisection search are built a priori in the routines without possible change



by the user. The bisection search has also been recently paired with quantum computing
in Laudagé and Turkalj (2022). An alternative option, used in the ExtremeRisks package
for a very small set of distributions, is Brent’s method which, roughly speaking, pairs a
bisection search with a quasi-Newton method (Padoan and Stupfler, 2020), and converges
at a linear rate as the bisection search does.

A faster alternative is found by exploiting the fact that ¢ is actually convex, from
which it follows that g, is convex as well. A convergent approximation is then given by
the Newton-Raphson iterative method for the root of the equation g,(x) = 0:

L glan)  2r = D) + P ) + (0= m
et " gl(zn) 2r —DF(zp)+1—7 '

If 11 is the probability distribution of a random variable X, it is interesting to note that
the iterative algorithm can be rewritten as
(27 = DE(X1ix54,3) + (1 - 7)E(X)

2r—-1)P(X >z,)+1—-7

Tn+1 =

The approximation z, thus depends, like the target expectile &, on the values and fre-
quencies of tail observations from X.

The starting point xg of the algorithm can be any value smaller than &,. Since the
expectile function is monotonic, one should in practice at least choose zg > &£ /3 = m, the
mean of the distribution under consideration. This Newton-Raphson algorithm is readily
implemented when F and ¢ have a simple closed form or are efficiently calculated numer-
ically; a list of classical examples of continuous distributions with their respective values
of F and ¢ is provided in Table 2. Our next main result makes the rate of convergence of
the proposed Newton-Raphson algorithm explicit.

Theorem 2.2. Let u be a distribution with finite first moment and having a density
function f with respect to the Lebesgue measure. Fiz T > 1/2 and a starting point xo < &,
and assume that f is continuous on [xo,&;]. Then the Newton-Raphson sequence of iterates
() s nondecreasing, converges to & and satisfies

1 (27 —Dmaxp, ¢ f

VneN, |z —&| < = > xn—T2.
|Tns1 — & 21—7~|—(2¢—1)F(:1:n)‘ &

In particular

W p €N, [y — &| < <

1 @r-1)maxpg, ¢ f >2n_1 jp — &
21—7+ (21— 1)F(&) boosTh

One should of course expect the Newton-Raphson method to be much faster than the
bisection search and Brent’s method, since the former has a quadratic rate of convergence,
by Theorem 2.2, while the latter only have linear rates of convergence.

Among interesting cases, the following corollary concentrates on the situation where
the probability density function of y is in fact decreasing on a suitable interval containing
the target value, in which case one obtains a cruder, but often useful, control on the error
involving the hazard function of u.

Corollary 2.3. Under the conditions of Theorem 2.2, if f is moreover nonincreasing on
[0, &), then (z,) satisfies

1
VneN, |z,41 —&| < §h($n)|xn - §T|2

9



where h(z) = f(x)/F(x). In particular, if h(z) is bounded by ho on [xg,&;], then

Wp e, lonp -6l < (0] lnp-el

The next corollary examines the important situation when f is bounded. In this case,
one can find a very simple control on the error, which will actually be sharper than the
above control using the hazard rate for 7 not too close to 1.

Corollary 2.4. Under the conditions of Theorem 2.2, if f is moreover bounded by M on
[0, &), then () satisfies

(2r — )M

2
2(1_7_) |xn_€T‘ .

Vn € N') ‘xn-‘rl - 57" <

In particular

or — )M\ 2! .
H) pr—&IQ .

<
Vn,p € N, |$n+p £T| = < 2(1_7_)

An insightful consequence of Corollary 2.4 is on the computation of expectiles &, with
(2r—1)/(1—7) e N\ {0}, i.e. 7= =(m+1)/(m+2)=2/3,3/4,4/5,... [These levels
Tm make the factor in front of ¢(&;) in Equation (3) an integer.] Corollary 2.4 yields

m
Vn € N, |xn+1 7§Tm| < Esipf X |xn *ng|2'

Such simple bounds are useful in the definition of stopping criteria for the iterative algo-
rithm. For m =2 and 7 = 3/4 = 0.75, for example, we obtain

Vn €N, |z, — &34] <

2”
su X o — .
- < Rpf |z0 53/4|>

If the starting point g can be chosen such that |zg — &3/4] < 1/(2supg f) (for instance
following a preliminary evaluation of g, on a grid of step size 1/(2supg f)), then

2-%"
supg f

Vn €N, |z, — &3] <

In this situation the approximation x, is guaranteed to be accurate within 107 of the
target value &34 as soon as

n

1 _
S log klog 10 — log(supg f) ‘
log 2 log 2

This number of iterations grows logarithmically fast in the number of significant digits k.
We now highlight a few examples where this construction of the Newton-Raphson
algorithm for the computation of expectiles applies without difficulty. It should be noted
that if p is a mixture of distributions, say u = Z;-lzl pjj, where the probabilities p; add up
to 1, then, with obvious notation, F' = Z;-lzl p;Fjand p = Z;l:l pjpj. As a consequence,
if one can write a Newton-Raphson algorithm for each of the 1, then writing a Newton-
Raphson algorithm for any of their mixtures is straightforward. This principle is used
in Example 2.9 below and can also be applied to construct an expectile computation
algorithm for a mixture of Gaussian distributions, in conjunction with Example 2.11.

10



Example 2.8 (Logistic distribution). Consider the centered logistic distribution with
unit scale, having survival function F(z) = 1/(1 + €*) and probability density function
f(z) = e®/(1+e%)2. Straightforward calculus leads to ¢(x) = log(1+e~%), so the iterations
of the Newton-Raphson algorithm are

(1 4+ exp(xy,))log(1l + exp(xy)) — zpexp(zy)
T+ (1 —7)exp(zy) '

Tn4+1 = (27’ — 1)

It is readily shown that f/(z) = (1 —¢e%)/(1+¢€%)? < 0 on (0,00), so f is continuous and
decreasing on the positive half-line. The hazard function of the logistic distribution is given
by h(xz) = e®/(1 + e*), which is bounded above by 1. Then, according to Corollary 2.3,

1
|xn+1 - £T| < *|55n - £T|2
2

when 7 > 1/2, for any starting point zg € (0,&;).

Example 2.9 (Hall-Weiss distribution). The Hall-Weiss distribution has survival function
F(x) = (1/2)2=*+(1/2)z=* " for £ > 1, where a > 0 and 3 > 0; the case 3 = 0 produces
the Pareto distribution. We consider the case o > 1, which is necessary and sufficient for
this distribution to have a finite first moment. Obviously

1 1 1
Ve > 1, p(n) =5 <a1x” + Mgﬁ“laﬁ)

so the iterations of the Newton-Raphson algorithm are

a l-a a l1—a— 2(a=1)(a+p)+8
(27—1)<E:Jc,11 + g5ty ﬂ)+%(1—7)
( :

27 — 1) (an® + 20" P) +2(1 — 7)

Tn+l =

Since, for x > 1, 2f(z) = az™ "' + (a + B)z~* B~ f is clearly decreasing on (1,00).
Straightforward calculations yield the hazard function as

Vo > 1, h(ac):1<oz—|— b >

T P +1

Conclude, from Corollary 2.3, that when 7 > 1/2, whatever the starting point zo € [1,&;)
of the algorithm,

1 . b 1( 8 :
trn =61 < g (0 )l =P < g (a5 ) lon -6 P

2z, °

Example 2.10 (Weibull distribution). Consider the Weibull distribution with unit scale
and shape parameter 3 > 0, having survival function F(x) = exp(—2?), > 0. Here

o(z) = {r <1 + ;) —Ts <1 + ;)} —zexp(—2?), = >0,

where I';(a) = [3 t*"te~" dt is the lower incomplete Gamma function and I'(a) = ' (a) is
the Gamma function at a. The expectation of this Weibull distribution is m = T'(1+1/5),
and thus the Newton-Raphson iterative sequence is given by

B 2r—D{I'(1+1/8) — Fxﬁ(l +1/8)+ (1 -7 (1+1/8)
Tt = (27 —1) exp(—xﬁ) +1-—71 .

11



The incomplete Gamma function can be computed using pgamma and multiplying its out-
put by the (complete) Gamma function found through the gamma routine in base R. The
probability density function of the Weibull distribution is f(z) = B8~ exp(—z?), z > 0.
For 8 <1 the function f is decreasing on (0, 00), so Corollary 2.3 applies and yields, for
any starting point xg € [m,&;) = [I'(1 +1/8),&7),

55

(@1 — &l < Saon — &7 < Tagan — §T|2sg{r(lﬂ/ﬁ)}ﬁ‘llxn—&l?-

In particular, for the unit exponential distribution (with 8 = 1), |zp+1 — & < (1/2) |2y, —
&-12. For > 1, Corollary 2.3 cannot be used, but Corollary 2.4 applies because
max f(z) = B/ (B — 1)1-1/Be=(1=1/8),

>0

Using Corollary 2.4 then yields

[Zpi1 — &r] < 51/5(5 )171/136*(1*1/&‘% _ 57‘2.

B 2( )
It is worth noting that Corollary 2.4 does not apply when § < 1 because f is then not
bounded. It does however apply in the special case of the exponential distribution, thus
yielding

27 — 1
T 201-7)

Combining this with the inequality |x,11 — &| < (1/2)|z, — &-|?, which is more precise if
and only if 7 € (2/3,1), we obtain, for the exponential distribution specifically, that for
any starting point xo € [1,£&;),

| Tn — £T|2'

|-Tn+1 £T|

or — 1
2y — £, 17_7 if 7 € [1/2,2/3),

|xn+1 _€T| S
1 if 7€ (2/3,1).

Example 2.11 (Gaussian distribution). Consider the standard Gaussian distribution with
density function ¢ : x +— (2m)"Y2exp(—22/2) and distribution function ®. A simple
calculation yields p(z) = ¢(z) — z(1 — ®(x)), so the Newton-Raphson iterations are

(27 — Do(xn)
— 271 = 1)® ()

Tnt+1 =

The functions ¢ and ® can be computed using, for example, dnorm and pnorm in base R.
Since ¢ is decreasing on the positive half-line, Corollary 2.3 applies and provides, when
7 > 1/2 and for any starting point z¢ € (0,&;),

1—®(x)

1 9 . . .
< Ty — &7 with r(z) = ————= = Mills’ ratio.
2r(x )’ | (@) o(x)

Using the inequality 1/r(z) < (x + v4 + 22)/2 due to Birnbaum (1942), we find

|l'n+1 €T|

— |z

4 n
We illustrate how Corollary 2.4 leads to a better control for moderately large values of .
Since ¢(x) < 1/+/27 for any z, we obtain from Corollary 2.4 that

| &l < 21 —1
T - -
n+1 — ST _2 (1_7_) /—271_

12
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Since, for 7 > 1/2, (27—1)/((1—7)v27) < lifand only if 7 € [1/2, (1+v27)/(24+V27)] =
[1/2,0.778], the latter bound is more precise than the former at least when the Gaussian
expectile to be computed is smaller than the “third expectile-quartile” &3 /4.

When the target level 7 tends to 1, the quantity

(27 —1) max[xoﬁ} I

1
21— 7+ (2r - 1)F(&)

appearing in Theorem 2.2, diverges since its denominator tends to 0 as 7 T 1. One can then
expect that the convergence of the Newton-Raphson method for the calculation of extreme
expectiles is typically slower than for central expectiles, and the bounds in Theorem 2.2
are less useful for extreme expectile calculation. The intuition here is that, at least for
unbounded distributions, measuring the quality of the approximate solution x, of the
extreme expectile computation problem on the standard scale is too difficult, because the
target value & will be very large. We conclude this section with a result showing that,
when p is a heavy-tailed probability distribution, the right scale on which to measure the
accuracy of the Newton-Raphson approximation of extreme expectiles is the relative scale.

