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Abstract. Mathematical theory of voting and social choice has attracted much at-
tention. In the general setting one can view social choice as a method of aggregating
individual, often conflicting preferences and making a choice that is the best compromise.
How preferences are expressed and what is the “best compromise” varies and heavily
depends on a particular situation.

The method we propose in this paper depends on expressing individual preferences of
voters and specifying properties of the resulting ranking by means of first-order formulas.
Then, as a technical tool, we use methods of second-order quantifier elimination to analyze
and compute results of voting. We show how to specify voting, how to compute resulting
rankings and how to verify voting protocols.
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1. Introduction

Mathematical theory of voting and social choice has attracted much atten-
tion (see, e.g., [3, 4, 6, 7, 11, 15]). In the general setting one can view social
choice as a method of aggregating individual, often conflicting preferences
and making a choice that is the best compromise. How preferences are ex-
pressed and what is the “best compromise” varies and heavily depends on
a particular situation. Majority voting is an example of a popular method
for making social choices.

To set up the scene, assume there are n voters Vp, Vo, ...V, expressing
their preferences by means of formulas 17,75, ...,T,, over signatures con-
taining (at least) relation symbols >;. The intended meaning of o >; o
is that the i-th voter considers option o to be better than option o’. The
goal is to find a relation B which compromises votes expressed by voters.
We postulate that the aggregation method is expressed in terms of a first-
order formula T'(B), expressing properties of relation B which represents the
compromise.

This simple setting leads to paradoxical results. Already in the 18th
century Condorcet has observed that the combined votes can be in a sub-
stantial conflict. For example, suppose that three voters Vi, V5 and V3 decide
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whether to buy wine, beer or juice. Suppose that they collectively have re-
sources to buy only one of those drinks, so decided to vote and expressed
the following preferences:

voter V7 : wine >1 beer >1 juice
voter Vo @ beer >g juice >9 wine (1)
voter V3 : juice >3 wine >3 beer.

Voters V; and Vs prefer beer to juice, so juice should not win since only
voter V3 prefers juice to beer. Similarly neither wine nor beer should win.
To resolve this conflict no simple aggregation of individual votes is fair for
all voters.

As shown, e.g., in [6], the situation may even be worse. For example,
let thirteen voters vote for or against three propositions in a referendum
and that the following number of votes has been obtained for each of eight
possible outcomes, where Y stands for “yes” and N stands for “no”:

YYY: 1, YYN: 1, YNY:1, NYY:1, YNN:3, NYN:3, NNY: 3, NNN:0.

Then for each proposition the number of “no” votes is 7 and the number
of “yes” votes is 6. Thus, when votes are aggregated separately for each
proposition, the winning combination is NNN, while there has been not a
single vote for such a combination and, in fact, as a whole, this combination
is the worst one. Exemplifying this situation, one might have the following
three propositions in a referendum: “build a basketball field”, “build a tennis
court”, “build a minigolf course”. With the voting described above, the
referendum results in doing nothing, contrary to the expressed desires of
voters.

It is then desirable to have tools for specification and analysis of voting
protocols. The ideal situation is when the desired compromise exists inde-
pendently of voters’ decisions and satisfies particular requirements. Some
voting protocols, in general, violate this property, but work in many situ-
ations. Whenever the compromise exists, one would like to have tools for
computing the final ranking/compromise on the basis of specification of vot-
ing protocols and voters’ decisions.

The method we propose in this paper depends on expressing individual
preferences of voters and specifying properties of the resulting ranking by
means of first-order formulas. Then, as a technical tool, we use methods of
second-order quantifier elimination to analyze and compute results of voting.
We show how to specify voting, how to compute resulting rankings and
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how to verify voting protocols. We show tractability of computing results
for voting protocols specified by means of semi-Horn formulas which are
substantially more expressive than Horn formulas.

