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Abstract. In the 1970s, Robin Giles introduced a game combining Lorenzen-style

dialogue rules with a simple scheme for betting on the truth of atomic statements, and

showed that the existence of winning strategies for the game corresponds to the validity

of formulas in �Lukasiewicz logic. In this paper, it is shown that ‘disjunctive strategies’

for Giles’s game, combining ordinary strategies for all instances of the game played on

the same formula, may be interpreted as derivations in a corresponding proof system.

In particular, such strategies mirror derivations in a hypersequent calculus developed in

recent work on the proof theory of �Lukasiewicz logic.
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Introduction

In the 1970s, Robin Giles proposed an account of logical reasoning in physical
theories that combines a Lorenzen-style dialogue game with a simple scheme
for betting on the truth of atomic statements [16, 18, 1]. The key idea
is that atomic statements (represented as propositional variables) refer to
positive or negative results of experiments that may have different outcomes
when repeated but have a fixed probability of a positive result. The two
players, you and I, agree to pay 1 to the opposing player for each incorrect
statement that they make. The payments may vary depending on the results
of concrete experiments, but a player wins the game if they expect (in the
probability-theoretic sense) not to lose money. In general, states of the game
consist of statements (formulas built using implication and other standard
connectives) made by the players, and moves are based on natural rules for
attacking or granting compound statements made by the opposing player.

A remarkable feature of this game, recognized by Giles in [16], is that
the existence of a winning strategy for any instance of the game where I
start by asserting a formula F and you assert nothing corresponds directly
to the validity of F in �Lukasiewicz logic �L. This logic was introduced by
Jan �Lukasiewicz in the 1930s [23] as the infinite-valued member of a fam-
ily of many-valued logics first proposed for modelling future contingents.
It is currently studied mainly as one of the fundamental t-norm based fuzzy

Presented by Daniele Mundici; Received March 19, 2009 (revised)
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logics suitable for formalizing reasoning under vagueness (see e.g., [21]). In-
deed, Giles formalized his game also in the context of fuzzy set theory; in
particular, the goal of [17] and [19] was to provide a dialogue game based
presentation of the ‘semantics of fuzzy reasoning’.

The main aim of this paper is to connect Giles’s game with recent proof-
theoretic presentations of �Lukasiewicz logic. Initial attempts at developing
proof calculi for �L made essential use of the cut rule [30], extra syntax such
as labelled tableaux or resolution [20, 29, 28, 34], or a reduction to finite-
valued logics [2]. The first genuinely analytic (cut-free) Gentzen systems
for the logic were presented in [24] both in the framework of sequents and,
more naturally, in the framework of hypersequents (multisets of sequents)
introduced by Avron in [3] (see also [25]). Interestingly, the rules of the
latter system were anticipated partially by Giles himself (with Adamson)
who in [1] obtained a sequent calculus for �L based on the search for winning
strategies in his dialogue game. However, the cut rule plays an essential role
in this calculus, rendering it unsuitable either as a basis for proof-theoretic
investigation or as a convincing interpretation of the game.

Here we show that a cut-free hypersequent calculus, closely related to
the system of [24], is obtained for �L by combining winning strategies into
‘disjunctive strategies’ for all possible assignments of probabilities. The pre-
sentation not only sheds light on the search for strategies in Giles’s game
but also provides (retrospectively) a convincing semantics for the calculus
of [24] for which, unlike standard Gentzen systems, hypersequents are not
easily interpreted as formulas of �L. This relationship between strategies for
Giles’s game and hypersequent derivations has been mentioned in [6] and
[13] but is worked out here for the first time in full detail. Indeed, ad-
ditional contributions of this paper are a more precise formulation of the
game than originally given by Giles, a task requiring certain ‘design choices’
to be made, and the development of disjunctive strategies for a general class
of two-person zero-sum games with perfect information.

1. Giles’s Game

Let us start by presenting a slightly generalized version of the game intro-
duced by Giles in [16], consisting of two largely independent building blocks:

(1) Betting for positive results of experiments.

Two players — following Giles, let’s call them me and you — agree to pay 1
to their opponent for every false statement that they make. Let p1, p2, . . .,
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q1, q2, . . . be propositional variables, representing atomic statements, and let
⊥ be a propositional constant representing a statement that is always false.
We denote by [p1, . . . , pm q1, . . . , qn] an elementary state of the game, where
you assert each pi in the finite multiset of atomic statements [p1, . . . , pm] and
I assert each qi in the finite multiset [q1, . . . , qn].

Each atomic statement q refers to a (repeatable) elementary experi-
ment Eq. By this we mean an experiment resulting in a binary answer (‘yes’
or ‘no’). The statement q may then be read as ‘Eq yields a positive result’.
To illustrate this idea, consider the elementary state [p q, q]. According to
the described arrangement, the experiment Ep has to be performed once and
the experiment Eq twice. If, e.g., all three results are negative, then I owe
you 2 and you owe me 1 . As long as q is either always true or always
false, this setting does not extend beyond the realm of classical logic. The
situation becomes more interesting, however, if the experiments can exhibit
dispersion, i.e., if the same experiment may yield different results when re-
peated. More formally, for every run of the game, a fixed risk value 〈q〉
in the real unit interval [0, 1] is associated with q. This value 〈q〉 can be
interpreted as the (subjective) probability that Eq yields a negative result.
For the atomic statement ⊥, we let 〈⊥〉 = 1; i.e., the experiment E⊥ always
yields a negative answer.

The risk associated with a multiset [q1, . . . , qn] of atomic formulas is
defined as 〈q1, . . . , qn〉 =

∑n
i=1〈qi〉, where the risk 〈〉 associated with the

empty multiset is defined as 0. Note that, according to standard probability
theory, the risk, as defined here, denotes the amount of money that I expect
to have to pay to you according to the results of the experiments Eq1, . . . , Eqn

associated with my atomic statements q1, . . . , qn. Therefore, with respect
to an elementary state [p1, . . . , pm q1, . . . , qn], the condition 〈p1, . . . , pm〉 ≥
〈q1, . . . , qn〉 expresses that I do not expect any loss (but possibly some gain)
when we bet on the truth of the atomic statements asserted by ourselves, as
indicated above.

Returning to our example for the elementary state [p q, q], I expect an
average loss of 0.5 if 〈p〉 = 〈q〉 = 0.5. However, for the risk values 〈p〉 = 0.8
and 〈q〉 = 0.3, my average loss is negative; I expect an average gain of 0.2 .

(2) A dialogue game for the reduction of compound formulas.

Giles follows Paul Lorenzen (see e.g., [22]) in specifying the meaning of
connectives via rules of a dialogue game that proceeds by systematically
reducing arguments about compound formulas to arguments about their
subformulas.
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For clarity, let us assume that these formulas are built from propo-
sitional variables, the falsity constant (0-ary connective) ⊥, and the bi-
nary connective →. This parsimony is justified (at least partly) by the
fact that in �Lukasiewicz logic all other connectives can be defined from →
and ⊥ as follows: ¬A =def A → ⊥ (negation), A& B =def ¬(A → ¬B)
(strong conjunction), A∧B =def A& (A → B) (weak or lattice conjunction),
A ∨ B =def ((A → B) → B) ∧ ((B → A) → A) (weak or lattice disjunction).
Nevertheless, we will also present a more direct analysis of disjunction and
the two different versions of conjunction in Section 3.

The central dialogue rule for implication can be stated as follows:

(R→) If I assert A → B, then whenever you choose to attack this statement
by asserting A, I have to assert also B. (And vice versa, i.e., for the roles
of me and you switched.)

This rule reflects the idea that the meaning of implication is characterized
by the principle that asserting ‘if A, then B’ obliges the assertion also of B
if the opponent in a dialogue asserts A. Note, however, that a player may
also choose never to attack the opponent’s assertion of A → B.

Remark 1.1. The presentation of the dialogue game given by Giles in [16]
and [18] is not entirely precise. As a consequence, some ‘design choices’ are
needed to obtain a fully formal presentation. Our definitions below of states,
moves, runs, and strategies therefore correspond to a particular version of
the game. Alternative approaches are discussed at the end of the section.

Let us denote an arbitrary dialogue state, or for short, d-state, of the game
by [A1, . . . , Am B1, . . . , Bn] where [A1, . . . , Am] is the multiset of formulas
that are currently asserted by you and [B1, . . . , Bn] is the multiset of formulas
that are currently asserted by me. An occurrence of a formula F in a d-state
is called a statement, either by me or you, depending on whether F is on
the right or left side of the d-state. (This allows us to distinguish concisely
between formulas and formula occurrences.)

A round is a transition from one d-state to another successor d-state that
consists of two moves. In each round one of the players is the initiator α
and the other player is the respondent β. The two corresponding moves are:

1. α picks one of the compound statements A → B asserted by β.

2. α either attacks this statement by asserting A or grants the formula,
which means that α declares never to attack that particular statement
of β. In the first case β must respond immediately by asserting B. In
the second case no action is required from β.
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Since no choice of β is involved in the whole round, both moves count as
moves of α. (This will change when we consider disjunctions and strong
conjunctions in Section 3 below.)

Each statement can be attacked or granted at most once. Therefore the
statement picked by the initiator is removed from the d-state. In denoting
strategies as trees, below, we will use intermediary states or, for short, i-
states to reflect the initiator’s choice of the statement that gets attacked or
granted. Intermediary states are exactly the same as the preceding d-state,
except that the statement chosen by the initiator is marked (denoted by
underlining).

