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Abstract
Online changepoint detection algorithms that are based on (generalised) likelihood-ratio tests have been shown to have
excellent statistical properties. However, a simple online implementation is computationally infeasible as, at time T , it involves
considering O(T ) possible locations for the change. Recently, the FOCuS algorithm has been introduced for detecting changes
in mean in Gaussian data that decreases the per-iteration cost to O(log T ). This is possible by using pruning ideas, which
reduce the set of changepoint locations that need to be considered at time T to approximately log T . We show that if one
wishes to perform the likelihood ratio test for a different one-parameter exponential family model, then exactly the same
pruning rule can be used, and again one need only consider approximately log T locations at iteration T . Furthermore, we
show how we can adaptively perform the maximisation step of the algorithm so that we need only maximise the test statistic
over a small subset of these possible locations. Empirical results show that the resulting online algorithm, which can detect
changes under a wide range of models, has a constant-per-iteration cost on average.

Keywords Online changepoint · Real-time analysis · Ex-FOCuS · Time series

1 Introduction

Detecting changes in data streams is an important statistical
and machine learning challenge that arises in applications
as diverse as climate records (Beaulieu and Killick, 2018),
financial time-series (Andreou and Ghysels, 2002), moni-
toring performance of virtual machines (Barrett et al, 2017)
and detecting concept drift of inputs to classifiers (Sakamoto
et al, 2015). In many contemporary applications there is a
need to detect changes online. In such settings we sequen-
tially monitor a data stream over time, seeking to flag that a
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change has occurred as soon as possible. Often online change
algorithms need to run under limited computational resource.
For example, Ward et al (2023) detect gamma ray bursts
using the local computing resource onboard small cube satel-
lites, and Varghese et al (2016) work with sensor networks
where computations need to be performed locally by the sen-
sors. Alternatively algorithms may need to be run for ultra
high-frequency data (Iwata et al, 2018), or need to be run
concurrently across a large number of separate data streams.
These settings share a common theme of tight constraints on
the computational complexity of viable algorithms.

There have been a number of procedures that have been
suggested for online detection of changes. For detecting
simple changes in univariate data, these include Bayesian
approaches (Adams andMacKay, 2007; Lai andXing, 2010),
and approaches based on recursively applying likelihood
ratio, or similar tests (e.g. Lai 1995; Kirch et al 2018; Aue
andKirch 2024, and references therein). In high-dimensional
settings often the type of test to use, and how to combine
evidence for a change across difference components of the
data, is important (see e.g. Mei 2010; Keriven et al 2020;
Keshavarz et al 2020; Chen et al 2022).

We focus on detecting changes in univariate data. Even
in this setting, computational constraints can impact on the
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approach used. For example theBayesian approach ofAdams
and MacKay (2007) has a computational cost of processing
each iteration that increases linearly with time, which has
led to approximate algorithms that have a constant cost per
observation (Fearnhead and Liu, 2007).

Similar trade-offs between statistical efficiency and com-
putational cost can be seen for the frequentist approaches
that we focus on. For example, Yu et al (2023) proposed
a likelihood-ratio test with excellent statistical properties,
but the natural implementation of this method has a compu-
tational cost per iteration that increases linearly with time.
However, for online applications we need the computational
cost to be constant. There exist algorithms with a constant
computational cost per iteration, but they need one to only
test for changes that are a pre-specified time in the past (e.g.
Eichinger and Kirch 2018; Ross et al 2011; Ross and Adams
2012; Chen and Tian 2010), or specify the distribution of
the data after a change (e.g. Page 1954; Lucas 1985). If the
choices made in implementing these algorithms are inappro-
priate for the actual change onewishes to detect, this can lead
to a substantial loss of power.

Recently Romano et al (2023b) proposed a new algorithm
called Functional Online Cumulative Sum (FOCuS). This
algorithm is able to perform the (generalised) likelihood-ratio
test with a computational cost that only increases logarith-
mically with time. FOCuS was developed for detecting a
change in mean in Gaussian data and has been extended
to Poisson (Ward et al, 2023) and Binomial (Romano et al,
2024) data. FOCuS has two components: one that does prun-
ing of past changepoint times that need not be considered
in the future, and a maximisation step that considers all past
changepoint times that have not been pruned. Interestingly,
the pruning step for Poisson and Binomial data is identical to
that for Gaussian data, and it is only the maximisation step
that changes.

In this paper we show that this correspondence extends
to other one-parameter exponential family models. Further-
more, we show how to substantially speed up FOCuS. In
previous implementations the pruning step has a fixed aver-
age cost per iteration, and the computational bottleneck is the
maximisation step that, at time T , needs to consider on aver-
age O(log T ) possible changepoint locations. We show how
previous calculations can be stored so that the maximisation
step can consider fewer past changepoint locations. Empir-
ically this leads to a maximisation step whose per iteration
computational cost is O(1). To our knowledge this is the
first algorithm that exactly performs the likelihood-ratio test
for detecting a change with an average constant-per-iteration
cost.