Theorem 2.3. Under the conditions of Theorem 2.2, if f moreover fulfills the von Mises
condition xf(x)/F(z) — 1/v as x — oo, where v € (0,1), and if xo > (1 — ¢)&, for some
e >0, then (z,) satisfies

n 1 —1 n 2
V?’LEN, Tntl —1‘ < <(1—5)_1/7_1/’y+r(7—)> xi_l
&r 2 &
where v(1) = (T, u,€) = 0 as 7 1 1. In particular
Tyt 1)y —1 21, 2n
vn7p S N7 g b - 1’ S <(1 - 5)71/7717 + 7'(7—)> ?p - 1

One can give an asymptotic equivalent of the function r using so-called second-order
properties of F in a neighborhood of infinity and an asymptotic expansion of & as 7 1 1,
provided in Daouia et al. (2020). We omit this discussion for the sake of brevity.

An important benefit of having fast and accurate expectile computation algorithms
is that it allows one to construct expectile tables and draw the expectile function on
(0,1), just as one would construct quantile tables and draw the quantile function for
reference distributions. We give a few examples of expectile tables in Tables C.1-C.4
for the standard Gaussian, log-normal, Student and chi-squared distributions, as well as
graphical comparisons between quantile and expectile curves for these same distributions in
Figures C.1-C.4. In Table 1 below, we also illustrate the difference in computational time
when applying the Newton-Raphson algorithm to the calculation of standard Gaussian,
chi-squared, log-normal and Student expectiles compared to pre-implemented routines
part of the expectreg package in R (Otto-Sobotka et al., 2022). It is readily seen that
the Newton-Raphson algorithm is typically four times faster than the methods from the
expectreg package. The gap in performance decreases as one approaches the right tail of
the distribution: this is due to the fact that the starting point from the Newton-Raphson
is set to be the mean of the distribution, which in this case is far from the target value. We
also note that in two instances (log-normal and Student with 2 degrees of freedom), the
default current implementation of the expectreg routines (version 0.52) failed to converge
to the expectile at level 7 = 0.9995, the reason being that the target expectile lies outside
the pre-specified bounds for the bisection search employed in these routines.
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2.3 Continuous distributions: Exceptional cases
2.3.1 Closed-form expressions through low-degree polynomial equations

Equation (3) is a nonlinear equation whose solution generally does not exist in closed form.
An interesting subproblem is to consider this equation when it is in fact polynomial, which
typically (but not exclusively) happens when the function ¢ is a rational function. Then,
if the resulting equation is polynomial with degree < 4, a solution can always be found
in closed form. When the degree is 3 or 4, this can be done using the Cardano or Ferrari
formulae, which we recall in Appendix B. We explain below in more detail how this idea can
be used in a few examples; the distributions we consider are all heavy-tailed with extreme
value index 1/4, representing the borderline situation where a fourth moment exists. The
existence of a fourth moment is important in a number of problems, including for showing
the asymptotic normality of maximum likelihood estimators in time series (Brockwell
and Davis, 1991; Francq and Zakoian, 2004), and the index 1/4 is sometimes considered
a reference level for exploratory extreme value analysis (del Castillo et al., 2019). An
expanded list of continuous distributions for which expectiles can be written in closed
form is found in Tables C.5, C.6, C.7 and C.8.

Example 2.12 (Student distribution with v = 4 degrees of freedom). Consider the Stu-
dent distribution with v degrees of freedom, having probability density function

(v +1)/2) A
) = o) (” >

When v = 4, one finds (see Appendix B for further details)
() 1(a¥+2 )
r)==-|————1x].

4 2\ Va2 +4

(21 —1)?
7(1—7)

This is a biquadratic equation, leading to {2 = —2 + 1/4/7(1 — 7) because £2 > 0, and
then

, ¢ €R.

Equation (3) then becomes

&7 +4€2 - =0.

& =sign(2T — 1) _ 2.
T(1—1)
In general, the distribution function and mean residual life function of the Student distribu-
tion involve the hypergeometric function. It is not hard to see that, while the distribution
function and mean residual life function can in fact be written in closed form when v
is an even integer, resulting in a polynomial equation characterizing &;, only the cases
v € {2,4,6} result in an equation of degree 4 or lower.

The expectiles of the Student distribution with v = 2 degrees of freedom (Koenker,
1993), the uniform distribution (see Example 3.1 in Bellini and Di Bernardino, 2017), the
Pareto distribution with o = 2 (see Example 3.6 in Bellini and Di Bernardino, 2017) and
the Dagum distribution (with survival function F(z) = 1 — (1 +2~%)7#, y > 0) with
a =2 and 8 = 1/2 can also be found by solving a quadratic equation. For the Student
distribution with 4 degrees of freedom the equation is actually biquadratic.
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Example 2.13 (Fisher distribution with (4,4) degrees of freedom). The Fisher distribu-
tion with degrees of freedom vy > 0 and v, > 0 has density function

(v1/va)"/?

A7) /2 1+ vix/v _(”1+V2)/2, x> 0,
B/ (L)

flz) =

where B is the Beta function. In the specific case 11 = vy = 4, one finds p(z) = (3z +
2)/(z + 1) for x > 0, and m = 2. Equation (3) is thus equivalent to the cubic equation

3 37 2T

Straightforward calculations involving Cardano’s method (see Appendix B for details)

then yield
o T 51 1-27 I 1-27 £ <1/9
V1i—7 \/+V 1—7'+ V 1—7 if 7 <1/2,
1 1-—
1TTCOS<3aI“CCOS< TT>> if 7 >1/2.

Other examples obtained through solving cubic equations include the Beta distribution
with (o, 8) = (1,2) or (2,1), the triangular distribution (obtained as the convolution of
two standard uniform distributions), the Hall-Weiss distribution with & = 2 and § = 1,
and the Pareto distribution with extreme value index v = 1/3 and v = 2/3 (the latter
using the change of variables z; = /&;).

T

Example 2.14 (Pareto distribution with extreme value index 1/4). The Pareto distribu-
tion with extreme value index v > 0 has survival function F(z) = z~'/7 for z > 1. This
distribution has a finite first moment when v < 1, and since ¢(z) = yz'~1/7/(1 — ~) for
x >1and m=1/(1 — ), Equation (3) leads to

(1= =7 = (1= et =427 1) =0,

When 7 = 1/4, this is the quartic equation &2 4+ b€3 + c£2 + d¢, + e = 0, where b = —4/3,
c=0,d=0and e=(1-27)/(3(1 —7)). Ferrari’s method (see Appendix B) leads to

1 1 8 A 4 1 8\ 1

& == \/ﬂjt —2AT—+\/K+ 4=

2 9 3 13 9 9] "3
2\, + &

s| 1 =27+ 1 =27, /7% 5| 1—27—|1—=27]\/75
Ar = + ]

27(1— 1) 27(1 — 1)

where

Other distributions leading to closed-form expectiles through solving a quartic equation
are the Beta distribution with (o, 8) = (2,2), (3,1) or (1, 3), the Fisher distribution with
(v1,v2) = (4,6) or (6,4), and the Hall-Weiss distribution with («, 5) = (3/2,1/2), (3,1) or
(2,2). A suitable change of variables (2, = /£;) also leads to a quartic equation for the
expectile of the Pareto distribution with extreme value index v = 3/4. For the Student
distribution with v = 6 degrees of freedom, the equation is actually biquartic.
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2.3.2 Analytic expressions through transcendental equations

The above distributions, whose expectiles are obtained by solving a polynomial equation,
are closely related to the Pareto distribution, either because they are heavy-tailed, or,
in the case of the Beta distribution, because it can be transformed into a heavy-tailed
distribution in a simple manner: if X has a Beta distribution, then 1/(1— X) has a heavy-
tailed distribution. The purpose of this section is to highlight a couple of distributions
closely related to the exponential distribution whose expectiles are in analytic form. This
builds upon earlier work of Bellini and Di Bernardino (2017), who showed in their Example
3.2 that expectiles of the exponential distribution may be expressed using the Lambert W
function. It is then not hard to show that this is also the case for the Laplace distribution
(also called “double exponential distribution”). We discuss below the cases of the Inverse
Gamma distribution and the chi-squared distribution in detail.

Example 2.15 (Inverse-Gamma distribution). The Inverse-Gamma distribution with
scale parameter A > 0 and shape parameter o > 0 has density function

)\Oé

mx*afl exp(—A/z), = > 0.

fz) =

It has a finite first moment if and only if o > 1, in which case m = A\/(a — 1). In general,
the function ¢ depends on the incomplete Gamma function, but it has a remarkably simple
form when o = 2:

00 1/x
o(z) = / (y—x)f(y)dy = /0 M1 — zv)e Mdv = A — (1 — exp(—=\/z)), = > 0.

Equation (3) is thus exactly the transcendental equation

(27 — 1) exp (—;;) +7 <£; - 1> =0« (2; — 1> exp <£; - 1> = —27—; 1671.

Since A\/&; — 1 is by construction greater than —1, and since the right-hand side is, for any
7 € (0,1), greater than —e~!, one obtains the solution in terms of the principal branch of
the Lambert W function:

A

57' - 1+W(_27—T7_1€_1)'

Example 2.16 (Chi-squared distribution with v = 2 or 4 degrees of freedom). The chi-
squared distribution with v > 0 degrees of freedom has density function

T -t 22 Lexp(—x T
flz) = 2700 /2) exp(—x/2), = > 0.

When v = 2, this is nothing but an exponential distribution with A = 1/2, whose expectiles
involve the Lambert W function:

&r = % (1 +W (21T__Tle_1>> .

When v = 4, straightforward calculations yield ¢(x) = (z + 4) exp(—z/2) for x > 0 and
m = 4, leading to the equation

(27 = 1)(& +4) exp(—&7/2) = (1 = 7)(& —4) = 0.
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This is equivalently rewritten as

57' %—_ .
exXp 5 Z, =a,
7—8

where t = 2, s = —2 and a = (27 — 1)/(1 — 7). According to Mez6 and Baricz (2017),
the solution of this equation is & = 2W ( 2 2T*1>, where W (,) is the generalized

927 1-7
Lambert W function. Theorem 1 in Mez6 and Baricz (2017) provides a power series
expansion for this special function which may be used for a numerical implementation.

3 Monte-Carlo computation

When the distribution function related to j is continuous but the functions F and ¢ are
not explicit and their numerical calculation is difficult or unstable, a calculation of ex-
pectiles in analytic form is not possible and writing a Newton-Raphson algorithm that
performs well in practice is much harder. In this setting, if one can at least efficiently
simulate realizations from the distribution u, one may instead use Monte-Carlo compu-
tation. Suppose that Xi,..., X, are independent random draws from the distribution pu
having continuous distribution function F', and consider the empirical probability measure
fin = 1371 | 6x,. The results of Holzmann and Klar (2016) entail that the 7th expectile
Eml of the distribution fi,, i.e. the LAWS estimator of &, is v/n—consistent when p has a
finite second moment, and can be exactly computed (see Example 2.6). This provides a
first reasonable approximation for the target expectile &, when n is sufficiently large.

This Monte-Carlo computational approach can be further improved using very simple
devices such as control variates. Since expectiles extend the mean of a distribution, and
the latter is very often known exactly, it makes sense to set the mean m as a control
variate and seek the joint asymptotic behavior of the LAWS estimator &;,, and the sample
mean X, in order to find the linear combination Em + ¢(X,, — m) having the lowest
possible (asymptotic) variance. Define

() = [ (=01 0y (@), with then (o) = o (a).
It turns out that (see Corollary 4 in Holzmann and Klar, 2016)

\/ﬁ(én — & Xy —m) LN N((0,0),X) as n — oo,

as soon as u has a finite variance ¢ and puts no mass at &, where the 2 x 2 symmetric
matrix X is defined as

(1—7)%E((X — &) + (21 — D (&)
(1 =7+ (27 = 1)F(&))?
1-7E((X - &)%) + (2r — De@(&)

1—74+ 27 -1)F(&)

Y11=

9

and 222 = 0'2.

