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Abstract. In this paper, we develop a duality for the varieties of a  Lukasiewicz n + 1-valued

modal system. This duality is an extension of Stone duality for modal algebras. Some logical

consequences (such as completeness results, correspondence theory. . . ) are the derived and we

propose some ideas for future research.

1. Introduction

When one looks backwards in the history of modern logic, one can notice that many-valued logics
and modal logics arose approximatively at the same time. These two approaches of the science or
reasoning are indeed two ways to free oneself of the rigid frame proposed by the classical two-valued
propositional calculus. On the one hand, with many-valued logics as defined by  Lukasiewicz (see
[25] or [26] for an English translation, [27] and for a complete study [15], [33] or [34]), the logician
can choose the truth values of his propositions in a set with more than two elements. On the
other hand, by enriching the language with some modalities, modal logics allow the propositions
to be possible but not true for example. Surprisingly enough, it is in order to interpret these
new modalities that  Lukasiewicz firstly introduced his many-valued logics (see chapter 21 in
[15] for precisions). From then on, these two types of logics have been very successful among the
community of logicians, mathematicians and computer scientists (through temporal logic, dynamic
logic, expert systems. . . ).

In both cases, the algebraic study of these logics were very grateful. On the one hand, C.C.

Chang introduced the theory of MV-algebras in 1958 in order to obtain an algebraic proof of
the completeness of the  Lukasiewicz infinite-valued logic. Then, the class of MV-algebras was
studied by the algebraists as an extension of the variety of Boolean algebras gifted with lots of
interesting properties (see [7] for a survey on the theory of MV-algebras).

On the other hand, apart from the algebraic semantics (they were firstly introduced in [29] for
the extensions of S4; see [3] or [1] for a survey), one has to wait the work of Kripke in 1963 (see
[22]) to obtain a significant completness result for modal logics. Kripke’s semantic, also called
possible worlds’ semantic, gives a very intuitive interpretation of modal propositions: a proposition
is necessarily true in a world α if it is true in any world accessible to α.

This idea gave a new boost to the theory of modal logics with a wide range of so called
relational semantics (see [3] and [1] for a survey) and to their algebraic aspects. Is is mainly a fact
of the connection discovered between the relational and algebraic semantics through the theory of
Boolean algebras with operators (see [19], [20] for the beginning of the theory or [3] for a survey),
which are the Lindenbaum-Tarski algebras of modal logics. One of the contributions of the study
of the algebras of modal logics is a great simplification of the proof of the completeness of these
logics, thanks to the concept of canonical model (see [3]). Another useful tool to connect modal
models and modal algebras is an extension of Stone duality to the class of Boolean algebras with
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operators (see [17], [35] or [3]). With this duality, one can see any Boolean algebra with operators
as the dual algebra of its “dual frame” and each normal modal logic is axiomatized by the logic of
the “dual frame” of its Lidenbaum-Tarski algebra. The more recent works [23] and [24] give a
connection between Boolean algebras with operators, Stone duality, the theory of coalgebras and
modal logics. The paper [36] shows that even for very basic notions such as semi-irreducibility,
Stone duality can remain an enriching tool. All these works, together with the papers [13] and
[14] about canonical extension, prove that lots of interesting results can still be found in the field.

Obviously, the idea of merging modal logic and many-valued logic rapidly appeared attractive,
and some mathematicians could not resist the temptation to create their own modal many-valued
logic (see [16], [12], [10], [11], [32] and [18]). For some of these works, the will is clearly to save
Kripke’s semantic. Indeed, this semantic can easily be extended to the many-valued realm by
considering that the worlds (or the accessibility relation) are many-valued. A concept of canonical
model can even be considered (see [18]).

Moreover, for some of these attempts, a completeness result can be obtained. So, with all the
applications of the corresponding theories in the two-valued modal logic in view, the development
of the algebraic aspects of these logics (through a theory of modal many-valued algebras), and the
construction of a duality similar to the Stone duality for Boolean algebras with operators are
very important works to accomplish for the future of these logics. For example, a duality would
be considered as a bridge between modal many-valued algebras (and the algebraic semantics) and
many-valued relational models.

We propose to do this job in this paper for the n + 1-valued modal logics introduced in [18]
(which generalize the logics of [32]). We first recall briefly the n+ 1-valued modal system defined
in [18]. Then, we introduce the corresponding varieties of the many-valued modal algebras and
study their very first properties.

Finally, we construct a duality for the varieties of n + 1-valued modal algebras. As for the
Boolean case (where the duality for Boolean algebras with operators is constructed over Stone’s
duality), we ride on an existing duality for the n+1-valued MV-algebras for this construction. By
considering n = 1 in this duality, we can recover Stone duality for modal algebras. Then, some
consequences are derived. Among them, we obviously find that the class of the dual structures
forms a very adequate semantic for the n+1-valued modal logics (i.e. each n+1-valued modal logic
L is complete with respect to one of these topological structures). We also obtain a characterization
of the Boolean operators on the algebra of the idempotent elements of an n + 1-valued algebra
A that can be extended to an operator on A. We eventually develop the very first examples of
correspondance theory, compute coproducts in the dual category and expose some ideas that we
should explore in the future.

2. A  Lukasiewicz n+ 1-valued modal system

One should admit that the success of modal logics among mathematicians, logicians and com-
puter scientists is mainly a fact of the existence of relational semantics for these logics. Indeed,
these semantics are very intuitive and more attracting than the algebraic ones.

The definition of a Kripke model can easily be extended to a many-valued realm. Among
the possibilities that can be explored for such a generalization, one of the more natural ones is
to allow the worlds to be [0, 1]-valued (i.e. the interpretations of the propositional variables are
set in the real unit interval [0, 1]) and to reason, in each world, in a  Lukasiewicz fashion (i.e.
the interpretations of the variables are extended to formulas by the way of  Lukasiewicz T-norm
x → y = min(1, 1 + y − x) and negation ¬x = 1− x). The value of a formula �φ in the world α

is then defined by the infemum of the values of φ in each world accessible to α. This idea is made
precise by the following definition. We use Prop to denote a countable set of propositional vari-
ables and Form to denote the set of well formed formulas over the language LMMV = {→,¬,�}
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whose propositional variables are set in Prop (these formulas are defined in the obvious way).