To summarise, the contribution of our paper is purely com-
putational. We present an algorithm that exactly performs
a likelihood-ratio test for a change as each new data-point
is observed, but with a cost that is much lower than the

O(T ) cost of naively considering all possible change-point
locations prior to time T . We do not discuss the theoreti-
cal properties of the likelihood-ratio test, as this has been
studied extensively, see for example Yu et al (2023), Lorden
(1971) and Lai and Xing (2010). When implementing the
test we need to choose a threshold for the test statistic that
determines whether we flag that there has been a change.
This can be chosen to control the rate of falsely detecting a
change. There are two general approaches to do so, one is
to have a fixed threshold and choose this to control the aver-
age run length, the average time until we incorrectly detect
a change if there is none (see e.g. Li et al 2014, and ref-
erences therein). Alternatively we can have a threshold that
increases with T so that we control the overall probability
of detecting a change for an infinite data stream with no
change (see Aue and Kirch 2024, and refernces therein). In
our simulations we control the average run length, with an
appropriate threshold being chosen by simulation. However
the FOCuS algorithmwe develop can be applied under either
setting.

2 Background

2.1 Problem statement

Assume we observe a univariate time series signal x1, x2, ...,
and wish to analyse the data online and detect any change in
the distribution of the data as quickly as possible. We will let
T denote the current time point.

A natural approach to this problem is to model the data as
being independent realisations from some parametric family
with density f (x | θ). Let θ0 be the parameter of the density
before any change. If there is a change, denote the time of
the change as τ and the parameter after the change as θ1. We
can then test for a change using a likelihood-ratio test statis-
tic. Such test statistics have often been termed generalised
likelihood-ratio test statistics in the literature (e.g. Lai and
Xing 2010).

There are two scenarios for such a test. First, we can
assume the pre-change distribution, and hence θ0 is known
(Eichinger and Kirch, 2018). This simplifying assumption is
commonlymadewhenwe have substantial training data from
the pre-change distribution with which to estimate θ0. Alter-
natively, we can let θ0 be unknown. We will initially focus
on the pre-change distribution known case, and explain how
to extend ideas to the pre-change distribution unknown case
in Sect. 4.

The log-likelihood for the data x1:T = (x1, . . . , xT ),
which depends on the pre-change parameter, θ0, the post-
change parameter, θ1, and the location of a change, τ ,
is
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�(x1:T |θ0, θ1, τ ) :=
τ∑

t=1

log f (xt |θ0)

+
T∑

t=τ+1

log f (xt |θ1).

The log-likelihood ratio test statistic for a change prior to T
is thus

LRT := 2

{
max
θ1,τ

�(x1:T |θ0, θ1, τ ) − �(x1:T |θ0, ·, T )

}
.

Naively calculating the log-likelihood ratio statistic involves
maximising over a set of T terms at time T . This makes
it computationally prohibitive to calculate in an online set-
ting when T is large. There are two simple pre-existing
approaches to overcome this, and make the computational
cost per iteration constant. First, MOSUM approaches (e.g.
Chu et al 1995; Eichinger and Kirch 2018) fix a num-
ber, K say, of changepoint times to be tested, with these
being of the form τ = T − hi for a suitable choice
of h1, . . . , hK . Alternatively one can use Page’s recur-
sion (Page, 1954, 1955) that calculates the likelihood-
ratio test statistic for a pre-specified post-change parame-
ter. Again we can use a grid of K possible post-change
parameters. Both these approaches lose statistical power
if the choice of either changepoint location (i.e. the hi
values for MOSUM) or the post-change parameter are
inappropriate for the actual change in the data we are
analysing.

2.2 FOCuS for Gaussian data

As an alternative to MOSUM or Page’s recursion, Romano
et al (2023b) introduce the FOCuS algorithm that can
efficiently calculate the log-likelihood ratio statistic for uni-
variate Gaussian data where θ denotes the data mean.

In this setting. it is simple to see that

�(x1:T |θ0, θ1, τ ) − �(x1:T |θ0, ·, T ) =
T∑

t=τ+1

{log f (xt |θ1) − log f (xt |θ0)} .

We can then introduce a function

QT (θ1) = max
τ

{
T∑

t=τ+1

(
log f (xt |θ1)

− log f (xt |θ0)
)}

,

which is the log-likelihood ratio statistic if the post-change
parameter, θ1, is known.Obviously, LRT = maxθ1 2QT (θ1).