An elimination of the suitable second-order quantifier, if possible, results
in a first-order or fixpoint formula. Both cases are tractable when voting re-
sults are presented in the form of a database (see [1, 10, 13]). It is also worth
emphasizing that the fixpoint theory of equality is decidable [18]. In cases
when second-order quantifiers over all relational variables can be eliminated,
one uses the algorithm of [18] to verify correctness of voting protocols. More-
over, using extensions of the Ackermann lemma [2] as well as of the fixpoint
theorem of [17], one obtains definitions of the eliminated relations which, in
turn, can be used to determine the solution. For a comprehensive overview
of the area of second-order quantifier elimination see [12].

The paper is structured as follows. In Section 2 we recall some well-
known notions used in the paper. Section 3 is devoted to an introduc-
tory example explaining major points we address. Section 4 introduces
the formalization of social choice. Then, in Section 5, we recall two the-
orems concerning second-order quantifier elimination. Section 6 is devoted
to applications of the introduced techniques. Finally, Section 7 concludes
the paper.

2. Preliminaries

Through the paper we use the language of classical first- and second-order
logic without function symbols.! We assume the standard first- and second-
order semantics.

By a literal we understand a first-order formula of the form R(...) or
—R(...), where R is a relation symbol. We say that a literal is ground if it
contains no variables. A formula A is in the negation normal form if it uses
no propositional connectives other than —, vV, A and the negation sign — does
not occur in A outside of literals.

The following fact is well-known.

Fact 2.1. Every classical first- and second- order formula can equivalently
be transformed into a formula in negation normal form. <

Let A(R) be a formula and B(R) be a formula in the negation normal
form equivalent to A(R). Then A(R) is positive w.r.t. R if R does not

"We avoid function symbols to use deductive databases [1, 10, 13] as a computational
machinery.



368 D. M. Gabbay and A. Szalas

appear under the negation sign within B(R). It is negative w.r.t. R if R
appears in B(R) under negation sign only.?

Let A(R) be a first-order formula positive w.r.t. R. Then by
Lrp R(z).[A(R)] we understand the least fizpoint of A, i.e., the smallest S
such that S = A(S). Since A is positive w.r.t. R, such S exists. See [1, 10, 13]
for a detailed exposition of the theory of fixpoints and their applications as
database queries.

We shall use the following well-known properties of binary relations:?
R is reflexive iff VaVy [m =y — R(x, y)] (2)
R is irreflexive iff VaVy[R(z,y) — z # y] (3)
R is symmetric iff VaVy [R(a?, y) — R(y,z )] (4)
R is antisymmetric iff VaVy[R(z,y) — —R(y, z)] (5)
R is weakly antisymmetric iff VxVy[(R(:z: y) ANR(y,x)) —x=y|] (6)
R is transitive iff VaVy[3z[R(z,2) A R(z,y)] — R(z,y)|(7)
R is total iff VaVy [R x,y)V R(y,x )} (8)

Observe that (2)—(7) are Horn formulas, while (8) is not Horn.

A relation R is a partial order if it satisfies (2), (6) and (7). It is a strict
partial order if it satisfies (3), (5) and (7). It is a total order if it satisfies
(6), (7) and (8).

Whenever we use relations like >, we also accept associated symbols
>, <, < with the standard meaning.

We also assume that writing A(X,y), we indicate that A contains vari-
ables X and g, but we do not exclude other arguments.

3. An Introductory Example

Consider the votes expressed by (1). The output relation, say B, should
provide a ranking on drinks compromising individual votes. The relation
B is then specified by a theory T' constraining B, >1, >9, >3 and frequently
expressing other requirements. Assume we have a relation M (z,y) which is
true when majority of voters prefer x to y. This relation can easily be com-
puted using the “database” of preferences given by inequalities (1), namely

M (wine, beer), M (beer, juice), M (juice,wine). 9)

2Observe that formula in which R does not occur is both positive and negative w.r.t. R.