212=(

A straightforward calculation shows that

~ Y19 — ~ Yo
57',71 - TZ(Xn - m) = gr,n - ﬁ(Xn - m)
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is the asymptotically unbiased linear combination of Ern and X,, —m with lowest asymp-
totic variance, equal to X11(1 — $25/(X11322)). Of course, Y12 and gy are not known,
but are readily estimated by

a 1= x IS (x. & 24 (21 — NP(E R
Yi2n = B=7) X o 2 (i = &) ; (,\T Jon (Ern) and Yoz, = G2, where
1—74+ 21— 1)F,(&n)
52 Ly v \2 7 5N 5(k) 1< k
= =1 i=1

This leads to a further, practically feasible Monte-Carlo approximation of &, given the

control variate m as R
~ ~ Sion
gT,n - gT,n - EQ’H (Xn — m),

n

whose asymptotic behavior is established in the following result.

Theorem 3.1. Assume that u has a finite and positive variance o and let the X; be
independent random copies of a random wvariable X having distribution u. If u puts no
mass at & then

(1 - 7)’E((X — &)%) + (27 = e (&)
(1—7+@2r - DF(&))?

\/ﬁ(gﬂn - §T) i> N <O> (1 - R(Ta M)))

as n — 0o, where

i ((1 — T)E((X - 57')2) + (2T — 1)¢(2)(§T))2
o7 (1 7PE((X — &)7) + (27 — D@ (&) |

R(Ta N) =

The quantity ;C},n has the lowest asymptotic variance among all asymptotically unbiased
linear combinations of ET,L and X, —m. In addition, one has R(1/2,u) = 1, and if the
distribution function pertaining to p is continuous on [&r,,&r], for 0 < 1 < 1o <1, then
the function T — 1 — R(T, 1) is continuously differentiable on I = (71,T2), decreasing on
(0,1/2] NI and increasing on [1/2,1) N 1.

For continuous distributions, the variance reduction factor 1 — R(7, p) is therefore
monotonic and smooth as the target expectile deviates from the mean. It is not, however,
possible to give a simple expression of this variance reduction factor, unlike for Monte-
Carlo simulation of a quantile ¢, with the median as control variate. Indeed, as regards
the latter, when p has a continuous and positive density function f with respect to the
Lebesgue measure, a straightforward application of the joint asymptotic normality result
for several sample quantiles (see p.72 in Koenker, 2005) results in the asymptotic variance-
optimal and unbiased linear combination gr,, of ¢r, and @2, — q1/2 satisfying

il =) ¢ (0,7027) (1 mintr =),

For quantiles, then, the variance reduction factor is the explicit and universal number 1 —
min(7,1—7)/ max(r,1 —7). For expectile computation, even though no simple expression
of the variance reduction factor 1 — R(, u) is feasible, we shall illustrate that in typical
interesting examples, it is very small for 7 € [1/4,3/4]. This can already be visualized in
the toy example of the Fréchet distribution (where expectiles are known to a high degree

18



Fréchet expectiles Fréchet expectiles Fréchet expectiles

o
24 . 3 . E .
pai E 3 e :

; : 3

] e [ g8

v | 038" ) o | i g | 89!
= w;%s“ﬂ = gt s 3 i ;EH:M‘
o0 0% 0 ) "o, T 8 ? 1

s N AR R AR AR RN I prees s d¥ii N XL R R R 1}

2 o nm,w,w““‘w‘gis‘ 2 o ’v’v” Tt LT 2 o K P S IR A S R AR XA Py

E S < E 34 . u g 84 g

a 15.8!8:8,8,° ik YN 5 18,6 O roelyl B oo vy Tg e e ¢ O T AL

0 882 v R i S 684 s vy e B 0 1818 ' [T

"3“°‘°°saglllll;‘;g‘l A”“‘lllllﬁ;l “E""éééégigw‘:;l‘:;u
m o o bay )t
8 oLy 8 4 . 2 LI
3 A c . 3 §
H o 8.
i
o H
& & 4 2 M
° TTTTTTTT I I T I T I T I T I T T I I T I T T I T T IITTIToTT °© TTTTTTTT T I I T I T I T I I I T I T I I T T I T ITITTITTT =l TTTTTTTT I I T I T I T I T I T T I I T I T T I T T IITTIToTT
005 015 03 04 05 0.6 0.7 08 0.9 005 015 03 04 05 0.6 0.7 0.8 0.9 005 015 03 04 05 0.6 0.7 08 0.9
T T T
Fréchet expectiles Fréchet expectiles Fréchet expectiles
3 2
3
& 3 g
oo ¥
g
L%8 1 '
a8 | co B %l 8
o e8§ 83 s 3
0% g ? Tt Al
geddaet ¥l

o o R AR SRS EREENERIAY o

2 2 0 j . , £ o

£ £ 8 | pmeiigt £ 8

@ 7 0 0 B d

w w I U H b w

A“ VoS
Pl e -
@ L w0
2 s 2
i
'
.
o
8 8 o 3
° TTTTTTTT I I T I T I T I T I T T I I T I T T I T T IITTIToTT ° TTTTTTTT T I I T I T I T I I I T I T I I T T I T ITITTITTT =] TTTTTTTTT I I T I T I T T I T T I I T I T T I T T IITTITTTT
005 015 03 04 05 0.6 0.7 08 0.9 005 015 03 04 05 0.6 0.7 0.8 0.9 005 015 03 04 05 0.6 0.7 08 0.9
T T T
Fréchet expectiles Fréchet expectiles Fréchet expectiles
o
g
S
=

1.005

Estimate

Estimate

Estimate
1.000

0.995

0.96
0.990

TTTT T T T I T T T T T T T T T T T T T T T T oTTT
005 015 03 04 05 06 0.7 0.8 0.9 005 015 03 04 05 06 07 08 09

T T T

Figure 1: Example of the Fréchet distribution. Boxplots of ETn (green) and §~Tn (blue),
normalized by the true value &; calculated through the Newton-Raphson algorithm, for
7 € {0.05,0.10,...,0.95}. We take 1,000 Monte-Carlo replications of an independent
sample of size n = 1,000 (left), 10,000 (middle) and 100,000 (right), where v = 1/5 (top
panels), 1/4 (middle panels) and 1/3 (bottom panels).

of accuracy using the Newton-Raphson algorithm), see Figure 1. As a result, Monte
Carlo computations with the mean as control variate will generally drastically improve
upon vanilla Monte Carlo when the target expectile lies within what could be called the
“interexpectile range”, by analogy to the interquartile range.

Example 3.1 (Finite sums and products of random variables). Conceptually simple yet
interesting examples where simulation is straightforward but analytical computations may
be impossible are sums and products of random variables. As a toy example, let us first
consider the Irwin-Hall model with parameter d > 2, whereby p is the probability distri-
bution of the sum of d independent standard uniform random variables. The case d = 2
is the triangular distribution, whose expectiles are known in closed form (see Table C.5),
and for large d, the central limit theorem entails that the Irwin-Hall distribution is essen-
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tially the Gaussian distribution with mean d/2 and variance d/12. However, no simple

analytic expression is available for the function ¢ when d > 2, and as such, the calculation

of expectiles using the Newton-Raphson algorithm is well-nigh impossible. We display in
Z(d)

Figure 2 a comparison between estimated expectiles &7, using vanilla Monte-Carlo com-
putation and the estimates E(Td,l produced using the Monte-Carlo algorithm with the mean
m = d/2 of the Irwin-Hall distribution as a control variate, both on N = 1,000 replicated
independent samples of size n = 10,000. The Monte-Carlo method using the mean as a
control variate appears to be much more accurate than vanilla Monte-Carlo, with variance
reduced by a factor of about 10 at level 7 = 0.75. For d = 2, the Monte-Carlo estimates
are consistent with the closed-form expression in Table C.5. For large d, the Monte-Carlo
approach reassuringly recovers the expectiles of the Gaussian distribution with d/2 and
variance d/12.
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Figure 2: Example of the Irwin-Hall distribution. Boxplots of ( §Tn d/2)/+/d/12 (green)
and (£ — d/2)/\/d/12 (blue) for = 0.6 (left) and 7 = 0.75 (right). In both panels,
we take, from left to right d € {2,5,50}, and use 1,000 Monte Carlo replications of an
independent sample of size n = 10,000. The full red line is ({-(T)—1)/ m where & (T

is the expectile of the triangular distribution (known in closed form) and the dashed red
line is the expectile {-(G) of the standard Gaussian distribution (approximated via the
Newton-Raphson algorithm).

A more complex example that is relevant in insurance and finance is the computation
of expectiles for the stationary distribution of an ARMA-GARCH model. For the sake
of simplicity, we focus here on the ARMA(1,1)-GARCH(1,1) model: recall that the time
series (X;) follows an ARMA(1,1)-GARCH(1,1) model with mean 0 if

= ¢X¢_1 + 0g4_1 + &4, with e, = oy and 0752 =w+ 045?_1 + 50?_1, teZ.

Here ¢,0 € R, w > 0, a,8 > 0 and the 1 are independent, identically distributed,
nondegenerate, centered random variables with variance 1. It is well-known that a unique
non-anticipative strictly stationary solution to these ARMA-GARCH equations exists if,
for instance, ¢,0 € (—1,1) and o+ 8 < 1 (see, for example, Francq and Zakoian, 2004,
and particularly Equation (2.5), Assumptions (A2) and (A8) and p.612 therein). In this
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model, one may ask how expectiles of the stationary distribution of (X;) can be computed;
this is relevant for applications to long-term risk management, for instance when trying
to evaluate measures of extreme risks over dozens or hundreds of years. In doing so we
do not, of course, tackle the different problem of dynamic expectile computation, i.e. the
calculation of the expectile of X, given its past: this is essentially a trivial problem, since it
only requires the calculation of expectiles of the innovation distribution. Figure 3 compares
the performance of the vanilla Monte-Carlo algorithm for the computation of expectiles
of the stationary distribution of the (X;) with that of the Monte-Carlo algorithm using
the mean (which is zero) as a control variate, again on N = 1,000 replicated independent
samples of size n = 10,000, generated via the ugarchsim routine from the R package
rugarch (Galanos and Kley, 2022), from two ARMA(1,1)-GARCH(1,1) models having
standard Gaussian innovations. The improvement in terms of variability brought by the
control variate device still appears to be very substantial in this difficult setting where the
stationary distribution is heavy-tailed.
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Figure 3: Example of the ARMA(1,1)-GARCH(1,1) process. Boxplots of an (green) and
Em (blue) for 7 = 0.6 (left) and 7 = 0.75 (right). In model 1 we let (o, ) = (0.1,0.85) and
in model 2 we let (o, 5) = (0.85,0.1). Both models have ¢ = 0.9, § = 0.5, w = 0.001, and
the g4 are standard Gaussian innovations. In each setting, 1,000 Monte-Carlo replications
of an independent sample of size n = 10,000 were used.