For Gaussian data with knownmean, θ0, and variance, σ 2,
we can standardise the data so that the pre-change mean is 0
and the variance is 1. In this case, each term in the sum of
the log-likelihood ratio statistic simplifies to θ1(xt − θ1/2),
and

QT (θ1) = max
τ

{
T∑

t=τ+1

θ1(xt − θ1/2)

}
. (1)

This is the point-wise maximum of T −1 quadratics. We can
thus store Qt (θ1) by storing the coefficients of the quadratics.

The idea of FOCuS is to recursively calculate QT (θ1).
Whilst we have written QT (θ1) as the maximum of T − 1
quadratics in θ1, each corresponding to a different location
of the putative change, in practice there are only ≈ log T
quadratics that contribute to QT (Romano et al, 2023b).
This means that, if we can identify this set of quadratics,
we can maximise QT , and hence calculate the test statistic,
in O(log T ) operations. Furthermore Romano et al (2023b)
show that we can recursively calculate QT , and the mini-
mal set of quadratics we need, with a cost that is O(1) per
iteration on average.

The FOCuS recursion is easiest described for the case
where we want a positive change, i.e. θ1 > θ0. An identical
recursion can then be applied for θ1 < θ0 and the results
combined to get QT . This approach to calculating QT uses
the recursion of Page (1954),

QT (θ1) = max {QT−1(θ1), 0} + θ1(xT − θ1/2).

To explain how to efficiently solve this recursion, it is helpful
to introduce some notation. For τi < τ j define

C(τ j )
τi (θ1) =

τ j∑

t=τi+1

θ1(xt − θ1/2). (2)

At time T − 1 let the quadratics that contribute to QT−1, for
θ1 > θ0, correspond to changes at times τ ∈ IT−1. Then

QT−1(θ1) = max
τ∈IT−1

{
C(T−1)

τ (θ1)
}

.

Substituting into Page’s recursion we obtain

QT (θ1) = max

{
max

τ∈IT−1

{
C(T )

τ (θ1)
}

,

CT
T−1(θ1)

}
,

from which we have that IT ⊆ IT−1 ∪ {T − 1}.
The key step now is deciding which changepoint locations

in IT−1 ∪ {T − 1} no longer contribute to QT . To be con-
sistent with ideas we present in Sect. 3 we will present the
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FOCuS algorithm in a slightly different way to Romano et al
(2023b). Assume that IT−1 = {τ1, . . . , τn}, with the candi-
date locations ordered so that τ1 < τ2 < . . . < τn . We can
now define the difference between successive quadratics as

C(T )
τi

(θ1) − C(T )
τi+1

(θ1)

= C(T−1)
τi

(θ1) − C(T−1)
τi+1

(θ1)

= C(τi+1)
τi (θ1).

These differences do not change from time T − 1 to time T .
For the difference between quadratics associated with

changes at τi and τi+1, let li ≥ 0 denote the largest value
of θ1 such C(τi+1)

τi (θ1) ≥ 0. By definition C(τi+1)
τi (θ0) = 0.

Hence it is readily shown that

C(T )
τi

(θ1) ≥ C(T )
τi+1

(θ1),

on θ ∈ [θ0, li ]. For θ1 ≥ li compare C(T )
τi+1(θ1)with C(T )

T−1(θ1).

If C(T )
τi+1(θ1) ≤ C(T )

T−1(θ1) then

C(T )
τi+1

(θ1) − C(T )
T−1(θ1) ≤ 0

⇔ C(T−1)
τi+1

(θ1) ≤ 0.

A sufficient condition for C(T−1)
τi+1 (θ1) ≤ 0 for all θ1 > li is

for the largest root of C(T−1)
τi+1 (θ1) to be smaller than li . In this

case we have that C(T )
τi+1(θ1) does not contribute to QT (·) and

thus can be pruned.
This suggests Algorithm 1. Note that this algorithm is

presented differently from that in Romano et al (2023b),
as the way the quadratics are stored is different. Specifi-
cally, here we store the difference in the quadratics, rather
than use summary statistics. The input is just the difference
of the quadratics that contribute to QT−1. The main loop
of the algorithm just checks whether the root of C(T−1)

τ j is

smaller than that of C(τ j )
τ j−1 , which is our condition for pruning

the quadratic associated with τ j . If not, we stop any further
pruning and return the set of quadratic differences plus the
quadratic C(T )

T−1. If it is, then the quadratic associated with
τ j is removed and the quadratic difference associated with
τ j−1 is updated – by adding on the quadratic difference asso-
ciated with τ j . We then loop to consider removing the next
quadratic (if there is one).

