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Abstract

In the training process of machine learning, the minimization of the empirical risk loss function
is often used to measure the difference between the model’s predicted value and the real value.
Stochastic gradient descent is very popular for this type of optimization problem, but converges
slowly in theoretical analysis. To solve this problem, there are already many algorithms with vari-
ance reduction techniques, such as SVRG, SAG, SAGA, etc. Some scholars apply the conjugate
gradient method in traditional optimization to these algorithms, such as CGVR, SCGA, SCGN,
etc., which can basically achieve linear convergence speed, but these conclusions often need to be
established under some relatively strong assumptions. In traditional optimization, the conjugate
gradient method often requires the use of line search techniques to achieve good experimental
results. In a sense, line search embodies some properties of the conjugate methods. Taking inspi-
ration from this, we apply the modified three-conjugate gradient method and line search technique
to machine learning. In our theoretical analysis, we obtain the same convergence rate as SCGA
under weaker conditional assumptions. We also test the convergence of our algorithm using two
non-convex machine learning models.

Keywords: Machine learning; Empirical risk loss function minimization; Stochastic conjugate
gradient; Linear convergence

1. Introduction

The core problem of algorithms in machine learning is how to find a suitable model from limited
training data so that it can make accurate predictions or decisions on unknown data. To address this
problem, machine learning researchers have proposed different learning criteria and optimization
methods to guide the model selection and training process. The learning criterion of empirical risk
minimization (ERM) [11], which is applied to the recently popular GPT (Generative Pretrained
Transformer) model. GPT is an autoregressive language model based on the Transformer structure.
It can achieve excellent performance in a variety of natural language processing tasks through large-
scale unsupervised pretraining and supervised fine-tuning. The training process of GPT involves
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the idea of empirical risk minimization [6], that is, to improve the generalization ability of the
model on the test set by minimizing the loss function of the model on the training set. Taking
general linear regression as an example, assuming that the loss function is the mean square error,
plus l2 regularization, the minimization of the objective function can be written as

min
ω,b

1

2m

m
∑

i=1

(yi − ωTxi − b)2 + λ∥ω∥22

where w ∈ ℜL is the weight vector of the model, b is the intercept, yi is the observed value of
sample i, and xi is the feature vector of sample i. n is the total number of samples and λ is the
regularization hyperparameter. We use Fi : ℜL → ℜ to denote the objective function for the i-th
sample, and then the above can be written in a more general form:

min
ω

F (ω) =

m
∑

i=1

Fi(ω)

m
(1.1)

The full gradient descent algorithm [30] is a classic algorithm to solve the above problems. The
basic idea is that each time the parameters are updated, the gradient information on the entire
training set is used to advance a certain step in the opposite direction of the gradient, thereby
gradually reducing the value of the loss function until it converges to a local minimum or global
min. However, when the training set is large, calculating the gradient will be very time-consuming,
and the same gradient must be calculated repeatedly every time the parameters are updated,
resulting in inefficiency. In addition, the full gradient descent algorithm is also sensitive to the
choice of learning rate. If the learning rate is too large or too small, it will affect the convergence
speed and effect. In order to overcome the shortcomings of the full gradient descent algorithm,
many improved methods have appeared [12, 13, 31, 32]. At the same time, in order to increase
the convergence rate of SGD algorithms, Le Roux [35] proposed an SGD method with variance
technology, and based on this work, more gradient methods with variance technology such as CGVR
[8], SCGN[9], SCGA[1], and their common feature is that they all use the stochastic conjugate
gradient method. Among them, CGVR and SCGA are both hybrid conjugate gradient methods,
and both achieve linear convergence rates under strong convex conditions. In addition to this,
there are also adaptive methods that are popular in machine learning such as: AdaGrad [33],
AdaDelta [34], Adam [14]. Due to their adaptive step size and relatively robust selection of hyper-
parameters, they perform well on many problems even without fine-tuning hyper-parameters. With
the increasing size of data in machine learning problems, and the good performance of traditional
conjugate gradient methods in dealing with large-scale equations, we have reason to believe that
the stochastic conjugate gradient method can be better applied in machine learning.