However, to define games precisely, we need more information. We need
to know, for each non-elementary d-state, whose turn it is to initiate the
next round. Formally, we define a regulation as a function that assigns to
each non-elementary d-state either the label Y, for ‘you initiate the next
round’, or the label I, for ‘I initiate the next round’. These labels indicate
that the possible runs of the game are constrained accordingly. A regulation
is consistent if the label Y (or I) is only assigned to d-states where such
an initiating move is possible, i.e., where there is a compound statement
among my (or your) currently asserted formulas. The correct label for an
i-state is determined by the label of the immediately preceding d-state: as
already mentioned, both moves of a round (referring to implication) are
moves of the initiator, and thus the label of an i-state matches that of the
preceding d-state.

A game form G([Γ ∆], ρ) is a tree of states with the initial d-state
[Γ ∆] as root, where the successor nodes to any state S are the states
that result from legal moves at S according to the consistent regulation ρ
as explained above. In particular, the leaf nodes of G([Γ ∆], ρ) are the
reachable elementary states. A game consists of a game form G([Γ ∆], ρ)
together with a risk assignment 〈·〉. A run of the game is a branch of
G([Γ ∆], ρ). In other words, a run consists of a sequence of alternating
d-states and i-states, obtained from successive moves as described above,
beginning with the initial d-state [Γ ∆] and ending in an elementary state.

Example 1.2. Consider the d-state [p → q a → b, c → d]. If it is my turn
to initiate the next round (indicated by the superscript I), then I can only
either attack or grant your statement p → q. Accordingly, there are two
ways that runs of the game can continue:
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[p → q a → b, c → d]I

[p → q a → b, c → d]I

[q p, a → b, c → d]

or [p → q a → b, c → d]I

[p → q a → b, c → d]I

[ a → b, c → d].

If it is your turn to move in the same d-state [p → q a → b, c → d], then
there are two successor i-states and hence four possible successor d-states
depending on (1) which of my two statements you choose, and (2) whether
you decide to attack or grant the chosen formula. The corresponding four
continuations are:

[p → q a → b, c → d]Y

[p → q a → b, c → d]Y

[p → q, a b, c → d]

or [p → q a → b, c → d]Y

[p → q a → b, c → d]Y

[p → q c → d]

or [p → q a → b, c → d]Y

[p → q a → b, c → d]Y

[p → q, c a → b, d]

or [p → q a → b, c → d]Y

[p → q a → b, c → d]Y

[p → q a → b].

Suppose that a run of G([Γ ∆], ρ) with risk assignment 〈·〉 ends with the
elementary state [p1, . . . , pm q1, . . . , qn]. We say that I win in that run if I
do not have to expect any loss of money resulting from betting on results of
the corresponding elementary experiments, more formally: if 〈p1, . . . , pm〉 ≥
〈q1, . . . , qn〉. Note that this winning condition refers to expected pay-offs and
not to any particular payments for results of the experiments associated with
the atomic statements of the final elementary state. In particular, [p p] is a
winning state for me, although it may happen — due to dispersion — that
the result of performing experiment Ep is positive for your assertion of p
but negative for my assertion of p, meaning that I owe you 1 according
to the agreed betting scheme. In other words, our (and Giles’s) definition
of ‘winning’ deliberately ignores concrete results of elementary experiments
and only refers to the risk associated with these experiments.

Remark 1.3. As mentioned earlier, in order to formulate the game precisely,
we have made certain design choices that go beyond the original presentation
of Giles. In particular, we have assumed that attacks are answered imme-
diately. The fact that this restriction (forced upon the ‘Opponent’) does not
imply any loss of ‘power of the Opponent’ is the most non-trivial part of
the adequacy proof for intuitionistic logic of Lorenzen’s original game. In
contrast, this restriction does not affect winning powers in Giles’s (more
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symmetric) game: instead of interpreting the formulas occurring in a state
as those that are currently asserted, we can just as well interpret them as
those formulas that must be asserted either at this or a later time according
to the dialogue rules (and thus are immediately available for attacks).

A second, related issue concerns regulations, formulated here as functions
from non-elementary states to I or Y, just specifying who is to play next.
Alternatively, as described in [1], a regulation could specify exactly which for-
mula should be attacked or granted next, i.e., a function from non-elementary
states to an occurrence of a compound formula in those states.

2. Strategies

A game strategy for a particular player is generally defined as a function
from states to states that determines every choice of a legal move by that
player but leaves all choices of the other player open. In our context this
means that a strategy for me is obtained from a game form by (iteratively
from the root) deleting all but one successor of every state labelled I. More
precisely, a strategy (for me) for a game form G([Γ ∆], ρ) is a rooted tree
of d-states and i-states, fulfilling the following conditions:

1. The root node is the d-state [Γ ∆].

2. All leaf nodes are elementary d-states.

3. If ρ([Π Σ]) = Y, then the successor nodes of [Π Σ] are the i-states that
result from marking one of the compound statements in Σ. Such an i-
state, [Π Σ′, A → B], where Σ′ = Σ − [A → B], has the two d-states
[A,Π Σ′, B] and [Π Σ′] as successor nodes.

4. If ρ([Π Σ]) = I, then [Π Σ] has exactly one i-state of the form
[A → B,Π′ Σ], where Π′ = Π − [A → B], as a successor node. This
i-state has either the d-state [B,Π′ Σ, A] or the d-state [Π′ Σ] as its
sole successor state.

A strategy for G([Γ ∆], ρ) is called a winning strategy (for me) for a risk
assignment 〈·〉 if 〈p1, . . . , pm〉 ≥ 〈q1, . . . , qn〉 holds for each of its leaf nodes
[p1, . . . , pm q1, . . . , qn].

Note that all branching in strategies refers to possible choices by you.
There are two different kinds of choices: in a d-state labelled Y you first
single out one of my compound statements and then decide whether to attack
or grant this formula. This is reflected by the i-states: the first choice is
represented by the transition from a d-state to an i-state, the second by the
transition from an i-state to a d-state.
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Example 2.1. Consider a game where I initially assert p → q for some
atomic formulas p and q. The game starts with the initial d-state [ p → q]:
You can either assert p in order to force me to assert q, or explicitly refuse to
attack p → q. In the first case, the game ends in the elementary state [p q];
in the second case, the game ends in the elementary state [ ]. For a given
assignment 〈·〉 of risk values where 〈p〉 ≥ 〈q〉, I win the game in both cases.
In other words: I have a winning strategy for p → q for all assignments
satisfying 〈p〉 ≥ 〈q〉.

Note that [ p → q] is the only non-elementary d-state in this game.
Therefore there is only one consistent regulation. The corresponding strat-
egy is formally represented by the following tree:

[ p → q]Y

[ p → q]Y

[p q] [ ].

Example 2.2. The following, slightly less trivial, example is a strategy for
(¬p → ¬q) → (q → p) for me (recalling that ¬A =def A → ⊥) where the
regulation is as indicated by the superscripts.

[ (¬p → ¬q) → (q → p)]Y

[ (¬p → ¬q) → (q → p)]Y

[¬p → ¬q q → p]Y

[¬p → ¬q q → p]Y

[q,¬p → ¬q p]I

[q,¬p → ¬q p]I

[q,¬q p,¬p]Y

[q,¬q p,¬p]Y

[p, q,¬q p,⊥]I

[p, q,¬q p,⊥]I

[p, q,⊥ p,⊥, q]

[q,¬q p]I

[q,¬q p]I

[q,⊥ q, p].

[¬p → ¬q ]I

[¬p → ¬q ]I

[ ]

[ ]
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Note that at all four leaf nodes, the winning condition for me is satisfied
independently of the concrete risk value assignment. Also note that in this
particular example, there is only one compound formula to pick at each i-
state. Moreover, in many cases, the regulation is determined by the available
formulas. E.g., in order to be consistent, the regulation must assign I to
[q,¬p → ¬q p]. The d-states [¬p → ¬q q → p] and [q,¬q p,¬p], which
have you as assigned initiator, could also be initiated by me. However, it is
easy to see that these alternative regulations, while leading to different leaf
nodes, also result in winning strategies for me that are independent of the
given risk values.

3. Other Connectives

So far we have restricted our attention to rules for the implication connec-
tive. This is justified somewhat by the fact, to be rediscovered below, that
Giles’s game corresponds to �Lukasiewicz logic, and that in this logic, all
other connectives may be defined using just implication and the constant ⊥.
Nevertheless, such an account does not really do justice to the motivation
behind the game, namely, to provide an independent account of reasoning.
We therefore consider here other connectives, beginning with rules given by
Lorenzen for his dialogue game corresponding to intuitionistic logic.

For disjunctive statements, Lorenzen introduced the following rule:

(R∨) If I assert A ∨ B, then, if attacked, I also have to assert either A
or B, where it is my choice which of the two subformulas to assert.
(Analogously, if you assert A ∨ B.)

For conjunctive assertions, Lorenzen proposed a rule similar to (R∨) but
shifting the choice involved to the opponent:

(R∧) If I assert A∧B, then, if attacked, I also have to assert either A or B,
but it is your choice which of the two subformulas I assert. (Analogously,
for the roles of me and you switched.)