A pictorial description of the algorithm is shown in Fig. 1.
It is simple to see that this algorithm has an average cost per
iteration that is O(1). This is because, at each iteration, the
number of steps of thewhile loop is onemore than the number
of quadratics that are pruned. As only one quadratic is added
at each iteration, and a quadratic can only be removed once,
the overall number of steps of the while loop by time T will
be less than 2T .

Algorithm1FOCuSupdate at timeT for θ1 > θ0 and θ0 = 0.
Algorithm based on storing quadratic differences.

Input: A set of n quadratic differences, C(τi+1)
τi (θ1), for i = 1, . . . , n,

with τi < τi+1 and τn+1 = T − 1 such that

QT−1(θ1) = max
i

{C(τi+1)
τi }.

The set of largest roots, li , such that C(τi+1)
τi (li ) = 0, for i = 1, . . . , n.

1: j ← n
2: l0 ← θ0
3: while j > 0 do
4: if l j ≤ l j−1 then

5: C (T−1)
τ j−1 (θ1) ← C

τ j
τ j−1 (θ1) + C (T−1)

τ j (θ1)

6: Recalculate l j−1, largest root of C
(T−1)
τ j−1 (θ1) = 0

7: τ j ← T − 1
8: j ← j − 1
9: end if
10: Break
11: end while

12: C(T )
T−1(θ1) ← θ1(xT − θ1/2)

13: τ j+1 ← T − 1 and τ j+2 ← T
14: l j+1 ← 2xT
15: n ← j + 1
Output: The set of n quadratic differences, C(τi+1)

τi (θ1) and roots li for
i = 1, . . . , n.

3 FOCuS for exponential family models

Different parametric families will have different likelihoods,
and likelihood ratio statistics. However the idea behind
FOCuS can still be applied in these cases provided we are
considering a change in a univariate parameter, with different
forms for the curves (described in Eq.2) and hence different
values for the roots of the curves. Whilst one would guess
that the different values of the roots would lead to different
pruning of curves when implementing Algorithm 1, Ward
et al (2023) and Romano et al (2024) noted that the pruning,
i.e. the changepoints associated with the functions that con-
tribute to QT , are the same for a Poissonmodel or a Binomial
model as for the Gaussian model; it is only the shape of the
functions that changes. Here we show that this is a general
property formany one-parameter exponential familymodels.

A one-parameter exponential family distribution can be
written as

f (x | θ) = exp
[
α(θ) · γ (x) − β(θ) + δ(x)

]
,

for some one-parameter functions α(θ), β(θ), γ (x), δ(x)
which are dependent on the specific distribution. Examples
of one-parameter exponential family distributions are given
in Table 1 and include Gaussian change in mean, Gaussian
change in variance, Poisson, Gamma change in scale, and
Binomial distributions, for which α(θ) and β(θ) are increas-
ing functions. γ (x) is the sufficient statistic for the model,
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Fig. 1 Example of one iteration of FOCuS. The top row plots the
quadratics C (T−1)

τ1 (red), C (T−1)
τ2 (green), C (T−1)

τ3 (blue), C (T−1)
τ4 (cyan)

that contribute to QT (θ1) directly, together with the intervals where
each is optimal (demarked by grey vertical lines). To prune, we first
add the zero line (dotted black), then prune C (T−1)

τ4 , as it is no longer
optimal for any θ1. We then add θ1(xT − θ1/2) to all quadratics. The
bottom-left plot shows the storage of quadratic differences C (τ2)

τ1 (red),

C (τ3)
τ2 (green), C (τ4)

τ3 (blue), C (T−1)
τ4 (cyan) in Algorithm 1. The roots of

these quadratic differences are shown by grey vertical lines. The roots

of the first three quadratic difference demark the intervals where the
quadratics are optimal. The root of C (T−1)

τ4 shows the region where that
curve is above the zero-line. The algorithm considers pruning τ4 based
on whether the root of C (T−1)

τ4 is smaller than the root of C (τ4)
τ3 . The

pruning of τ4 combines cyan with blue into the quadratic difference
C (T−1)

τ3 (bottom-middle, blue line). We then add C (T )
T−1 (black) as its

own quadratic difference (bottom-right). We require no iteration over
the full quadratic list, as C (τ2)

τ1 and C (τ3)
τ2 remain untouched

Table 1 Examples of
one-parameter exponential
families and the corresponding
forms of α(θ), β(θ) and γ (x)

Distribution α(θ) β(θ) γ (x)

Gaussian (change in mean) θ θ2 x

Gaussian (change in variance) −1/θ2 log(θ) x2

Poisson log(θ) θ x

Binomial log(θ) − log(1−θ) −n log(1−θ) x

Gamma −1/θ k log(θ) x

The Gaussian change in mean model is for a variance of 1, the Gaussian change in variance model is for a
mean of 0; the Binomial model assumes the number of trials is n; and the Gamma model is for a change in
scale parameter with shape parameter k

and is often the identity function. We do not need to consider
δ(x) as it cancels out in all likelihood ratios.