1.1. Conjugate gradient method

Considering the traditional unconstrained optimization problem:

min{f(x) | x ∈ ℜL}, (1.2)

where f : ℜL → ℜ. The conjugate gradient method is a important algorithm to solve the prob-
lem (1.2), which is a method between the steepest descent method and the Newton method. It
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overcomes the slow convergence of the steepest descent method and avoids the disadvantage of the
Newton method that needs to calculate the Hesse matrix. The CG method, which is defined by

ds+1 =

{

−gs+1 + βsds, if s ≥ 0,
−gs+1, if s = 0,

(1.3)

where gs+1 = ∇f(xs+1) is the gradient of f(x) at xs+1, and βs ∈ ℜ is a scalar which has four
classic CG formulas with

βPRP
s =

gTs+1ys+1

∥gs∥2
, [22, 23, 27]

βFR
s =

gTs+1gs+1

∥gs∥2
, [20]

βHZ
s =

gTs+1ys+1(d
T
s ys+1 − 2∥ys+1∥2(gTs+1ds))

yTs+1ds
, [21]

βDY
s =

gTs+1gs+1

yTs+1ds
, [25],

where ∥ · ∥ denote the Euclidean norm and yk+1 = gs+1 − gs. For better theoretical or numerical
results, many scholars have revised these classical directions[3, 9, 10, 24, 26, 27]. Among them,
Yuan [26] obtained the global convergence of PRP through a modified wolf line search. Recently,
the adaptive conjugate gradient method proposed by Wang [28] has a better performance in train-
ing neural networks for image processing. CGVR is a hybrid of FR and PRP methods on the
basis of SVRG [17], and SCGA is a similar work on SAGA [18]. Although both of them exhibit
faster convergence rates experimentally, both require strong theoretical assumptions in convergence
analysis, which is worthy of our further study. Jiang [29] weakens the hypothesis by restarting the
coefficients. In order to weaken the condition of the assumption, it prompts us to think about
the direction of descent and the step size. Inspired by Yuan, we consider using line search to get
some better theoretical properties. As we all know, when we require the step size to satisfy the
strong wolf step size condition [36], we can avoid the case where the direction is not the descending
direction,

f(xs + αsds) ≤ f(xs) + ηαs∇f(xs)Tds,
|∇f(xs + αsds)

Tds| ≤ −σ∇f(xs)Tds
(1.4)

where 0 < η < σ < 1. Due to its strong properties and numerical effects, some scholars use the
strong wolfe condition in stochastic optimization problems [1, 8].

2. Inspiration and Algorithm

Inspired by many scholars and the conjugate gradient and line search for continuous optimiza-
tion in the introduction, we want to apply the new conjugate gradient method and line search to
stochastic optimization problems. Here we first review two different gradient estimates in stochas-
tic methods. In stochastic optimization algorithms, using the mini-batch sampling method can
improve computational speed, avoid redundant samples, and accelerate convergence. This method
achieves acceleration by processing only a small portion of the data per iteration, while ensuring
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accuracy of results. It significantly reduces computational costs and is more easily applicable to
large-scale datasets. The gradient estimation expression of the mini-batch SAGA algorithm is as
follows::

Gs = ∇FCs
(ωs)−

∑

i∈Cs

∇Fi(ω[s−1])

|Cs|
+

m
∑

i=1

∇Fi(ω[s−1])

m
(2.1)

where ω[s] represents the latest iterate at which ∇Fi was evaluated, Cs represents the s-th small
batch and |Cs| represents the size of the batch. ∇Fi(ω[s]) is the gradient of the i-th sample at
iterate ω[i]. Taking the expectation from the above equation can be seen that it is an unbiased
estimate. The first three-term CG formula is presented by Zhang, Zhou, and Li [37] for continuous
optimization problems (1.2):

ds+1 =

{

−gs+1 +
gTs+1

ys+1ds−gTs+1
dsys+1

∥gs∥2
, if s ≥ 1

−gs+1, if s = 0,
(2.2)

we write in a more general form:

ds+1 = −gs+1 + βs+1ds − θs+1ys+1

where ys+1 = gs+1− gs, βs+1 is a parameter of the standard PRP conjugate gradient method, θs+1

is a parameter of the three-term CG method. βs+1 and θs+1 are calculated as follows:

βs+1 =
gTs+1ys+1

∥gs∥2
, θs+1 =

gTs+1ds

∥gs∥2
(2.3)

Some studies on the three-term conjugate gradient method have shown that it has the good prop-
erty. In Kim’s research [7], he applied the three-term conjugate gradient method to the artificial
neural network, which is comprehensively compared with SGD, Adam, AMSGrad [15] and Ad-
aBelief [16] methods and is competitive, but it doesn’t do much theoretical analysis. Kou [1] tried
to add the conjugate gradient method to SAGA and got SCGA. Yang [2] Combining mini-batch
SARAH [19] with FR conjugate gradient methods named CG-SARAH-SO. Inspired by Yang, Kou
and Kim , can we take advantage of the property of the three-term conjugate gradient to obtain the
convergence rate estimated in other gradients? we try to use the excellent properties of conjugate
gradient directions, remove some assumptions, and adopt a new direction inspired :

ds+1 =

{

−gs+1 +
yTs+1

gs+1ds−dTs gs+1ys+1

µ1∥ys+1∥∥ds∥+µ2∥ys+1∥∥gs+1∥+∥gs∥2
, if s ≥ 1

−gs+1, if s = 0,
(2.4)

we try to apply direction (2.4) to the stochastic optimization problem:

Ps+1 =

{

−Gs+1 +Bs+1Ps −Os+1Ys+1, if s ≥ 1
−Gs+1, if s = 0,

(2.5)

where Ps+1 represents the descending direction of the sample iteration and Ys+1 = Gs+1 − Gs.
Bs+1 and Os+1 are calculated as follows:

Bs+1 =
GT

s+1Ys+1

µ1∥Ys+1∥∥Ps∥+ µ2∥Ys+1∥∥Gs+1∥+ ∥Gs∥2
, (2.6)

Os+1 =
GT

s+1Ps

µ1∥Ys+1∥∥Ps∥+ µ2∥Ys+1∥∥Gs+1∥+ ∥Gs∥2
(2.7)
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Dai [5] proposes two Armjio-style line search methods, one of which is as follows:

f(xs+1) ≤ f(xs) + ηαsg
T
s ds,

gTs+1ds+1 ≤ −σ2∥gs+1∥2
(2.8)

given constants t ∈ (0, 1), η > 0 ,σ2 ∈ (0, 1], αs = max{t, t2, ...}. In fact, the second search line of
this line includes sufficient descent, but because it uses the direction when s = s + 1, it leads to
a large amount of calculation when looking for the step size. In order to make the step size more
acceptable, we are in a correction item has also been added to the Armjio condition. Inspired by
Yuan’s method [26] of modifying Wolfe’s line search criterion, we modify Dai’s line search. In order
to get an appropriate step size αk, we design a modifed inexact line search:

f(xs+1) ≤ f(xs)+max{η1αsg
T
s ds,−η2α2

s∥gs∥2},
gTs+1ds+1+σ1∥ds+1∥2 ≤ −σ2∥gs+1∥2

(2.9)

where η1 and η2 < 1 are constants in (0,1) and σ1 + σ2 > 1, σ1 ∈ (0, 1), σ2 ∈ (0, 1], when σ1 is
small enough, it approximates the second criterion of (2.8). It can lead to some useful conclusions
with the nature of the direction when discussing the convergence of the algorithm later. We write
(2.9) in the form of a random line search and apply it to a stochastic optimization problem to find
the step size:

FC(xs+1) ≤ FC(xs)+max{η1αsG
T
s Ps,−η2α2

s∥Gs∥2},
GT

s+1Ps+1+σ1∥Ps+1∥2 ≤ −σ2∥Gs+1∥2
(2.10)

Direction (2.1) calculated by the conjugate gradient method and modified line search (2.10),
we give the algorithm SATCG. Due to the properties of sufficient descent and trust region, we
have reasons to believe that SATCG possesses better theoretical properties compared to SCGA
and CGVR.