Example 3.2 (Insurance premium calculation). For insurance companies, the calculation
of the premium paid by a policyholder is an important task: a premium that is too low
will threaten the company’s survival in the long run, while a premium that is too high will
be detrimental to the company’s competitivity on the open market. Adopting a model for
the sum of claim amounts of a policyholder at time ¢ is a necessary step before premium
calculations. A standard such model is the compound Poisson process

Ny
Cy = Z Xi,
i=1

where the X; are independent copies of a positive random variable X having a finite first
moment and (NV¢) is a homogeneous Poisson process with intensity A > 0 independent of

21



the X; (see for instance Asmussen and Albrecher, 2010). Given this model for the sum
of a policyholder’s claim amounts, representing its individual cost to the insurer, there
are several possibilities in order to compute a fair premium relative to the contract up to
time ¢t = T. A reasonable and widely used approach is the “principle of zero utility” (see
Chapter 3 in Dickson, 2016), defined as the solution 7 to the equation

Efu(m — Cr)] = u(0)

where u is a suitably chosen utility function. As pointed out in Bellini et al. (2014), the
choice of u(z) = (27 — )zl z<0y + (1 — 7)x leads to ™ = & = & (Cr), the Tth expectile of
Cp. For 7 > 1/2, the choice of premium 7 = &, = o.5(1+{27—1}) is thus a particular case
of the principle of zero utility, with 27 — 1 > 0 being seen as the analog of the loading
factor appearing in the simple “expected value principle”. It is, moreover, immediate that
the mean of Cr is m = m(Cr) = ATE(X), which is known as soon as the expectation of
X is known. However, expressing the distribution of Cr in a tractable form is unfeasible
in general, even in very simple settings such as when the X; have a common exponential
distribution: in this case, the probability density function of Cp given that N > 0 involves
modified Bessel functions. N

As an illustration, we compute an approximation &, of & using our Monte-Carlo
approach with m as control variate, and we compare it with the vanilla Monte-Carlo
estimator &;,. Results, for N = 1,000 replicated independent samples of size n = 10,000
from C'r, are reported in Figure 4 on two models involving exponential and Pareto random
variables X;. The decrease in variability of the Monte-Carlo method when incorporating
a control variate is obvious: in particular, our calculations indicate, on the two proposed
examples, that the variance of {;, is reduced by a factor of more than 10 compared to

the variance of ETH at 7 = 0.75.

Insurance premium Insurance premium
o
1 & s | &
' . —o—
@4 o | [ —
D — '
g B = g Y 5
E & - ! 8 E o
g " Z - g &
w | 8 : .-
g - * E | N -
q = : — -
N - -
o | | | | | | | |
M1 MI1-CV M2 M2-CV M1 MI1-CV M2 M2-CV
1=0.6 1=0.75

Figure 4: Insurance premium example. Boxplots of @n (green) and £~T7n (blue) for 7 = 0.6
(left) and 7 = 0.75 (right). In model 1 we let the X; have an exponential distribution with
mean 100, and in model 2 we let the X; have a Pareto distribution with extreme value
index v = 1/4, rescaled to have mean 100. In both models, ' = 20 and A = 0.1, and 1,000
Monte-Carlo replications of an independent sample of size n = 10,000 were used.
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Example 3.3 (SDEs and option pricing). Let S;, 0 < t < T be the price of a financial
asset. Financial asset prices are often modeled by continuous-time stochastic processes, of
which a popular subclass are the solutions of stochastic differential equations (SDEs) of

the form
dsS; = rS;dt + \/I/»tSt dB;, Sy e R

where (B;) is a standard Brownian motion, r is the risk-free interest rate, and v is a
stochastic process representing volatility. These models are in turn used to determine the
price of financial derivatives, such as call options, that allow to buy the asset at time T
for a predefined strike price K. The payoff at time 7" of such a call option is given by the
random variable

Cr(K) = (St — K)l{s;>K3-

Under the risk-neutral assumption, using the equality E(S7) = Spexp(rT), the price
at time ¢ = 0 of such an option is Cy(K) = E(Cp(K))exp(—rT). This means that
determining the price to be paid for a call option requires computing the expected payoff
E(Cr(K)). This is in general impossible, unless one assumes, for instance, the unrealistic
Black-Scholes model (Black and Scholes, 1973) where 14 is constant, that is,

dSt = 7“51} dt + O'St dBt

where o > 0. In this model (S;) is a geometric Brownian motion and the price Cp(K) =
C’(()BS) (K) satisfies

2

log (%) + (T — %) T
oVT

log (%) + <T + %2> T
oV T

C{PI(K) = Syd — K exp(—rT)®

where ® is the cumulative distribution function of the standard Gaussian distribution.
Outside of this simple model, the Monte-Carlo approach for the computation of Cy(K)

simulates N paths (St(i)), for 1 <i <mn, of (S;) over the period [0,T] and computes

~ 1 & ;
Co(K) = ( S s - K)1{5¥)>K}> exp(—rT).

i=1

The solution S; can be simulated using an Euler-Maruyama-type scheme. By viewing the
strike price K as an expectile £, of St to be estimated (with 7 around 1/2), a vanilla
Monte-Carlo approach to the approximation of Cy(K) = Cp(&;) is

~ 1< N o~
CO(&T) = <’I’L Z(S’g“) - 5T,ﬂ)1{5¥>>gﬂn}> exp(—rT),
i=1

where (S:n is the Monte-Carlo estimate of & based on the Sgpi). Differently from that
technique, and since E(C7p(K)) = ¢(K) for p being the probability distribution of S,
Equation (3) yields the remarkable identity

1—7 1

5~ (& —E(S7)) and then Co(§;) = 57 (§ exp(=rT) — o).

B(Cr(¢,)) = -

An alternative option to the use of 60(57) is therefore

1

%7'1 (ng exp(—rT) — 50>

CN’O(gT) = 2
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where é,n is the Monte-Carlo estimate of &, using the known mean m = E(Sp) =
Soexp(rT) as control variate.

We compare the computation methods Co (&) and Co (&) on the Black-Scholes model,
where the true value CSBS) (&7) can be approximated to a high degree of accuracy using the
Newton-Raphson algorithm because St has a log-normal distribution, and on the Heston

model (Heston, 1993)
dSt = TSt dt + \/ZTtSt dBt, dyy = H(@ — Vt) dt + O\/lZdWh S() € R, vy € R

where k,0,0 > 0 and (B;), (W;) are two standard Brownian motions with correlation
p € (—1,1). Results are reported in Figure 5 for a number n = 10,000 of independent
simulations of (S7). As in Example 3.2, the variability of the Monte-Carlo method with
control variate is much lower than that of vanilla Monte-Carlo.
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Figure 5: Option pricing example. Left panel: Boxplots of CAZ'(()BS)(ST) / C(SBS) (&7) (green)
and C\59(¢,)/C P9 (¢,) (blue), in the Black-Scholes model with volatility o2 = 1. Right
panel: Boxplots of Co(¢,) (green) and Co(¢;) (blue), in the Heston model with x = 2,
0 =0.8,1v9=1, 02=0.01 and p = 0.5. In both examples, the time horizon is T = 1, the
risk-free interest rate is r = 5% = 0.05 and the initial condition is Sy = 100. We consider
the values 7 = 0.4,0.44,0.48,0.52,0.56, 0.6, and use 1,000 Monte-Carlo replications of an

independent sample of size n = 10,000 from Sp.

In extremal cases, i.e. when 7 is close to 1, the asymptotic variance of the Monte-Carlo
estimator diverges to infinity. It is, however, well-known (see for example Theorem 2 in
Daouia et al., 2018) that when p is a (right) heavy-tailed distribution with finite second
moment and extreme value index v € (0,1/2), and if 7,, T 1 with n(1 — 7,,) — oo, then

Ernm 2y°
n(l —7,) (in’ —1) i>J\/’<O, 1j27> as n — oo.

For such expectiles, taking the mean as control variate makes little sense: being a pa-
rameter relevant to the bulk of the distribution, rather than to its extremes, the sample
mean will have little correlation with extreme sample expectiles. However, if the inverse
distribution function ¢ = F¥ is easy to compute, then a reasonable control variate is an
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extreme quantile g,, whose empirical estimator (the order statistic gu,n = Xna,1,n) 18
highly correlated with ngn. This leads us to consider Monte-Carlo estimates of the form
ETn’n = f:nn + ¢(Gan,n — Ga,,) for a certain constant c and a level a,, T 1 to be determined.
To this end, we first state a joint asymptotic normality result between é\%n and G, n
under the following classical second-order condition on the heavy right tail behavior of u.

Co(,p,A)  There exist v > 0, p < 0 and a measurable auxiliary function A having
constant sign and converging to 0 at infinity such that the function F': x — p((z, +00))
satisfies

—-1/y pz
Vx>0, lim L <F(ta:) _ x-UW) _7T 5 / P11 4.
t—oo A(1/F(x)) \ F(t) ol 1

Proposition 3.1 (Proposition 1 in Stupfler and Usseglio-Carleve (2023), case p = 2).
Assume that p has a finite variance and satisfies condition Ca(7y, p, A) with v € (0,1/2).
Suppose that T, T 1, with n(1 — 7,) — o0, (1 — ap)/(1 — 1) — A € (0,00) and
V(1 — 1) A((1 —7,)7Y) = O(1). Let the X; be independent random variables with dis-
tribution u. Then

n(l —7) (&w -1, e 1) ~5 N((0,0),7°V)

ng Qo

where V is the 2 x 2 symmetric matriz having elements Vi1 = 2v/(1 —27), Vag = 1/X and

oo )} (e}

Proposition 3.1 is Proposition 1 in Stupfler and Usseglio-Carleve (2023) with p = 2,
except that, with the notation therein, the latter contained a typo in the off-diagonal
covariance term Ajs: in the first term of this covariance Ay, the quantity v between
(p—1) and (gp(7)/0) should not appear.

We may now prove the following result on the optimal choice of linear combination
of ngn and Ga,, n — 4o, i terms of relative asymptotic variance. We note that there are
two degrees of freedom for the optimization of the control variate algorithm: the weight
of Ga,, .n — qa,, as well as the value of the quantile level a, itself.

Theorem 3.2. Work under the conditions of Proposition 3.1. Then

=t (i) (o)) o fn (7)) )

X (a\an;n - qan)

has lowest relative asymptotic variance among all asymptotically unbiased linear combina-
tions Of éTn,'ﬂ and Zjom,n — Yo s and

n(l—7,) (?—1) i>/\/<O, 2 (1—0(7,/\))> asmn — oo

where

C(y,\) = <{min (1/?—1 1) }M 1A {min (1/3—1 1> }7 _ )\>2 12—57.

25




The function X\ — C(~, \) is mazimal at

1 1—y\ 7 1
wexo=(2-1)(155) <ien
) gl L =2y gl

yielding an optimal level o, =1 — X*(1 —7,) of the quantile control variate for which

- R 1— —1/7 R
ng,n = an,n -2 <1 — 277) (QQ;‘“TL - QQ;‘I)-

This random quantity satisfies

gﬂl,n 2’7/3 1- v 71/7+1
n(1 Tn)<§7—n 1>—>N(071—2’Y 1-2 T asmn — oo.