Giles followed Lorenzen in using these rules for the decomposition of com-
pound formulas in dialogues. However, in the case of (R∧), the following
alternative rule may, at first glance, seem to be a more natural analysis of
conjunctive assertions:

(R′
∧) If I assert A ∧ B, then, if attacked, I also have to assert both A and
B. (Analogously, if you assert A ∧ B.)
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However, in the context of our basic stipulation that exactly 1 has to
be paid to the opponent player for every false assertion made, (R′

∧) seems
problematic. Suppose that I assert p∧q and both corresponding experiments,
Ep and Eq, yield a negative answer. According to (R′

∧) this commits me to
pay 2 to you, and not just 1 as is the case when playing according to
rule (R∧). To address this concern, we give a player asserting a conjunctive
statement the option of hedging their corresponding bet and paying 1 to the
opponent player instead of defending both sub-statements. Employing the
‘always false statement’ ⊥, we can formulate the corresponding rule without
having to refer to payments directly, using & instead of ∧ to indicate that
a different understanding of conjunction is involved:

(R& ) If I assert A& B, then, if attacked, I can choose to either assert both
A and B, or to assert ⊥. (Analogously, if you assert A& B.)

Both ∧ and & behave like classical conjunction in a version of Giles’s
game without dispersion, i.e., where each risk value is either 0 or 1. How-
ever, in the more general case, it follows from our results below that (R∧)
and (R& ) characterize the two different conjunctions — weak conjunction ∧
(‘lattice conjunction’) and strong conjunction & (‘t-norm conjunction’), re-
spectively — of �Lukasiewicz logic �L (see, e.g., [21]).

Remark 3.1. We have introduced & here as a strong conjunction connec-
tive partly because of its importance in the presentation of �Lukasiewicz logic
as a fuzzy logic. As we will see later, according to this perspective, & is
interpreted by the continuous Archimedean t-norm max(0, x + y − 1). It
is possible to define rules also for a ‘strong disjunction’ ∨ corresponding
to the continuous t-conorm min(1, x + y). However, these rules are rather
unintuitive, reflecting perhaps the strangeness of this function as a form of
disjunction.

Let us now translate these rules into the terminology of the previous
section. The general definition of a round is as follows:

1. The initiator α picks one of the compound statements asserted by re-
sponder β.

2. α either attacks or grants this statement. Responder β has to respond
immediately to each attack, as specified in the dialogue rules above.

Note that in the case of disjunction and conjunction — in contrast to impli-
cation — the initiator of a corresponding move can only gain from choosing
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[Π Σ, A → B]Y

[A, Π Σ, B] [Π Σ]

[A → B, Π Σ]I

[B, Π Σ, A]

[A → B, Π Σ]I

[Π Σ]

[Π Σ, A ∨ B]I

[Π Σ, A]

[Π Σ, A ∨ B]I

[Π Σ, B]

[A ∨ B, Π Σ]Y

[A, Π Σ] [B, Π Σ]

[Π Σ, A ∧ B]Y

[Π Σ, A] [Π Σ, B]

[A ∧ B, Π Σ]I

[A, Π Σ]

[A ∧ B, Π Σ]I

[B, Π Σ]

[Π Σ, A& B]I

[Π Σ, A, B]

[Π Σ, A& B]I

[Π Σ,⊥]

[A& B, Π Σ]Y

[A, B,Π Σ] [⊥, Π Σ]

Table 1. Successor d-nodes of i-nodes, according to the rules (R→), (R∨), (R∧), and (R& ).

to attack; i.e., it is never an advantage to grant such a statement. Conse-
quently, we may safely ignore the possibility of granting formulas where the
outermost connective is not an implication.

The definition of a strategy is augmented according to the rules (R∨),
(R∧), and (R& ). More precisely, in conditions 3 and 4 of the definition of
a strategy, the possibilities for successor nodes (d-states) of i-states are as
specified in Table 1. Note that for attacks on disjunctions and on strong
conjunctions it is the attacked player’s turn to move, whereas in the other
cases the label of the i-node indicates that the attacking player has to select
a move.

Example 3.2. Consider the d-state [p ∧ q a ∨ b]. Suppose that it is my
turn to initiate the next round. Then, since we are ignoring the possibility
of granting such statements, I must attack your statement p ∧ q and, in the
succeeding move, choose which of p and q to attack. I.e., there are two ways
that runs of the game can continue:

[p ∧ q a ∨ b]I

[p ∧ q a ∨ b]I

[p a ∨ b]

or [p ∧ q a ∨ b]I

[p ∧ q a ∨ b]I

[q a ∨ b].

In contrast, suppose that it is your turn to initiate the next round. You
must attack my statement a ∨ b. However, it is then my choice which of a
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or b I assert. So the possible continuations are:

[p ∧ q a ∨ b]Y

[p ∧ q a ∨ b]I

[p ∧ q a]

or [p ∧ q a ∨ b]Y

[p ∧ q a ∨ b]I

[p ∧ q b].

Consider now a game with initial state [p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r)]. The
following tree is a strategy that respects a given regulation indicated, as
before, by the superscripts I and Y:

[p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r)]Y

[p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r)]I

[p ∧ (q ∨ r) p ∧ q]Y

[p ∧ (q ∨ r) p ∧ q]Y

[p ∧ (q ∨ r) p]I

[p ∧ (q ∨ r) p]I

[p p]

[p ∧ (q ∨ r) q]I

[p ∧ (q ∨ r) q]I

[q ∨ r q]I

[q ∨ r q]Y

[q q] [r q].

Notice that at the leaf nodes [p p] and [q q], I win for any risk assignment.
But I win at [r q] only if 〈r〉 ≥ 〈q〉. I.e., the above tree is a winning strategy
for all games where the risk assignment 〈·〉 satisfies this restriction.

4. Adequacy of Giles’s Game for �Lukasiewicz Logic

One of the most interesting features of Giles’s game is its relationship with
the infinite-valued �Lukasiewicz logic �L. The standard semantics for this logic
takes the closed interval [0, 1] as a set of truth values with strong conjunction
modelled by the nilpotent Archimedean t-norm x∗�Ly = max(0, x + y − 1),
implication by its residuum x⇒�Ly = min(1, 1 − x + y), and ⊥ by 0. Other
connectives ∧ and ∨ are modelled by min and max, respectively. However,
since all the connectives of �L can be defined from → and ⊥, as explained in
Section 1, we again focus on this restricted language.
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A valuation v(·) for �L is a function from the set of formulas into [0, 1]
that extends an assignment to propositional variables of values in [0, 1] by:

v(⊥) = 0
v(A → B) = min(1, 1 − v(A) + v(B)).

A formula F is called valid in �L if v(F ) = 1 for every valuation v.

The usual axiomatization H�L for �L in this restricted language consists of
the following four axiom schema together with modus ponens:

(�L1) A → (B → A)
(�L2) (A → B) → ((B → C) → (A → C))
(�L3) ((A → B) → B) → ((B → A) → A)
(�L4) ((A → ⊥) → (B → ⊥)) → (B → A).

A completeness theorem was given by Wajsberg in the 1930s, but the first
published proof, by Rose and Rosser, did not appear until the 1950s.

Theorem 4.1 ([32]). A formula F is valid in �L iff F is derivable in H�L.

An algebraic semantics for �L, the class of MV-algebras (usually presented in
a different language), was introduced by C. C. Chang in the 1950s [5] and is
the focus of a great deal of active research in algebra (see, e.g., [8]).

The key theorem below, connecting validity with winning strategies, was
established by Giles in [16]. However, to remain self-contained, we include
here our own proof.

Theorem 4.2. A formula F is valid in �L iff I have a winning strategy for
the game G([ F ], ρ) with any risk assignment 〈·〉, where ρ is an arbitrary
consistent regulation.

Proof. Note first that every run of the game G([ F ], ρ) with risk assign-
ment 〈·〉 is finite. For every elementary state [p1, . . . , pm q1, . . . , qn], I win
if my associated risk (expected loss) 〈p1, . . . , pm q1, . . . , qn〉 =

∑n
j=1〈qj〉 −∑m

i=1〈pi〉 is non-positive. The minimal final risk that I can enforce in any
given state S by playing according to an optimal strategy can be calculated
by taking into account (1) the maximum over all risks associated with the
successor states to S that you can enforce by a move at S, (2) the fact that
for any of my choices I can enforce the minimum over the risks at succes-
sor states that correspond to my possible moves. Correspondingly, we will
show that the notion of my minimal final risk can be extended from ele-
mentary states [p1, . . . , pm q1, . . . , qn] to arbitrary states [Γ ∆] such that
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the following conditions are satisfied:

〈Γ A → B,∆〉 = max(〈Γ ∆〉, 〈Γ, A B,∆〉) (1)

〈Γ, A → B ∆〉 = min(〈Γ ∆〉, 〈Γ, B A,∆〉). (2)

We have to check that 〈· ·〉 is well-defined, i.e., that conditions (1) and (2)
together with the definition of my risk for elementary states can indeed be
simultaneously fulfilled and guarantee uniqueness. Moreover, we have to
connect risk values and risk assignments with truth values and valuations.

Let us extend the semantics of �L from formulas to multisets Γ of formulas
as follows:

v(Γ) =def

∑

F∈Γ

v(F ).

Risk value assignments are placed in one to one correspondence with truth
value assignments via the mapping 〈p〉v = 1 − v(p), which extends to:

〈p1, . . . , pm q1, . . . , qn〉
v = n − m + v([p1, . . . , pm]) − v([q1, . . . , qn]).

Correspondingly, we define the following function for arbitrary states:

〈Γ ∆〉v =def |∆| − |Γ| + v(Γ) − v(∆).

