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Abstract

Outliers contaminating data sets are a challenge to statistical estimators. Even a

small fraction of outlying observations can heavily influence most classical statistical

methods. In this paper we propose generalized spherical principal component analysis,

a new robust version of principal component analysis that is based on the general-

ized spatial sign covariance matrix. Supporting theoretical properties of the proposed

method including influence functions, breakdown values and asymptotic efficiencies are

studied, and a simulation study is conducted to compare our new method to existing

methods. We also propose an adjustment of the generalized spatial sign covariance

matrix to achieve better Fisher consistency properties. We illustrate that generalized

spherical principal component analysis, depending on a chosen radial function, has both

great robustness and efficiency properties in addition to a low computational cost.
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1 Introduction

A well-known and frequently used technique to analyze the structure of data sets is principal

component analysis (PCA). The objective of this technique is to obtain a new set of uncor-

related variables while preserving as much as possible of the variation present in the original

data. These new variables are constructed as linear combinations of the original variables.

Equivalently, they are obtained by projecting the original data on the PCA loading vectors

of the data set, i.e. the directions in which the data has the greatest variability. PCA is a

key building block in statistical data analysis and is widely used as a first step in clustering,

discriminant analysis and regression.

In classical PCA (CPCA), the principal components can be calculated through a spec-

tral decomposition of the covariance matrix. However, it is widely known that this matrix is

very sensitive to outliers and potentially heavily influenced by anomalous observations. As

a result, the directions of greatest variability are easily attracted towards these outliers, dis-

torting the output of PCA. In order to avoid this, robust PCA methods have been developed

which are resistant to such outlying observations. There exist many different approaches to

robust principal component analysis.

One approach is to use a spectral decomposition of a robust estimate of the covariance

matrix. For affine equivariant covariance matrices, this approach was studied by Campbell

[1980] and Boente [1987] who used M-estimators, which unfortunately cannot withstand

many outliers. Croux and Haesbroeck [2000] revisited this approach, suggesting instead to

use high-breakdown estimators of location and scatter such as S-estimators [Davies, 1987,

Rousseeuw and Yohai, 1984] or the MCD [Rousseeuw, 1984]. In particular, they derive gen-

eral expressions for the influence functions and efficiencies of the resulting eigenvector and

eigenvalue estimates. A drawback of the approach is that many highly robust covariance es-

timators are computationally demanding. Additionally, some of them can only be computed

when the number of samples is (substantially) larger than the dimension.

A second approach works incrementally starting from the principal component corre-
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sponding with the largest projected variance. Each new principal component is then esti-

mated as a maximizer of the projected robust variance conditional on being orthogonal to

the already estimated components. This approach is detailed in Li and Chen [1985], Croux

and Ruiz-Gazen [2005], Croux et al. [2007]. The approach works well when a relatively small

number of principal components is required. However, it can also be computationally de-

manding as the number of projections needed should increase rapidly with the dimension of

the data to guarantee a stable performance. A combination of the two approaches mentioned

above was used by Hubert et al. [2005] to develop the ROBPCA algorithm. ROBPCA often

outperforms the projection-pursuit based methods as well as the covariance-based methods.

It remains fairly slow to compute, especially on larger data sets.

To mitigate the computational burden of the previously mentioned approaches to robust

principal component analysis, one elegant and popular approach for robust PCA is spheri-

cal principal component analysis (SPCA), introduced independently by Marden [1999] and

Locantore et al. [1999]. Spherical PCA starts by projecting the centered data onto a unit

sphere before performing classical principal component analysis on this transformed data

set. It was studied by, among others, Visuri et al. [2001], Taskinen et al. [2012], Croux et al.

[2002]. This procedure is equivalent to performing PCA on the spatial sign covariance matrix

(SSCM):

ΣSSCM(X) = E
[

(X − µ)(X − µ)T

‖X − µ‖2

]
with X a p-variate random variable, µ the location of the distribution of X and ‖.‖ the

Euclidean norm. Under mild assumptions on the underlying distribution, the SSCM is a

Fisher consistent estimator of the eigenvectors and it preserves the order of the eigenvalues.

The SSCM was studied in detail in Magyar and Tyler [2014], Dürre et al. [2014, 2016], Boente

et al. [2019].

In Raymaekers and Rousseeuw [2019] a generalisation to the SSCM was introduced,

namely the generalized spatial sign covariance matrix (GSSCM). They found that the SSCM

is part of a large class of orthogonally equivariant scatter estimates, namely the generalized
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spatial sign covariance matrices. Whereas in the SSCM all centered data points xi are

given the weight 1/‖xi‖, the generalized SSCM assigns different weights, depending on the

distribution of the random variable:

ΣgX (X) = E
[
gX(X − µ)gX(X − µ)T

]
(1)

with gX(t) = t ξX(‖t‖)

where ξX : R+ → R+ is the radial function. By using the Euclidean norm, the GSSCM be-

comes an orthogonally equivariant scatter estimator. In Raymaekers and Rousseeuw [2019],

it is shown that the GSSCM inherits the consistency properties of the SSCM in that it is

a Fisher consistent estimator of the eigenvectors and preserves the ranks of the eigenvalues

under the same assumptions.

A new robust method for principal component analysis emerges when we combine the

idea of spherical PCA with the GSSCM. Instead of computing the principal components

from the SSCM, we can compute them from the generalized SSCM. We refer to this method

as generalized spherical principal component analysis (GSPCA).

In this paper, we introduce and investigate the GSPCA method from a robustness per-

spective. The rest of the paper is organized as follows. Section 2 formally introduces GSPCA.

Section 3 covers several theoretical properties of the new method, such as breakdown values,

influence functions and asymptotic variances. Additionally, we further improve our approach

by adapting the GSSCM estimator to get Fisher consistency for the eigenvalues. In Section

4 an extensive simulation study compares our method to SPCA [Locantore et al., 1999] and

ROBPCA [Hubert et al., 2005], the state-of-the-art method. Section 5 finalizes by applying

GSPCA to real life data sets.
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2 Generalized spherical principal component analysis

As discussed in the introduction, the GSPCA method computes the principal component

directions as the eigenvectors of the GSSCM given in Equation (1). For a finite, p-variate

data set X containing {x1, . . . , xn} the sample GSSCM becomes

SgX(X) =
1

n

n∑
i=1

ξ2X(‖xi − T (X)‖) (xi − T (X))(xi − T (X))T =
1

n
gX(X)TgX(X)

where T is a (orthogonally equivariant) location estimator for the center of the data matrix

X ∈ Rn×p. In Raymaekers and Rousseeuw [2019], it is suggested to use the k-step least

trimmed squares (LTS) estimator as a robust location. This estimator starts from the spatial

median, but adds some extra successive steps to improve robustness against outliers. The

k-step LTS estimator has a breakdown value of b(n+ 1)/2c/n.

In this paper we will consider the following five radial functions suggested in Raymaekers

and Rousseeuw [2019], apart from the evident radial functions ξ(r) = 1 and ξ(r) = 1/r,

respectively corresponding to the classical covariance matrix and the SSCM.

1. Winsorizing (Winsor):

ξX(r) =


1 if r ≤ Q2

Q2/r if Q2 < r

(2)

2. Quadratic Winsor (Quad):

ξX(r) =


1 if r ≤ Q2

Q2
2/r

2 if Q2 < r

(3)
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3. Ball:

ξX(r) =


1 if r ≤ Q2

0 if Q2 < r

(4)

4. Shell

ξX(r) =


0 if r < Q1

1 if Q1 ≤ r ≤ Q3

0 if Q3 < r

(5)

5. Linearly Redescending (LR):

ξX(r) =


1 if r ≤ Q2

Q∗
3−r

Q∗
3−Q2

if Q2 < r ≤ Q∗3

0 if Q∗3 < r

(6)

The cutoffs Q1, Q2, Q3 and Q∗3 are robust estimates of the first, second and third quartile

of the distribution of the Euclidean distances. We will come back to these in the next section.