It is readily shown that the variance reduction factor 1 — 2((1 — ~)/(1 — 2v))~1/7+!
in Theorem 3.2 is a monotonic function of 7, converges to 1 as v 1 1/2 and has limit
1—2e 1~ 0.264 as v | 0. This is illustrated again through the toy example of the Fréchet
distribution in Figure 6, where it can be seen that Monte Carlo computations with the
extreme quantile gox as control variate considerably improve upon vanilla Monte Carlo

when the target expectile approaches the upper tail of the underlying distribution.
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Figure 6: Example of the Fréchet distribution. Boxplots of ng (green) and ET,L (blue),
normalized by the true value &; calculated through the Newton-Raphson algorithm, for a
regular grid of 20 values of 7 € [0.9,0.995]. We take 1,000 Monte-Carlo replications of an
independent sample of size n = 1,000 (left), 10,000 (middle) and 100,000 (right), where
v =1/5 (top panels), 1/4 (middle panels) and 1/3 (bottom panels).
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Value of 7

Distribution Method used Average/median computational time

T=0.75
Gaussian Newton-Raphson | Average: 88.3 us, Median: 35.3 us
expectreg v0.52 Average: 308 us, Median: 199 us

T =0.95
Gaussian Newton-Raphson Average: 138 us, Median: 58.1 us
expectreg v0.52 Average: 356 us, Median: 255 us

7 =0.9995

Gaussian Newton-Raphson Average: 154 us, Median: 85.2 us
expectreg v0.52 Average: 288 us, Median: 204 us

T =0.75

Chi-squared, v =5 | Newton-Raphson Average: 119 us, Median: 65.4 us
expectreg v0.52 Average: 507 us, Median: 355 us
7=0.95
Chi-squared, v =5 | Newton-Raphson Average: 146 us, Median: 83.1 us
expectreg v0.52 Average: 535 us, Median: 376 us
7 =0.9995
Chi-squared, v =5 | Newton-Raphson Average: 195 us, Median: 145 us
expectreg v0.52 Average: 397 us, Median: 321 us

T=0.75
Log-normal Newton-Raphson Average: 171 ps, Median: 61.3 us
expectreg v0.52 Average: 408 us, Median: 287 us
7 =0.95
Log-normal Newton-Raphson Average: 175 ps, Median: 84.1 us
expectreg v0.52 Average: 376 us, Median: 329 us
7 =0.9995
Log-normal Newton-Raphson Average: 236 ps, Median: 190 us
expectreg v0.52 Convergence failed
T=0.75

Student, v = 2 Newton-Raphson Average: 139 us, Median: 117 us
expectreg v0.52 Average: 822 us, Median: 769 us

T =0.95
Student, v =2 Newton-Raphson Average: 150 ps, Median: 122 us
expectreg v0.52 Average: 609 ps, Median: 446 us

7 =0.9995
Student, v = 2 Newton-Raphson Average: 212 us, Median: 169 us
expectreg v0.52 Convergence failed
T=0.75

Student, v =4 Newton-Raphson Average: 116 us, Median: 98.4 us
expectreg v0.52 Average: 751 us, Median: 639 us
7=0.95
Student, v =4 Newton-Raphson Average: 144 ps, Median: 111 us
expectreg v0.52 Average: 642 us, Median: 486 us
7 =0.9995
Student, v =4 Newton-Raphson Average: 297 us, Median: 253 us
expectreg v0.52 Average: 604 us, Median: 520 us

Table 1: Comparison between the Newton-Raphson algorithm and the enorm, echisgq,
elnorm and et routines of the expectreg package run with their default settings. Com-
putational times reported in the third column are based on 1,000 consecutive calls to each
function. The stopping criterion for the Newton-Raphson algorithm is the same as in
the expectreg routines, i.e. the algorithm stops when the evaluation of the distribution
function F : x + 1 — ¢(x)/(2¢(z) +x —m) at the approximated expectile is within 10710
of the level 7.
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4 Discussion

This article discusses the calculation of expectiles from several angles. We showed that an
exact computation of the expectiles of any discrete distribution can always be carried out.
For continuous distributions whose distribution function and mean residual life function
can be expressed in analytic form, a Newton-Raphson algorithm is shown to be an efficient
way of calculating expectiles to a high degree of accuracy. When the distribution function
and/or the mean residual life function is hard to compute, a Monte-Carlo algorithm resting
on sample expectiles with the mean (resp. an extreme quantile) as a control variate is a
reasonably accurate way to approximate central (resp. tail) expectiles, as we show for
difficult but interesting examples including compound Poisson processes and stochastic
differential equations.

In many statistical applications, the estimation of a location parameter of interest, such
as a quantile or an expectile, is sought. The choice of a parametric family of distributions
to describe the observations, which is a reasonable step in statistical modeling, naturally
induces a function 8 — &,(0) mapping parameter values to the expectile function. In such
a situation, it is intuitively more efficient to use the plug-in estimator &, (60,,) of £-(6) based
on a model (for example maximum likelihood) estimator 6,, of 0, than the sample LAWS
expectile. In practice, this procedure is made possible by the computation techniques we
proposed, since they allow the computation of the map 0 — &.(0); quantifying the degree
of improvement this brings over the LAWS estimator in statistical terms is an interesting
question which is beyond the scope of this paper.

Despite its reasonable behavior, our Monte-Carlo approach with control variates is
still computationally costly in the special case of time series: in our ARMA-GARCH
example (see the second part of Example 3.1), for instance, ensuring that realizations have
the correct, stationary distribution required a lengthy period of burn-in, and ensuring
independence made us keep only the last data point in a given simulation after burn-
in. Instead, one may keep several data points that are sufficiently far apart in time (a
particular, conservative case of thinning) in a given simulation after burn-in so as to
preserve independence. An alternative option would be to keep whole blocks of data
points, at the price of developing an appropriate asymptotic theory that allows to handle
the autocorrelation structure within each block of the time series. Theoretical results
along these lines are left for future research. Finally, we did not enter into the important
question of extending our Monte-Carlo approach to the case when simulating from the
target distribution is itself difficult, as is often the case in modern applications of Bayesian
statistics. This is of genuine interest if expectiles are to be used in complex parametric
models having a large number of parameters.

Acknowledgments

This research was supported by the French National Research Agency under the grants
ANR-19-CE40-0013 (ExtremReg project), ANR-17-EURE-0010 (EUR CHESS) and ANR-
11-LABX-0020-01 (Centre Henri Lebesgue). A. Daouia and G. Stupfler acknowledge fi-
nancial support from the TSE-HEC ACPR Chair.

References

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.
Mathematical Finance, 9(3):203-228.

30



Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, volume 14 of Advanced Series
On Statistical Science And Applied Probability. World Scientific.

Bellini, F. and Di Bernardino, E. (2017). Risk management with expectiles. The European
Journal of Finance, 23(6):487-506.

Bellini, F., Klar, B., Miiller, A., and Gianin, E. R. (2014). Generalized quantiles as risk
measures. Insurance: Mathematics and Economics, 54:41-48.

Birnbaum, Z. W. (1942). An Inequality for Mill’s Ratio. Annals of Mathematical Statistics,
13(2):245-246.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal
of Political Economy, 81(3):637-654.

Breckling, J. and Chambers, R. (1988). M-quantiles. Biometrika, 75(4):761-772.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods (Second
Edition). Springer.

Daouia, A., Girard, S., and Stupfler, G. (2018). Estimation of tail risk based on extreme
expectiles. Journal of the Royal Statistical Society: Series B, 80(2):263-292.

Daouia, A., Girard, S., and Stupfler, G. (2020). Tail expectile process and risk assessment.
Bernoulli, 26(1):531-556.

Daouia, A., Girard, S., and Stupfler, G. (2021). ExpectHill estimation, extreme risk and
heavy tails. Journal of Econometrics, 221(1):97-117.

Daouia, A., Stupfler, G., and Usseglio-Carleve, A. (2023). Inference for extremal regression
with dependent heavy-tailed data. https://hal.science/hal-03612202v2.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-
Verlag, New York.

del Castillo, J., Soler, D. M., and Serra, 1. (2019). ercv: Fitting Tails by the Empirical
Residual Coefficient of Variation. R package version 1.0.1.

Dickson, D. C. (2016). Insurance Risk and Ruin. Cambridge University Press.

Francq, C. and Zakoian, J.-M. (2004). Maximum likelihood estimation of pure GARCH
and ARMA-GARCH processes. Bernoulli, 10(4):605-637.

Galanos, A. and Kley, T. (2022). rugarch: Univariate GARCH Models. R package version
1.4-9.

Girard, S., Stupfler, G., and Usseglio-Carleve, A. (2021). Extreme conditional expec-
tile estimation in heavy-tailed heteroscedastic regression models. Annals of Statistics,
49(6):3358-3382.

Girard, S., Stupfler, G., and Usseglio-Carleve, A. (2022). Nonparametric extreme condi-
tional expectile estimation. Scandinavian Journal of Statistics, 49(1):78-115.

Gueiting, T. (2011). Making and evaluating point forecasts. Journal of the American
Statistical Association, 106(494):746-762.

31



Hankin, R. K. S., Clausen, A., and Murdoch, D. (2023). gsl: Wrapper for the Gnu
Scientific Library. R package version 2.1-8.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options. The Review of Financial Studies, 6(2):327—
343.

Holzmann, H. and Klar, B. (2016). Expectile asymptotics. Electronic Journal of Statistics,
10(2):2355-2371.

Jones, M. C. (1994). Expectiles and M-quantiles are quantiles. Statistics & Probability
Letters, 20(2):149-153.

Koenker, R. (1993). When are expectiles percentiles? Econometric Theory, 9(3):526-527.
Koenker, R. (2005). Quantile Regression. Cambridge University Press.

Kratschmer, V. and Zahle, H. (2017). Statistical inference for expectile-based risk mea-
sures. Scandinavian Journal of Statistics, 44(2):425-454.

Kuan, C.-M., Yeh, J.-H., and Hsu, Y.-C. (2009). Assessing value at risk with care, the
conditional autoregressive expectile models. Journal of Econometrics, 150(2):261-270.

Laudagé, C. and Turkalj, I. (2022). Calculating expectiles and range Value-at-Risk using
quantum computers. arXiv:2211.04456.

Mez, 1. and Baricz, A. (2017). On the generalization of the Lambert W function. Trans-
actions of the American Mathematical Society, 369(11):7917-7934.

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing.
Econometrica, 55(4):819-847.

Otto-Sobotka, F., Spiegel, E., Schnabel, S., Schulze Waltrup, L., Eilers, P., Kauermann,
G., and Kneib, T. (2022). expectreg: FEzxpectile and Quantile Regression. R package
version 0.52.

Padoan, S. and Stupfler, G. (2020). ExtremeRisks: Fxtreme Risk Measures. R package
version 0.0.4.

Philipps, C. (2022). Interpreting  expectiles. Available at SSRN:
http://dx.doi.org/10.2139/ssrn.3881402.

Sobotka, F. and Kneib, T. (2012). Geoadditive expectile regression. Computational Statis-
tics & Data Analysis, 56(4):755-767.

Stupfler, G. and Usseglio-Carleve, A. (2023). Composite bias-reduced LP—quantile-
based estimators of extreme quantiles and expectiles. Canadian Journal of Statistics,
51(2):704-742.

Taylor, J. W. (2008). Estimating Value at Risk and Expected Shortfall using expectiles.
Journal of Financial Econometrics, 6(2):231-252.

Ziegel, J. F. (2016). Coherence and elicitability. Mathematical Finance, 26(4):901-918.

Zou, H. (2014). Generalizing Koenker’s distribution. Journal of Statistical Planning and
Inference, 148:123-127.

32



Appendix to the paper “An expectile computation cookbook”

Abdelaati Daouia, Gilles Stupfler & Antoine Usseglio-Carleve

This appendix is organized as follows. Section A contains all necessary proofs of the
theoretical results, Section B provides detailed calculations related to some examples, and
Section C presents a catalog of expectile functions of continuous distributions.