There are various simple transformations that can be
done to shift data points from one assumed exponential
family form to another before applying change detection
methods, for example binning Exponentially distributed data
into time bins to give rise to Poisson data, approximating
Binomal(n, θ ) data as Poisson(nθ) for large n and small
θ , or utilising the fact that if x ∼ N (0, 1) then x2 ∼

Gamma(1/2, 1/2) to turn a Gaussian change in variance
problem into a Gamma change in parameter problem (refer
to Sect. 6 for an illustration of this). Nevertheless, the ability
to work flexibly in all possible exponential family settings
without requiring data pre-processing can be helpful.

The ideas from Sect. 2.2 can be applied to detecting a
change in the parameter of a one-parameter exponential fam-
ily. The main change is to the form of the log-likelihood. For

Algorithm 1 we need to store the differences C
(τ j )
τi (θ1) in
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the log-likelihood for different choices of the changepoint
location. This becomes

�(x1:T |θ0, θ1, τi )
− �(x1:T |θ0, θ1, τ j ) =

= [α(θ1) − α(θ0)]
τ j∑

t=τi+1

γ (xt )

− [β(θ1) − β(θ0)](τ j − τi ).

These curves can summarised in terms of the coefficients of
α(θ1) − α(θ0) and β(θ1) − β(θ0), that is

∑τ j
t=τi+1 γ (xt ) and

τ j − τi .
The pruning ofAlgorithm1 is based on comparing roots of

curves. One challenge with implementing the algorithm for
general exponential family models is that the roots are often
not available analytically, unlike for the Gaussian model, and
thus require numerical root finders. However, pruning just
depends on the ordering of the roots. The following proposi-
tion shows that we can often determine which of two curves
has the larger root without having to calculate the value of
the root.

Define

γ̄τi :τ j = 1

τ j − τi

τ j∑

t=τi+1

γ (xt ),

to be the average value of γ (xt ) for t = τi + 1, . . . , τ j , and
define θτ

1 ( �= θ0) to be the root of

�(x1:T |θ0, θτ
1 , τ ) − �(x1:T |θ0, ·, T ) = 0.

Then the following proposition shows that the ordering of
the roots is determined by the ordering of γ̄ values.

Proposition 1 Suppose that for our choice of θ0 the function

θ1 :→ β(θ1) − β(θ0)

α(θ1) − α(θ0)

is strictly increasing. Then the sign of γ̄τi :τ j − γ̄τ j :T is the

same as the sign of θτi
1 − θ

τ j
1 .

Proof See Supplementary Material.
In other words, θτi

1 > θ
τ j
1 if and only if γ̄τi :τ j > γ̄τ j :T . Thus

we can change the condition in Algorithm 1 that compares
the roots of two curves with a condition that compares their
γ̄ values. Or equivalently we can implement Algorithm 1 but
with li = γ̄τi :τi+1 rather than the root of Cτi+1

τi = 0.
An immediate consequence of this result is that one-

parameter exponential family models that satisfy the con-
dition of Proposition 1 and that have the same value for γ (x)
will prune exactly the same set of curves. This leads to the

following corollary based on a set of exponential familymod-
els with γ (x) = x , the same as the Gaussian change in mean
model of the original FOCuS algorithm.

Corollary 1 The Gaussian (change in mean), Poisson, Bino-
mial, and Gamma variations of the FOCuS algorithm have
the same pruning.

A graphical example of this corollary is shown in Fig. 2.
More generally we have the following.

Corollary 2 If an exponential family model satisfies the con-
dition of Proposition 1, then the pruning under this model
will be identical to the pruning of FOCuS for the Gaussian
change in mean model analysing data γ (xt ).

So, for example, the pruning for the Gaussian change in vari-
ance model will be the same as for the Gaussian change in
mean model run on data x21 , x

2
2 , . . . .

One consequence of this corollary is that the strong guar-
antees on the number of curves that are kept at time T for the
original FOCuS algorithm (Romano et al, 2023b) applies to
these equivalent exponential family models.

Proposition 2 The computational cost per iterationofFOCuS
for a one-parameter exponential family model satisfying the
assumption of Proposition 1 will be O(1) for updating the set
of curves. Furthermore, if the data is independent and iden-
tically distributed, the number of curves stored at iteration
T , NT satisfies

E(NT ) < log(T ) + 1.