For a given data set X we can now use the spectral decomposition of the sample GSSCM

to obtain the GSPCA loading vectors:

SgX(X) = VgΛgV
T
g

Here the matrix Λg is the diagonal matrix containing the eigenvalues λg,i of SgX(X) in

descending order (λg,1 > · · · > λg,p) and the columns of the matrix Vg consist of the corre-

sponding eigenvectors vg,i. The GSPCA loading vectors then coincide with these eigenvectors

and the principal components correspond to the data projected onto these vectors.
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Alternatively we can also state that the principal components are the uncorrelated vectors

maximizing the variance of the transformed data. In particular, the i-th loading vector ai

can be defined as

ai = arg max
a∈A

{var(gX(X)a)}

where A = {a ∈ Rp |‖a‖2 = 1 and a · aj = 0 for all j = 1, . . . , i− 1}

It should be clear from the definition that GSPCA generally has a fairly low computational

cost. The only uncertain factor is the computation and evaluation of the radial functions g.

In the cases considered above however, it requires the computation of the Euclidean norms

of the observations followed by robust estimates of the quantiles of these norms. The first

can be done in O(np) time, and the latter in O(n). Therefore, GSPCA has a computational

complexity given by O(n+ np+ np2 + p3) = O(np2 + p3), the same as classical PCA.

Additionally, like CPCA, GSPCA has the property that it can be computed through the

singular value decomposition (SVD) as well as the spectral composition of the GSSCM. In

order to use the SVD for GSPCA, we first need to transform the observations using the

function gX of Equation (1) after which we can apply SVD to the transformed data gX(X).

More precisely, we first compute the singular value decomposition

gX(X) = UDV T

where the orthogonal matrices U and V respectively contain the left and right singular

vectors of gX(X) and the diagonal matrix D contains the corresponding singular values δg,i.

Next it can easily be shown that the columns vg,i of V correspond to the GSPCA loading
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vectors and the values δ2g,i/n correspond to the GSPCA eigenvalues:

SgX(X) =
1

n
gX(X)TgX(X) =

1

n
V DUTUDV T

=
1

n
V DDV T

= V diag(δ2g,1/n, . . . , δ
2
g,p/n)V T = VgΛgV

T
g

The SVD procedure has the advantage that the computational cost of GSPCA can be lowered

if the required number of principal components is known in advance. In this scenario we

can use truncated singular value decomposition on the GSSCM to calculate only the first k

singular vectors, which correspond with the first k eigenvectors of the matrix SgX(X). This

not only avoids the calculation of the remaining principal components, but also does not

require the explicit construction of the p× p covariance estimate SgX(X).

3 Theoretical properties

In this section we study the robustness and efficiency of GSPCA. To evaluate robustness,

the breakdown value of our method is calculated and influence functions are derived. The

latter are then used to evaluate the efficiency through the computation of the asymptotic

variances. We use the obtained theoretical properties to objectively compare different radial

functions and explain their statistical behavior.

3.1 Breakdown value

The breakdown value is a global measure for robustness defined by Hampel based on an idea

of Hodges [Hampel et al., 1986]. For a given estimator, it is defined as the smallest fraction

of observations in the data set that needs to be changed to carry the estimate arbitrarily

far. More specifically, for a scatter estimator S, it is defined as the minimal amount of

contamination required to make the largest eigenvalue λ1 arbitrarily large (explosion) or the
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smallest eigenvalue λp arbitrarily close to zero (implosion):

ε(S,X) = min

{
m

n
: sup
X∗

m

max[λ1(S(X∗m)), λ−1p (S(X∗m))] =∞

}

with X∗m the data set X where m observations have been replaced.

While in many applications, implosion of the covariance matrix is undesirable, in the con-

text of PCA, it is the explosion breakdown that is more relevant. After all, if the dimension

is equal to or larger than the sample size, we will have that the smallest eigenvalue is zero

and would thus have “breakdown” if we were to use the definition above. In Raymaekers and

Rousseeuw [2019] it is shown that the breakdown value of the GSSCM is b(n− p+ 1)/2c/n.

This seems unsatisfactory, since it is in contrast with the SSCM which has a higher break-

down value, namely b(n+ 1)/2c/n. Fortunately, the lower breakdown value of the GSSCM

is due to the implosion breakdown value of the “hard redescending” radial functions such

as Ball, Shell and LR, in combination with the estimation of the cutoffs Q1, Q2, Q3 and Q∗3

used in these radial functions.

If we are no longer concerned with the implosion breakdown value, we can take a slightly

different approach. First, we estimate the cutoffs using the estimators

Q1 =
[
medi

(
‖xi − T (X)‖2/3

)
−MADi

(
‖xi − T (X)‖2/3

)]3/2
Q2 = medi(‖xi − T (X)‖)

Q3 =
[
medi

(
‖xi − T (X)‖2/3

)
+ MADi

(
‖xi − T (X)‖2/3

)]3/2
Q∗3 =

[
medi

(
‖xi − T (X)‖2/3

)
+ 1.4826 ·MADi

(
‖xi − T (X)‖2/3

)]3/2
In these definitions med and MAD are the median and the median absolute deviation.

Unlike in Raymaekers and Rousseeuw [2019], these estimators for the cutoffs no longer

depend on the order statistic h = b(n+ p+ 1)/2c, which was required to prove the implosion
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breakdown value of the GSSCM. The dependence on the h-th order statistic is undesirable

in the context of PCA, as the value of p is often close to n or even considerably larger than

n which would lead to h > n, making the cutoffs meaningless.

The theorem below states that for our adapted GSSCM, with cutoffs based on the median

and MAD, we obtain an explosion breakdown value independent of p, equal to that of the

SSCM. The proof can be found in the Supplementary material.

Theorem 1 (Explosion breakdown value). Given X = {x1, ..., xn} an n × p dimensional

data set and a location estimator T (X) with a breakdown value of at least b(n+ 1)/2c/n.

Suppose that

1. The radial function takes values in [0, 1]

2. ∀ data sets X : #{xi : ξ(‖xi − T (X)‖) = 1} ≥ b(n+ 1)/2c

3. ∀t : ‖g(t)‖ = ‖t‖ξ(‖t‖) ≤ medi(di) + 1.4826 ·MADi(di)

Then the explosion breakdown value ε of the GSSCM is b(n+ 1)/2c/n.

Note that the conditions in the theorem are all satisfied for the radial functions in Equa-

tions (2) – (6). In addition, the k-step LTS estimator has a breakdown value of b(n+ 1)/2c/n.

Hence, we conclude that GSPCA based on the GSSCM is robust up to b(n+1)/2c
n

≈ 50% con-

tamination.

3.2 Influence functions of the loading vectors

We now consider the influence functions relevant for GSPCA. The influence function for an

estimator T at distribution F is defined as (see Hampel et al. [1986]):

IF(x, T, F ) = lim
ε→0

T (Fε,x)− T (F )

ε
=

∂

∂ε
T (Fε,x)

∣∣∣
ε=0

(7)

with Fε,x = (1−ε)F+ε∆x the distribution contaminated by x where ∆x is the distribution

putting all its mass in x.
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In contrast to the breakdown value, the influence function is a local measure of robust-

ness instead of a global one. Informally, it can be interpreted as a measure for the effect

that an infinitesimal small amount of contamination has on the estimate. Therefore it is a

complementary measure and describes a different aspect of our method.