A Proofs of the theoretical results

Proof of Theorem 2.1. Clearly

Vi€ l, Vo € [a;, ai1), ¢(x) = /R(t — ) Lrsay p(dt) = P(a;) — 2F(a;)

where () = [ t1sey p(dt) and F(z) = 1 — F(x) with F(z) = p((—oc0,z]). Conse-
quently, for any i € I and z € [a;, a;41),
(1=7)gr(z) = —2{(27 = 1)F(a;) + 1 — 7} + (27 — DY(a;) + (1 — 7)m
= —2(1F(a;) + (1 = 7)F(a;)) + m¢(a;) + (1 — 7)(m — 9(as))
where m = [pap(dz) = >, c;prar. In other words, the function g, is continuous,

piecewise linear and decreasing, and tends to +o0o (resp. —o0) as & — —oo (resp. z — +00).
It follows that there is a unique index i = i(7) such that the two inequalities

Tp(a;) + (1 —7)(m —p(a;)) > ai(TF(a;) + (1 — 7)F(as))
and T¢(air1) + (1 = 7)(m — ¥(ait1)) < aiv1(7F(aiy1) + (1 = 7)F(ai1))

hold. With this index ¢, the expectile & is the unique root of the linear function g, on
the interval [a;, a;11), namely:

_ (@) + (1 —7)(m — P(ai))

& TF(a;) + (1 —7)F(a;)

(4)

Now ¢(a;) = > 4, prar and F(a;) = Y .-, Pk, so that, for any i,
T(a;) + (1= 7)(m —1(ai)) — ai(7F(a;) + (1 = 7) F(a;))

=7 (Zpk(ai —ar) + Y prlak — ai)) = prlai — ag).

k<1 k>i k<i

The above pair of inequalities is therefore equivalent to

> k<i Pr(@i — ag) -
Y oweiPrlai —ag) + 3 o pk(ag —a;) —
Zk<i+1 pr(aiv1 — ax)

<
Zk<i+l pr(aiv1 —ax) + Zk>i+1 pr(ar — ait1)

as announced. The two identities involving &, follow immediately from (4). O
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Proof of Theorem 2.2. Define a continuous function h = h; by setting

Recall that g, : z — Qf;lgp(x) +m — z is convex. It is also clear that the derivative ¢. is
negative. In particular, g, is decreasing, and since & is the unique solution of the equation

g-(z) = 0, one has g-(xg) > 0 for any z¢ < &. Then

gT(xO)
95(wo)

_ . &r — o _ 1
and h(zo) = & = {gT(é}) —gr(w0) g7 (x0)

V{L‘Q < 57, h({L‘Q) —To = — >0

}gT(ﬂco) <0

using the convexity property of g,. It follows that for any z¢ < &, zo < h(xg) < &-, and
therefore, for any starting point g < &, the Newton-Raphson sequence of iterates (x,)
is nondecreasing and bounded and hence convergent. The limit must be a root of g, by
taking limits in the equation x,,4+1 = h(z,), meaning that (z,) converges to .

A Taylor expansion of g, on the interval [z,,&] C [z0,&;] (on which g, is twice
continuously differentiable) with remainder in integral form entails

&r
0= gr(Er) = g2 (Tn) + (€ — Tn)g(wn) + / (&5 — w)g! (u) du.

Tn

This is readily rewritten as

1 &
Tnt1 — & = g’/ (&r — U)QIT/(U) du.
Then

2r—1
(& — oTn)Q = 1 (er )maX[znﬁT] / |z, — €T|2
21 =7+ (21 — 1)F(zy)
o — &% < 1 (27 — 1) maxp, ¢ f

S 217+ (27 — 1)F(&)

i
2|g7 ()
1 (27 = 1) max,, ¢ f
21 -7+ (2r —1)F (&)

|$n+1 - §T| S

S ‘xn - 57"2

for any k < n. The proof is complete. O

Proof of Theorem 2.3. From the last chain of inequalities in the proof of Theorem 2.2, we
get, for any n,

g1 — &-| < 1 (2r-1) maX(y, ¢ ] f
n T

1 el e LT T DM oe 6 f
T2l -7+ Q2r-1)F(E) " T

2
T2 17+ (27— )F(&) o =&

Take then ¢ > 0 sufficiently large and write

Fla) = 217 {cl/vp(c) exp < / ’ n(t)?) } with n(t) = i - tF((tt))

The function 7 is continuous on [¢, 00) and converges to 0 at infinity. By the representation
theorem for regularly varying functions (see Theorem B.1.6 p.365 in de Haan and Ferreira,
2006), F' is regularly varying with index —1/v, and then f is regularly varying with

34



index —1/v — 1. By the uniform convergence theorem for regularly varying functions (see
Theorem B.1.4 p.363 in de Haan and Ferreira, 2006),

57‘ g‘rf(gr) f(gr ) (1 _5)_1/7_1
Fle) 051! = Fie) «050 fe)

Moreover (see Bellini et al., 2014; Daouia et al., 2018)

F(&) 1
v

1—71

as 7 T 1.

—las711.
Conclude from these two convergences that

2 1—74@2r—1DF(&) &

2r—1 -
1(27 )max[(l et f 1 <(1 _ 5)1/711/721 + o(l)) as 71T 1.

The proof is complete. ]

Proof of Theorem 3.1. We first prove the asymptotic normality statement, and for this, it
is enough to show that 212 n /G2 — ¥19/399 in probablhty By the law of large numbers,
2 — o2 in probability, so it suffices to show that Elgn — Y19 in probability. Finally,
since an — & in probablhty (for example by Theorem 2 in Holzmann and Klar (2016)),
it is enough to prove that F, (fﬂn) — F(&) and ¢, (§Tn) — 0@ (&;) in probability.

Fix € > 0. Then a-,n € [& —e,& + €] with arbltrarlly high probability as n — oo.
Then clearly

~ —~ 1 n 1 n
Fp(&rn) — Fn(ér)| < - Z Lix,8 1 — Hxse] < - Z Lixiele,—e6 +e]}
=1

with arbitrarily high probability as n — oo. The upper bound converges to p([{r —
g,&r +¢]), by the law of large numbers, which is arbitrarily small as € | 0. Conclude

that Fn(fm) = (Fn(fm) - F.&N)+F (fT) — F (&) in probability, by the law of large
numbers. We now prove that @n@n) = <pn (§Tn) — oM(&;) = p(&;) before turning to
the convergence of ¢, gon (§Tn) Write

(X —2)lixsg — (X —2)yxoun = (@' — 2)Lixsgy + (X — 2" ) (Lxsay — Lixsa})

to obtain

(ng) - )(§T>’ < ’gﬂn - §T‘F €Tn Z ’X gTHH{XQEﬂH} - H{Xi>€r}‘
= ~ 1
€ (Fn(ém) +- Z 1{Xie[5Te,gf+s]}> <2
=1

with arbitrarlly hlgh probability as n — oo. Using the law of large numbers, this again
shows that @ gp (§Tn) — oM (&,) in probability. Finally

(X —2)? - (X -2 =200"—2)(X —z) — (2 — x)?
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so that, with arbitrarily high probability as n — oo,

PP (Ern) - 8D ()| < \Em — &P FnErn) + 20rn — 1BV E )

+ Lixseny — Hxise]
z:l
<e ( Fr(&rn) + 200 (Em) +2 x = Z 1x, e[g,—a,&ﬂ]})
=1

<2 (e + 30 (Em)) -

Conclude that ¢, cpn (an) — ©3)(&,) in probability, as required. The fact that an has the
lowest asymptotic variance among all asymptotically unbiased linear combinations of 57-,”
and X,, — m is then obvious.

It remains to prove the assertions about the variance reduction factor 1 — R(7, ). This
function is clearly zero at 7 = 1/2. Note also that

D) = E(X 0L pomy) =2 [ (- 0)F(0)

As a result, and since 7 — &; is continuously differentiable on I = (71, 72) (see Propo-
sition 1(iii) in Holzmann and Klar, 2016), the function 7 — 1 — R(7, u) is continuously
differentiable on this interval. It remains to prove the statements about monotonicity. Set

u(r) = u(r, p) = (1= 1)E((X = &)%) + (27 = D) (&)
and v(r) = o(7, 1) = (1 = 7)’E((X — &)%) + (2r — D@ (&)
so that R(7, ) = (u(7))?/(c%v()) and therefore

OR u(7) , ,
G () = 3 D (2 (o) = o (7))

Writing u(7) = (1 — T)E((X — &)?1ix<e,}) + TE(X — &)?1x>¢,1) yields in particular
that u(7) > 0 for any 7, meaning that the partial derivative %—f(T, 1) has the same sign as
2u/(1)v(r) — v'(T)u(r). Now

W (7) = 2 (6:) ~ B(X ~ &)) ~ 257 (27 ~ 1)(&r) + (1 - 1)(m — &)

=20(&) —E((X — &)%) (using (3))
and v'(7) = 29 (&) = 2(1 — TE((X ~ &)%) - 2%((27 — V&) + (1= 7)*(m — &)
=202(&) — 201 - NE((X — &)%) +27(1 - 1)~ dér > (m — &) (from (3) again).
Straightforward calculations yield
2u' (T)v(7) — v (7)u(r)
2 2 dé-
=2 (0= 27B(X - &P ECY — )L xse) + (1= 1uln) g m = &)

This quantity is positive on (0,1/2) and negative on (1/2,1) because 7 +— &, is strictly
increasing (see Proposition 1(ii) in Holzmann and Klar, 2016) and &; 5 = m. The proof is
complete. ]
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Proof of Theorem 3.2. Let EWL = ng,n + c(Gan,.n — 9oy ), Where c is to be found so as to
minimize the relative asymptotic variance of &, ,. Write

n(l —7y,) (i:’n - 1) =/n(l —1,) <£g:’” — 1> + CQ;T" X /n(l—1y) (Z{Z’n — 1> .

Applying Proposition 3.1 entails that the desired value of ¢ satisfies

do, ‘/127 . A 1= . A -
o () el )

Apply Proposition 1(i) in Daouia et al. (2020) to obtain

don _ Gan I

= — A 7(1/y—=1)" as n — oo,
an qdr, frn ( /7 )

leading to a choice of ¢ minimizing the relative asymptotic variance of &, ,, as

(i) () oo ()} )

The statement on the asymptotic normality of ng’n /&, — 1 with this choice of ¢ is then
immediate. Finding the maximum of A — C(~, ) is done by noting that this function is
decreasing past 1/v — 1, and

_ 1/2— 2
VA€ (0,1/7 — 1), C(7A) = - 2727 (7(1;_ 17)1_7 - \FA) |

Maximizing this function over (0,1/y — 1) is straightforward and leads to the value A\*
specified in the statement of Theorem 3.2. The last asymptotic normality result follows
by plugging A* into C'(y, \). O

B Detailed calculations related to the examples

Distribution supported on a set with three elements (Example 2.2)
Let p be the probability distribution on a set {a,b,c} with a < b < ¢ characterized by
w({b}) = p and p({c}) = q, with p,q > 0 and p 4+ ¢ < 1. Then, from Corollary 2.1,

q(c =)
(1—p)(b—a)+qla+c—2b)’

¢ _ b+ + (1 -7)1-p—gla
. 2r-Dp+q+1-7

, for 7 <1-—

and
Tgc+ (1 —7){(1 —p — g)a + pb}
2r—1)g+1—71

In particular, for the distribution p on {0, 1,2} with u({1}) = p and u({2}) = ¢,

otherwise.

57':

2
m(p +24) f0r7§1—7q )
¢ - @2r-Dp+qg+1-7 1-p
T 2 1—
74+ 7)p otherwise.

@2r—1Dg+1-7
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Taking p = p1(1—p2)+p2(1—p1) and g = p1p2, for p1, pe € (0,1), yields the expectile of the
sum of two independent random variables having Bernoulli distributions with parameters
p1 and po:

1 —p1—p2+pip2
1—p1 —pa+2pips’

7(p1 + p2)
(27 —1)(p1 +p2 —p1p2) +1—7
(27 = 1)2pip2 + (1 — 7)(p1 + p2)
2T —Dpipa+1—17

for 7 <

§T:

otherwise.

Uniform distribution on {1,...,n} (Example 2.3)
Fix n > 2. For the uniform distribution on {1,...,n}, solving the inequalities of Corol-
lary 2.2 is equivalent to finding the unique index ¢ € {1,...,n — 1} such that
S 5 S = N
ii—1)+n—i)(n—1i+1) i(i+1)+(n—i)(n—i-1)

This is equivalent to finding the unique solution (which we already know to exist, by
Corollary 2.2) to the inequalities P-(i + 1) < 0 < P-(i) for i € {1,...,n — 1}, where P; is
the polynomial

Py (z) = (27 — 1)2* — {27(n + 1) — 1}z + mn(n + 1).