3A formulation of some of these properties is a bit unusual, but is easier to use in our
calculations. Obviously, it provides definitions equivalent to the standard ones.
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We also assume that M is transitive.
Let the aggregation, represented by B, be based on the following principle
considered by Condorcet:

VaVy[M(z,y) — B(z,y)], (10)

where we require that B is antisymmetric.?
To check whether B exists we consider the second-order formula
3dBJ(10) A (5)], which is equivalent to

IB{VaVy[M (z,y) — B(z,y)] AVaVy[-B(z,y) V By, z)]}. (11)

Using the Ackermann’s lemma (Lemma 5.1 in Section 5), we obtain the
following formula equivalent to (11):

VaVy[=M(z,y) V =M (y, z)]. (12)

with the definition
VaVy[B(z,y) = M(z,y)] (13)

of the least B satisfying (11).

When we use formula (12) as a query to (the transitive closure of) the
database given by (9), we obtain FALSE as the result. This means that there
is no relation B satisfying our requirements.

Instead of (9), consider a database resulting from another distribution
of votes,® given by:

M (beer, juice), M (beer,wine), M (wine, juice). (14)

Querying this database using formula (12) returns TRUE, meaning that the
required B exists. The least B satisfying (11) is given by (13), so consists
of the same tuples as M in (14).

The above discussion shows that certain voting protocols lead to para-
doxes. An interesting question is then whether one can relax the require-
ments as to the final ranking to guarantee that the desired compromise exists.
Applying the method we propose, in Example 6.3 we show that relaxing the
antisymmetry requirement and placing certain requirements on votes, one
can guarantee the existence of aggregated rankings.

“In fact, such B is often required to be an ordering, in particular to be transitive.
We address this point in Example 6.1.

°E.g., beer >1wine >1 juice, beer >3 juice > wine, wine >3beer >3 juice.
) b b
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4. Modeling Social Choice

We address the following problems:

e specification: how to specify voting and referenda?

e computing results: given a result of voting as a database and a method of
aggregating votes, how to check consistency and find aggregated result?

e correctness of aggregation: given a method of aggregating votes, how to
check its consistency for all possible results of voting?

From the practical point of view there is always a finite number of voters
and a finite number of possible choices. Therefore it is reasonable to make
the following assumptions, simplifying the considerations and substantially
reducing the complexity of the approach:

we restrict considerations to finite theories only (15)

we consider finite models only, (16)

where by a finite theory we mean any theory with a finite number of axioms.
Observe that any finite theory can be considered as a single formula
being the conjunction of all axioms of the theory.

4.1. Voting Specification

We address a rather general voting problem, where k > 0 voters V1, Vs, ..., Vi
express their votes by means of (finite) theories 71,75, ...,1; on n > 0 op-
tions 01,09, ...,0,. These theories are aggregated into a single relation on
tuples of options, B(01,02,...,0,,01,05,...,0)), intuitively meaning that
the tuple (01, 09,...,0,) is better than the tuple (0}, 0),...,0,). The aggre-
gation, also called ranking, is expressed by a theory T'(B) not necessarily
providing an explicit definition of B (see Figure 1).

The ideal situation is when the least (w.r.t. inclusion) ranking B exists
and then it provides the intended aggregation. However, sometimes one
can have many minimal rankings, e.g., when voters are only required to
provide partial orders on their preferences being allowed to stay indifferent
to particular choices. We do not make assumption as to the existence of the
least ranking, however, will provide conditions under which it is guaranteed.

Observe that B does no longer have to be a binary relation. In what
follows, in order to use properties (2)—(8), we treat B as a binary relation
on tuples, B(0,0r).
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Figure 1. Voting aggregation.

For purely pragmatic reasons we separate ground literals from other for-
mulas in 7'(B). Namely, often T'(B) is equivalent to a conjunction Tr(B) A
Tr(B), where E is a conjunction of ground literals and I is a conjunc-
tion of formulas of other shape. In such a case, using the terminology of
databases [1], we call Tg(B) an extensional database and T7(B) an inten-
sional database.