In the context of PCA, the relevant functionals T in Equation (7) are the eigenvector

and eigenvalue functionals, which we denote by vg,j and λg,j for j = 1, . . . , p. In this section

specifically, we will study the eigenvector functionals, therefore the relevant influence function

is given by

IF(x, vg,j, F ) = lim
ε→0

vg,j(Fε,x)− vg,j(F )

ε

In what follows, we assume that F is a distribution with the center at the origin and co-

variance matrix Σ which has distinct eigenvalues. Furthermore, we denote the spectral

decomposition of Σ by Σ = V ΛV T where V is a matrix with the eigenvectors vi in its

columns and Λ is a diagonal matrix with the eigenvalues λ1 > . . . > λp on its diagonal.

Note that the functionals vg,j inherit the Fisher consistency properties of the GSSCM in

case of elliptically symmetric distributions, see Raymaekers and Rousseeuw [2019]. We say

that a distribution FX has an elliptically symmetric density if the density can be written as

fX(x) = det(Σ)−1/2 · h((x− µ)TΣ−1(x− µ))

In this case one thus has that vg,j(F ) = vj.

Additionally, vg,j is orthogonally equivariant as the GSSCM is orthogonally equivariant:

∀ U ∈ Rp×p orthogonal matrix:vg,j(FU) = Uvg,j(F )UT

where FU is the distribution of UX if X ∼ F .

We now state the expression for the influence functions corresponding to the loading

vectors of GSPCA, for which the proof can be found in Section A.2 of the Supplementary
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material:

Theorem 2 (Influence functions of the eigenvectors of the GSSCM). For the influence func-

tions of the eigenvectors resulting from GSPCA we have the following analytical expression:

IF(x, vg,j, F ) =

p∑
k=1,k 6=j

1

λg,j − λg,k

[
vTg,k

∫ (
dge(X)g(X)T + g(X)dge(X)T

)
dF (X) vg,j

+ (vTg,kg(x))(vTg,jg(x))
]
vg,k (8)

where dge(x) = ∂
∂ε
gε(X)

∣∣∣
ε=0

While the above expression looks rather involved, we can simplify it further without

(much) loss of generality. First, note that we can assume that F has a diagonal covariance

matrix since the GSSCM is orthogonally equivariant. In that case, the eigenvectors of the

covariance matrix are the standard unit vectors, i.e. vj = ej. Additionally, we can assume

that F is elliptically symmetric. This assumption is very natural since it is required for the

Fisher consistency of the eigenvector functionals vg,j of the GSSCM, yielding vg,j(F ) = vj.

We then obtain the result below, the proof of which is in Section A.3 of the Supplementary

material.

Corollary 1. Assume that F is a centered elliptically symmetric distribution, that it has a

density function and a diagonal covariance matrix Σ, then the following holds:

IF(x, vg,j, F ) =

p∑
k=1,k 6=j

1

λg,j − λg,k
(
g(x)kg(x)j

)
vk

We thus see that, under reasonable assumptions, the influence function of the eigenvectors

of GSPCA reduces to a fairly simple expression. In particular, if we plug in the identity

function for g, we obtain the influence function of the loadings of classical PCA. In particular,

we obtain
∑p

k=1,k 6=j
xkxj
λj−λk

vk, corresponding to the result obtained in Croux and Haesbroeck

[2000].

12



Having obtained analytical forms for the influence functions of the loading vectors re-

sulting from GSPCA, we will now visualize them to compare the different radial functions

in Equations (2) – (6) and illustrate their robustness. We consider a bivariate normal dis-

tribution, F = N (02,Σ) with Σ = diag(1, 0.5), and plot the norm of the influence function

of the largest eigenvector for the different radial functions resulting in the 3D-plots shown

in Figure 1.

First, we observe that the eigenvectors of the classical covariance matrix are the only ones

with an unbounded influence function, all others are bounded. Second, all GSSCM radial

functions are redescending to zero, except for Winsor, whose influence function looks like a

smoothed version of the influence function of the SSCM, suggesting that Winsor will attain

higher efficiency than the SSCM. Further, we see that the norms of the influence functions of

LR, Ball and Shell look quite similar, all three demonstrate four large spikes whereafter each

influence function becomes zero. This is due to their cutoffs at the second or third quantile.

Quad only descends to zero in the limit, making it more robust than Winsor, but not quite

as robust as the redescending radial functions. Overall these results suggest high robustness

for the LR, Ball and Shell radial functions.

Additionally, we study a robustness measure derived from the influence function, being

the gross-error sensitivity (GES). It is defined as follows for an estimator T at distribution

F :

γ∗(T, F ) = sup
x
|IF(x, T, F )|

The gross-error sensitivity measures the maximal influence an infinitesimally small amount

of contamination can have on an estimator T . Therefore it should be finite for robust esti-

mators and preferably small.

For the loading vectors of GSPCA, we now compute the gross-error sensitivities per

radial function numerically to compare robustness. We again consider the bivariate normal

distribution N (02, diag(1, 0.5)) and study the first loading vector. We compute the gross-

error sensitivity as the supremum of the norm of the corresponding influence function. This
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Figure 1: Norm of the influence function of the largest eigenvector at N (02,diag(1, 0.5)) for
different radial functions

results in Table 1.

Once again, we observe that CPCA is not robust, its GES is unbounded. In contrast,

classical SSCM Winsor Quad
γ∗ ∞ 2.914213 3.100523 6.569927

LR Ball Shell
10.74909 29.27686 12.42133

Table 1: Gross-error sensitivities of the largest eigenvector at N (02,diag(1, 0.5))

GSPCA has bounded GES for each radial function, implying robustness. The smallest

values are attained by SSCM and Winsor. While this may suggest these are the superior

methods, the plots of the influence functions do show that the Quad, LR, Ball and Shell

methods will have a smaller influence function for most values of the contamination x.
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3.3 Asymptotic variances and asymptotic relative efficiencies of

the loading vectors

We will now use the results on the influence functions to study the asymptotic variances

and efficiencies of GSPCA. This will allow us to compare precision among the different

radial functions. Following Hampel et al. [1986], we obtain that for well-behaved functionals

T , the corresponding estimator Tn = T (Fn) is asymptotically normal:
√
n(Tn − T (F ))

D−→

N (0,ASV(T, F )) where

ASV(T, F ) = EF
[
IF(x, T, F )IF(x, T, F )T

]
.

In order to simplify the exposition, we consider the case of a bivariate normal distribution

N (02, diag(1, γ)). Since we are interested in eigenvectors for PCA, we first calculate the

asymptotic variance (ASV) of the second element of the largest eigenvector, given that it is

important that we estimate this second element close to zero to get a good estimation of the

first eigenvector. This is similar to the approach taken in Croux et al. [2010]. We denote

the asymptotic variance of the second element of the largest eigenvector simply as ASVg per

radial function.

In Section 3.2 we found analytical expressions for the influence functions of the eigenvec-

tors. Hence, we can use them to calculate the asymptotic variances.

For the second component of the influence function of the first eigenvector, which we

denote by vg,(1,2), we obtained the following expression:

IF(x, vg,(1,2), F ) =
1

λg,1 − λg,2
g(x)1g(x)2

Using this, we obtain the asymptotic variance:

ASVg(F ) =
1

(λg,1 − λg,2)2

∫
(g(X)1g(X)2)

2 dF (X) (9)
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When we assume that F is distributed as N (02, diag(1, γ)), we can evaluate the asymp-

totic variance of Equation (9) for different values of γ. The results of this computation are

presented in Figure 2.
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Figure 2: Asymptotic variance of the second component of the largest eigenvector for different
values of γ at bivariate normal distribution N (02, diag(1, γ))

From the plots in Figure 2, it is clear that Ball performs the poorest of all radial functions

by a large margin. LR and Shell perform somewhat average. The lowest ASV is evidently

obtained by classical PCA. However, Winsor’s ASV is quite close to it, followed by SSCM.