The remainder of this paper is organized as follows. In Section 1, we review the SGD algorithm,
gradient estimation methods with variance reduction techniques, and conjugate gradient methods.
In Section 2, inspired by the SCGA and three conjugate gradient methods, we propose the SATCG
algorithm. In Section 3, we provide a theoretical analysis of SATCG. In Section 4, we analyze the
experimental performance of SATCG in two machine learning models.

2.1. Contribution

♢We provide a convergence analysis of SATCG in the non-convex condition, and compared to
SCGA and CGVR, SATCG exhibits superior theoretical properties, achieving linear convergence
rate with fewer assumptions.
♢ We analyze the performance of SATCG in two machine learning models and find that it

exhibits better numerical performance than traditional SGD methods on large-scale datasets. We
also compare it to adaptive algorithms. Additionally, we investigate the performance of SATCG
and SCGA on small-sized datasets. Overall, SATCG demonstrates superior convergence properties
compared to traditional SGD algorithms and remains competitive with SCGA, while providing
more stable numerical performance.
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Algorithm 1 SATCG

1: Choose an initial iterate ω[0] ∈ ℜL,and step size α0

2: for i=1,2,...,m do

3: Compute ∇Fi(ω0)
4: Store ∇Fi(ω[0])← ∇Fi(ω0)
5: end for

6: Set the initial stochastic gradient G0 =
1
m

m
∑

i=1

∇Fi(ω0)

7: Set the initial direction P0 = −G0

8: for s=1,2,... do

9: Find the step size αs−1 satisfying (2.10).
10: Update iterate ωs ← ωs−1 + αs−1Ps−1.
11: Choose mini-batch C ⊂ {1,...,n} of size b uniformly random, compute (2.1)
12: Set Gs ← ∇FCs

(ωs)− µCs
+ µs−1

13: Compute Bs, Os by

Bs =
GT

s Ys

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2
, Os =

GT
s Ps−1

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2

14: Determine Ps ← −Gs +BsPs−1 −OsYs
15: Update ∇Fj(ω[s])← ∇Fj(ωs), ∀ ∈ Cs, while other entries of the stored full gradient remain

unchanged.

16: Update µs ← 1
m

m
∑

i=1

∇Fi(ω[s])

17: end for

3. Features and Convergence of SATCG

Assumption 3.1. For all of the individual function ∇Fi(ω) is Lipschitz smooth. From the prop-
erties of Lipschitz, we can obtain the following conclusion:

F (ω) ≤ F (v)+ < ∇F (v), ω − v > +
L

2
∥ω − v∥2 (3.1)

Assumption 3.2. The Polyak-ojasiewicz (PL) condition holds for some Ω > 0.

F (ω)− F (ω∗) ≤ 2Ω∥∇F (ω)∥2

where F (ω∗) is the lower bound on the function F .

Theorem 3.1. We can derive the following two properties based on Direction 1:

GT
s Ps = −∥Gs∥2 (3.2)

and
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∥Ps∥ ≤ (1 +
2

µ1
)∥Gs∥ (3.3)

Proof: When s=1, (3.2) and (3.3) obviously hold. For s > 2, by (2.4) we have

GT
s Ps = GT

s [−Gs +
Y T
s GsPs−1 − P T

s−1GsYs

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2
]