Note that crucially:

v(F ) = v([F ]) = 1 iff 〈 F 〉v ≤ 0. (3)

We have to show that 〈· ·〉v does indeed specify my risk with respect to
optimal game strategies. In other words, we have to check that it satisfies
conditions (1) and (2). This is established by induction on the complexity of
states, i.e., the number of implication symbols they contain. The base case
case is immediate. For (1), the corresponding induction step is:

〈Γ A → B,∆〉v = |∆| + 1 − |Γ| + v(Γ) − v(∆) − v(A → B)
= 〈Γ ∆〉v + 1 − v(A → B)
= 〈Γ ∆〉v + 1 − (v(A)⇒�Lv(B))
= 〈Γ ∆〉v + 1 − min(1, 1 − v(A) + v(B))
= 〈Γ ∆〉v − min(0, v(B) − v(A))
= 〈Γ ∆〉v + max(0, v(A) − v(B))
= 〈Γ ∆〉v + max(0, 〈A B〉v)
= max(〈Γ ∆〉v, 〈Γ, A B,∆〉v).
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For (2), we have:

〈Γ, A → B ∆〉v = |∆| − |Γ| − 1 + v(Γ) + v(A → B) − v(∆)
= 〈Γ ∆〉v − 1 + v(A → B)
= 〈Γ ∆〉v − 1 + (v(A)⇒�Lv(B))
= 〈Γ ∆〉v − 1 + min(1, 1 − v(A) + v(B))
= 〈Γ ∆〉v − 1 + min(1, 1 + 〈B A〉v)
= 〈Γ ∆〉v + min(0, 〈B A〉v)
= min(〈Γ ∆〉v, 〈Γ, B A,∆〉v.

Note that (1) and (2) hold independently of the order in which compound
formulas are decomposed or eliminated. Therefore, for v(F ) = 1, there is
a winning strategy for me for G([ F ], ρ) with risk assignment 〈·〉v for any
consistent regulation ρ. Finally, recall that by (3), F is valid iff 〈 F 〉v ≤ 0
for every valuation v. Since this covers all possible risk value assignments 〈·〉,
the theorem follows.

Remark 4.3. It is straightforward to check in a similar way that the game
rules for other connectives (R∨), (R∧), and (R& ) presented in Section 3
match the standard semantic conditions: v(A ∨ B) = max(v(A), v(B)),
v(A ∧ B) = min(v(A), v(B)), and v(A& B) = v(A)∗�Lv(B), respectively.
For example, for (R& ) we have to check that the following conditions are
satisfied:

〈Γ A& B,∆〉 = min(〈Γ ∆,⊥〉, 〈Γ ∆, A,B〉) (4)

〈Γ, A& B ∆〉 = max(〈Γ,⊥ ∆〉, 〈Γ, A,B ∆〉). (5)

We obtain the following corresponding induction steps:

〈Γ A& B,∆〉v = |∆| + 1 − |Γ| + v(Γ) − v(∆) − v(A& B)
= 〈Γ ∆〉v + 1 − v(A& B)
= 〈Γ ∆〉v + 1 − (v(A)∗�Lv(B))
= 〈Γ ∆〉v + 1 − max(0, v(A) + v(B) − 1)
= 〈Γ ∆〉v + min(1, (1 − v(A)) + (1 − v(B))
= 〈Γ ∆〉v + min(1, 〈 A,B〉v)
= min(〈Γ ∆,⊥〉v, 〈Γ ∆, A,B〉v)

〈Γ, A& B ∆〉v = |∆| − |Γ| − 1 + v(Γ) + v(A& B) − v(∆)
= 〈Γ ∆〉v − 1 + v(A& B)
= 〈Γ ∆〉v − 1 + (v(A)∗�Lv(B))
= 〈Γ ∆〉v − 1 + max(0, v(A) + v(B) − 1)
= max(〈Γ,⊥ ∆〉, 〈Γ, A,B ∆〉.
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Alternatively, we could consider strong conjunction as defined by A& B =def

(A → (B → ⊥)) → ⊥, as already indicated in Section 1.

5. Disjunctive Strategies

Although Giles explicitly refers to Lorenzen’s dialogue game for intuition-
istic logic as the source of his own game for �Lukasiewicz logic, there is a
fundamental difference between the two games. While the winning condi-
tion in Lorenzen’s game is independent of any semantic considerations, in
Giles’s game the winning condition depends on the risk values assigned to
propositional variables. In general, different risk values call for different
strategies. Winning strategies in Lorenzen’s game correspond directly to
analytic (cut-free) proofs of intuitionistically valid formulas and sequents in
a suitable version of Gentzen’s sequent calculus for intuitionistic logic. On
the other hand, Giles’s game is more like a Hintikka-style evaluation game,
where winning strategies correspond to certifying truth in a given model.
To connect Giles’s game to cut-free proofs in an appropriate calculus for
�Lukasiewicz logic, we will need to abstract from particular risk assignments
and look rather at disjunctive (winning) strategies that arise when disjunc-
tions of states instead of single game states are considered.

To make the move from strategies to disjunctive strategies more trans-
parent, let us consider the game from a more abstract point of view. In
standard game-theoretic terminology, Giles defines an extensive-form two-
person zero-sum game with perfect information for each formula and risk
assignment. Of course it is essential that the rules and winning conditions
are uniform over this infinite family of games. However, since players’ pref-
erences are part of the definition of any game, different risk values result
in different games even if the initially asserted formulas are the same. This
provides the motivation for a switch from states to disjunctive states, which
allow strategies for single games to be combined into a structure consisting
of appropriate families of such strategies.

Recall that a game without the information about the players’ prefer-
ences (winning conditions) is called a game form, represented as a rooted tree
of states endowed with a consistent regulation that specifies which player is
to move at any non-elementary state. The outgoing edges at a state register
the possible moves of the corresponding player at that state. By adding the
players preferences to the leaf nodes (elementary states), we obtain a game
tree that represents the whole game. In our case it suffices to specify for
each leaf, whether it is a winning state for me or for you.
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A strategy for a player P is a subtree of the game tree where all states
that are not labelled by P retain all their successor nodes, and, for each state
labelled by P, all but one successor node is removed from the tree. A winning
strategy for P is a strategy where the winning condition for P is satisfied at
all leaf nodes. The definitions in Section 2 of a (winning) strategy for me
for Giles’s game amount to special instances of these general definitions.

Let us use D = S1
∨

. . .
∨

Sn to denote a state disjunction. Since the
order of its component states (ordinary game states) S1, . . . , Sn is irrelevant,
a disjunctive state may be viewed as a multiset of states. A disjunctive strat-
egy for D respecting a regulation ρ is a tree of state disjunctions with root
D where the successor nodes are in principle determined in the same way as
for ordinary strategies. However, we also allow for the possibility of duplicat-
ing a component of a state in order to let disjunctive strategies for a player
P record different ways of proceeding for P in identical component states.
More precisely, there are two kinds of non-leaf nodes D = S1

∨
. . .

∨
Sn

in a disjunctive strategy for P:

1. Playing nodes, focused on some component Si (1 ≤ i ≤ n) of D. The
successor nodes are like those for Si in ordinary strategies, except for
the presence of additional components (that remain unchanged). I.e., if,
according to ρ, it is P’s turn to play at Si, then there is a single successor
state disjunction where the component Si of D is replaced by some S′

i

corresponding to some move of P. If the opposing player Q is to move
at Si, then all possible moves of Q determine the successor nodes of D
where Si is replaced by a state obtained by the corresponding move.

2. Duplicating nodes, where the single successor node is obtained by dupli-
cating one of the components in D.

Remark 5.1. Note that, just like ordinary strategies, disjunctive strategies
refer to a regulation that tells us which player has to move next at each
non-terminal state of a state disjunction. However, we do not associate
players with the focus on or duplication of particular component states. An
alternative approach could be to introduce ‘meta-regulations’ that delegate
these choices to players. Here, we prefer to keep these choices external to the
game itself since they only correspond to different ways of recording possible
traversals of the underlying game tree and do not influence the ‘winning
powers’ of players, i.e., the existence or non-existence of winning strategies.

Example 5.2. To illustrate the notion of a disjunctive strategy, consider a
game form where player P has two possible moves at state S0 leading to
successor states S1 and S2, respectively. In each of these states, the other
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player Q has two possible moves, resulting in terminal states S3, S4, and S5,
S6, respectively. This gives P two different (ordinary) strategies:

SP
0

SQ
1

S3 S4

and SP
0

SQ
2

S5 S6.

Such ordinary strategies are disjunctive strategies by definition. However,
more interesting is the following combination of the two strategies for P into
a single disjunctive strategy for P, where the root is a duplicating node:

SP
0

SP
0

∨
SP

0

SQ
1

∨
SP

0

S3

∨
SP

0

S3

∨
SQ

2

S3

∨
S5 S3

∨
S6

S4

∨
SP

0

S4

∨
SQ

2

S4

∨
S5 S4

∨
S6.

Note that our rather abstract presentation of disjunctive strategies does
not require that the states of different components refer to the same game.
Strictly speaking, different winning conditions give different games even if
they share the game form. Indeed, this is the case for the particular dialogue
game(s) we are interested in here.

Now let us consider a collection of games W with the same game form
(e.g., for Giles’s game, obtained by adding risk assignments to the game
form). A disjunctive strategy Σ for W for player P is a disjunctive winning
strategy for W if for every game in W, at least one component of each leaf
node of Σ is a winning state for P in that game. In particular, a disjunctive
winning strategy (for me) for the family of all instances of Giles’s game based
on G([Γ ∆], ρ) is a disjunctive strategy where in each leaf node for every
risk assignment 〈·〉 there is at least one component, i.e., elementary d-state,
[p1, . . . , pm q1, . . . , qn] such that 〈p1, . . . , pm〉 ≥ 〈q1, . . . , qn〉.