Quad also has a low asymptotic variance.

We now use these asymptotic variances to calculate the asymptotic relative efficiency in

comparison to the classical method as follows:

Effg(F ) =
ASVclass(F )

ASVg(F )

where g refers to the chosen radial function. The closer this value is to one, the more

efficient is our method based on the corresponding radial function g. This yields Figure

3. It is immediately clear that the highest efficiency is obtained by Winsor, it seems to

converge to 0.7 for higher values of γ. SSCM is inferior, but still achieves values around 0.5.

This is interesting, since it suggests that we can improve on the efficiency of the popular

SSCM without sacrificing robustness (in terms of having a bounded influence function). Next
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we observe Quad, attaining values around 0.3. Shell, LR and Ball have low efficiencies at

bivariate normal distributions. Overall Winsor clearly outperforms the other radial functions

in terms of relative efficiency.

The high variance of Ball translates into the lowest efficiency. This does not come as a

surprise, as Ball bears similarities to the affine equivariant robust covariance estimators which

use only half of the data such as the minimum covariance determinant and minimum volume

ellipsoid estimators [Rousseeuw, 1984]. These are known to have fairly low efficiencies on

Gaussian data but strong robustness properties [Davies, 1992, Butler et al., 1993, Croux and

Haesbroeck, 1999, Cator and Lopuhaä, 2012]. Ball is also similar to the BACON algorithm

[Billor et al., 2000], which also has strong robustness but weak efficiency properties.
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Figure 3: Asymptotic relative efficiencies of the second component of the largest eigenvector for
different values of γ at bivariate normal distribution N (02,diag(1, γ))

3.4 Influence functions of the eigenvalues

In addition to the eigenvectors, we also study the influence functions of the eigenvalues ob-

tained by GSPCA. Denoting these functionals by λg,j for j = 1, . . . , p, we could be interested

in

IF(x, λg,j, F ) = lim
ε→0

λg,j(Fε,x)− λg,j(F )

ε
.

The problem with using the expression above however, is that the eigenvalue functionals
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are not Fisher consistent for elliptical distributions unlike their eigenvector counterparts.

Otherwise stated, in general we have λg,j(F ) 6= λj(F ), as well as λg1,j(F ) 6= λg2,j(F ) for

two different functions g1 and g2. As a result, we cannot directly compare these influence

functions for different functions g which makes them less interesting.

In this section, we will correct the estimated eigenvalues to make them Fisher consistent.

We will then calculate the influence functions of these corrected eigenvalue estimators, which

now can be compared for different radial functions. Finally, we briefly discuss the covariance

matrix obtained by combining the eigenvectors with the re-estimated eigenvalues.

3.4.1 Modification of GSPCA for Fisher consistent eigenvalues

To adapt our method for Fisher consistency, we will use the approach suggested in Croux

and Ruiz-Gazen [2005]. The idea proposed there is that we can correct the eigenvalues

by first projecting the data onto the eigenvectors before calculating the eigenvalues. More

specifically we proceed as follows:

1. First, we calculate the eigenvectors vg,j through GSPCA as done before. We know that

these are Fisher consistent provided that we have an elliptical distribution.

2. Second, we project the data onto these eigenvectors after which we can use a robust,

equivariant scale estimator S to calculate the eigenvalues:

λS,j = S2(vTg,jX)

and for a finite sample:

λSn,j = S2
n(vTg,jx1, ..., v

T
g,jxn)

Provided that the estimator S itself is a Fisher consistent estimator, this procedure

yields Fisher consistent eigenvalue estimates at elliptically symmetric distributions (see,

e.g., Croux and Ruiz-Gazen [2005]).
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3. Lastly, should we be interested in the covariance matrix, we can combine the two steps

above to obtain a new estimator Σcomb for the covariance matrix:

Σcomb(F ) =

p∑
k=1

λS,k(F )vg,k(F )vg,k(F )T =

p∑
k=1

λk(F )vk(F )vk(F )T

Here the last equality holds if F is an elliptically symmetric distribution, then we have

Fisher consistency for Σ.

In summary, we can correct our method to obtain Fisher consistency for the eigenvalues and

the resulting covariance estimate at elliptically symmetric distributions. Next, we will take

a look at the corresponding influence functions and asymptotic variances to evaluate the

robustness and efficiency of the adapted GSPCA.

3.4.2 Influence functions of the new eigenvalues

In order to obtain the influence function for the corrected eigenvalue functionals, we need a

general property of projections of elliptically symmetric distributions. Denote the distribu-

tion of the random vector projected on a as Ha, i.e., if X ∼ H then aTX ∼ Ha. We will

make use of following lemma from Croux and Ruiz-Gazen [2005] on the distribution of this

projection Ha.

Lemma 1 (Projected distributions). Assume H is an elliptically symmetric distribution with

location parameter µ and covariance matrix Σ. Then there exists a univariate symmetric

distribution F0 such that:

Ha(z) = F0

(
z − µTa√
aTΣa

)
Lemma 1 ensures that all projections of a random vector with an elliptically symmetric

distribution follow the same symmetric distribution F0 after proper scaling and centering.

We can now obtain an expression for the influence functions of the corrected eigenvalue

functionals. The proof can be found in Section A.4 of the Supplementary material.
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Theorem 3 (Influence functions of the new eigenvalues). For our modified eigenvalues λS,k

with S an equivariant scale functional, we have following expression for the influence function

at elliptically symmetric distributions:

IF(x, λS,k, H) = 2λk IF

(
xTvk√
λk
, S, F0

)
(10)

This is the same expression as the one obtained by Croux and Ruiz-Gazen [2005] in the

context of robust PCA based on projection-pursuit. In particular, note that the expression

does not depend on the influence function of any of the eigenvectors.

From the expression of the influence function of the eigenvalues, we readily obtain the

asymptotic variance of the new eigenvalues at elliptically symmetric distribution:

ASV(λS,k, H) = E[IF(X,λS,k, H)2] = E

[
4λ2k IF

(
vTkX√
λk
, S, F0

)2
]

= 4λ2k ASV(S, F0)

Note that the expression for the influence function of the eigenvalues is proportional

to the influence function of the scale functional used. This means that known optimality

properties of equivariant scale functionals carry over to the estimation of these eigenvalues.

In particular, we can leverage the theory on M-estimation to find optimal M-estimators

of scale for estimating the eigenvalues. This is stated in Corollary 2, which follows from

Theorem 3 and Hampel et al. [1986] (Section 2.5e), and leads us to the use of the the median

absolute deviation (MAD) defined by

MAD(X) = c ·med|X −med(X)|

Here c = 1/Φ−1
(
3
4

)
≈ 1.4826 is a consistency factor at normal distributions, hence we obtain

Fisher consistency for the estimated eigenvalues.

Corollary 2. If F0 = N (0, 1), the median absolute deviation is the most B-robust M-

estimator of the eigenvalues, i.e. it has the lowest gross error sensitivity among all (well-

20



behaved) Fisher consistent M-estimators of scale. Similarly, Huber’s M-estimator is the

optimal B-robust M-estimator of the eigenvalues as it has the highest efficiency for a given

bound on the gross error sensitivity.

We visualize the influence function of the new eigenvalue for the multivariate normal

distribution below. Suppose H ∼ N (02, diag(1, ρ)) and thus F0 ∼ N (0, 1) = Φ. The

influence function of the MAD is given by (Hampel et al. [1986], p. 107):

IF(x,MAD,Φ) =
sign

(
|x| − Φ−1

(
3
4

))
4Φ−1(3

4
)φ(Φ−1

(
3
4

)
)
.