4.2. Computing Results

Let T(B) be a theory specifying voting, as done in Section 4.1. In order to
compute results of voting we consider formula

IB[T1(B)], (17)

where T7(B) stands for the intensional database.

Checking whether formula (17) holds in a given database Tg(B), we ob-
tain information whether the output relation exists, i.e., whether the specifi-
cation is consistent. According to Fagin’s theorem, existential second-order
queries are not tractable (see [1, 10, 13]). Therefore we first attempt to
eliminate the second-order quantifier, using results provided in Section 5. If
the elimination is successful, then as a side effect we obtain the definition of
the smallest relation compromising votes.

More precise description of this method requires particular techniques
of second-order quantifier elimination, which is given in Section 5.2 and
illustrated in Examples 6.1 and 6.2.

SObserve that I, as defined here, is more general than typically accepted in databases.
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4.3. Correctness of Aggregation

Let a voting problem be given as in Section 4.1. One is often interested in
defining methods of reaching a compromise which guarantee the existence
of ranking expressed by B. In such cases we are interested to prove that
formulas expressing this existence (like formula (11)) are tautologies. This
can be expressed by the second order formula

VP3B[T(P, B)), (18)

where P consists of all relation symbols, except for B, which appear in the
theory T' implicitly defining the compromise B. If all second-order quan-
tifiers can be eliminated from formula (18) then the elimination results in
an equivalent formula expressed in the language of the (decidable) fixpoint
theory of equality (see [18]). The class of formulas where such elimination
is possible is rather large. For a summary see [12].

This method is illustrated in Example 6.3.

5. Second-Order Quantifier Elimination

5.1. Basic Results

In this section we recall known results. A comprehensive study of the subject
is provided in the book [12].

e1(z1),....ex(xk) . .
By a(a,...) Pl ) fr () V€ understand the expression obtained from «

in such a way that for any 1 < i < k, all occurrences of e; of the form e;(a)
are replaced by f;(y;), where y; itself is replaced by a. For example,
P(x) _
(P(s)V P(1)) (Qaureumni) =
((Q(a, s) A Q(s, b))) \Y; ((Q(a,t) A Q(t, b)))
Let us now recall a part of the theorem of [17], which we use in further
calculations.

If X is a variable representing k-ary relations then we define the arity of
X to be k.

THEOREM 5.1. Let X be a relation variable and A(X, z,z), C(X) be classical
first-order formulas, where the number of distinct variables in T is equal to
the arity of X, A(X, Z, 2) is positive w.r.t. X and C(X) is negative w.r.t. X.
Then

IX{VE[A(X,2,2) — X(D)]AC(X)} = c(x)*™

Lrp X (Z). [A(X,iyg)] , (19)

where LFP stands for the least fixpoint operator. <
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As a corollary we have the following lemma first proved in [2].

LEMMA 5.1. Let X be a relation variable and A(Z,z), C(X) be classical
first-order formulas, where the number of distinct variables in T is equal to

the arity of X. Let A contain no occurrences of X and C(X) be negative
w.r.t. X. Then

5]

IX{VI[A(Z,2) —» X(@)]| AC(X)} = C(X)}!

)
(3,2

)

)- < (20)

8l

5.2. Computational Aspects

In the case when Theorem 5.1 is applicable, by a coherence condition for
formula
IX{VE[A(X,7,2) — X(T)| AC(X)} (21)
we understand its equivalent C'(X )X(i) RE
Lep X (2). [A(X,2,2)]

Moreover, if the coherence condition is satisfied, there exists the least
(w.r.t. ) relation X satisfying Vz[A(X,Z,2) — X (Z)] A C(X). The least
such relation is defined by

X(z) = Lrr X (2).[A(X, 7, 2)]. (22)

Of course, the same holds for Lemma 5.1, where the least fixpoint oper-
ator simply reduces to A(Z, z).