Proof The proof of this result is a direct consequence of
Corollary 2 and the results for FOCuS for Gaussian data
in Romano et al (2023b). The cost per iteration of updating
the curves in FOCuS is O(1) because at each iteration we
have a loop over curves, but the number of curves we need
to consider is at most one more than the number of curves
we prune. Thus the total cost by iteration T is bounded by
T plus the number of curves we have pruned. The maxi-
mum number of curves to prune is T . Thus the total cost
is bounded by a constant times T , and the average per-
iteration cost is thus O(1). The bound on the number of
curves we store comes directly from the same bound for
Gaussian FOCuS, see Theorem 3 of Romano et al (2023b).
This follows immediately from the fact that the algorithm
for updating which curves to keep is identical to Gaussian
FOCuS applied to data γ (x1), . . . , γ (xT ), and the bound in
Theorem 3 of Romano et al (2023b) for Gaussian FOCuS
makes no distributional assumptions on the data other than
that they are exchangeable. Exchangeability holds by our
assumption of independence. 
�

The assumption that the data are identically distributed in
this theorem corresponds to the an assumption of no change.
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Fig. 2 Comparison of three different cost functions computed from
the same realizations y1, . . . , y500 ∼ Poi(1). The leftmost, center, and
rightmost figures show the cost function Qn(θ) should we assume

respectively a Gaussian, Poisson, or Gamma loss. The floating num-
ber refers to the timestep at which each curve was introduced. In gray,
the curves that are no longer optimal and hence were pruned

Extending the bound on the number of curves to the case
where there has been a change-point is possible, see Romano
et al (2023b). Theboundon the number of curves corresponds
to a bound on the average cost of calculating the test statistic
– as this involves finding the maxima of each curve, and then
the maximum of these maxima. This has been observed to be
the dominant cost of FOCuS Romano et al (2023b), but we
show in Sect. 5 how to reduce this cost so that it is empirically
O(1).

4 Unknown pre-change parameter

We next turn to consider how to extend the methodology to
the case where both pre-change and post-change parameters
are unknown. When θ0 is unknown, the log likelihood-ratio
statistic, LRT , satisfies

LRT

2
= max

θ0,θ1,τ

{
τ∑

t=1

log f (xt |θ0) +
T∑

t=τ+1

log f (xt |θ1)
}

−max
θ0

T∑

t=1

log f (xt |θ0).

The challenge with calculating this is the first term. Define

Q∗
T (θ0, θ1)

= max
τ

{
τ∑

t=1

log f (xt |θ0) +
T∑

t=τ+1

log f (xt |θ1)
}

.

If we can calculate this function of θ0 and θ1, it will be
straightforward to calculate the likelihood-ratio statistic. If
we fix θ0 and consider Q∗

T as a function of only θ1 then
this is just the function QT (θ1) we considered in the known
pre-change parameter.

As before, we can write Q∗
T (θ0, θ1) as the maximum of

a set of curves, now of two variables θ0 and θ1, with each
function relating to a specific value of τ . As before if we can
easily determine the curves for which values of τ contribute
to the maximum, we can remove the other functions and
greatly speed-up the calculation of Q∗

T .
To do this, consider Q∗

T (θ0, θ1) as a function of θ1 only,
and write this as QT ,θ0(θ1). Algorithm 1 gives us the curves
that contribute to this function for θ1 > θ0. This set of curves
is determined by the ordering of the roots of the curves, i.e.
the li for i ≥ 1 in Algorithm 1. If we now change θ0, the roots
of the curves will change, but by Proposition 1 the orderings
will not. The only difference will be with the definition of l0.
That is as we reduce θ0 we may have additional curves that
contribute to the maximum, due to allowing a larger range of
values for θ1, but as we increase θ0 we can only ever remove
curves. I.e. we never swap the curves that need to be kept.
Thus if we run Algorithm 1 for θ0 = −∞, then the set of
curves we keep will be the set of curves that contribute to
Q∗

T (θ0, θ1) for θ1 > θ0.
In practice, this means that to implement the pruning of

FOCuS with pre-change parameter unknown, we proceed as
in Algorithm 1 but set l0 = −∞ when considering changes
θ1 > θ0, and l0 = ∞ when considering changes θ1 < θ0.
The equivalence of Algorithm 1 across different exponential
family models, that we demonstrated with Corollary 2, also
immediately follows.
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5 Adaptivemaxima checking

Themain computational cost of the FOCuS algorithm comes
from maximising the curves at each iteration. This is partic-
ularly the case for non-Gaussian models, as maximising a
curve requires evaluating maxθ0,θ1 �(x1:T |θ0, θ1, τ ), which
involves computing at least one logarithm (as in the cases of
Poisson, Binomial, Gamma data). As the number of curves
kept by time T is of order log(T ), calculating all maxima
represents a (slowly) scaling cost. However we can reduce
this cost by using information fromprevious iterations so that
we need only maximise over fewer curves in order to detect
whether QT is above or below our threshold. This is possible
by obtaining an upper bound on QT that is easy to evaluate,
as if this upper bound is less than our threshold we need not
calculate QT .