Proposition 5.3. Let W be a collection of games based on the same fi-
nite game form. Then there exists a disjunctive winning strategy for W for
player P iff there is an ordinary winning strategy for P for every game in W.
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Proof. For the right-to-left direction, let SW be a set of strategies such that
for every game in W some element of SW is a winning strategy for P. Since
the game form is finite, there are only finitely many different corresponding
strategies. Hence SW is finite. We can combine its members σ1, . . . , σn into
a single disjunctive winning strategy as indicated in Example 5.2. More
precisely, suppose that we have already constructed a disjunctive winning
strategy Σ1: i combining the ordinary winning strategies σ1, . . . , σi for some
1 ≤ i < n. To obtain a disjunctive strategy that also covers the games
for which σi+1 is a winning strategy we may proceed as follows. Add the
common initial state S of the games in W as a new component to each node
in Σ1: i. Add also S as a new root node below the node S

∨
S. Finally,

replace each leaf node S
∨

E with a copy of σi+1 with E added disjunctively
to each node.

For the other direction, let Σ be a disjunctive winning strategy for W
for player P. We prove the following slightly more general statement.

If Σ′ is a subtree of Σ with root D = S1
∨

. . .
∨

Sn, then there exists
an ordinary winning strategy for P for every subgame of a game in W
that starts with Si for some i ∈ {1, . . . , n}.

We proceed by induction on the height of Σ′. For the base case, it suffices
to observe that for each game in W, one of the terminal states in D is a
winning state for P. For the inductive step, we distinguish two cases.

If the root of Σ′ is a duplicating node, then the claim follows immediately
from the induction hypothesis.

If the root D = S1
∨

. . .
∨

Sn of Σ′ is a playing node focused on Si, then
again the claim follows immediately from the induction hypothesis for
those subgames that start with Sj for some j �= i (1 ≤ i ≤ n), since those
states appear unchanged in the successor nodes to D. For the subgames
starting in Si, recall that ρ determines whether P or some other player
initiates the move at Si. In the former case there is a single successor
node D′ of D. Applying the induction hypothesis to the subtree with root
D′ yields the required winning strategy. If another player initiates the
move at Si, then, by definition of a disjunctive strategy, all possible ways
to continue the game at this state are recorded in the immediate subtrees
below D in Σ′. To construct the required winning strategies for P for
the games starting in Si we combine, using the same move, the relevant
winning strategies obtained from applying the induction hypothesis to
the immediate subtrees of Σ′.
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In view of Theorem 4.2, we obtain:

Corollary 5.4. A formula F is valid in �L iff I have a disjunctive winning
strategy for every instance of Giles’s game with initial state [ F ].

Note that for any instance F of the �Lukasiewicz axiom schema (�L1)-(�L3),
there exists a single ordinary winning strategy for any game with initial state
[ F ], i.e., a strategy for me that is winning for all risk assignments. For
(�L4), there exists an ordinary winning strategy for certain regulations, but
for others, a disjunctive winning strategy with duplication is needed. More
generally, there are other valid formulas of the logic that require duplication
for any regulation.

Example 5.5. It is easy to see that for the initial state [ (p → q)∨ (q → p)]
there is an ordinary strategy for me that is winning for any assignment
〈〉 such that 〈p〉 ≤ 〈q〉 and another ordinary winning strategy for any as-
signment where 〈q〉 ≤ 〈p〉. However, no single strategy is winning for all
assignments. Instead, we can combine ordinary strategies into the following
disjunctive winning strategy:

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
∨

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
∨

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
∨

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
∨

[ (p → q) ∨ (q → p)]I

[ p → q]Y
∨

[ q → p]Y

[ p → q]Y
∨

[ q → p]Y

[p q]
∨

[ q → p]Y

[p q]
∨

[ q → p]Y

[p q]
∨

[q p] [p q]
∨

[ ]

[ ]
∨

[ q → p]Y

[ ]
∨

[ q → p]Y

[ ]
∨

[q p] [ ]
∨

[ ].
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6. Hypersequent Calculi

We turn our attention now to the proof theory of �Lukasiewicz Logic, and
the development of analytic calculi corresponding to Giles’s game, again
focussing initially on the language restricted to → and ⊥. By way of in-
troduction, let us first consider a calculus – based on the game but unfor-
tunately not analytic – that was proposed already by Giles with Adamson
in [1]. Essentially (the formalism is a little different), the authors define a
sequent calculus for �L by considering states [Γ ∆] as sequents, written here
as Γ ⇒ ∆. Intuitively, the logical rules of the calculus proceed by searching
for a strategy for [Γ ∆] that is winning for all risk assignments. This does
not quite work since there exist valid formulas where no such strategy ex-
ists. However, the calculus is made complete by adding a special cut rule.
More precisely, the calculus consists of the sequent versions of all winning
elementary states as axioms and the following schematic rules:

Γ ⇒ ∆
Γ, A → B ⇒ ∆

Γ, B ⇒ A, ∆

Γ, A → B ⇒ ∆

Γ ⇒ ∆ Γ, A ⇒ B, ∆

Γ ⇒ A → B, ∆

Γ, A ⇒ A, ∆

Γ ⇒ ∆ .

The rules for implication correspond directly to the choices for you and me
of whether to attack or grant a formula asserted by the opposing player. The
two leftmost rules reflect my choice, while the third rule reflects the fact that
I have to be prepared to deal with both your possible choices. Derivations
using just these three rules correspond to strategies for me where I have the
added privilege of choosing which of the compound formulas asserted by me
you should attack or grant. What spoils this nice representation, however,
is the presence of the fourth rule. This cut – or better, ‘cancellation’ – rule
can only be interpreted rather unnaturally in the game (as suggested in [1])
by allowing me to add a copy of any formula A to both my and your stock
of asserted formulas.

It is shown in [1] that there exists a derivation (a tree of sequents ob-
tained using the rules; see below) of the sequent ⇒ F in this calculus iff I
have a winning strategy for the game [ F ] for any regulation and risk as-
signment. The proof consists of simulating the Hilbert system H�L presented
in Section 4 (i.e., deriving the axioms and modus ponens in the calculus).
In fact, the authors comment that they were unable to find a semantic proof
of this result. More seriously, the presence of the cut rule (which cannot be
eliminated) robs the calculus of its analyticity and much of its virtue as a
proof-theoretic presentation of either �L or the game.

Here we take a different approach. As we have seen in the previous
section, a formula F is valid in �L iff there exists a disjunctive winning strategy
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for any game with initial state [ F ]. This suggests representing the search
for a disjunctive winning strategy for such games as the search for a proof of
F in a suitable formal system. In fact, as will become clear, the appropriate
calculus is very closely related to the hypersequent calculus G�L defined by
Metcalfe, Olivetti, and Gabbay in [24].

Hypersequents were introduced by Avron in [3] as a generalization of
Gentzen sequents that takes account of disjunctive or parallel forms of rea-
soning. Essentially, instead of one sequent as in usual Gentzen systems,
there is a collection of sequents that can be worked on at the same time.
More precisely, a hypersequent is defined here as a non-empty multiset of
ordered pairs of finite multisets of formulas, written:

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

or sometimes, for short, as [Γi ⇒ ∆i]
n
i=1. By taking multisets of formulas

and sequents rather than sets or sequences (as used in Avron’s original def-
inition [3]), we ensure that the multiplicity but not the order of elements is
important.

Formally, a hypersequent can be viewed as just a d-state disjunction
where each occurrence of [ ] is replaced by ⇒ and

∨
is replaced by |.

We retain the duplication of symbols and terminology to distinguish the
quite different origins and motivations for these definitions. Bearing this
correspondence in mind, however, let us say that an atomic hypersequent
G (i.e., one containing only atomic formulas) is winning if for every risk
assignment 〈·〉, there is a member p1, . . . , pm ⇒ q1, . . . , qn of G such that
〈p1, . . . , pm〉 ≥ 〈q1, . . . , qm〉. Equivalently, as argued in the adequacy proof
above (Theorem 4.2), G is winning iff for every valuation v, there is a member
p1, . . . , pm ⇒ q1, . . . , qn of G such that

∑m
i=1(v(pi) − 1) ≤

∑n
i=1(v(qi) − 1).

A hypersequent rule is a set of ordered pairs consisting of a (possibly
empty) set of hypersequents (the premises) and a hypersequent (the con-
clusion). Such rules are usually presented schematically with A,B standing
for formulas, Γ,∆ for multisets of formulas, and G for an arbitrary hyperse-
quent. A hypersequent calculus GL is then just a set of hypersequent rules.
A derivation in GL of a hypersequent G from a set of hypersequents Φ is a
labelled rooted tree of hypersequents (usually written upside down) where:

1. The root node is G.

2. Each node H is either in Φ and a leaf node, or has child nodes H1, . . . ,Hn

and H1, . . . ,Hn / H is an instance of a rule of GL.
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Our aim is to show that a disjunctive strategy is essentially, modulo the
different terminology, a derivation in a suitable hypersequent calculus. To
this end, let us consider some rules reflecting the construction of disjunctive
strategies described in the previous section. First, we require the following
external contraction rule to capture the duplication of game states:

G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆
(ec)

.

Next, to capture the effect of stepping from a d-state to all possible i-states
where a compound statement on the right is marked, we require a ‘redundant
rule’ that simply duplicates the conclusion in the premises:

G . . . G
G

(r)
.