Assuming that the existential second-order quantifier 3B can be elimi-
nated from formula (17) using Theorem 5.1 (or Lemma 5.1), we have the
following procedure:

1. check the coherence condition for (17)

2. if the coherence condition is TRUE then compute B as a query to the
database with votes, using its definition given due to (22).

Since both coherence condition and the definition of B are fixpoint for-
mulas, checking the condition and computing B are in this case of deter-
ministic polynomial complexity in the size of the database (see [1, 10, 13]).
If Lemma 5.1 is applicable then the time complexity is still polynomial, how-
ever the space complexity becomes logarithmic in the size of the database.

REMARK 5.2. Let us point out that equality, which frequently appears in our
formulas, is treated differently in logic and deductive databases. Namely, in
databases a Unique Names Assumption (UNA) is accepted. According to
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UNA, distinct constants represent different objects. For example, a = b is
always FALSE in databases, while it might be satisfied in a given model of
first-order logic.

To overcome this difficulty, it suffices to represent equality in databases
by a binary relation, say E and, in addition to reflexivity, symmetry and
transitivity of E, to add the rule VaVy[z = y — E(x,y)].” This will allow
one to make E(a,b) true for different constants a, b. <

REMARK 5.3. Observe that whenever the formula under the second-order
quantifier 3X is semi-Horn, i.e., is expressed by a conjunction of formulas
negative w.r.t. X and/or formulas of the form

VavylA(X, z,5) — X (Z,7)], (23)

with A(X,Z,y) positive w.r.t. X, then one can gather them together, using
standard techniques, in particular manipulating first-order quantifiers and
using the propositional tautology [(p — ¢) A (r — ¢)] = [(p V) — ¢|.% The
resulting formula allows for a direct application of Theorem 5.1. In fact, this
is a quite expressive class of formulas, substantially stronger than the class
of Horn formulas. For example, A(X,Z,y) can contain arbitrary first-order
quantifiers, which is not allowed in Horn formulas. <

As a consequence of discussion provided in Remark 5.3, we have the
following theorem.

THEOREM 5.2. If the theory expressed by T (B) in formula (17) is a conjunc-
tion of semi-Horn formulas then checking whether the aggregated relation B
exists as well as computing B can be done in deterministic polynomial time
w.r.t. size of the universe of the underlying database. <

5.3. The Case of Partial Orders

Assume that the aggregated relation B is required to be a partial order.
Then it satisfies the conjunction of conditions (2), (6) and (7). Gathering
those conditions provides the following equivalent formula:

VvV [(57 =y Vv 3Iz[B(z,z) A B(z, g)]) — B(z, g)} A

(24)
VEvy[-B(z,y) V ~B(y,z) VT = .

"Observe that the considered rule is a Horn formula. Also, reflexivity, symmetry and
transitivity can be expressed by Horn formulas - see formulas (2), (4), (7), so such a simple
encoding of equality can be served by typical deductive databases.

8Such transformations are done automatically in the DLS algorithm presented in [8]
(see also [12]).
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In the case of strict partial order the conjunction of (3), (5) and (7) is
equivalent to:

vavy|32(B(@,2) A Bz 9)] — B(z,5)| A
VZVy[-B(z,9) V T # §)] AVIVG[-B(z,5) V ~B(7,7)].
Observe that formulas (24) and (25) are in the form (19) required in
Theorem 5.1. Therefore, applying the method discussed in Remark 5.3 we
immediately obtain a formula in the form (19) required in Theorem 5.1

and can be used for necessary computations. We then have the following
theorem.

(25)

THEOREM 5.3. If T(B) satisfies assumptions of Theorem 5.2 then its con-
clusion holds also for the theory T(B)ANA(B), where A(B) is the conjunction
of conditions (2), (6) and (7) applied to B. <

Obviously, the above theorem can be generalized for A being any con-
junction of conditions (2)—(7).