Definition 2.1. A frame is a pair (M,R) where M is a non empty set and R is a binary
relation on M . A many-valued Kripke model (M,R, v) is given by a frame (M,R) and a map
v : M ×Prop → [0, 1].

The map v can be extended inductively to a valuation v : M × Form → [0, 1] which assigns a
truth value to each formula in each world by the way of the following inductive rules:

• v(φ→ ψ) = min(1 + v(ψ)− v(φ), 1),
• v(¬φ) = 1− v(φ),
• v(�φ) =

∧
w∈Rv w(φ).

A formula φ is true in the world α if v(α, φ) = 1. If φ is true in each world of the model M , then
φ is valid in M . A tautology is a formula φ which is true in every many-valued Kripke model.

If n is a positive integer, an n + 1-valued Kripke model is a many-valued Kripke model
(M,R, v) such that v ranges in  Ln = {0, 1

n , . . . ,
n−1

n , 1}.

The paper [18] is dedicated to the investigation of the logic of these many-valued models. The
authors give an axiomatization of a normal many-valued modal logic which admits the preceding
models as a sound semantic. Moreover, they also obtain a completeness result for the correspond-
ing normal n + 1-valued modal logic and the n + 1-valued Kripke frames. In order to convince
the reader that the varieties of algebras for which we obtain a duality in this paper are in fact the
classes of algebras of these n + 1-valued modal logics, we give the axiomatization of these logics
(which should be compared with the definition 3.1 of a modal operator). Recall that we define
φ⊕ψ by ¬φ→ ψ and φ�ψ by ¬(¬φ⊕¬ψ) so that ⊕ and � can be added to the language LMMV

without lost of generality. Conversely, x→ y can be defined by ¬x⊕ y.

Definition 2.2. A many-valued modal logic is a set of formulas L ⊆ Form which is closed under
modus ponens, substitution and the necessiation rule RN (from φ infer �φ) and which contains

• an axiomatic base of the  Lukasiewicz logic,
• the axiom K of modal logic: �(p→ q) → (�p→ �q),
• the axioms �(p⊕ p) ↔ �p⊕�p and �(p� p) ↔ �p��p.

As usual, the smallest of these logics is denoted by K. If in addition the logic L contains an
axiomatic base of the n+ 1-valued  Lukasiewicz logic, then L is said to be an n+ 1-valued modal
logic. The smallest n + 1-valued modal logic is denoted by Kn. Note that the logic Kn is a
generalization of a the logic defined in [32].

In [18], the authors prove the following completeness result. It is important to note that this
result can also be obtained as a consequence of proposition 4.13 of this paper.

Proposition 2.3. A formula φ is in Kn if and only if φ is valid in every n+ 1-valued Kripke

model.

3. Modal operator on an MV-algebra

We should first introduce the reader very briefly to the theory of MV-algebras. MV-algebras
were introduced in 1958 by C.C. Chang (see [4] and [5]) as a many-valued counterpart of Boolean
algebras. They indeed capture the properties of the  Lukasiewicz many-valued logics in the
language of universal algebra.

An MV-algebra can be viewed as an algebra A = 〈A;⊕,�,¬, 0, 1〉 of type (2,2,1,0,0) such that
〈A;⊕, 0〉 is an Abelian monoid and which satisfies the following identities: ¬¬x = x, x ⊕ 1 = 1,
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¬0 = 1, x � y = ¬(¬x ⊕ ¬y), (x � ¬y) ⊕ y = (y � ¬x) ⊕ x. The relation ≤ defined on every
MV-algebra by x ≤ y if x → y = 1 is a bounded distributive lattice order. A good survey of
the theory of MV-algebras can be found in [7]. The most important MV-algebra is the algebra
〈[0, 1],⊕,�,¬, 0, 1〉 defined on the real unit interval [0, 1] by x⊕ y = min(x+ y, 1) and ¬x = 1−x.
The subalgebra  Ln = {0, 1

n , . . . ,
n−1

n , 1} of [0, 1] defined for every positive integer n also plays a key
role in the study of many-valued logics, since it is the set of the truth values of the  Lucasiewicz

n+ 1-valued logic. Note that the variety of Boolean algebras is exactly the variety of idempotent
MV-algebras (i.e. the MV-algebras A such that A |= x ⊕ x = 1), or equivalently the variety
generated by  L1.

With the help of MV-algebras, C.C. Chang proved the completeness of the  Lukasiewicz

infinite-valued calculus by proving that the variety MV of MV-algebras is the variety generated
by the MV-algebra [0, 1]. Similarly, a formula φ is a theorem of the  Lukasiewicz n + 1-valued
logic if and only if it is an  Ln-tautology or equivalently if it is valid in every algebra of the variety
HSP( Ln). The latter variety, that we denote by MVn, can so be viewed as the variety of the
algebras of the  Lukasiewicz n+ 1-valued logics.

In this section we define the variety of many-valued modal algebras, which appear as the alge-
bras of the many-valued modal logics of section 2. In the next section, we construct dualities for
some of its subvarieties (namely the varieties of the “n+ 1-valued modal algebras”).

Definition 3.1. A map � : A → A on an MV-algebra A is a modal operator (or simply an
operator) if it fulfills the following three conditions:

(MO1) the map � is conormal: A |= �1 = 1,
(MO2) the map � satisfies the axiom K of modal logic: A |= �(x→ y) → (�x→ �y) = 1,
(MO3) A |= �(x⊕ x) = �x⊕�x and A |= �(x� x) = �x��x.

We denote by MMV the variety of MV-algebras with an operator (or simply of modal MV-
algebras), i.e. the variety of algebras A = 〈A,⊕,�,¬,�, 0, 1〉 of type (2, 2, 1, 1, 0, 0) such that
A = 〈A,⊕,�,¬, 0, 1〉 is an MV-algebra and � is an operator on A. For convenience, the MMV-
algebra 〈A,⊕,�,¬,�, 0, 1〉 is usually denoted by A, and we use A to denote its reduct in MV.
Validity of LMMV -formulas in MMV-algebras is defined in the obvious way. The subvariety of
MMV formed by the algebras 〈A,�〉 with A in MVn is denoted by MMVn.