= −∥Gs∥2 +
Y T
s GsP

T
s−1Gs − P T

s−1GsY
T
s Gs

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2
= −∥Gs∥2

By (2.4) we have

∥Ps∥ = ∥ −Gs +
Y T
s GsPs−1 − P T

s−1GsYs

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2
∥

≤ ∥Gs∥+
2∥Ys∥∥Gs∥∥Ps−1∥

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2

≤ ∥Gs∥+
2∥Ys∥∥Gs∥∥Ps−1∥

µ1∥Ys∥∥Ps−1∥+ µ2∥Ys∥∥Gs∥+ ∥Gs−1∥2

≤ (1 +
2

µ1
)∥Gs∥

In summary, (3.2) and (3.3) are established

Lemma 3.1. Suppose that x1 is a starting point that satisfies satisfy the gradient L-smooth and
the level set is bounded. Consider the descending direction to satisfy (2.4), where the stepsize αs is
determined through line search (2.9). In this case, for every s, line search will compute a positive
stepsize αs > 0 and generate a descent direction ds+1. Furthermore, it can be shown that:

αs ≥ min{1, c1}, c1 =
2t(1− η1)

L(1 + 2
µ1
)2

So we can say that there will be an upper and lower bound on the step size αs that satisfies
αs ∈ [α1, 1], 0<α1<1.

Proof: Since d1 = −g1, d1 is a descent direaction.
For any αs, define xs+1 = xs + αsds , similar to proofs in Dai [5]. As theorem 1 shows

gTs ds = −∥gs∥2, thus the second line of the line search (2.9) must hold.
From the properties of Lipschitz, then we have that

f(xs+1)− f(xs) ≤ η1αsg
T
s ds ≤ max{η1αsg

T
s ds,−η2αs∥gs∥2}, for all αs ∈ (0,

2(1− η1)

L

|gTs ds|
∥ds∥2

)

There due to line search determines a positive stepsize αs > 0 and further, above holds with constant
c1 =

2(1−η1)
L

. Because the gTs ds = −∥gs∥2, by theorem.1, we can derive the αs ∈ (0, 2(1−η1)

L(1+ 2

µ1
)2
).
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Theorem 3.2. Assuming that the step size satisfies condition 1 and is in the direction of 2.5, then
the gradient Gs satisfy

∥Gs+1∥
∥Gs∥

≤ 2µ1 + 4

µ1µ2(1− 1−σ1

σ2
)
= β

It is evident that when 2µ1+4
µ1µ2

<σ1+σ2−1
σ2

, the inequality β = ∥gs+1∥
∥gs∥

<1 holds true.

Proof: Multiply Ps+1 at both ends of the direction (2.4)

∥Ps+1∥2 = −P T
s+1Gs+1 +

Y T
s+1Gs+1P

T
s+1Ps − P T

s Gs+1P
T
s+1Ys+1

µ1∥Ys+1∥∥Ps∥+ µ2∥Ys+1∥∥Gs+1∥+ ∥Gs∥2

≤ ∥Gs+1∥2 +
2∥Ys+1∥∥Gs+1∥∥Ps+1∥∥Ps∥

µ1∥Ys+1∥∥Ps∥+ µ2∥Ys+1∥∥Gs+1∥+ ∥Gs∥2

≤ 1− σ1

σ2
∥Ps+1∥2 +

2

µ2
∥Ps+1∥∥Ps∥

The inequality in the last line is due to the second line of the search (2.10):

−∥Ps+1∥2 + σ1∥Ps+1∥2 ≤ GT
s+1Ps+1 + σ1∥Ps+1∥2 ≤ −σ2∥Gs+1∥2

By (3.2) and (3.3), when the ∥Ps+1∥ ̸= 0, we get

(1− 1− σ1

σ2
)∥Gs+1∥ ≤ (1− 1− σ1

σ2
)∥Ps+1∥ ≤

2

µ2
(1 +

2

µ1
)∥Gs∥

then we have
∥Gs+1∥
∥Gs∥

≤ 2µ1 + 4

µ1µ2(1− 1−σ1

σ2
)

Lemma 3.2. Let ω∗ be the unique minimizer of F . Taking expectation with respect to Cs of ∥G0∥2,
we obtain

E[∥G0∥2] ≤ 2L[F (ω0)− F (ω∗)]

Theorem 3.3. Suppose that Assumptions 3.1, and Theorem 3.2 hold. Let ω∗ be the unique min-
imizer of F . Then, for all s ≥ 0, we have taking expectation in this relation conditioned on Cs.
From Lemma 3, it can be known that the step size searched by line search (2.9) has upper and
lower bounds, so the step size of (2.10) also has upper and lower bounds. Assuming that we choose
α1 < 2Ω, we can get the linear convergence rate of the algorithm.