The following proposition gives such an upper bound on
the maximum of all, or a subset, of curves. First for τi < τ j ,
we define the likelihood ratio statistic for a change at τi with
the signal ending at τ j . Define this likelihood ratio statistic
as

mτi ,τ j = max
θ0∈H0,

θ1

�(x1:τ j |θ0, θ1, τi )

− max
θ0∈H0

�(x1:τ j |θ0, ·, τ j ),

where H0 denotes the set of possible values of θ0. H0 will
contain a single value in the pre-change parameter known
case, or be R for the pre-change parameter unknown case.

Proposition 3 For any τ1 < τ2 < ... < τn < T , we have

max
i=1,...,n

mτi ,T ≤
n−1∑

i=1

mτi ,τi+1 + mτn ,T .

Proof See Supplementary Material. A pictorial explanation
of the result is also shown in Fig. 3.

We can use this result as follows. The sum Mτk :=∑k−1
i=1 mτi ,τi+1 can be stored as part of the likelihood curve

for τk , and the maxima checking step can proceed as in
Algorithm 2. The idea is that we can bound QT above by
mτk ,T +Mτk . So, starting with the curve with largest τk value
we check if mτk ,T + Mτk is below the threshold. If it is, we
know QT is below the threshold and we can output that no
change is detected without considering any further curves. If
not, we see if mτk ,T , the likelihood-ratio test statistic for a
change at τk is above the threshold. If it is we output that a
change has been detected. If not then we proceed to the curve
with the next largest τk value and repeat.

Empirical results suggest that for τ1...τn ∈ IT when
searching only for an up-change (or analogously only for
a down-change), the upper bound in Proposition 3 is quite

Fig. 3 Example of the bound of Propositon 1 for the pre-change mean
known case. Left-hand plot shows the differences between the three
curves that contribute to QT (θ1). The mτi :τ j values correspond to the
maximumof these curves (vertical lines).Right-handplot showsQT (θ),
the three curves that define it, and the maximum difference between the
curves (vertical bars). The bound is the sumof themaximumdifferences
(right-most stacked line)

Algorithm 2 FOCuS maxima check at time T for θ1 ≥ θ0.
Input: A set of n likelihood curves and associated (τk , Mτk ) values.

1: Set k = n
2: while k > 0 do
3: Calculate mτk ,T
4: if mτk ,T + Mτk < Threshold then
5: break
6: else
7: Return change on [τk , T ]
8: end if
9: k ← k − 1
10: end while
Output: Return no change.

tight under the underlying data scenario of no change because
most of themτi ,τi+1 are very small. Furthermore, as we show
in Sect. 6, at the majority of time-steps only one curve needs
to be checked beforewe know that QT is less than our thresh-
old.

6 Numerical examples

We run some examples to empirically evaluate the compu-
tational complexity of the FOCuS procedure, comparing the
various implementations presented in this paper with those
already present in the literature.

In Fig. 4 we show the number of floating point operations
as a function of time. The Figure was obtained by averag-
ing results from 50 different sequences of length 1 × 106.
Results were obtained under the Bernoulli likelihood. Under
this likelihood, the cost for an update is negligible, given that
this involves integer operations alone, and this allows for a
better comparison of the costs of pruning and checking the
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Fig. 4 Flops per iteration in function of time for three FOCuS imple-
mentations. In green, the flops for FOCuS with pruning based on
calculating the roots l1, . . . , ln numerically. In light blue, FOCuS with
the average value pruning. In blue, finally, FOCuS with the average
value pruning and the adaptive maxima checking. Log-scale on both
axes

maxima. We compare three different FOCuS implementa-
tions: (i) FOCuS with pruning based on the ordered roots
l1, . . . , ln , where such roots are found numerically through
the Newton–Raphson procedure, (ii) FOCuS with the aver-
age value pruning of Sect. 3 and lastly (iii) FOCuS with the
average value pruning and the adaptive maxima checking of
Sect. 5.