The influence function of the largest eigenvalue λ1 = 1 then becomes 2 IF(x1,MAD,Φ),

which is shown in Figure 4.
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Figure 4: Influence function of the largest (new) eigenvalue for x ∈ [−3, 3]

3.4.3 Influence function of the new covariance estimator

Finally, as an additional result, we compute the influence function of the new estimate for

the covariance matrix Σcomb (see Section A.5 of the Supplementary Material for the proof).

Theorem 4 (Influence function of the new covariance matrix Σcomb). Let H be an ellipti-

cally symmetric distribution with a diagonal covariance matrix and S an equivariant scale
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estimator. Then

IF(x,Σcomb, H) = 2

p∑
k=1

λk IF

(
vTk x√
λk
, S, F0

)
vkv

T
k

+

p∑
k=1

λk

p∑
j=1,j 6=k

1

λg,k − λg,j
(g(x)jg(x)k)(vjv

T
k + vkv

T
j )

Next we compare the influence functions of the new covariance estimate using MAD as

scale estimator S with the common GSSCM. For this we plot the influence functions for

H ∼ N (02, diag(1, ρ)) and focus on the off-diagonal element. For that, we obtain:

IF(x,Σcomb, H)1,2 =
1− ρ

λg,1 − λg,2
g(x)1g(x)2

This corresponds to a rescaling of the influence function of the common GSSCM. For ρ = 0.5

and contamination in the direction of (x, x)T this yields Figure 5.
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Figure 5: Influence function of the uncorrected GSSCM Σ (left) and the corrected GSSCM Σcomb

(right) for contamination in the direction of (x, x)T : the off-diagonal element

As we can see from the comparison of the raw GSSCM and our proposed correction, the

relative performances among different radial functions remain relatively stable. However, the

influence function of Winsor is now similar to that of SSCM except in the center where it is

lower. This again speaks in favor of Winsor instead of the popular SSCM. Contamination

in the direction of (x, 0)T results in a zero influence function for each radial function since
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g(x)2 = 0.

4 Simulation study

In this section we conduct a simulation study on synthetically sampled data to investigate the

performance of generalized spherical PCA using the five radial functions defined in Equations

(2) – (6). We will compare them with classical PCA, spherical PCA based on the SSCM

and ROBPCA, the state-of-the-art method for robust PCA.

The ROBPCA method was published by Hubert et al. [2005]. It is based on the projection

pursuit and the minimum covariance determinant estimator. Just as GSPCA, ROBPCA has

the favorable property of being orthogonally equivariant. For our simulation, we will largely

base ourselves on the methodology of the study conducted in the prior mentioned ROBPCA

paper [Hubert et al., 2005].

n p CPCA ROBPCA SSCM Ball LR Quad Shell Winsor

Normal 100 4 .100 .138 .137 .257 .163 .132 .149 .113
50 100 .216 .245 .275 .332 .272 .243 .311 .227

t5 100 4 .134 .138 .131 .243 .163 .137 .170 .113
50 100 .303 .281 .274 .395 .313 .277 .378 .254

t3 100 4 .185 .140 .122 .222 .159 .135 .174 .113
50 100 .419 .305 .272 .416 .332 .294 .407 .267

t2 100 4 .249 .156 .129 .235 .162 .142 .186 .119
50 100 .554 .354 .280 .455 .358 .318 .445 .285

t1 100 4 .403 .183 .120 .236 .173 .155 .204 .117
(Cauchy) 50 100 .710 .495 .277 .494 .403 .366 .497 .304

Table 2: Maxsub measure at uncontaminated data

4.1 Setting

In the simulation, we will look at uncontaminated data (ε = 0) and data with different

levels of contamination (ε = 0.1, ε = 0.2) obtained from the following p-variate Gaussian
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distribution and the p-variate Student’s t-distribution with five degrees of freedom:

(1− ε) Np(0,Σ) + ε Np(µ̃, Σ̃)

(1− ε) t5(0,Σ) + ε t5(µ̃, Σ̃)

From these distributions, we will repeatedly generate 500 data samples of size n. As the

GSSCM scatter estimator is orthogonally equivariant, we only need to look at diagonal

covariance matrices Σ. More in specific, we consider the following two situations, just as in

the ROBPCA paper [Hubert et al., 2005]:

1. Low-dimensional data:

n = 100, p = 4, Σ = diag(8, 4, 2, 1), µ̃ = f1 · e4 = (0, 0, 0, f1)
T , Σ̃ = Σ/f2

2. High-dimensional data:

n = 50, p = 100, Σ = diag(17, 13.5, 8, 3, 1, 0.095, ..., 0.002, 0.001), µ̃ = f1 · e6, Σ̃ = Σ/f2

In the low-dimensional case we compute k = 3 principal components, whereas in the high-

dimensional case we compute k = 5 components, as we want our principal component analy-

sis to explain at least 90% of the total variance. Parameter f1 ∈ {6, 8, 10, . . . , 20} determines

the location shift for the contaminated data in the direction of the k + 1th principal compo-

nent, being e4 or e6. Parameter f2 ∈ {1, 15} specifies the concentration of the contaminated

data.

4.2 Maxsub measure

To evaluate performance in our simulation, we will compute the maxsub measure, which

calculates the maximal angle between the estimated PCA subspace and the space spanned

by {e1, e2, ..., ek}. This can be computed as follows [Hubert et al., 2005]:

maxsub = arccos(
√
λk)/(π/2)
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where λk represents the smallest eigenvalue of ITp,kVp,kV
T
p,kIp,k with Ip,k = (e1 e2 . . . ek) and

Vp,k = (v1 v2 . . . vk). We divide by π/2 to standardize the value of the angle. The ideal value

of the maxsub measure is zero, the worst value is one.

4.2.1 Uncontaminated data

In a first step, we simulate uncontaminated data (ε = 0). As discussed, we sample from the

multivariate normal distribution and the Student’s t-distribution. We however do not limit

ourselves here to five degrees of freedom for the t-distribution, we also consider t3, t2 and t1.

The mean of the maxsub measure for 500 samples is shown in Table 2.

When there is no contamination, we see that for the normal and for the t5-distribution

the best values are attained by classical PCA (evidently) and GSPCA with the Winsor radial

function. This result is in line with the computed efficiencies in Section 3.3, where Winsor

attained the highest efficiency of all radial functions. ROBPCA, SPCA and Quad perform

almost as good. The worst results are those of GSPCA with the Ball function, making this

method least efficient at no contamination. Shell also performs poorly, especially in the high

dimensional case. The low efficiency at no contamination for Ball and Shell is due to the

fact that a lot of data points are given a zero weight, see Equation (4) and (5).

For the t1-, t2- and t3-distribution the results are different. These distributions are heavy

tailed, meaning that some sampled data points are located far away from the sample mean.

These points at the tails typically have a significant effect on the classical covariance matrix,

which is clear from Table 2. As the degrees of freedom in the t-distribution decrease, making

it more heavy tailed, CPCA attains high values for the maxsub measure, meaning that it

fails. GSPCA with Winsor and SPCA on the other hand, are not affected by the heavy

tailed distribution. Hence in this scenario, the use of Winsor or the SSCM is suggested over

the use of CPCA, even if there is no contamination.
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Figure 6: Maxsub measure for low-dimensional, multivariate normal data

4.2.2 Contaminated data

In a second step, we look at the mean of the maxsub measure for 500 samples of data with

different levels of contamination (ε = 0.1 and ε = 0.2). The results for multivariate normal

and t5-data, for the low- and high-dimensional case, are shown in Figures 6 to 9.

Low-dimensional, normal data:

For the low-dimensional, multivariate normal data (Figure 6) we can clearly observe that

CPCA, SPCA and Winsor fail. Their maxsub measure is close to one, implying that outliers

influenced the estimated PCA subspace to the extent that one of the estimated principal
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components is orthogonal to span{e1, . . . , ek}.