Note that (MO2) is equivalent to A |= �(x→ y) ≤ �x→ �y and implies the monotonicity of
�. The only “original” axioms are the two axioms of (MO3). But they are not exotic since they
boil down to a tautological identity in the case of A being a Boolean algebra. We refer the reader
to [18] for details about the role of these axioms in the development of the logics K and Kn.

We claim throughout this paper that MMVn is the variety of the algebras of the n+ 1-valued
modal logics. This statement is made precise in the following proposition.

Proposition 3.2. A formula φ is in Kn if and only if it is valid in every MMVn-algebra.

Proof. The proof follows directly from the fact the Lindenbaum-Tarski algebra of Kn is an
MMVn-algebra. �

We now give a link between operators on an MV-algebra A and modal operators of Boolean
algebras on the algebra B(A) = {x ∈ A | x⊕ x = x} of idempotent elements of A.

Proposition 3.3. If A is an MMV-algebra then 〈B(A),�|B(A)〉 is a Boolean algebra with a
modal operator.

Proof. From the equation �(x⊕ x) = �x⊕�x, we infer directly that �|B(A) is valued in B(A).
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Moreover, it is well known that the axiom K is equivalent to �(x ∧ y) = �x ∧ �y in the case
of Boolean algebras. �

Another problem that we should consider is the characterization of the operators that are just
homomorphisms of MV-algebras.

Proposition 3.4. If A = 〈A,�〉 is an MMV-algebra, then � is an MV-homomorphism on
A if and only if � is normal (i.e. A |= �0 = 0) and A |= �(x⊕ y) = �x⊕�y.

Proof. The necessity of the proposition is obvious. Let us prove its sufficiency. Since �(x⊕ y) =
�x⊕�y for every x and y in A, we just have to prove that A |= �(¬x) = ¬�x.

The inequality �(¬x) ≤ ¬�x follows from the normality of � and the axiom K.
To obtain the other inequality, we note that we have successively

¬�x ≤ �¬x⇔ ¬�x→ �¬x = 1 ⇔ �¬x⊕�x = 1 ⇔ �(x⊕ ¬x) = 1,

since � is an operator which preserves ⊕. We can then conclude using the conormality of the
operator �. �

The fact that many-valued modal algebras satisfy the axiom K of modal logic has a trivial (but
very important for the construction of a duality) consequence on the behavior of � with respect
to filters. Let us recall that a filter of the MV-algebra A is a subset F of A such that 1 ∈ F and
y ∈ F whenever {x, x→ y} ⊆ F .

Proposition 3.5. If A is an MMV-algebra and if F is a filter of A then �−1(F ) is also a
filter of A.

Proof. The proof follows directly from the conormality of � and the axiom (K). �

Examples 3.6. Here are some basic examples of operators.

(1) The identity map is an operator on every MV-algebra A.
(2) The map 1 : A→ A : a 7→ 1 is an operator on every MV-algebra A.
(3) � :  L

6
×  L

6
→  L

6
×  L

6
: (x, y) 7→ (min(x, y),min(x, y)) is an operator on  L

6
×  L

6
.

(4) If C denotes Chang’s MV-algebra and if k is a positive integer, the the map �k : x 7→ k.x

is an operator on C.

Let us remark that we can mimic the idea of the third example to construct an operator on Ak

for every positive integer k and every MV-chain A.
Moreover, even if the class of simple MV-algebras (which is exactly IS([0, 1])) is much richer

that the class of simple Boolean algebras (which only contains the two element Boolean algebra)
one does not have more freedom to construct operators on simple MV-algebras than on simple
Boolean algebras. To prove this statement, we need the following definition.

Definition 3.7. If r is in Q∩ [0, 1], we denote by τr a composition of the terms x⊕x and x�x
such that τr(x) = 0 for every x ∈ [0, r[ and τr(x) > 0 for every x ∈ [r, 1]. A proof of the existence
of such terms can be found in [32] for example. Furthermore, we can always choose τr such that
τr(x) = 1 for every x ∈  Ln ∩ [r, 1] (but this choice is not independant of n).

Since an operator satisfies the two axioms of (MO3), we have A |= �τr(x) = τr(�x) for every
MMV-algebra A and every r ∈ Q ∩ [0, 1]. As we shall see in the sequel, these terms play a key
role in the construction of a duality for MMVn.
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Proposition 3.8. Is A is a simple MV-algebra and if � is an operator on A, then either � is
the identity map, or � is the constant map 1.

Proof. If �0 = 1, then �x = 1 for all x ∈ A by monotonicity of �. Otherwise, �0 = 0 and
it follows that if x is an element of A, �τr(x) = 0 for every r in Q∩]x, 1]. Thus, τr(�x) = 0,
which means that �x < r, for every r in Q∩]x, 1]. Similarly, τs(x) > 0 for every s ∈ [0, x] and by
monotonicity, �τs(x) = τs(�x) > 0, which is equivalent to �x ≥ s. We can eventually conclude
that �x = x for every x in A. �

To close this brief description of MMV, note that we can obtain with the help of the com-
pleteness results 2.3 and 3.2 that every MMVn algebra satisfies �(x ∧ y) = �x ∧ �y, but the
formula �(x� y) = �x��y is not valid in MMVn (it is really easy to build a counter example
using the operator defined in the third example of 3.6).

4. A duality for the category of the n+ 1-valued modal algebras

4.1. A natural duality for the algebras of  Lukasiewicz n+1-valued logic. It is well known
that a strong natural duality (in the sense of Davey and Werner in [8]) can be constructed for
each of the varieties MVn = HSP( Ln) = ISP( Ln). The existence of these natural dualities is a
consequence of the semi-primality of  Ln. These dualities, from which we can recover the Stone

duality for Boolean algebras by considering n = 1, are a good starting point for the construction
of a duality for the classes of the algebras of the n+ 1-valued modal logic. Indeed, in the classical
two-valued case, the dual of a Boolean algebra with a modal operator B is obtained by adding a
structure (a binary relation R) to the Stone dual of the Boolean reduct of B. It is the idea we
propose to follow throughout this paper: the dual of an MMVn algebra A will be obtained by
adding a structure to the dual of the reduct A of A in MVn.