Finally, we introduce rules to deal with attacking and granting implicational
formulas. For moves initiated by you, I must deal with the cases where you
choose to attack or grant a (marked) formula:

G | Γ ⇒ ∆ G | Γ, A ⇒ B, ∆

G | Γ ⇒ A → B, ∆
(⇒→)

.

For me, there is the choice of attacking or granting the (marked) formula:

G | Γ, B ⇒ A, ∆

G | Γ, A → B ⇒ ∆
(→⇒)1

G | Γ ⇒ ∆

G | Γ, A → B ⇒ ∆
(→⇒)2

.

However, notice that the construction of a disjunctive strategy, a tree of
d-states, corresponds exactly to applications of the rules (ec), (r), (→⇒)1,
(→⇒)2, and (⇒→). Hence, by inspection:

Proposition 6.1. Every disjunctive strategy for me for [Γ ∆] is (ignoring
marking of formulas and the different notation) a hypersequent derivation
of Γ ⇒ ∆ from atomic hypersequents using (ec), (r), (→⇒)1, (→⇒)2, and
(⇒→). Moreover, if the disjunctive strategy is winning, then the atomic
hypersequents are winning.

Example 6.2. Consider the following disjunctive strategy and the corre-
sponding hypersequent derivation for the elementary state [p → q q → p]:
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[p → q q → p]Y

[p → q q → p]Y

[p → q, q p]I

[p → q, q p]I
∨

[p → q, q p]I

[p → q, q p]I
∨

[p → q, q p]I

[q, q p, p]I
∨

[p → q, q p]I

[q, q p, p]
∨

[p → q, q p]I

[q, q p, p]
∨

[q p]

[p → q ]I

[p → q ]I

[ ].

q, q ⇒ p, p | q ⇒ p

q, q ⇒ p, p | p → q, q ⇒ p
(→⇒)2

q, q ⇒ p, p | p → q, q ⇒ p
(r)

p → q, q ⇒ p | p → q, q ⇒ p
(→⇒)1

p → q, q ⇒ p | p → q, q ⇒ p
(r)

p → q, q ⇒ p (ec)

⇒
p → q ⇒ (→⇒)2

p → q ⇒ (r)

p → q ⇒ q → p (⇒→)

p → q ⇒ q → p (r) .

However, the opposite direction does not hold. It is not the case that every
derivation of Γ ⇒ ∆ from atomic hypersequents using (ec), (r), (→⇒)1,
(→⇒)2, and (⇒→) is a disjunctive strategy for [Γ ∆]. One reason is that
applications of the rule (⇒→) do not take into account the fact that you
could choose to attack any of my formulas. To model this directly in the
system we would need to adapt the redundant rule (r) to introduce marking
of formulas and restrict the implication rules to marked formulas. A further
reason is that the hypersequent rules are not restricted by any regulation
(although, from the adequacy proof, if there is a disjunctive strategy for one
regulation, there is a disjunctive strategy for any regulation).

On the other hand, we can establish the weaker claim that if there is
a derivation of Γ ⇒ ∆ from winning atomic hypersequents using (ec),
(r), (→⇒)1, (→⇒)2, and (⇒→), then there exists, and indeed can be
constructed, a disjunctive winning strategy for [Γ ∆] for any consistent regu-
lation ρ. Let us define Ggiles as the hypersequent calculus consisting of (ec),
(r), (→⇒)1, (→⇒)2, and (⇒→) together with (as rules with no premises)
all winning atomic hypersequents. The crucial element in the proof is
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an invertibility lemma, recalling that a rule is invertible for a calculus if
whenever the conclusion is derivable in the calculus, then so are the premises.

Observe first that the following rule is derivable in Ggiles using (→⇒)1,
(→⇒)2, and (ec) (i.e., the conclusion is derivable from the premise):

G | Γ ⇒ ∆ | Γ, B ⇒ A, ∆

G | Γ, A → B ⇒ ∆
(→⇒)

.

We can also show that certain ‘weakening rules’, although not derivable
in the calculus, are nevertheless admissible in the sense that whenever the
premise is derivable, so is the conclusion.

Lemma 6.3. The following rules are admissible for Ggiles:

G

G | Γ ⇒ ∆
(ew)

G | Γ ⇒ ∆

G | Γ, A ⇒ ∆
(w)

.

Proof. We prove by induction on the height of a derivation of a hyperse-
quent G in Ggiles that any hypersequent obtained from G by adding sequents
and formulas on the left of sequents is also derivable in Ggiles.

For the base case, suppose that G is a winning atomic hypersequent.
Let H be obtained from G by adding sequents and formulas on the left of
sequents. A simple induction shows that H is derivable from hypersequents
H1, . . . ,Hn obtained from G by adding atomic sequents and atomic formulas
on the left. But since G is winning, it follows immediately that H1, . . . ,Hn

are winning. Hence H is derivable in Ggiles.
For the inductive step, we consider the last rule applied, and the result

follows by first applying the induction hypothesis to each premise and then
applying the same rule to the hypersequents obtained.

Lemma 6.4. The rules (→⇒) and (⇒→) are invertible for Ggiles.

Proof. For (⇒→), we establish the more general claim:

If G | [Γi ⇒ A → B,∆i]
n
i=1 is derivable in Ggiles, then G | [Γi, A ⇒ B,∆i]

n
i=1

and G | [Γi ⇒ ∆i]
n
i=1 are derivable in Ggiles.

We proceed by induction on the height of a derivation of G | [Γi ⇒ A →
B,∆i]

n
i=1. For the base case, the hypersequent is atomic, so n = 0 and the

claim is trivial. For the induction step, suppose first that the last application
of a rule is (ec). Then we apply the induction hypothesis to the premise,
followed by an application of (ec), and we are done. Similarly, if the last
application of a rule is to any formula other than a distinguished occurrence
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of A → B, then the claim follows by the induction hypothesis applied to
the premises and an application of the same rule. Finally, suppose that the
last application of a rule is (⇒→) to a distinguished occurrence of A → B.
Then without loss of generality, the premises are of the form G | [Γi ⇒
A → B,∆i]

n
i=2 | Γ1, A ⇒ B,∆1 and G | [Γi ⇒ A → B,∆i]

n
i=2 | Γ1 ⇒ ∆1.

Applying the induction hypothesis to the first premise, we have that G |
[Γi, A ⇒ B,∆i]

n
i=1 is derivable (the additional fact that G | [Γi ⇒ ∆i]

n
i=2 |

Γ1, A ⇒ B,∆1 is derivable is not needed). Similarly, applying the induction
hypothesis to the second premise, G | [Γi ⇒ ∆i]

n
i=1 is derivable.

For (→⇒), the required general claim is:

If G | [Γi, A → B ⇒ ∆i]
n
i=1 is derivable in Ggiles, then G | [Γi, B ⇒ A,∆i |

Γi ⇒ ∆i]
n
i=1 is derivable in Ggiles.

The proof is by induction on the height of a derivation of G | [Γi, A → B ⇒
∆i]

n
i=1. Again, the base case and the inductive step where the last application

of a rule is (ec) or to a formula other than a distinguished occurrence of
A → B, are straightforward. Suppose then that the last application of a rule
is (→⇒)1 or (⇒→)2 to a distinguished occurrence of A → B. In the first
case, the premise is of the form G | [Γi, A → B ⇒ ∆i]

n
i=2 | Γ1, B ⇒ A,∆1

and in the second, G | [Γi, A → B ⇒ ∆i]
n
i=2 | Γ1 ⇒ ∆1. By the induction

hypothesis, respectively, G | [Γi, B ⇒ A,∆i | Γi ⇒ ∆i]
n
i=2 | Γ1, B ⇒ A,∆1

or G | [Γi, B ⇒ A,∆i | Γi ⇒ ∆i]
n
i=2 | Γ1 ⇒ ∆1 is derivable. In both cases it

follows by the admissibility of (ew) (Lemma 6.3) that G | [Γi, B ⇒ A,∆i |
Γi ⇒ ∆i]

n
i=1 is derivable.

Theorem 6.5. Γ ⇒ ∆ is derivable in Ggiles iff there exists a disjunctive
winning strategy for me for [Γ ∆] for any consistent regulation ρ.

Proof. The right-to-left-direction is a weaker form of Proposition 6.1 which
tells us that a disjunctive winning strategy for me for [Γ ∆] respecting any
consistent regulation ρ is (modulo the different notation) a derivation of
Γ ⇒ ∆ in Ggiles.

For the opposite direction, we use the invertibility lemma to construct
a disjunctive winning strategy for any sequent derivable in Ggiles. Let the
complexity |Γ ⇒ ∆| of a sequent (state) Γ ⇒ ∆ be the number of impli-
cation symbols occurring in it. The complexity of a hypersequent (state
disjunction) G is the multiset of integers |G| = [|S| | S ∈ G]. We make use of
the standard well-ordering of multisets [10]. For multisets α, β of integers:
<m is the transitive closure of <, where α < β if α is obtained by replacing
an element n of β by finitely many (possibly 0) copies of k for some k < n.



Giles’s Game . . . 53

Claim. If G is derivable in Ggiles, then there exists a disjunctive winning
strategy for me for G (considered as a state disjunction) for any consistent
regulation ρ.

We proceed by induction on |G| ordered by <m. The base case is immediate
since if G is atomic, then G is winning and constitutes a disjunctive winning
strategy for G independently of any regulation. For the inductive step, pick
any non-atomic member Γ ⇒ ∆ of G. If the regulation ρ says that it is my
turn to play, then choose a compound formula A → B in Γ. By Lemma 6.4,
if G = (G′ | Γ′, A → B ⇒ ∆), then H = (G′ | Γ′, B ⇒ A,∆ | Γ′ ⇒ ∆)
is derivable in Ggiles. Since |H| <m |G|, by the induction hypothesis, there
is a disjunctive winning strategy for me for G′

∨
[Γ′, B A,∆]?