The poor result for these radial functions can be explained by their influence functions in

Section 3.2, where we saw that the influence functions of the eigenvectors of the classical co-

variance matrix, the SSCM and the GSSCM of Winsor did not redescend to zero in contrast

with the others. The maxsub measure of Quad also attains some high values, especially for

ε = 0.2 and with f1 rather small. When f1 is larger, indicating that the outliers are shifted

far enough from the regular observations, Quad performs better. In contrast, we attain very

good maxsub measure results for LR, Shell and Ball, whose values are as good as the values

for ROBPCA. These three radial functions had influence functions that became zero after a

certain value.

High-dimensional, normal data:

In the high-dimensional normal case (Figure 7), Quad performs worse and fails, just as

CPCA, SPCA and Winsor. LR, Shell and Ball are able to distinguish the outliers when

f1 ≥ 10, in which case their results are comparable to ROBPCA. However, for f1 < 10, only

ROBPCA achieves low values.

Low-dimensional, t5-data:

For t5-data in the low-dimensional case (Figure 8), the results are similar to low-dimensional

normal data. The only difference is that for ε = 0.2 and f1 = 6, all methods perform poorly,

except for Ball who still attains a low value for the maxsub measure. So in this situation,

when the outliers are very close to the regular observations, Ball is the only one who can

distinguish them.

High-dimensional, t5-data:

Lastly, for the high-dimensional multivariate t5-data (Figure 9), we observe that once again

CPCA, SPCA, Winsor and Quad fail. However, Ball and ROBPCA perform well once f1

is greater than or equal to 10. LR and Shell attain higher values, they only achieve good

results when f1 exceeds 12 or 14. So for the high-dimensional t5 case, the performance of
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Figure 7: Maxsub measure for high-dimensional, multivariate normal data

the methods depends on whether the outliers are separated enough from the regular obser-

vations.

In summary, we can conclude that for the multivariate normal data GSPCA with radial func-

tions LR, Shell and Ball performs comparable to ROBPCA. For the t5-data, Ball achieves the

same results as ROBPCA. LR and Shell perform somewhat worse, but can still be considered

as good alternatives. The fact that GSPCA with the Ball radial function achieves such great

results is somewhat surprising, since from its definition in Equation (4) it follows that half

of the data points get weight zero and therefore do not contribute anymore. However, this
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Figure 8: Maxsub measure for low-dimensional, multivariate t5-data

cutoff makes Ball very robust, as can be seen by the influence functions of its eigenvectors

in Section 3.2, Ball’s influence function is the first one that becomes zero among all radial

functions.

4.3 Computational time

One of the biggest advantages of our new PCA method is its computational speed. It is

considered to be as fast as classical PCA, while ROBPCA is a significantly slower method.

To illustrate this, we will compare the computational time of CPCA and ROBPCA with
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Figure 9: Maxsub measure for high-dimensional, multivariate t5-data

GSPCA using the radial functions Ball and LR.

We will use the same setting as previously and sample multivariate normal data, from

the low- and high-dimensional case, with the mean vector and covariance matrix as specified

in Section 4.1. We set ε = 0 (no contamination) and measure the total computational time

for 100 runs. The computations were done on a 2.50 GHz core i5 processor (7th gen) and

results are shown in Table 3 and 4.

From both tables it is clear that GSPCA outperforms ROBPCA when we consider the

computational time. The time required for GSPCA is comparable to that of classical PCA
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for both the low- and high-dimensional situation. However, the time needed for ROBPCA

increases significantly when the sample size n becomes larger. We conclude that a lot of

time can be saved by using GSPCA instead of ROBPCA.

n 50 100 150 200 250 300 350 400 450 500
CPCA 0.38 0.25 0.36 0.32 0.33 0.35 0.34 0.37 0.47 0.41

ROBPCA 1.66 4.74 13.18 28.61 54.52 92.37 146.24
GSPCA Ball 0.23 0.23 0.38 0.37 0.41 0.45 0.52 0.58 0.62 0.71
GSPCA LR 0.25 0.22 0.5 0.47 0.46 0.6 0.55 0.58 0.61 0.73

Table 3: Total computational time for 100 runs (in seconds) for low-dimensional, multivariate
normal data (p = 4, k = 3) for various values of n

n 50 100 150 200 250 300 350 400 450 500
CPCA 0.89 1.34 1.88 2.28 2.86 2.93 3.58 3.88 4.18 4.6

ROBPCA 2.78 9.34 23.78 50.18 95.04 154.86 240.79
GSPCA Ball 1.14 1.4 1.58 2 2.19 2.67 3.11 3.45 4.11 4.35
GSPCA LR 1.11 1.38 1.65 2 2.3 2.56 3.41 3.66 3.76 4.56

Table 4: Total computational time for 100 runs (in seconds) for high-dimensional, multivariate
normal data (p = 100, k = 5) for various values of n

5 Data Examples

In this section we illustrate the performance of GSPCA on two real data sets: the Top Gear

car data set and a surveillance video of a beach, previously studied in a different context in

Rousseeuw et al. [2018].

5.1 Top Gear data

The first data set comprises the Top Gear car data set from the R package RobustHD, which

has been studied frequently in the context of robustness and PCA. We consider the numeric

variables Price, Displacement, BHP, Torque, Acceleration, TopSpeed, MPG, Weight, Length,

Width and Height and remove incomplete observations, retaining 245 observations. Next

we scale the data and perform CPCA and GSPCA combined with the LR radial function,
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retaining 3 principal components to explain at least 85% of the total variance. To illustrate

the robustness of GSPCA, we use the diagnostic plot defined by Hubert et al. [2005] to

classify the flagged outliers, resulting in Figure 10.

We observe that GSPCA identifies many bad leverage points, outlying in score distance

and orthogonal distance, while CPCA only flags 2 of them as bad leverage points. This

suggests that CPCA was heavily influenced by the bad leverage points identified by GSPCA.

We also ran the state-of-the-art method ROBPCA on the data, its results were very similar

to GSPCA.
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Figure 10: Diagnostic plots for CPCA and
GSPCA on the Top Gear data

5.2 Video data

Figure 11: Video frames 108, 487, 491 and 564

The second data set is comprised of a surveillance video of a beach, consisting of 633

frames of 160×128 pixels in the RGB color model. The data was previously studied in
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the context of outlier detection for functional data analysis [Rousseeuw et al., 2018] and

originates from Li et al. [2004]. In the video we see a beach scenery, where in frame 483 a

man comes into view, in frame 489 he disappears behind a tree and in frames 493 to 633 he

remains in view, see for example Figure 11. Hence from a robustness perspective, we consider

frames 489 to 633 as outliers, while frames 1 to 488 are considered normal observations.
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Figure 12: Diagnostic plots for CPCA and GSPCA on the video data in RGB color

To test GSPCA, we run our new method using the LR radial function and the classical

method on the high dimensional, video data. As the video is color coded in the RGB model,

we have 3 data sets (X1, X2 and X3) of 633 observations with 20480 variables. We select

the number of principal components to explain at least 85% of the variance. The resulting

diagnostic plots of the principal component analyses are shown in Figure 12 for the 3 colors.

Figure 12 shows that GSPCA distinguishes the normal observations (no man, black

points) from the outliers (man in view, colored points). The method flags all outliers as

orthogonal outliers or bad leverage points. It also separates the frames where the man
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is behind the tree (green). For CPCA, the distinction between the outliers and the normal

observations is less clear. Many of the frames containing the man are flagged as good leverage

points, indicating that CPCA was strongly influenced by these points. CPCA also doesn’t

separate the frames where the man is behind the tree.

Also worth noting, GSPCA distinguishes one point with a large score distance of 20.