To help the reader, we recall the basic facts about the natural duality for MVn. We use
standard notations of the theory of category and natural duality. Hence, we denote our algebras
by underlined Roman capital letters and our topological structures by “undertilded” Roman capital
letters.

We denote by  L
n

the MV-subalgebra {0, 1
n , . . . ,

n−1
n , 1} of [0, 1]. We define  L∼∼n as the topological

structure

 L∼∼n = 〈 Ln; { Lm | m ∈ div(n)}, τ〉,

where τ is the discrete topology, div(n) is the set of the positive divisors of n and  Lm (with
m ∈ div(n)) is a distinguished (closed) subspace of 〈 Ln, τ〉 (which can also be viewed as an
unary relation on  Ln). We denote by MVn the category whose objects are the members of the
variety HSP( L

n
) and whose morphisms are the LMV -homomorphisms. Finally, we denote by Xn

the category whose objects are the members of the topological quasi-variety IScP( L∼∼n) (i.e. the
topological structures which are isomorphic to a closed substructure of a power of  L∼∼n) and whose
morphisms are the continuous maps φ : X∼∼ → Y∼∼ such that φ(rX∼∼m) ⊆ rY∼∼m. If A is an MVn-algebra,
the set MVn(A,  L

n
) is viewed as a substructure of  L∼∼

A
n and is so equipped with the topology

induced by  L∼∼
A
n . So, if [a : i

n ] denotes the subspace {u ∈MVn(A,  L
n
) | u(a) = i

n} whenever a ∈ A
and i ∈ {0, . . . , n}, then {[a : i

n ] | a ∈ A and i ∈ {0, . . . , n}} is a clopen subbasis of the topology
of MVn(A,  L

n
). Note that it is also the case of {[b : 1] | b ∈ B(A)}.

With these notations, the results about natural duality on MVn can be briefly summarized by
the following proposition.
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Proposition 4.1. Let us denote by Dn and En the functors

Dn : MVn → Xn :

{
A ∈MVn 7→ Dn(A) = MVn(A,  L

n
)

f ∈MVn(A,B) 7→ Dn(f) ∈ Xn(Dn(B),Dn(A)),

where Dn(f)(u) = u ◦ f for all u ∈ Dn(B), and

En : Xn →MVn :
{
X∼∼ ∈ Xn 7→ En(X∼∼ ) = Xn(X∼∼ ,  L∼∼n)
ψ ∈ Xn(X∼∼ , Y∼∼) 7→ En(ψ) ∈MVn(En(Y∼∼),En(X∼∼ )),

where En(ψ)(α) = α ◦ ψ for all α ∈ En(Y∼∼).
The functors Dn and En define a strong natural duality between the category MVn and Xn.

Thus, these two functors map embeddings onto surjective morphisms and conversely.

Since this duality is natural, the canonical isomorphism between an MVn-algebra A and its
bidual EnDn(A) is the evaluation map

eA : A→ EnDn(A) : a 7→ eA(a) : u 7→ u(a),

and if X∼∼ is an object of Xn, the map

εX∼∼
: X∼∼ → DnEn(X∼∼ ) : u 7→ εX∼∼

(u) : α 7→ α(u)

is the canonical Xn-isomorphism between X∼∼ and DnEn(X∼∼ ). Note that we can see the map

eA : A→
∏

u∈Dn(A)

u(A) : a 7→ (u(a))u∈Dn(A)

as a Boolean representation of A by its simple quotients (see [2] for the definition of a Boolean
representation of an algebra).

In the sequel, we denote by X the underlying topological space of the member X∼∼ of Xn. Note
that if A is an algebra of MVn, then the underlying topological space of Dn(A) is homeomorphic
to the Stone dual of the Boolean algebra B(A) = {x ∈ A | x⊕x = x} of the idempotent elements
of A.

Let us recall that the objects of Xn are exactly the topological structures

X∼∼ = 〈X; {rX∼∼m | m ∈ div(n)}, τ〉,

where

(X1) 〈X, τ〉 is a Stone space (i.e. τ is a compact Hausdorff zero-dimensional topology);
(X2) rX∼∼m is a closed subspace of X for every m ∈ div(n);
(X3) we have rX∼∼n = X and rX∼∼m ∩ rX∼∼k = rX∼∼gcd(m,k) for all m and k in div(n).

Finally, note that some authors have considered other types of dualities for classes of MV-
algebras. For instance, see [28] for a Priestley style duality for MV and [6] for a duality for the
class of locally finite MV-algebras.

4.2. A duality for MMVn. The idea is to mimic the construction that is done when one wants
to dualize an operator on a Boolean algebra: an operator on an MVn-algebra A is translated into
a binary relation on the dual of A.

Of course, as in the Boolean case, not every binary relation R on Dn(A) is the dual of an
operator on A. We should characterize these dual relations R in terms of conditions involving the
topology, but also the structure defined by the relations rm on Dn(A).
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4.2.1. Dualization of objects. We give here the construction and the characterization of the dual
of the MMVn-algebras.

Definition 4.2. If A is an MMVn-algebra, we define the binary relation R
Dn(A)

� on Dn(A) by

(u, v) ∈ R
Dn(A)

� if ∀ x ∈ A (u(�x) = 1 ⇒ v(x) = 1).

As usual, for the sake of readability, we prefer to forget in our notations the dependence of
the previous definition on A and � and simply denote by R the relation R

Dn(A)

� . Moreover, if X
is a subset of Dn(A), we denote by R(X) (resp. R−1(X)) the set R(X) = {v ∈ Dn(A) | ∃ u ∈
X (u, v) ∈ R} (resp. the set R−1(X) = {u ∈ Dn(A) | ∃ v ∈ X (u, v) ∈ R}).

This relation is the only information needed to recover the operator on the bidual of A. The
proof of this statement strongly relies on the terms τr of Definition 3.7 and on the two equations
of (MO3).

Proposition 4.3. If A is an MMVn-algebra, then, for every a ∈ A and every u ∈ Dn(A),

u(�a) =
∧

v∈Ru

v(a).

Proof. We first prove that u(�a) ≤ v(a) for every v ∈ Ru. Otherwise, there is a v ∈ Ru and an
i ∈ {0, . . . , n} such that v(a) < i

n = u(�a). It follows that v(τi/n(x)) = τi/n(v(x)) = 0 and that
u(�τi/n(x)) = τi/n(u(�x)) = 1. Since (u, v) ∈ R, the latter identity implies that v(τi/n(x)) = 1,
which is is a contradiction.