∨
[Γ′ ∆]?

respecting ρ where ? denotes the correct assignment of Y or I to states
according to ρ. The required disjunctive winning strategy begins with:

G′
∨

[Γ′, A → B ∆]I

G′
∨

[Γ′, A → B ∆]I
∨

[Γ′, A → B ∆]I

G′
∨

[Γ′, A → B ∆]I
∨

[Γ′, A → B ∆]I

G′
∨

[Γ′, B A, ∆]?
∨

[Γ′, A → B ∆]I

G′
∨

[Γ′, B A, ∆]?
∨

[Γ′, A → B ∆]I

G′
∨

[Γ′, B A, ∆]?
∨

[Γ′ ∆]?.

Now suppose that the regulation ρ says that is your turn to play in the state
Γ ⇒ ∆ of G = (G′ | Γ ⇒ ∆). Let [A1 → B1, . . . , An → Bn] be the compound
formulas in ∆, ∆′ the atomic formulas in ∆, and ∆i = ∆ − [Ai → Bi] for
i = 1 . . . n. If G is derivable in Ggiles, then by Lemma 6.4, G′ | Γ, Ai ⇒ Bi,∆i

and G′ | Γ ⇒ ∆i are derivable in Ggiles for i = 1 . . . n. Hence by the
induction hypothesis, there is a disjunctive winning strategy for me for each
G′

∨
[Γ ∆i]

? and G′
∨

[Γ, Ai Bi,∆i]
?. We obtain the required disjunctive

winning strategy by extending these disjunctive strategies as follows:

G′
∨

[Γ A1 → B1, . . . , An → Bn, ∆′]Y

G′
∨

[Γ A1 → B1, ∆1]Y . . .

G′
∨

[Γ, A1 B1, ∆1]? G′
∨

[Γ ∆1]?

. . . G′
∨

[Γ An → Bn, ∆n]Y

G′
∨

[Γ, An Bn, ∆n]? G′
∨

[Γ ∆n]?.
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Initial Sequents

A ⇒ A
(id)

⇒ (emp) Γ,⊥ ⇒ A
(⊥⇒)

Structural Rules:

G

G | Γ ⇒ ∆
(ew)

G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆

G | Γ, A ⇒ ∆
(w)

G | Γ1, Γ2 ⇒ ∆1, ∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(split)

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1, Γ2 ⇒ ∆1, ∆2
(mix)

Logical Rules

G | Γ, B ⇒ A, ∆

G | Γ, A → B ⇒ ∆
(→⇒)1

G | Γ ⇒ ∆ G | Γ, A ⇒ B, ∆

G | Γ ⇒ A → B, ∆
(⇒→)

Figure 1. The Hypersequent Calculus G�L

Example 6.6. The following derivation in Ggiles can be read as a winning
disjunctive strategy (written upside down and with sequents replacing states)
for [p → q, p q, q → p] with a regulation stipulating that it is my move
first, noting that underlining is added here to emphasize the selection of the
formula to be attacked:

q, p ⇒ p, q | p ⇒ q q, p ⇒ p, q | p, q ⇒ p, q

q, p ⇒ p, q | p ⇒ q, q → p

q, p ⇒ p, q | p ⇒ q, q → p
(r)

q, p, q ⇒ p, p, q | p ⇒ q q, p, q ⇒ p, p, q | p, q ⇒ p, q

q, p, q ⇒ p, p, q, | p ⇒ q, q → p

q, p, q ⇒ p, p, q, | p ⇒ q, q → p
(r)

q, p ⇒ p, q, q → p | p ⇒ q, q → p
(⇒→)

q, p ⇒ p, q, q → p | p ⇒ q, q → p
(r)

q, p ⇒ p, q, q → p | p → q, p ⇒ q, q → p
(→⇒)2

q, p ⇒ p, q, q → p | p → q, p ⇒ q, q → p
(r)

p → q, p ⇒ q, q → p | p → q, p ⇒ q, q → p
(→⇒)1

p → q, p ⇒ q, q → p | p → q, p ⇒ q, q → p
(r)

p → q, p ⇒ q, q → p
(ec) .

Our last task is to connect the calculus Ggiles with the calculus G�L of [24]
displayed in Figure 1. Note that in this system, the second implication
rule (→⇒)2 has become an instance of the ‘weakening’ rule (w). Also, the
redundant rule (r) has been removed for obvious reasons. More significantly,
rather than take all winning atomic hypersequents as axioms, a collection of
structural rules and very simple axioms are provided.

The following theorem is in fact an immediate corollary of the adequacy
proof for Giles’s game and the completeness proof for G�L given in [24]. Nev-
ertheless, we prefer here to give a direct (constructive) proof that connects
G�L to the calculus Ggiles and hence to the game.
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Theorem 6.7. Γ ⇒ ∆ is derivable in G�L iff there exists a disjunctive winning
strategy for me for [Γ ∆] for any consistent regulation ρ.

Proof. By Theorem 6.5, it is sufficient to show that a hypersequent G is
derivable in G�L iff G is derivable in Ggiles. For the right-to-left-direction, we
note that every rule of Ggiles is contained or derivable in G�L, so it remains
to show that each winning atomic hypersequent G is derivable in G�L. We
proceed by induction on the number k of distinct variables occurring on the
left hand side of sequents in G. Suppose that there are none (k = 0). Then
only ⊥ occurs on the left hand side of sequents. Since G satisfies the winning
condition, there must be a sequent in G where the number of occurrences
of ⊥ on the left is greater than or equal to the number of formulas on the
right. But then G is derivable using (⊥⇒), (ew), (w), and (mix).

For k > 0, we pick a variable q occurring on the left of one of the
sequents of G. Observe now that we can use the following simplification rule
(derivable using (mix), (ew), and (id)) backwards repeatedly to obtain a
winning atomic hypersequent where q does not occur on both sides of any
sequent:

H | Γ ⇒ ∆

H | Γ, A ⇒ A, ∆
(simp)

.

Moreover, we can also apply (ec) and (split) backwards to ‘multiply’ se-
quents; e.g., using ∗ to denote multiple applications of a rule:

H | Γk ⇒ ∆k

H | Γ ⇒ ∆ | . . . | Γ ⇒ ∆
(split)

∗

H | Γ ⇒ ∆
(ec)∗

.

Carrying out such a procedure for sequents containing q on the left or right,
we obtain a winning atomic hypersequent of the form:

G′ = (G0 | [Γi ⇒ [q]λ,∆i]
n
i=1 | [Πj, [q]

λ ⇒ Σj]
m
j=1)

where q does not occur in G0, Γi, ∆i, Πj , or Σj for i = 1 . . . n and j = 1 . . . m,
and [q]λ denotes λ > 0 occurrences of q. Now let:

H = (G0 | [Γi,Πj ⇒ Σj,∆i]
j=1...m
i=1...n | [Γi ⇒ [q]λ,∆i]

n
i=1 | [Πj ⇒ Σj]

m
j=1).

Clearly H contains fewer distinct variables occurring on the left of sequents
than G′. Moreover, G′ is derivable from H as follows (again using ∗ to denote
repeated applications of a rule):
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G0 | [Γi, Πj ⇒ Σj , ∆i]
j=1...m

i=1...n | [Γi ⇒ [q]λ, ∆i]
n
i=1 | [Πj ⇒ Σj ]mj=1

G0 | [Γi, Πj , [q]λ ⇒ [q]λ, Σj , ∆i]
j=1...m
i=1...n | [Γi ⇒ [q]λ, ∆i]

n
i=1 | [Πj ⇒ Σj ]mj=1

(simp)∗

G0 | [Γi ⇒ [q]λ, ∆i]
n
i=1 | [Πj , [q]λ ⇒ Σj ]mj=1 | [Γi ⇒ [q]λ, ∆i]

n
i=1 | [Πj ⇒ Σj ]mj=1

(split)∗

G0 | [Γi ⇒ [q]λ, ∆i]
n
i=1 | [Πj , [q]λ ⇒ Σj ]mj=1 | [Γi ⇒ [q]λ, ∆i]

n
i=1 | [Πj , [q]λ ⇒ Σj ]mj=1

(w)∗

G0 | [Γi ⇒ [q]λ, ∆i]
n
i=1 | [Πj , [q]λ ⇒ Σj ]mj=1

(ec)∗

.

Hence it is sufficient to show that H is winning since then, by the induction
hypothesis, H is derivable in G�L. Suppose otherwise, i.e., that there exists
a falsifying risk assignment 〈·〉. Define:

x = max({〈Γi〉 − 〈∆i〉 | 1 ≤ i ≤ n} ∪ {0})

y = min({〈Σj〉 − 〈Πj〉 | 1 ≤ j ≤ m} ∪ {λ}).

We claim that x < y. Otherwise there exists i, j such that 〈Γi〉 + 〈Πj〉 ≥
〈Σj〉 + 〈∆i〉, 〈Γi〉 ≥ λ + 〈∆i〉, or 〈Πj〉 ≥ 〈Σj〉, contradicting the fact that 〈·〉
is a falsifying risk assignment for H. Now let us change the value of 〈q〉 so
that x < λ〈q〉 < y. Then for all i = 1 . . . n and j = 1 . . . m, 〈Γi〉 − 〈∆i〉 <
λ〈q〉 < 〈Σj〉 − 〈Πj〉, which gives 〈Γi〉 < 〈∆i � [q]λ〉 and 〈Πj � [q]λ〉 < 〈Σj〉.
But G′ is winning, so we obtain the desired contradiction.