Proof: By ωs+1 = ωs + αsPs, the inequality (3.1) can be written as

FCs
(ωs+1)− FCs

(ωs) ≤ αsG
T
s ds +

1

2
α2
sL∥Ps∥2

8



On Cs taking expectations on both sides of inequality,

E[F (ωs+1)]− E[F (ωs)] ≤ E[αsG
T
s ds] +

1

2
α2
sLE[∥ds∥2]

≤ −αsE[∥Gs∥2] +
1

2
α2
sL(1 +

2

µ1
)2E[∥Gs∥2]

≤ −α1E[∥Gs∥2] + [
Lα2

s

2
(1 +

2

µ1
)2]E[∥Gs∥2]

≤ −α1∥E[Gs]∥2 + [
Lα2

s

2
(1 +

2

µ1
)2]β2sE[∥G0∥2]

≤ −α1∥∇F (ωs)∥2 + [
L

2
(1 +

2

µ1
)2]β2s2LE[F (ω0)− F (ω∗)]

The second inequality uses (3.3), the third inequality can be obtained from Lemma 3.1, and the
fourth inequality uses Theorem 3.2. The last line can be obtained by Lemma 3.2 and Lemma 3.3.
Adding the expectation of F (ω∗) to both sides of the inequality, we get

E[F (ωs+1)]− E[F (ω∗)] ≤ (1− α1

2Ω
)(E[F (ωs)]− E[F (ω∗)]) + [

L

2
(1 +

2

µ1
)2]β2sE[F (ω0)− F (ω∗)]

Then, we define

ξ = 1− α1

2Ω

T (i) =
L

2
(1 +

2

µ1
)2]β2i

T = 1 +
L

2
(1 +

2

µ1
)2

1

ξ − β2

The above formula can be expressed as:

Xs+1 ≤ (1− 2α1Ω)Xs + T (s)X0 ≤ (1− α1

2Ω
)2Xs−1 + T (s− 1)X0 + T (s)X0 (3.4)

We scale the right side of (3.4) to s = 0 has the following formula:

Xs+1 ≤ [ξs+1 +
s

∑

i=0

ξs−iT (i)]X0

s
∑

i=0

ξs−iT (i) = ξs+1 + ξs
L

2
(1+

2

µ1
)2

s
∑

i=0

(
β2

ξ
)i = ξs+1 + ξs

L

2
(1 +

2

µ1
)2
1− (β

2

ξ
)s+1

1− β2

ξ

Through the above conclusions, we can get the linear convergence rate of the algorithm 1

E[F (ωs+1)]− E[F (ω∗)] ≤ [ξs+1 + ξs
L

2
(1 +

2

µ1
)2

1

1− β2

ξ

]E[F (ω0)− F (ω∗)]

≤ ξs+1[1 +
L

2
(1 +

2

µ1
)2

1

ξ − β2
]E[F (ω0)− F (ω∗)]

≤ ξs+1TE[F (ω0)− F (ω∗)]
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4. Applications of Algorithm in Machine Learning Models

We used the following two models to evaluate our algorithm, mainly for the following two rea-
sons:

1. These two models are machine learning models using non-convex sigmoid loss function,
which can better adapt to the distribution of data and Noise, improve the robustness and gener-
alization ability of the model. All the codes are written in MATLAB 2018a on a PC with a 12th
Gen Intel(R) Core(TM) i7-12650H 2.30 GHz and 16 GB of memory.