Now, suppose that we can find j ∈ {1, . . . , n} such that

u(�a) <
j

n
=

∧
v∈Ru

v(a).

We then obtain that u(�τj/n(a)) = 0 and v(τj/n(a)) = 1 for all v ∈ Ru.
But, since A/�−1(u−1(1)) is a member of ISP( L

n
), we can easily construct an MVn-homomor-

phism w : A→  L
n

such that (u,w) ∈ R and w(τj/n(a)) 6= 1. �

Let us now study the properties of these relations. In the following proposition, as we shall see
in the proof, the many-valued nature of A is entirely captured in the third statement (the two
first ones are just about properties of B(A)). We denote by Spec(B) the Stone dual of a Boolean
algebra B (Spec(B) is seen in the natural duality shape as the set of the characters χ : B → 2
where 2 is the two element Boolean algebra).

Proposition 4.4. If A is an MMVn-algebra, then

(1) the relation R is closed in Dn(A)× Dn(A);
(2) R−1(ω) is a clopen subset for every clopen subset ω of Dn(A);
(3) R(rDn(A)

m ) ⊆ r
Dn(A)
m for all m ∈ div(n).

Proof. It is well known that the map ψ : Dn(A) → Spec(B(A)) : u 7→ u|B(A) is a homeomorphism
(see [30]). It is now not hard to prove using the term τ1 of Definition 3.7 that (u, v) ∈ R if and
only if (ψ(u), ψ(v)) belongs to the dual relation of the operator �|B(A) under the Stone duality
for Boolean algebras with an operator. Thus, if we forget the structure of Dn(A) and consider
it simply as a topological space, then the relation R on Dn(A) appears as the dual of a Boolean
operator and, as such, has to satisfy the two first properties.
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Let us prove the third item. Suppose that there is an m ∈ div(n) and a u ∈ r
Dn(A)
m such that

Ru \ rDn(A)
m 6= ∅. Now, define m′ by

1
m′ = inf{v(x) | v ∈ Ru \ rDn(A)

m , x ∈ A et v(x) 6= 0}.

Obviously, the integer m′ is not a divisor of m and we can find a v ∈ Ru\ rDn(A)
m and a a in A such

that v(a) = 1
m′ . Then, we can consider a clopen subset Ω ⊆ Dn(A) \ rDn(A)

m containing v. Thus, by
considering A as a Boolean representation on its simple quotients, we can construct the element

b = a|Ω ∪ 1|Dn(A)\Ω

which belongs to A. It follows that

u(�b) =
∧

w∈Ru

w(b) =
∧

w∈Ru∩Ω

w(a) = v(a) =
1
m′

which is a contradiction since u ∈ rDn(A)
m . �

As we shall now see, the three conditions which appear in the preceding proposition characterize
the binary relations R on Dn(A) which are the dual relations of an operator on A.

Definitions 4.5. A modal relation on a structure X∼∼ of Xn is a binary relation R on X such
that

(R1) R is a closed subspace of X ×X (i.e. Ru is closed for all u ∈ X);
(R2) R−1(ω) is a clopen susbet for every clopen subset ω of X;
(R3) R(rX∼∼m) ⊆ rX∼∼m for every divisor m of n.

We denote by MXn the class formed by the structures X˜ = 〈X∼∼ , R〉 where X∼∼ is a member of
Xn and R is a modal relation on X∼∼ .

Proposition 4.6. If X˜ is an MXn-structure, then the operation �R defined on En(X∼∼ ) by

(�Rα)(u) = ∧v∈Ruα(v)

for all u ∈ X is an operator on En(X∼∼ ).

Proof. We first note that

(�Rα)(u) = i
n ⇔

{
u ∈ R−1((τ(i+1)/n(α))−1(0)) ∩X \R−1((τi/n(α))−1(0)) if i < n

u ∈ X \R−1((τ1(α))−1(0)) if i = n.

Now, the continuity of �Rα is a direct consequence of the axiom (R2). Finally, with the help of
(R3), we obtain that �Rα is a member of En(X∼∼ ).

Let us now prove that �R is a modal operator on En(X∼∼ ). The equation �R1 = 1 is trivially
satisfied. Then, if τ is one of the terms x⊕ x or x� x and if α is a member of En(X∼∼ ), it holds

τ(�Rα) = �Rτ(α)

if and only if
τ(

∧
v∈Ru

α(v)) =
∧

v∈Ru

τ(α)(v)

for all u ∈ X. The latter identity is obtained by continuity of τ and by compactness of Ru.
We eventually have to show that �R satisfies the axiom K. If α and β are two members of

En(X∼∼ ) and if u ∈ X, we obtain successively

(�R(α→ β) → (�Rα→ �Rβ))(u) = 1
⇔ (�R(α→ β)(u)) ≤ (�Rα)(u) → (�Rβ)(u)
⇔

∧
v∈Ru(β(v)⊕ ¬α(v)) ≤ (

∧
v∈Ru β(v))⊕ ¬(

∧
v′∈Ru α(v′))

⇔
∧

v∈Ru(β(v)⊕ ¬α(v)) ≤
∧

v∈Ru(β(v)⊕ ¬
∧

v′∈Ru α(v′)),
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and we conclude easily. �

Proposition 4.7. If X˜ is an MXn-structure, if �R is the operator on En(X∼∼ ) defined in
Proposition 4.6 and if R�R

is the modal relation defined on DnEn(X∼∼ ) in Proposition 4.3, then the
relations R and R�R

coincide up to the canonical Xn-isomorphism εX∼∼
.

Proof. It follows directly from the definition of �R that if (u, v) ∈ R then (εX∼∼
(u), εX∼∼

(v)) ∈ R�R
.

Conversely, suppose that u and v are two elements of X such that (εX∼∼
(u), εX∼∼

(v)) ∈ R�R
. It

means, by definition of �R, that

∀ α ∈ En(X∼∼ ) (Ru ⊆ α−1(1) ⇒ v ∈ α−1(1)).