This observation corresponds to the first frame which is a bit lighter compared to the others,

probably due to starting the video recording. CPCA also separates this point, but as a point

with a large orthogonal distance around 1000.

To illustrate the effect of the outliers on the analysis, we calculate the predicted values

X̂(k) of the principal component analysis:

X̂(k) = (Xn,p − 1nT (X)T )Vp,kV
T
p,k + 1nT (X)T

with k the number of principal components to explain 85% of the variance. From these, we

compute the residuals from CPCA and GSPCA to detect outlying pixels and to study the

difference between the original frames and the predictions:

r = X− X̂(k)

We also standardize the residuals per frame using the mean and standard deviation for

CPCA, and the median and MAD for GSPCA. In Figure 13 we show them for frames 108

(no man), 487 (man left), 491 (man behind tree) and 564 (man right). Here all scaled

residuals below outlier cutoff 2.5 are given the same color.

From the residual plot we observe that CPCA only has few mild residuals, consisting

mostly of noise around the man. In GSPCA, on the contrary, the entire man has very high

residuals and is clearly detected by the analysis. The waves of the sea also have significant

residuals as they move throughout the video.
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Figure 13: Scaled residuals of data set X2
for frames 108, 487, 491 and 564

6 Conclusion

In this paper we developed a new robust version of PCA by calculating the loading vectors on

the generalized spatial sign covariance matrix (GSSCM) instead of on the classical covariance

matrix. The GSSCM was subsequently combined with different radial functions, five were

discussed in this work: Winsor, Quad, LR, Ball and Shell. This resulted in a new method

we named generalized spherical principal component analysis (GSPCA).

To evaluate GSPCA, three theoretical properties were studied. First, we calculated a
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breakdown value of b(n+ 1)/2c/n, meaning that GSPCA can resist upto 50% contamination

in a data set. Second, analytical forms for the influence functions of the eigenvectors of the

GSSCM were derived and studied for the bivariate normal distribution. We demonstrated

that all radial functions except Winsor, had bounded influence functions which redescended

to zero, implying robustness for GSPCA. Last, the asymptotic relative efficiencies at bivariate

normal distribution were computed, it was shown that GSPCA combined with Winsor is

more efficient than SPCA. Ball, LR and Shell on the contrary had lower efficiencies.

To further examine GSPCA, a simulation study was conducted where the maxsub mea-

sure was analyzed for the different radial functions. First we studied data sets without con-

tamination to examine efficiency. For the normal distribution and the Student’s t-distribution

with five degrees of freedom, classical PCA and Winsor performed the best. However, for

distributions with heavier tails such as the Student’s t-distribution with one or two degrees

of freedom, classical PCA failed. GSPCA with the Winsor radial function, on the contrary,

kept achieving great results.

Subsequently, contamination was introduced to the data sets to investigate robustness.

In the presence of this contamination, Winsor and Quad performed bad. The other three

radial functions LR, Shell and Ball achieved good results. Their outcomes were comparable

to those of ROBPCA, the state-of-the-art method. However, GSPCA requires significantly

less computational time.

Thereafter, our method was tested on real life data. The first data set was the well-

studied, moderately sized Top Gear data set. The second data set consisted of high-

dimensional video data. For both examples, GSPCA demonstrated favorable robustness

properties, whereas CPCA was clearly influenced by outliers.

We also proposed an adjustment to the GSSCM to achieve Fisher consistency for the

eigenvalues and the covariance estimate, this was done using projections.

In summary, we conclude that the newly developed GSPCA method can be considered

a very interesting alternative for robust PCA based on the findings stated above. It is
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however important to combine GSPCA with the appropriate radial function. When aiming

for efficiency, using GSPCA with the Winsor radial function can be a good alternative to

classical PCA. When robustness is the main priority, GSPCA combined with the LR or Ball

radial function are the most reliable.
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A

A.1 Proof of Theorem 1

We follow the train of thought of the proof in Raymaekers and Rousseeuw (2019):

Proof. Part 1: ε ≥ b(n+ 1)/2c/n:

Given an m < b(n+ 1)/2c, change m of the observations in X obtaining the con-

taminated data set X∗m. As location estimates we have T (X) and T (X∗m) and we define

c1 = maxi‖xi − T (X)‖ <∞. Since m/n is smaller than the breakdown value of the location

estimator, we have that there exist a constant c2 such that ‖T (X)− T (X∗m)‖ ≤ c2 < ∞.

Hence by the triangle inequality, we get d∗i := ‖xi − T (X∗m)‖ ≤ c1 + c2 < ∞. Therefore

we get medi(d
∗
i ) ≤ c1 + c2 and hence medi(d

∗
i ) + 1.4826 ·MADi(d

∗
i ) ≤ 2.4826 · medi(d

∗
i ) ≤

2.4826 · (c1 + c2). Using condition 3, this yields ‖g(t)‖ ≤ 2.4826 · (c1 + c2). Now we compute:

λmax = sup
‖u‖=1

uTSg(X
∗
m)u

= sup
‖u‖=1

1

n

n∑
i=1

uTg(x∗i − T (X∗m))g(x∗i − T (X∗m))Tu

= sup
‖u‖=1

1

n

n∑
i=1

[
uTg(x∗i − T (X∗m))

]2
≤ sup
‖u‖=1

1

n

n∑
i=1

‖u‖2‖g(x∗i − T (X∗m))‖2

≤ (2.4826 · (c1 + c2))
2 <∞

Hence we have shown that the largest eigenvalue of Sg(X
∗
m) is bounded.

Part 2: ε ≤ b(n+ 1)/2c/n:

Given an m > b(n+ 1)/2c, replace the last m observations from X yielding the con-

taminated data set X∗m = {x1, ..., xn−m, x∗n−m+1, ..., x
∗
n}. WLOG, by using location equiv-

ariance, we can assume that the mean of x1, ..., xn−m is zero. For the other data points,
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j ∈ {n − m + 1, ..., n}, we put x∗j = λaj, with aj such that mini∈{n−m+1,...,n}‖aj − ai‖ ≥ 1

and such that for all λ > 1: mini∈{1,...,n−m}‖λaj − xi‖ ≥ λ. We can do this by placing the

aj’s outside of the convex hull of X, far enough apart from each other.

Further, we consider an increasing sequence (λk)k > 1. Then for every λk the set

{x∗n−m+1, ..., x
∗
n} must contain at least one point such that ξ(‖x∗i − T (X∗m)‖) = 1 by con-

dition 2, say x∗b . The set X∗m contains other points with weight 1, take one arbitrar-

ily and call it x∗c . By the previous paragraph, we then have ‖x∗b − x∗c‖ ≥ λ and hence

‖x∗b − T (X∗m)‖+ ‖x∗c − T (X∗m)‖ ≥ λ and further ‖x∗b − T (X∗m)‖2 + ‖x∗c − T (X∗m)‖2 ≥ λ2/2.

We can then compute:

∑
p
j=1λj(Sg(X

∗
m)) = trace(Sg(X

∗
m))

=
1

n

n∑
i=1

trace
[
g(x∗i − T (X∗m))g(x∗i − T (X∗m))T

]
=

1

n

n∑
i=1

‖g(x∗i − T (X∗m))‖2

≥ 1

n

(
‖x∗b − T (X∗m)‖2 + ‖xc ∗ −T (X∗m)‖2

)
≥ λ2/(2n)

For an unbounded increasing sequence of λ’s this becomes arbitrarily large and hence ε ≤

b(n+ 1)/2c/n.