This polynomial has discriminant 47(1 —7)(n+ 1)(n — 1) + 1 > 0 and then (for 7 # 1/2)
two real roots x- _ and x, 4 defined as

2r(n+1) =1+ /4r(1—71)(n+1)(n—1) +1
2(27 — 1) '

Tr 4+ =

A straightforward calculation yields P;(1) = 7n(n—1) > 0 and Pr(n) = —(1—-7)n(n—1) <
0. It follows that when 7 > 1/2 (resp. 7 < 1/2), only the lowest (resp. largest) of the
two roots x,_ and z,4 belongs to the interval [1,n]. Conclude that, in both cases,
P(i+1) <0< P (i) i<z, <i+1&i=|z,_]|. With this index i,

mn(n+1)— (27 —1)i(i + 1).

&= 2rn — 2(27 — 1)i
Consequently
™mn+1)— 27— 1)z ](lz-] + 1)
2rn — 2(27 — 1)|2r] when 7 7 1/2
¢ = i C2rln+1)—1—- 4Tl —7)(n+1)(n—1)+1
i T 2027 — 1) ’
n(nz—i—l) when 7 =1/2.

Geometric distribution (Example 2.4)

For the geometric distribution with success probability p € (0,1), namely, u({k}) = p(1 —
p)*~1 for any positive integer k, the inequalities of Theorem 2.1 read as

(L—p'—(=pi) . __ A=p™—(1-pi+1)
20 =p)' = (A —pi) = 200 =p)* = (1 —p(i+1))
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Solving these inequalities is equivalent to finding the index ¢ > 1 such that h.(i + 1) <
0 < h,(i), where

hr(z) = (27 = 1)1 = p)* = (1 = 7)(pz — 1).
Straightforward calculations reveal that the unique root z, of h; over [1, +00) satisfies the
equation

—log(1 — p) <x7 - ;) exp <— log(1 — p) (xT - ;)) = 217__: <—log<1p_ r) (1 —p)l/p> .

This is a transcendental equation (unless 7 # 1/2, for which z;/9 = 1/p). Nevertheless,
since by construction

—log(1—p) (xr - ;) > —log(1 —p) (1 - ;) > -1

for any p € (0,1), and

”1(—““;1”u—mwjz27%—u—m“m%«rwm”»>—el

1—171 1—7

for any 7,p € (0, 1), one may express x, using the main branch of Lambert’s W function,

that is
1 L _(1—p)Plog(1—p)2r —1
p log(l—p) P l—7

Ty =

where, for > 0, W(x) is the unique (positive) solution to the equation we” = z. The
main branch of the Lambert function is available numerically in R using (for instance) the
gsl package (Hankin et al., 2023), acting as a wrapper for the GNU Scientific Library.

Note further that when 7 > 1/2, the function A, is obviously decreasing, so the inequal-
ities hr(i+1) < 0 < h,(i) are equivalent to i < z, < i+1, i.e. i = |z;]. When 7 < 1/2, it
is readily shown that h is decreasing and hl.(1) = —(1—-27)(1—p)log(l1—p)—(1—7)p <0
for any p € (0,1), so again h; is decreasing and h,(i+1) < 0 < h,(i) < i = |z, ]. Conclude
that

(2r — 1)1~ p)"" (U pla, ) +1 -7
pl2r— 11— pll 117}

67':

—_p)l/p _ .
with z, = — — 1 wl— (1—p)/Plog(l —p) 27 —1 .
p log(1-p) P 1—r

Cardano and Ferrari formulae (relevant to Section 2.3.1)

To solve a real cubic polynomial equation of the form 23 + bz? + cx + d = 0, Cardano’s
method consists in letting p = ¢ — b%/3 and ¢ = d + b(2b? — 9¢) /27, and in computing the
discriminant A = —4p3 — 27¢? of the so-called depressed cubic X2 +pX +¢ = 0. If A <0,
then the unique real root of the equation is given by

ety e yar b

If on the contrary A > 0, then necessarily p < 0 and there are 3 real solutions, given by
Viete’s formula:

— 1 3 3 2k b
T = 2\/?pcos <3arccos <2§)H—p> + 37T> 3 ke€{0,1,2}.
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To solve a real quartic polynomial equation z* 4 b3 + cx? + dx + e = 0, Ferrari’s method
first finds a root A to the cubic equation 83 — 4cA? + (2bd — 8e)\ — b%e + 4ce — d? = 0.
The four (possibly complex) solutions to the quartic equation are then

1 b? 2(d — b)A b2 b2 b
) €1 2/\—C+Z—|—€2 —2A—c—e¢ ¥+b 2)\_C_|_Z _|_§ -1
et ¥

where 1,69 € {—1,1}.

Student distribution with v = 4 degrees of freedom (Example 2.12)
Consider the Student distribution with v degrees of freedom, having probability density

function
C T((v+1)/2) g2\ "D/
1@ =02 (H ,,> y 7 ER.

Here I' is Euler’s Gamma function. When v = 4, the probability density function simplifies

to 52
N
f(:c):z(l—l—a;) , z€R.

The change of variables ¢ = 2 tan(#) combined with the trigonometric identities cos(3¢) =

4 cos®(¢)—3 cos(¢), sin(3¢) = 3sin(¢)—4sin®(¢) and sin(arctan ) = 6/+v/1 + 62 then yield,
after straightforward calculations, the following closed form for the survival function:

— o0 1z 3+2%/2
F(w):/x f(t)dt:2—8(1;;2/i)3/2.

Further straightforward calculations based on the change of variables u = t2 then provide

) :/;OF(t)dt: % (”’“;124 —x>.

Since the Student distribution is centered, m = 0 and Equation (3) is

(27 —1)?

T(1—71) =0

& +47 -
This is a biquadratic equation, leading to £2 = —2 + 1/4/7(1 — 7) because &2 > 0, and
then

1

& =sign(217 — 1) T—T) -

In general, the distribution function and mean residual life function of the Student distribu-
tion involve the hypergeometric function. It is not hard to see that, while the distribution
function and mean residual life function can in fact be written in closed form when v
is an even integer, resulting in a polynomial equation characterizing &, only the cases
v € {2,4,6} result in an equation of degree 4 or lower.

Fisher distribution with (4,4) degrees of freedom (Example 2.13)
The Fisher distribution with degrees of freedom v; > 0 and 5 > 0 has density function

(v1 /1))

72 /21 1+viz/v _(”1+”2)/2, x>0,
B/ (L)

fz) =

40



where B is the Beta function. In the specific case v1 = vy = 4, one finds ¢(z) = (3z +
2)/(z +1)2 for x > 0, and m = 2. Equation (3) is thus equivalent to the cubic equation

3 37 2T

67— &r = 0.

177 1-7

The discriminant of this equation is A = 10872(27 — 1)/(1 — 7)3. If 7 < 1/2, then A <0
and the unique solution is

Y I 1-27 o 1-27
& 1/1_7_ \/—&-\/1_7—1— 1/1_7_ .
If now 7 > 1/2, then A > 0 and the 3 possible solutions are

T 1 1—7 2km
& =2 1_Tcos<3a1rccos< . )+3),k‘€{0,1,2}.

Since 7 > 1/2, arccos(y/(1 — 7)/7) € [0,7/2], and therefore (taking the constraint & > 0
into account) k = 0 is the only admissible solution, namely

T 1 1—71
cos | = arccos .
1—17 3 T

Pareto distribution with extreme value index 1/4 (Example 2.14)

5722

The Pareto distribution with extreme value index v > 0 has survival function F(x) =
/7 for & > 1. This distribution has a finite first moment when v < 1, and since
o(x) =~z ~1/7/(1 —~) for z > 1 and m = 1/(1 — 7), Equation (3) leads to

(1= )1 =7)E = (1 = et =527 1) =0,

When = 1/4, this is the quartic equation & + b€2 + c£2 4 d¢; + e = 0, where b = —4/3,
¢c=0,d=0and e=(1-27)/(3(1 —7)). Ferrari’s method leads to finding A = A, which
is a root of the cubic equation

1-27 21-27

Mo TN ST =0
To31-1) 93(1—1)

The discriminant of this equation is

PRy
YL
21 (1—7)21—71

for all 7 € (0,1), from which the unique solution of the equation involving A is

sl 1 =27+ 1 =27, /7% 5| 1—27—|1-27[\/7%
)\T: + .

27(1 — 1) 27(1—1)

Ferrari’s method yields four possible solutions. The only real-valued solution greater than
1 is obtained with €1 = g9 = 1, leading to the solution

/ 4 8 A 4 4 8 1
At gt |2 g ——="T3\2 55| T35
V22 + 3
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C Catalog of expectile functions of continuous distributions

This section provides a catalog of expectile functions of continuous distributions, ob-
tained either via numerical means or, in exceptional cases, in closed or analytic form. Ta-
bles C.1, C.2, C.3 and C.4 give reference values for the expectiles of the standard Gaussian,
log-normal, Student and chi-squared distributions, respectively. Figures C.1, C.2, C.3, C.4
provide graphical representations of the corresponding expectile functions over (0,1). Ta-
ble C.5 gathers closed-form expressions for expectiles of certain bounded continuous dis-
tributions. Table C.6 gives analytic-form expressions for expectiles of some unbounded
continuous distributions. Tables C.7 and C.8 list closed-form expressions for expectiles
of the Hall-Weiss distribution and the Pareto distribution, respectively, with particular

parameters.

T 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 —oo  -1.717 -1.478 -1.332 -1.225 -1.140 -1.069 -1.008 -0.954 -0.906
0.1 |-0.862 -0.821 -0.784 -0.749 -0.716 -0.684 -0.655 -0.627 -0.600 -0.574
0.2 | -0.549 -0.525 -0.502 -0.479 -0.458 -0.436 -0.416 -0.395 -0.376 -0.356
0.3 | -0.337 -0.318 -0.300 -0.282 -0.264 -0.247 -0.229 -0.212 -0.195 -0.178
04 |-0.162 -0.145 -0.129 -0.112 -0.096 -0.080 -0.064 -0.048 -0.032 -0.016
0.5 0 0.016 0.032 0.048 0.064 0.080 0.096 0.112 0.129 0.145
0.6 | 0.162 0.178 0.195 0.212 0.229 0.247 0.264 0.282 0.300 0.318
0.71 0337 0356 0376 0.395 0416 0.436 0458 0.479 0.502 0.525
0.8 0.549 0.574 0.600 0.627 0.655 0.684 0.716 0.749 0.784 0.821
09 ] 0.862 0906 0954 1.008 1.069 1.140 1.225 1.332 1.478 1.717

Table C.1: Table of expectiles of the standard Gaussian distribution, computed via the

Newton-Raphson algorithm (see Example 2.11).

T 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0
0.1 ] 0.721
0.2 ] 0.973
0.3 | 1.193
0.4 | 1.412
0.5 | 1.649
0.6 | 1.926
0.7 | 2.279
0.8 | 2.793
0.9 | 3.770

0.317
0.750
0.996
1.215
1.434
1.674
1.957
2.321
2.861
3.933

0.399
0.777
1.018
1.236
1.457
1.700
1.988
2.364
2.932
4.121

0.459
0.804
1.041
1.258
1.480
1.726
2.021
2.410
3.009
4.340

0.508
0.829
1.063
1.279
1.503
1.753
2.055
2.457
3.092
4.603

0.552
0.855
1.085
1.301
1.527
1.780
2.089
2.506
3.181
4.927

0.591
0.879
1.106
1.323
1.551
1.808
2.125
2.558
3.277
5.347

0.626 0.660
0.903 0.927
1.128 1.150
1.345 1.367
1.575 1.599
1.837 1.866
2.161 2.199
2.612 2.669
3.382  3.498
5.925 6.819

0.691
0.950
1.171
1.389
1.624
1.895
2.238
2.730
3.627
8.584

Table C.2: Table of expectiles of the standard log-normal distribution, computed via the
Newton-Raphson algorithm.
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Standard normal distribution

Quantile/Expectile
-1 0
|

-2

-3

0.0 0.2 0.4 0.6 0.8 1.0

Figure C.1: Quantiles (black) and expectiles (red) of the standard Gaussian distribution,
as functions of 7 € (0,1).