Let us now assume that (u, v) 6∈ R. Since R is a closed relation, there is a clopen subset ω of
X such that (u, v) ∈ ω ⊆ (X ×X) \R. Equivalently, we can find two idempotent elements α and
β of En(X∼∼ ) such that

(u, v) ∈ α−1(0)× β−1(0) ⊆ (X ×X) \R.
Thus, it follows that

Ru ⊆ X \ β−1(0) = β−1(1),

so that v belongs to β−1(1), a contradiction. �

4.2.2. Dualization of morphisms. We now obtain the dual version of the MMVn-morphisms. We
first prove that the dual of an MMVn-morphism f : A → B is an Xn-morphism which is also
a bounded morphism for R. So, the following proposition should not astonish the reader who is
used with the theory of duality for Boolean algebras with operators (in this proposition, we see R
as a map u 7→ Ru).

Proposition 4.8. If f : A → B is an MMVn-homomorphism between the two MMVn-
algebras A and B, then Dn(f) is an Xn-morphism which satisfies

Dn(f) ◦R = R ◦ Dn(f).

Proof. Let us choose an element u of Dn(B). The inclusion of Dn(f)(Ru) into R(Dn(f)(u)) is easily
obtained. Let us now prove that R(Dn(f)(u)) ⊆ Dn(f)(Ru). If v′ is an element of R(Dn(f)(u)),
then we obtain by definition that

∀ x ∈ A (u(�f(x)) = 1 ⇒ v′(x) = 1).

But, since Dn(f)(Ru) is a closed subspace of Dn(A), it is sufficient to prove that every neighbor-
hood of v′ meets Dn(f)(Ru).

So, let us pick a b ∈ B(A) such that v′ ∈ [b : 0]. We can construct an element v of Ru such
that v(f(b)) 6= 0. Such a v is for example given by v = π ◦ w where π is the quotient map
π : B → B/�−1(u−1(1)) and w : B/�−1(u−1(1)) →  L

n
is an MV-homomorphism which satisfies

w(π(f(b))) = 0. �

As we shall see, we have exactly obtained in the preceding proposition the dual notion of
MMVn-homomorphism.

Proposition 4.9. If X˜ and Y˜ are two MXn-structures and if φ : X˜ → Y˜ is an Xn-morphism
which satisfies

φ ◦R = R ◦ φ,
then En(φ) is an MMVn-homomorphism.

Proof. It is a direct application of the definitions. �
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4.2.3. A categorical duality for MMVn. We gather the preceding results in order to construct a
duality for the category MMVn. Let us define the dual category.

Definition 4.10. The category MXn is the category

• whose objects are the structures X˜ = 〈X∼∼ , RX∼∼
〉 where

• X∼∼ is an Xn-structure,
• RX∼∼

is a modal relation on Xn;
• whose morphisms are the maps ψ : X˜ → Y˜ such that

• ψ is an Xn-morphism,
• ψ ◦RX∼∼

= RY∼∼
◦ ψ.

As usual, if X˜ and Y˜ are two objects of MXn, we denote by MXn(X˜ , Y˜ ) the class of the
MXn-morphisms from X˜ to Y˜ .

Our previous developments can be bringed together in the following duality theorem.

Theorem 4.11 (Duality for MMVn). Let us denote by D∗n : MMVn → MXn the functor
defined by

D∗n :

{
A 7→ 〈Dn(A), RDn(A)

�A
〉

f ∈MMVn(A,B) 7→ Dn(f) ∈MXn(D∗n(B),D∗n(A))

where RDn(A)

�A
is the relation defined in Proposition 4.3.

Let us also denote by E∗n : MXn →MMVn the functor defined by

E∗n :

{
X˜ 7→ 〈En(X∼∼ ),�RX˜ 〉ψ ∈MXn(X˜ , Y˜ ) 7→ En(ψ) ∈MMVn(E∗n(Y˜ ),E∗n(X˜ ))

where �RX˜ is the operator defined in Proposition 4.6.
Then the functors D∗n and E∗n define a categorical duality between MMVn and MXn.

First note that this duality is not a natural duality. It would indeed implies that the duality
for Boolean algebras with a modal operator (which is exactly the content of Theorem 4.11 if we
set n = 1) is natural.

The reader who wishes to illustrate this duality can easily construct the dual structures of the
MMVn-algebras of the Examples 3.6.

As a first consequence of this duality, we obtain directly that if �B(A) is a Boolean operator
on B(A), then there is at most one extension of �B(A) to an operator on A. Indeed, the dual of
�B(A) under Stone duality is a binary relation on the underlying topological space of Dn(A) (see
the proof of Proposition 4.4) which in turns is or is not a modal relation on Dn(A) (according to
(R3) of Definition 4.5). We turn this piece of argument into a useful criterion.

Proposition 4.12. If A is an MVn-algebra and if �B(A) is a Boolean operator on B(A),
then there is an operator on A whose restriction to B(A) coincides with �B(A) if and only if the
relation R defined on Dn(A) by application of Stone duality to 〈B(A),�B(A)〉 is a modal relation
on Dn(A). In this case, this operator is unique.

As another consequence, we obviously find that the structures of MXn form an adequate se-
mantic for the n+ 1-valued  Lukasiewicz modal logics. It means that we can give the following
flavor of completeness to the duality for MMVn. Note that a valuation on a structure X˜ of
MXn is a map v : X ×Prop →  Ln such that v(·, p) is continuous and maps rX

m into  Lm for ev-
ery p ∈ Prop and every m ∈ div(n). These valuations are extended to formulas in the obvious way.
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Proposition 4.13. A formula φ can be obtained from the hypotheses Γ as a theorem of the
n + 1-valued  Lukasiewicz’ modal system if and only if it is valid in every MXn-structure in
which the formulas of Γ are valid.

Since MMVn is the variety of algebras of the n + 1-valued  Lukasiewicz modal logics, it is
quite natural to wonder if the classical first order properties of frames which admit a character-
ization by a modal formula under Stone duality for Boolean algebras with a modal operator
still admit this translation under our new duality. As a matter of fact, since these properties are
properties of frames and do not involve the many-valueness in any way, we can easily obtain the
following proposition.