We note that avoiding explicitly calculating the roots
leads to a lower computational overhead when compared
to Newton–Raphson. The best performances are, however,
achieved with the addition of the adaptive maxima checking
procedure, where we find a constant per iteration compu-
tational cost under the null centered around 15 flops per
iteration. Without the adaptive maxima checking, the max-
imisation step is the most computationally demanding step
of the FOCuS procedure, as we need to evaluate O(log(T ))

curves per iteration.
In Fig. 5 we place a change at time 1 × 105 and we focus

on the number of curves stored by FOCuS, and the number
of curves that need to be evaluated with the adaptive maxima
checking. Furthermore, for comparison, we add a line for the
naive cost of direct computation of the CUSUM likelihood-
ratio test. We can see how, before we encounter a change,
with the adaptive maxima checking routine we only need to
maximise on average 1 curve per iteration, as compared to
about 7.4 for the standard FOCuS implementation. After we
encounter a change, then, the number of curves that need eval-
uation increases, as the likelihood ratio statistics increases
and it is more likely to meet the condition of Proposition 3.
As it can be seen from the short spike after the change, this

Fig. 5 Number of curves to store and evaluations per iteration in func-
tion of time. The grey dotted line is the naive cost of computing the
CUSUM likelihood ratio test. The dashed line are the number of curves
stored by FOCuS over some Gaussian (light-green), Poisson (dark-
green), Bernoulli (light-blue) and Gamma (dark-blue) realizations. The
solid lines are the number of curves that need to be evaluated at each
iteration with the adaptive maxima checking. Log-scale on both axes

only occurs for a short period of time preceding a detection.
This empirically shows that FOCuS is O(1) computational
complexity per iteration while beingO(log T ) in memory, as
we still need to store in memory on averageO(log T ) curves.

To illustrate the advantages of running FOCuS for the
correct exponential family model, we consider detecting a
change in variance in Gaussian data with known mean. We
will assume that we have standardised the data so it has mean
zero. A common approach to detecting a change in variance
is to detect a change in mean in the square of the data (Inclan
and Tiao, 1994), so we will compare FOCuS for Gaussian
change in mean applied to the square of the data against
FOCuS for the Gaussian change in variance model (as in
Table 1).

For a process distributed under the null as a normal cen-
tered on 0 with variance θ0 = 1, we present 5 simulations
scenarios for θ1 = 0.75, 1.25, 1.5, 1.75 and 2. Each exper-
iment consists of 100 replicates. Thresholds were tuned via
a Monte Carlo approach to achieve an average run length
of 1 × 105 under the null in the same fashion of (Chen et al
2022, Section 4.1).We then introduce a a change at time 1000
and measure performances in terms of detection delay (the
difference between the detection time and the real change).

In Fig. 6 we illustrate the scenarios and present results in
terms of the proportion of detections within t observations
following the change.

For a positive change large enough, e.g. for θ1 = 2, there
is only a small advantage in employing the Gaussian change-
in-variancemodel over theGaussian change-in-mean applied
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Fig. 6 Empirical evaluation of FOCuS for Gaussian change-in-
variance. Top row: example sequences for our simulation scenarios,
with labels indicating the post-change parameter θ1, whilst vertical dot-
ted line refers to the changepoint location τ . Bottom row: proportion
of detections as a function of the detection delay for Gaussian change-
in-variance model with pre-change parameter known (light blue) and

unknown (dark blue), and Gaussian change-in-mean applied to square
of the datawith pre-change parameter known (light green) and unknown
(dark green). The vertical dotted line this time indicates the start of the
change: the faster we get to 1 following the change, the better. Prior to
the vertical line, we are essentially counting false positives

to the square of the data. However, as we lower the signal-to-
noise ratio and shift towards more subtle changes, we can see
how using the correct model gives an increasing advantage
in terms of reducing the detection delay.

7 Discussion

We have presented an algorithm for online changepoint
detection for one-parameter exponential family models that
(i) exactly performs the likelihood-ratio test at each iteration;
and (ii) empirically has a constant cost per-iteration. To the
best of our knowledge, it is the first algorithm that achieves
both of these.

The algorithm can only detect changes in a single param-
eter, and thus can only analyse univariate data. However
this can provide the building block for analysing multivari-
ate data. For example Mei (2010) propose online monitoring
multiple data streams by calculating statistics for a change for
each individual data stream and then combining this informa-
tion. There is an extensive literature on how one can combine
such information in an efficient way (for example Cho and
Fryzlewicz 2015; Enikeeva and Harchaoui 2019; Tickle et al
2021).

A further challenge would be to extend the algorithm to
deal with time-dependent data. Often methods that assume
independence work well even in the presence of autocor-

relation in the data providing one inflates the threshold for
detecting a change (Lavielle andMoulines, 2000). If the auto-
correlation is strong, such a simple approach can lose some
power, and either applying a filter to the data to remove the
autocorrelation (Chakar et al, 2017) or adapting FOCuS to
model it (building on ideas in Romano et al 2022; Cho and
Fryzlewicz 2024; Hallgren et al 2021) may be better.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10416-
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