-
v |05 09 095 0975 099 0995 0.999 0.9995
2 1 0 188 2920 4.303 6.965 9.925 22.327 31.599
3| 0 1.320 1.890 2.549 3.626 4.656 8.121 10.270
41 0 1.155 1.609 2.099 2837 3490 5.444 6.537
5 | 0 1077 1.480 1.899 2,503 3.011 4430 5.173
6 | 0 1.032 1.407 1.788 2321 2756 3.914 4.494
71 0 1002 1.359 1.717 2.206 2.598 3.606  4.095
8 | 0 0981 1.326 1.667 2.128 2491 3.403 3.834
91 0 0966 1302 1.631 2.072 2414 3.259 3.651
10| 0 0954 1.283 1.604 2.029 2356 3.152 3.516

Table C.3: Table of expectiles of the Student distribution with v degrees of freedom,
computed via the Newton-Raphson algorithm. The number of degrees of freedom varies
along rows, while the level 7 varies along columns.
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Lognormal distribution

20

15

Quantile/Expectile
10

0.0 0.2 0.4 0.6 0.8 1.0

Figure C.2: Quantiles (black) and expectiles (red) of the log-normal distribution, as func-
tions of 7 € (0,1).

-
v | 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

1 ]0.069 0.124 0.194 0305 1 2,513  3.231 4.007  5.122
2 10272 0422 0588 0820 2  4.080 4.982 5926 7.243
3 1058 0835 1.093 1435 3 5496 6.531 7.597  9.060
4 10979 1.325 1.668 2107 4 6.839 7983 9.150 10.736
5 [ 1433 1869 2290 2817 5 8137 9378 10.632 12.325
6 | 1.933 2.454 2947 3.555 6  9.405 10.732 12.065 13.854
72469 3.071 3.631 4314 7 10.651 12.056 13.461 15.338
8 13.035 3.712 4336 5.090 & 11.878 13.356 14.829 16.788
9 |3.626 4375 5059 5879 9 13.091 14.638 16.174 18.210
10 | 4.237 5.056 5.797 6.680 10 14.292 15.904 17.499 19.608

Table C.4: Table of expectiles of the chi-squared distribution with v degrees of freedom,
computed via the Newton-Raphson algorithm. The number of degrees of freedom varies
along rows, while the level 7 varies along columns.
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Student distribution

Quantile/Expectile

Figure C.3: Quantiles (black) and expectiles (red) of the Student distribution with 2
(solid curves), 4 (dashed curves) and 10 (dotted curves) degrees of freedom, as functions
of 7 € (0,1). The Student distribution with 2 degrees of freedom is Koenker’s distribu-
tion (Koenker, 1993), for which quantiles and expectiles are identical.

Distribution (parameters) &

Uniform (a < b), 7 #1/2 be(liT)a;T(b:la)m
Triangular, 7 < 1/2 %/1127 (i/\/gl 07 43— \/\/@—3>
Triangular, 7 > 1/2 2 — = < 0r=l 43— {4/ - 3)

Beta (a=2,8=1),7<1/2

Beta (a =2,8=1),7>1/2 2, /57 cos (% arccos (— 27_1) + 4,—”)
)

N +17\/2+251gn 1—27 ( ’z; flf )72,\T

sign(1 — 271)

2
Beta (a =2, 8=2), 7 #1/2 where A, :,/%

V2N —2),
sign(2r — 1) \/‘27 s

where A, = {2V | ol

(1—27)2 (1-27)2

Beta (a=3,8=1), 7#1/2

Table C.5: Closed-form expressions for expectiles in exceptional cases of certain bounded
continuous distributions.
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Chi-squared distribution

Quantile/Expectile

Figure C.4: Quantiles (black) and expectiles (red) of the chi-squared distribution with 1
(dotted curves), 5 (dashed curves) and 10 (solid curves) degrees of freedom, as functions
of 7€ (0,1).

46



"(L107) Zoureg pue 9ZeJy JO UOIOUNJ | JIdqUIRT] PIZI[RIoual oY) SI A ‘ v M Pue uo1jdunj jaqure o) jo youelq redourid oY) sejousp
JMOYSNOIY) Pue SIS "SUOTINLIISIP SNONUTIUOD PIPUNOQUN UTEIIID JO sased reuorydooxa ur soqryoadxe I0j suorssordxe WIO-O1ATeuy :970) 9[qe],

A%v M(T — +g)usrs oorrder]
:S )dxo 1= v M+ L A (0 < Y) renyueuOdxy
(=, ) me (7 = %) porenbs-1q)
81+ Mm WVMV %mw\/ imm\v = *Y aleym (9 = a) yuapmyg

x4 4

— 1g)ugIs
6 . Le—*xgM(+—-1)g . B 1 Nv
Le— TXE/ 8L (g i(Fvas —aL6) T g2 (as6—*xar) | (¢ VS +ie="Xe

(+—1)+
— %\/ Aﬁ — ENvaMm Qw = \Nv juapnis
(+—1)2
—— (z = ) yuepnig
((1—)dxe ﬂva\:.I (0 < Y ‘g =) J-osIoAU]
§ = ‘Y oM €/1# + (9 =72y =T1) wysiq

4

Ltive
AL\f xg/Ne | (1—2e)uBs—*xg—§ | '+ § +*xz /M (1—+€)udis

S AWH 1 — g — 15— Hv soneed A (7 = 1 ‘9 = 1a) 10UsLg

4

Am\ VT — Lg| + 48— ﬂv ﬁ% J = 4y a1eyM

[4

ol

._.\ﬁm+.ja (+—De s
—/ FESLE payg— Hm+<m\/

AL, - H\/ =) H\/v
AAM\/V SOOI wv mouM\/m ¢/1< L (y =% = 1) 0Usig

zL6+H47—1 ¢ _ P
(D2 (e 28) (et 47—+ —o(+- Dt Moz Dusss e/1#+(e/1=¢ ‘g =v) umdeq

¢/1> 1 (v =% =1a) wysiyg

+3 (s19gourered) wOTINALIISI(]

47



T <TG/ (gooT+ o) — [ = (¥),] UOMDUN UOHINGLYSID
suraey ‘) < ¢ pue () < © s1ojouwrered YjIm UOIINLIISTP SSIOA\-[[BH 9} JO sosed Teuorjdooxo Ul so[1300dxo 10J suorssordxo WLIOI-posor) )0 9[qe],

(+—Dz1 (+—Dz1 .
et 4 = = ) SSIOA\-[[R
et Q:@Tméoﬁtmmﬁ\owmt\/:lm_mwﬁmtmm\NFB?N\:\W (e=¢"c ) SSIOA-TPH
(+—1)z1 1y oz0M
(64167 —c£P0ST+LE58T—072) LM T —28]e+(Le+228—c209) (£2— :\/
4
9g , 4=z | .
G T 1=zz TEXe L L
M.T - wm \/%‘HIAA\HMN.T.:«NI +A~\HWN+L<N
(+=1) Te = ¢ ‘e = D) SSIOM-[®
1—2cl—(eve—2268) (1—2) [& T (T=2¢ ‘¢ =) ssoMI°H
c(+=1) Ye — v oroym
lT—22|+(eve—2L6€)(1—12) [¢ T
z
9.8
o = Ye o
8821 04 44y +‘iw - '+ +4xe
12—1
41 (+=1)2 —
G oarE \/\ T8 mn_u N\HAE
6TOT—LVLSY LE€LG9— ¢+TR0E E€VE+LTITT — gLL20T
< ¢ (¢/1=1¢ ‘¢/e =) ssop-ltH
(+—Dz _
9S¥€ £ + 798 - .:4 @H@jg
6T0T—LVLSG¥+71L€L59— ¢LT80¢E \/ e7eT15981— 22201 | €
v
v /N \/
+—1
L =T +~e-§) +Eit++N
4
el _ ([ teL—e6v (+—1)(67—+€L) € [t S A W R S
g AA 11 | Eve—ZeogiLrgor— ) SOOPTE T | SO Igp=ay [T = X 2TOUM /1> +
v (¢/1=¢ ‘¢/e = ©) ssom-[eH
L L+f«m\( \/
L=t +e-§ +E+ep
<
+ g(+—1)2169 _ (¢—1)8TLT + ¢(£—1)2169 + (£—1)82L1 AE ,ﬂ
(5L8—1207)(15—1)+ qTT—-1€69 [€ (gLe—+20%)(15—1)+ STI—1€69 [€ GLe 1

(1 =g ‘e =) ssoMm-®H

4 1-gg Gg—< g (+—D9e L0V (.

T AA 1 Lm%\mﬁv 509918 wv 809 T=cz (1'gl n[f0) 2

(1 =4 ‘¢ =) sSEM*H
£3 (s1egourered) worINqLIISI

48



"SOOIPUI SN[RA SUWIDIJXS SUIRS B[} [IM (UOIINLIJSIP 0jaIe 1) JO JURLIRA 9[RIS-UOI}RIO] ® SI DIYM) UOINGLIISIP 0191eJ PIZI[RIoUs3
91} 10§ $9[1309dX0 JO BSOT[} OIE SIS JSAY WO PAONPOP A[300IIP SUOISSAIAXD ULIOJ-PIsOP YY) T < T ‘(T — [ = (T)J UOOUNJ UOTINLIISIP
Suraey ‘() < A XopUI aNfeA 9WAIIXS [HM UOTNLIISIP 03aIeJ 91} Jo sosed reuorjdeoxe ur soqroadxe I0j suorsseldxe ULIOJ-Paso) :8°0) dqe],

ey e S P TR
Yy +1
S+84+4vg m+%\/m|£m|\+w+ﬁ\m
¢4 AAWHmmv s000IR mv 500 g/1S 2 (g/1 = L) ojoreg

4 1-1
T )L

+ (+—-1)8 + (+—1)8
(1—22)+/Ng—1—2¢ ¢ (1—1g)+Ng+1—1¢ ¢

/1< 14g/1 =4L) ojoreg

A

(z/1 = L) ojereg

“—1 ) soooae £) soop
LN\ 1)°

¢/c> 1 4(g/g = L) ogoreg

L—T x_v L—T
(g—1g)+/M—1—17 [¢ (g—1g)+/M+1—17 |&
z

¢/t <1 (g/c = L) oyoreqg

e(£—1)
(g+16—¢LL)L

(+—1)
B ﬂ\V + Amﬂgwatf
8

A)\N\Pm% +)\m>v
e

+ ﬂ\w = *Y oIoyMm

(¥/¢ = L) ojoreg

O E+L
?\/ﬁtm b +§mm|& T

hd

€/t =1"(g/y =4) opreq

3

(s1970mrered) UOTINQLIISI(]

49



	Introduction
	Expectile computation with the mean residual life
	Discrete distributions: Exact computation
	Continuous distributions: A Newton-Raphson algorithm
	Continuous distributions: Exceptional cases
	Closed-form expressions through low-degree polynomial equations
	Analytic expressions through transcendental equations


	Monte-Carlo computation
	Discussion
	Proofs of the theoretical results
	Detailed calculations related to the examples
	Catalog of expectile functions of continuous distributions