Proposition 4.14. If A is an MMVn-algebra, then

(1) the equation �(x⊕y) = �x⊕�y and �0 = 0 are simultaneously satisfied in A if and only
if RDn(A)

� is an Xn-morphism;
(2) the equation �x→ ��x = 1 is satisfied in A if and only if RDn(A)

� is transitive;
(3) the operator � is an interior operator if and only if RDn(A)

� is a preorder.

Furthermore, because of the many-valueness, we can consider some new types of first order
properties for the relations R, namely the properties that express how the relation R behave with
respect to the relations rm. If these properties admit a characterization by modal formulas, these
formulas should be many-valued in essence. We give two easy examples of this new type of corre-
spondence theory.

Proposition 4.15. If A is an MMVn-algebra, then

• A |= ♦p ∨ ♦¬p if and only if D∗(A) |= ∀u Ru ∩ rD∗(A)
1 6= ∅,

• A |= �(p ∨ ¬p) if and only if D∗(A) |= ∀u Ru ⊆ rD∗(A)
1 ,

Note that, roughly speaking, the first proprety expresses that every world is connected to a
Boolean world and the second one that every world is exclusively connected to Boolean worlds.
Obviously, these correspondence results can be adapted if we change “Boolean world” by “m-
valued world” with m ∈ div(n).

4.2.4. Computing the coproducts in MXn. Coproducts of dual structures are classical construc-
tions that one computes when one wants to obtain new members of the dual category. For example,
the job has been done in [21] for the dual categories of Boolean algebras with operators and has
been considered in [31] for the members of Xn. The problems in these constructions arise mainly
from topology: when one computes non finite coproducts, one has to pay attention to preserve
compacity and to conserve closed relations in order to stay in the category. The idea is to base
the coproducts of the structures (X˜ i)i∈I on the Stone-C̆ech compactification of the topological
sum of the topological spaces Xi (i ∈ I).

In fact, we can carefully merge the results of [21] and [31] to obtain the construction of the
coproducts in MXn. The crucial point is to take care that the condition (R3) of Definition 4.5 is
still satisfied in the compactification.

Let us recall the construction of the Stone-C̆ech compactification of a completely regular
topological space X. We denote by C(X) the set of the continuous maps from X to [0, 1]. Then, the
evaluation map e : X → [0, 1]C(X) defined by (e(x))f = f(x) is continuous and is a homeomorphism
from X to e(X). If β(X) denotes the closure of e(X) in [0, 1]C(X) then (e, β(X)) is the Stone-
C̆ech compactification of X. We set the notation Y aside to denote the closure in β(X) of a
subset Y of β(X) and we identify X and e(X) in β(X). Finally, note that the coproduct of
the Stone spaces Xi (i ∈ I) in the category of Stone spaces with continuous maps is given by
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the Stone-C̆ech compactification of the topological sum of the Xi. The set Xi can always be
considered as being pairwise disjoint (otherwise we can replace Xi by {(x, i) | x ∈ Xi} for all i ∈ I
with the obvious topology).

Note that the clopen subsets of β(X) are exactly the Ω where Ω is a clopen subset of X and
that β(X) \ F = (X \ F )− for every closed subspace F of X.

We provide the proofs of the following two lemmas even if they are part of folkore and can be
found in [21], since the cited paper is not easily accessible.

Lemme 4.16. If X is a topological space whose set of clopen subsets is a base of the topology
and if R is a closed binary relation on X, then R−1(K) is a closed subspace of X for every compact
subspace K of X.

Proof. The proof is obtained thanks to a standard compacity argument. �

Lemme 4.17. Assume that I is a non empty set, that (Xi)i∈I is a family of Stone spaces
and that β(X) is the Stone-C̆ech compactification of the topological sum X of the Xi.

(1) If F and F ′ are two disjoint closed subspaces of X, then F and F ′ are disjoint in β(X).
(2) If F and F ′ are two closed subspaces of X, then (F ∩ F ′)− = F ∩ F ′ in β(X).
(3) If R is a closed binary relation on X and if R denotes its closure in β(X) then R

−1
(Ω) =

(R−1(Ω))− for every clopen subset Ω of X.

Proof. (1) Let us denote by Ωi a clopen subset of Xi such that Xi ∩ F ⊆ Ωi and Xi ∩ F ′ = ∅ for
all i ∈ I and by Ω the open set ∪i∈IΩi. Thus, F ⊆ Ω and F ′ ⊆ (X \ Ω)− = X \ Ω since Ωi is a
zero-set in Xi for all i ∈ I.

(2) We prove the non trivial inclusion: let x be an element of F ∩ F ′ and Ω a clopen subset
of X such that x ∈ Ω. We prove that (Ω ∩ F ) ∩ (Ω ∩ F ′) 6= ∅. Otherwise, it follows by (1) that
(Ω ∩ F ) ∩ (Ω ∩ F ′) = ∅. But, since Ω ∩ F is a closed subspace of X,

x ∈ Ω ∩ F ⊆ (Ω ∩ F )− = (Ω ∩ F )−,

and we obtain similarly that x ∈ (Ω ∩ F ′)−.
(3) The inclusion (R−1(Ω))− ⊆ R

−1
(Ω) follows directly from Lemma 4.16. For the other

inclusion, let x be an element of R
−1

(Ω) and U be a neighborhood of x in β(X). Then, there is a
y in Ω such that (x, y) ∈ R. So, the set U×Ω is a neighborhood of (x, y) in β(X)×β(X) and there
are two elements t and z of X such that (t, z) ∈ ((U ∩X)× Ω) ∩R. Thus, U ∩R−1(Ω) 6= ∅. �

The idea to use Stone-C̆ech compactification to compute coproducts in Xn can be traced back
to [31]. We extend this construction to the category MXn.