A.2 Proof of Theorem 2

To proof the theorem, we use the following expression for the influence function of the

GSSCM found in the paper of Raymaekers and Rousseeuw (2019):

IF(x,Σg, F ) = g(x)g(x)T − Σg(F )

+
∂

∂ε

∫
gε(X)gε(X)TdF (X)

∣∣∣
ε=0

(11)
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Here the last term can be expanded as:

∂

∂ε

∫
gε(X)gε(X)TdF (X)

∣∣∣
ε=0

=∫ ({ ∂

∂ε
gε(X)

∣∣∣
ε=0

}
g(X)T + g(X)

{
∂

∂ε
gε(X)T

∣∣∣
ε=0

})
dF (X)

To ease the notational burden, we write dge(x) for the derivative to ε of gε(x) in ε = 0, for

which we have:

dge(x) =
∂

∂ε
gε(X)

∣∣∣
ε=0

= X
∂

∂ε
ξε(‖X‖)

∣∣∣
ε=0

(12)

Explicit expressions for Equation (12) per radial function can be found in appendix A.3

of the GSSCM paper (Raymaekers and Rousseeuw, 2019).

Additionally, we make use of following lemma published in Croux and Haesbroeck (2000) to

compute the influence functions of the eigenvectors of the GSSCM:

Lemma 2 (Croux & Haesbroeck 2000). Given Σ : F → SPD(p) a statistical functional such

that IF(x,Σ, F ) exists. Let vg,1, ..., vg,p and λg,1, ..., λg,p be the eigenvectors and eigenvalues

of Σ(F ). Then the influence function of vg,j is given by:

IF(x, vg,j, F ) =

p∑
k=1,k 6=j

1

λg,j − λg,k
(
vTg,kIF(x,Σ, F )vg,j

)
vg,k

The proof for this lemma follows from Lemma 2.1 in Sibson (1979). We are now ready to

proof the theorem.

Proof. Making use of Lemma 2 and Equation (11) for the influence function of the GSSCM,
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we note:

IF(x, vg,j , F )

=

p∑
k=1,k 6=j

1

λg,j − λg,k
(
vTg,kIF(x,Σg, F )vg,j

)
vg,k

=

p∑
k=1,k 6=j

1

λg,j − λg,k

(
vTg,kg(x)g(x)T vg,j − vTg,kΣg(F )vg,j

+ vTg,k
∂

∂ε

∫
gε(X)gε(X)TdF (X)

∣∣∣
ε=0

vg,j

)
vg,k

=

p∑
k=1,k 6=j

1

λg,j − λg,k

(
(vTg,kg(x))(vTg,jg(x))− vTg,kλg,jvg,j

+ vTg,k
∂

∂ε

∫
gε(X)gε(X)TdF (X)

∣∣∣
ε=0

vg,j

)
vg,k

=

p∑
k=1,k 6=j

1

λg,j − λg,k

(
(vTg,kg(x))(vTg,jg(x)) − 0

+ vTg,k

∫ ({ ∂

∂ε
gε(X)

∣∣∣
ε=0

}
g(X)T

+ g(X)

{
∂

∂ε
gε(X)T

∣∣∣
ε=0

})
dF (X) vg,j

)
vg,k

=

p∑
k=1,k 6=j

1

λg,j − λg,k

(
(vTg,kg(x))(vTg,jg(x))

+ vTg,k

∫ (
dge(X)g(X)T

+ g(X)dge(X)T
)
dF (X) vg,j

)
vg,k
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A.3 Proof of Corollary 1

Proof. When we assume that F is a centered elliptically symmetric distribution with diagonal

covariance matrix, we have that vg,j = vj = ej. Hence Equation (8) simplifies to:

IF(x, vg,j, F ) =

p∑
k=1,k 6=j

1

λg,j − λg,k

(
g(x)kg(x)j

+

∫
{dge(X)k g(X)j + g(X)k dge(X)j}dF (X)

)
vk (13)

Next we proof that the above integral in the second term equals zero. For this, we first

know that g(x) = x · ξ(‖x‖), hence g(x)i = xi · ξ(‖x‖). Second, if we study appendix

A.3 of the GSSCM paper (Raymaekers and Rousseeuw, 2019), one can find that for every

suggested radial function dge(x) is of the form dge(x) = scalar · x · f(‖x‖). Therefore, we

have that dge(x)i = scalar · xi · f(‖x‖). Last, the density function of a centered elliptically

symmetric distribution has the following form: fX(x) = det(Σ)−1/2 · h(xTΣ−1x) with Σ

diagonally assumed here, hence it is an even function in each of its variables xi. Putting all

this together, the integral in the second term of Equation (13) is of following form

∫ +∞

−∞
· · ·
∫ +∞

−∞
xkxj · f(‖x‖)ξ(‖x‖) · ω(x) · dx1dx2 . . . dxp

for k 6= j

where ω(x) is an even function in each variable. Then one has that this integral is equal to

zero because of symmetry reasons. Hence the second term in Equation (13) becomes zero

for centered elliptically symmetric distributions.

A.4 Proof of Theorem 3

Using Lemma 1, we can find an expression for the influence functions of our new eigenvalues:
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Proof.

λS,k(H) = S2(vTg,kX) = S2(Hvg,k)

=⇒ IF(x, λS,k, H) =
d

dε

(
S2
(
H
vg,k(Hε,x)
ε,x

))∣∣∣
ε=0

=
d

dε

(
S2(Hvk

ε,x)
)∣∣∣
ε=0

+

(
d

da

(
S2(Ha)

)∣∣∣
a=vg,k

)T
· IF(x, vg,k, H)

We can use that S2(Ha) = aTΣa, as S is equivariant, which yields:

d

da

(
S2(Ha)

)∣∣∣
a=vg,k

=

(
d

da

(
aTΣa

)∣∣∣
a=vg,k

)
= 2Σvg,k = 2Σvk = 2λkvk

We can then continue our calculation:

IF(x, λS,k, H) =
d

dε

(
S2(Hvk

ε,x)
)∣∣∣
ε=0

+ 2λkv
T
k · IF(x, vg,k, H)

= IF(vTk x, S
2, Hvk) + 2λkv

T
k · IF(x, vg,k, H)

When we calculated the influence function of the eigenvector vg,k of GSSCM, we saw that

this function had no component in the direction of vk. Therefore we can remove the second

term. Hence we obtain:

IF(x, λS,k, H) = IF(vTk x, S
2, Hvk)

= vTk Σvk IF

(
vTk x√
vTk Σvk

, S2, F0

)

= 2λk IF

(
vTk x√
λk
, S, F0

)
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A.5 Proof of Theorem 4

Proof.

IF(x,Σcomb, H)

=
d

dε

(
p∑

k=1

λS,k(Hε,x)vg,k(Hε,x)vg,k(Hε,x)T

)∣∣∣
ε=0

=

p∑
k=1

[
IF(x, λS,k, H)vkv

T
k

+ λk IF(x, vg,k, H) vTk + λkvk IF(x, vg,k, H)T
]

Assuming that the original covariance matrix is diagonal and that H is elliptically sym-

metric, we can use Corollary 1 and Equation (10) to obtain:

IF(x,Σcomb, H)

=

p∑
k=1

[
IF(x, λS,k, H)vkv

T
k + λk IF(x, vg,k, H) vTk

+ λkvk IF(x, vg,k, H)T
]

=

p∑
k=1

2λk IF

(
vTk x√
λk
, S, F0

)
vkv

T
k

+

p∑
k=1

λk

[ p∑
j=1,j 6=k

1

λg,k − λg,j
(g(x)jg(x)k)vjv

T
k

+

p∑
j=1,j 6=k

1

λg,k − λg,j
(g(x)jg(x)k)vkv

T
j

]
= 2

p∑
k=1

λk IF

(
vTk x√
λk
, S, F0

)
vkv

T
k

+

p∑
k=1

λk

p∑
j=1,j 6=k

1

λg,k − λg,j
(g(x)jg(x)k)(vjv

T
k + vkv

T
j )
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