2. These two models represent two different regularization strategies: Nonconvex regularized
ERM model uses non-convex regularization terms, such as ℓ0 norm or ℓp norm (0 < p < 1), To
enhance the sparsity of the model; the Nonconvex SVM model uses the ℓ2 norm as a regularization
term to control the complexity of the model. Both strategies have their own advantages and disad-
vantages, and we hope to analyze the performance of our algorithm under different regularization
settings by comparing their performance.

Table 1: Dataset

Data Set Training Samples Dimension

adult 32562 123
covtype 581012 54
mnist 60000 784
ijcnn 49990 22
a9a 32561 123
w8a 49749 300

diabetes 768 8
fourclass 862 2

german.numer 1000 24
inosphere 351 34

splice 1000 60
sonar 208 60

All of the above datasets have been scaled to the [-1, 1] range via max-min through the pre-
processing phase.
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Table 2: Parmeter value

Parmeter Value Description

α 0.1 The initial step size in Adam, Rmsprop, SAGA, SGD,
b [

√
m] Mini batch quantity(the square root of the dataset dimension is rounded down)

µ1 2 Direction Correction Factor
µ2 5 Direction Correction Factor
σ1 0.9 Line Search Second Criterion Coefficients
σ2 0.9 Line Search Second Criterion Coefficients
η1 0.003 Armjio criterion coefficient
η2 0.003 Armjio criterion coefficient
λ 10−4 Regularization coefficient of the loss function

Test Model 1

Nonconvex SVM model with a sigmoid loss function

min
1

n

n
∑

i=1

Fi(ω) + σ∥ω∥2

where Fi(ω) = 1 − tanh(vi < ω, ui >), u ∈ ℜ and v ∈ {−1, 1} represent the feature vector and
corresponding label respectively.

Test Model 2

Nonconvex regularized ERM model with a nonconvex sigmoid loss function

min
1

n

n
∑

i=1

Fi(ω) +
σ

2
∥ω∥2

where Fi(ω) =
1

[1+exp(biaTi ω)]
. Binary classification problem is a common type of problem in machine

learning, which requires us to divide the data into two categories, such as distinguishing spam and
normal emails, or distinguishing whether a sonar signal is a rock or a metal.
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Figure 1: Comparison of SATCG with several classes of algorithms on 12 datasets(Model 1)
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Figure 2: Comparison of SATCG with several classes of algorithms on 12 datasets(Model 2)
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Figure 3: SATCG vs SCGA (Model1)
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Figure 4: SATCG vs SCGA (Model2)
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Algorithm Comparison

In both model tests, SGD, SAGA, SARAH, Adam, and Rmsprop all use an initial step size
of 0.1, while Adam has momentum parameters of 0.9 and 0.999, and Rmsprop has a momentum
parameter of 0.99, which are commonly used settings. The results are presented in Figure 1
and Figure 2, where we compare the convergence of SATCG and SGD class algorithms with
adaptive algorithms across 8 different datasets. It is evident that SATCG generally achieves faster
convergence across all datasets and models.

In Figure 3 and Figure 4, we compare a stochastic conjugate gradient method known as SCGA.
Kou’s study also compares SCGA with CGVR in several small-scale datasets. In addition, we
compare the convergence of SATCG and SCGA in six smaller datasets. From the comparison,
we observe that SATCG and SCGA perform similarly in the diabetes and fourclass datasets, but
SATCG exhibits better descent and stability in the remaining four datasets.

In summary, SATCG offers more advantages compared to SGD algorithms, and it exhibits
greater stability and competitiveness than SCGA, Adam, and Rmsprop.

5. Conclusion

In this paper, we present an extension of the modified traditional three-conjugate gradient
method and line search technique for immediate optimization. We achieve a linear convergence
rate with weaker conditional assumptions in our theoretical analysis. Additionally, we test the
convergence of our algorithm across 16 datasets using machine learning models. We compare the
results of our algorithm SATCG with several other mainstream algorithms and find that SATCG
demonstrates faster and more stable convergence.
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