Proposition 4.18. If I is an non empty set and (X˜ i = 〈X∼∼ i, Ri〉)i∈I is a family of MXn-
structures (that we consider pairwise disjoint), then the structure

〈β(X), {(rX
m)− : m ∈ div(n)}, R, τ〉

where

• X is the topological sum of the Xi (i ∈ I),
• β(X) is the Stone-C̆ech compactification of X and X is identified to e(X) in β(X),
• rX

m is the union of the subspaces rXi
m (i ∈ I), for every m ∈ div(n)

• R is the union of the relations Ri (i ∈ I),

is the coproduct in MXn of the (X˜ i)i∈I (i ∈ I).
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Proof. We first have to prove that the proposed structure is an object of MXn. First, it is clear
that its underlying topological space is a Stone space. The identities rβ(X)

m ∩ rβ(X)
m′ = r

β(X)
gcd(m,m′)

are obtained as a consequence of item (2) of Lemma 4.17.
We now prove that R is a modal relation on β(X). First of all, the third item of Lemma

4.17 implies that R
−1

(U) is clopen subset for every clopen subset U of β(X). To prove that
R(rβ(X)

m ) ⊆ r
β(X)
m , we proceed ad absurdum. Assume that (x, y) ∈ R with x ∈ r

β(X)
m but y ∈

β(X) \ rβ(X)
m . Let us consider a clopen subset Ω of X such that y ∈ Ω ⊆ β(X) \ rβ(X)

m . Then,
thanks to item (3) of Lemma 4.17, we obtain that x belongs to R

−1
(Ω) = R−1(Ω). We thus can

find a t ∈ rX
m∩R−1(Ω) = rX

m∩R−1(Ω). Finally, it means that there is a z ∈ Ω such that (t, z) ∈ R,
which is a contradiction since Ω ⊆ X \ rX

m. We so have proved that R satisfies condition (R3) of
definition 4.5, and have finished to prove that the proposed structure belongs to MXn.

Now, let us prove that we have computed the coproduct of the X˜ i. We denote by σi : Xi → X

the inclusion map of Xi into β(X) for every i ∈ I. These maps are obviously MXn-morphisms
(use the fact that R(u) = R(u) for every u ∈ X). Then, suppose that fi : X˜ i → Y˜ is an MXn-
morphism valued in an MXn-structure Y˜ for every i ∈ I. Since β(X) is the coproduct of the
topological spaces Xi, there is a unique continuous map f : β(X) → Y such that f ◦ σi = fi for
every i ∈ I. It is so sufficient to prove that f(rX

m) ⊆ r
Y

m̃ for every divisor m of n. First, assume
that y ∈ Y \ r

Y

m̃ and denote by Ω a clopen subset of Y such that y ∈ Ω and Ω ∩ r
Y

m̃ = ∅. It
follows that f−1(y) ⊆ f−1(Ω) ⊆ β(X) \ rX

m. Thus, f−1(y) ⊆ β(X) \ rX
m which proves that f is an

Xn-morphism. Finally, we prove that f is a bounded morphism, i.e. that f(R(u)) = RY˜(f(u)) for
every u in β(X). The inclusion from left to right is easily obtained. We proceed with the other
inclusion. First suppose that x ∈ RY˜(f(u)). It suffices to show that every clopen neighborhood
V of x meets f(R(u)) since the latter is closed. Let Ω be any clopen subset of X such that Ω
contains u. It then follows that

RY˜(f(Ω)) = RY˜(f(Ω)) ⊆ RY˜(f(Ω)) = f(RX(Ω)) = f(R(Ω)) = f(R(Ω)).

Hence, since x ∈ RY˜(f(u)) ⊆ f(R(Ω)), the intersection R
−1

(f−1(V ))∩Ω is not empty. We obtain
that u belongs to R

−1
(f−1(V )) since this subspace is closed in β(X). It means that V contains

an element of f(R(u)) and so that x ∈ f(R(u)) = f(R(u)). �

5. Conclusion

In this paper, we have obtained a duality for the category MMVn, which is the category of the
algebras of a very natural  Lukasiewicz n+ 1-valued modal system. As a particular case of this
duality, we can recover the classical Stone duality for Boolean algebras with a modal operator.
Among the consequences of this duality, one can find a completeness result for every n+ 1-valued
modal logic: a logic L is complete with respect to the MXn-structures in which the formulas of L

are valid. We now present a few ideas for future research.
First of all, as it has been recently done for Boolean algebras with operators in [36], we could

use this duality to characterize the subdirectly irreducible MMVn-algebras. We could also try to
describe the finitely generated MMVn-algebras, following the work of [9] for Heyting algebras.

An other task should be to place this work in the coalgebraic setting. Indeed, colagebras are a
very natural language for the study of transition systems, and it appears clearly that the structures
of MXn could be described as coalgebras over the base category of Stone spaces. This would
provide an interesting illustration of the works [24] and [23] in which the authors use the Vietoris

topology to construct coalgebras on Stone spaces. It would prove that these constructions can
also be used to describe a new range of transition systems which are not Boolean in essence, and
would provide us with a rich language to study the consequences of this duality.



A DUALITY FOR THE ALGEBRAS OF A  LUKASIEWICZ n + 1-VALUED MODAL SYSTEM 15

Moreover, this duality suggests us to use a new type of structures as a semantic for the n+ 1-
valued  Lukasiewicz modal system. Indeed, a frame F = 〈M,R〉 becomes an n+ 1-valued model
by the addition of a valuation v : M × Prop →  Ln. So, the set of truth values in a world α of
the model is determined by the valuation. But, as suggested by this duality, we can define an
alternative type of (first order) structures for which the set of truth values in a world α is known a
priori, independently of any valuation. Such an n+ 1-frame 〈M,R, {rm | m ∈ div(n)}〉 would be
given by a non empty set M , a binary relation R on M and a subset rm of M for every divisor m
of n. The members of rm are the worlds of M that can interpret the truth values of the formulas
only in  Lm. It means in fact that we restrict the set of possible valuations on such structures: a
valuation v : M × Form →  Ln has to satisfy v(φ, α) ∈  Lm if α ∈ rm. In view, such a structure
should satisfy R(rm) ⊆ rm for every m ∈ div(n).

Since this new class of structures is obtained from the class of frames by restricting the possible
valuations for the frames, we should be able to derive some new completeness results: there should
be a wide range of logics L which are complete with respect to a class of n+ 1-frames but which
are not complete with respect to any class of Kripke frames. As an exemple of this fact, let us
quote the logic MMVn + �(p ∨ ¬p) + ��p+ ¬(♦p ∧ ♦¬p) (see [18] for developments). It would
be interesting to explore these completness results or to develop a new correspondence theory
between LMMV -propositions and first order formulas on n + 1-frames (the very first illustration
of this theory are given in proposition 4.15).
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