For the left-to-right direction, it is easy to see that the rules (ew), (w),
(split), and (mix) are admissible for Ggiles when restricted to atomic hy-
persequents. Hence it is sufficient to show that these rules can be pushed
upwards over the logical rules in any G�L-derivation. The cases of (ew), (ec),
and (w) are easy. For (mix) below (→⇒)1, we have:

H | Γ1, B ⇒ A, ∆1

H | Γ1, A → B ⇒ ∆1
(→⇒)1

H | Γ2 ⇒ ∆2

H | Γ1, A → B, Γ2 ⇒ ∆1, ∆2
(mix)

becomes

H | Γ1, B ⇒ A, ∆1 H | Γ2 ⇒ ∆2

H | Γ1, B, Γ2 ⇒ A, ∆1, ∆2
(mix)

H | Γ1, A → B, Γ2 ⇒ ∆1, ∆2
(→⇒)1

and for (mix) below (⇒→):

H | Γ1, A ⇒ B, ∆1 H | Γ1 ⇒ ∆1

H | Γ1 ⇒ A → B, ∆1
(⇒→)

H | Γ2 ⇒ ∆2

H | Γ1, Γ2 ⇒ A → B, ∆1, ∆2
(mix)

becomes

H | Γ1 ⇒ ∆1 H | Γ2 ⇒ ∆2

H | Γ1, Γ2 ⇒ ∆1, ∆2
(mix)

H | Γ1, A ⇒ B, ∆1 H | Γ2 ⇒ ∆2

H | Γ1, Γ2, A ⇒ B, ∆1, ∆2
(mix)

H | Γ1, Γ2 ⇒ A → B, ∆1, ∆2
(⇒→)

.

The cases for (split) follow in a similar fashion.
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Remark 6.8. Note that while Theorem 6.7 follows from the adequacy of
the game for �L combined with the completeness and soundness of G�L, our
proof is much more informative. In particular, it shows that, without losing
completeness for G�L, we need only consider atomic initial sequents and may
restrict applications of all structural rules except (ec) to atomic hyperse-
quents.

Example 6.9. The following derivation in G�L (where r, r, p, q ⇒ r, r, q, p
is easily derived using (mix) and (id)) is an example of a case where the
resulting sequent can only be derived if the detour to hypersequents is made.

r ⇒ r (id)

r ⇒ r | (q → p) → r ⇒ r
(ew)

r ⇒ r (id)

r, p ⇒ r, q | r ⇒ r
(ew)

r, r, p, q ⇒ r, r, q, p

r, p ⇒ r, q | r, q ⇒ r, p
(split)

r, p ⇒ r, q | r ⇒ r, q → p
(⇒→)

r, p ⇒ r, q | (q → p) → r ⇒ r
(→⇒)1

r ⇒ r, p → q | (q → p) → r ⇒ r
(⇒→)

(p → q) → r ⇒ r | (q → p) → r ⇒ r
(→⇒)1

(p → q) → r, (q → p) → r ⇒ r | (q → p) → r ⇒ r
(w)

(p → q) → r, (q → p) → r ⇒ r | (p → q) → r, (q → p) → r ⇒ r
(w)

(p → q) → r, (q → p) → r ⇒ r
(ec)

It was shown by Ciabattoni and Metcalfe in [7] that the following cut and
cancellation rules are not only admissible for G�L but can also be eliminated
from G�L + (cut) and G�L + (can), respectively:

G | Γ1, A ⇒ ∆1 G | Γ2 ⇒ A, ∆2

G | Γ1, Γ2 ⇒ ∆1, ∆2
(cut)

G | Γ, A ⇒ A, ∆

G | Γ ⇒ ∆
(can)

.

Finally, we note that hypersequent rules for other connectives, displayed
in Figure 2, can be added to either G�L or Ggiles. Completeness for the
corresponding calculi may either be obtained by extending the preceding
proofs or by using the definability of these connectives in terms of → and ⊥.

7. Concluding Remarks

Although Giles’s account of logical reasoning in physical theories refers only
to the infinite-valued �Lukasiewicz logic, his game also provides a character-
ization for each of the finite-valued �Lukasiewicz logics. We just restrict the
probabilities of positive results of experiments to values in { n−i

n−1 | 1 ≤ i ≤ n}
for some fixed n. In particular, for n = 2, no dispersion of results occurs
and we obtain a model of classical reasoning as expected. It follows then
that the hypersequent calculus Ggiles with all winning atomic hypersequents
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G | Γ, A ⇒ ∆

G | Γ, A ∧ B ⇒ ∆
(∧⇒)1

G | Γ, B ⇒ ∆

G | Γ, A ∧ B ⇒ ∆
(∧⇒)2

G | Γ ⇒ A, ∆ G | Γ ⇒ B, ∆

G | Γ ⇒ A ∧ B, ∆
(⇒∧)

G | Γ ⇒ A, ∆

G | Γ ⇒ A ∨ B, ∆
(⇒∨)1

G | Γ ⇒ B, ∆

G | Γ ⇒ A ∨ B, ∆
(⇒∨)2

G | Γ, A ⇒ ∆ G | Γ, B ⇒ ∆

G | Γ, A ∨ B ⇒ ∆
(∨⇒)

G | Γ ⇒ ⊥, ∆

G | Γ ⇒ A & B, ∆
(⇒&)1

G | Γ ⇒ A, B, ∆

G | Γ ⇒ A & B, ∆
(⇒&)2

G | Γ, A, B ⇒ ∆ G | Γ,⊥ ⇒ ∆

G | Γ, A & B ⇒ ∆
(&⇒)

Figure 2. Rules for Other Connectives

for the finite-valued game taken as axioms is sound and complete for the
corresponding logic.

Perhaps more interesting is the fact that Giles’s game becomes adequate
for cancellative hoop logic CHL [11] if we disallow experiments that can never
succeed, i.e., if only non-zero probabilities are assigned to the positive results
of experiments and, as a result, ⊥ is removed from the language. While the
rules for implication stay the same (indeed, the implicational fragments of
CHL and �L coincide), the rules for strong conjunction revert to the original
and perhaps more natural rule (R′

∧) suggested in Section 3: if I assert A& B
then, if attacked, I also have to assert both A and B (analogously, if you
assert A& B). A hypersequent calculus for this logic, first presented in [24],
is obtained simply by adding the corresponding rules for strong conjunction
to the implicational fragment of G�L.

Connections between variants of Giles’s game and other logics are ob-
tained by making changes to both the winning conditions and the under-
lying structures. In particular, in [6], a connection is briefly described be-
tween Giles’s game and logical rules in the framework of ‘relational hyper-
sequents’ that are uniform for the three fundamental t-norm based fuzzy
logics: �Lukasiewicz logic, Gödel logic, and product logic. The correspon-
dence requires, however, a significant change in the crucial dialogue rule for
implication. This variant of the game is discussed in more detail in [13]
where also an interpretation of the evaluation of elementary states in terms
of supervaluations with respect to precisification spaces is offered. The lat-
ter approach is discussed further in [15] where �Lukasiewicz logic is enriched
by a modal operator modelling ‘supertruth’ and a corresponding Giles-style
characterization is presented.

A different type of relationship between Lorenzen-style dialogue games
and hypersequent calculi is described in [12, 14] based on the correspondence
between a variant of Gentzen’s sequent calculus LJ for intuitionistic logic
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and Lorenzen’s original dialogue game. More precisely, it is shown that
winning strategies for parallel dialogue games synchronized using different
ways to transfer information between dialogues correspond to cut-free proofs
in hypersequent calculi for certain intermediate logics, most prominently
Gödel logic. It is worth noting that such an interpretation could also be
provided for the hypersequent calculi described above for �Lukasiewicz logic
by allowing several instances of Giles’s game to take place in parallel.

All the (related) work mentioned so far has been confined to propositional
logics. Giles, however, already in [18], made some interesting remarks on a
generalization of his game to first-order logic. Natural dialogue rules can
be given, following Lorenzen, for the universal and existential quantifiers.
The existence of winning strategies corresponds to truth in a model and is
related to the Hintikka-style evaluation game for �L defined in [9]. However, it
is unclear whether these games can be combined to yield a characterization of
validity in first-order �Lukasiewicz logic similar to the one for propositional �L

using disjunctive strategies. This is not surprising since first-order �L is known
to be non-axiomatizable [33], indeed Π2-complete [31]. Nevertheless, there
remains open the possibility of providing an alternative characterization,
using perhaps an infinitary rule, or of investigating interesting fragments, as
pursued from a proof-theoretic perspective in [4].

Finally, we remark that Mundici in [26, 27] has achieved a quite dif-
ferent game-theoretic characterization of �Lukasiewicz logic based on Ulam’s
game with lies. Truth value assignments in n-valued �Lukasiewicz logic are
related to states of knowledge of a Questioner that are determined by binary
(yes/no) answers of a Responder who may lie up to n times. �Lukasiewicz’s
truth functions then model corresponding operations on knowledges states.
In particular, valid formulas correspond to information that is confirmed by
any knowledge state. Mundici’s approach has triggered interesting research
on the connections between many-valued logics and communication proto-
cols with fixed bounds of error. However, possible relationships with Giles’s
game and with proof theory remain unexplored.
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