5.4. The General Case

Unfortunately, when 7'(B) is not a semi-Horn formula, the method based
on Theorem 5.1 is not directly applicable and the success of algorithm at-
tempting to transform formulas into the required form is not guaranteed.
As a remedy, one can try other methods of second-order quantifier elimina-
tion [12] or, given a database, transform T'(B) into quantifier-free formula by
replacing universal quantifiers by finite conjunctions and existential quanti-
fiers by finite disjunctions according to equivalences:

DB =Vz[A(x)] if DB = A(a1) A A(a2) A ... A Alam)
DB E Jz[A(x)] if DB = A(a1) V A(a) V...V A(anm),

where the domain of the database DB is {a1,as,...,a,}. As a result one
obtains a Boolean combination of ground literals for which SAT solvers can
be applied. Observe that modern SAT solvers are very successful even for
large propositional formulas (see, e.g. [14]). However, deterministic polyno-
mial time complexity is no longer guaranteed. Also, SAT solvers cannot be
applied in verification of correctness of aggregation using the method dis-
cussed in Section 4.3. One would have to apply here solvers for quantified
Boolean formulas. For a comparison of such solvers see [16].

Even if the class of semi-Horn formulas is very expressive, there are very
natural properties outside of this class. For example, the totality property,
as expressed by (8), is not semi-Horn.
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6. Examples of Applications

Let us now show examples of applications of the proposed methods. All
examples presented below concern some variations of the situation described
in Section 3.

EXAMPLE 6.1. Assume that we drop the assumption as to the transitivity
of M, accepted in Section 3, and instead require the transitivity of B.

To check whether such B exists we consider the formula IB[(10)A(5)A(7)]
which, using the method discussed in Remark 5.3, can be transformed to its
equivalent

AB{VaVy (M (x,y) V 3z[B(z, z) A B(z,y)]) — Blxz,y)] A (26)
VaVy[-B(z,y) V By, x)]}

Using Theorem 5.1, we obtain the following formula equivalent to (26):
VaVy[-B(z,y) V By, )], (27)
where B is defined by
B(z,y) = Lrp B(z,y). [M(a:, y) V 3z[B(z, z) A B(z, y)]] (28)

Of course, computing B can be done in deterministic time polynomial w.r.t.
the size of the extensional database. Once B is computed, we have to check
whether coherence condition (27) is satisfied. Of course, this verification is
tractable too. 4

EXAMPLE 6.2. Let us consider requirements on B stronger than transitivity,
discussed in Example 6.1.

e Requiring B to be a strict partial order, we use formula (25) and obtain
the definition of B, given by formula (28), but the coherence condition
is now

VaVy[-B(z,y) V x # y)] AVavy[-B(z,y) V ~B(y, z)].

e Requiring B to be a partial order, in addition to (10) we use formula (24)
and obtain the coherence condition

VaVy[=B(z,y) V ~B(y,z) Vx = y|
and the definition of B:

B(z,y) = LFP B(z,y).[M(z,y) Vo =y V 3z[B(z,2) A B(z,y)]]. <
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EXAMPLE 6.3. Assume one changes the requirements of Section 3 as to
aggregation by assuming now that the resulting relation is weakly antisym-
metric. We are now interested in verifying whether the aggregation is correct
in the sense formalized in Section 4.3.

According to (18), the correctness of aggregation is expressed by (18),
where T(P, B) = (10) A (6), i.e.,

VM3BNxVy[M(x,y) — B(x,y)] A VxVy[(B(:n,y) A B(y,:z:)) — = y](] |
2

After an application of Lemma 5.1 to 3B]...] we obtain
VMYaYy[(M(z,y) A M(y,z)) — x =1y). (30)

Obviously, formula (30) is not a tautology. However, it provides a simple
criterion for the correctness of the method. Namely, if we add the require-
ment that M is weakly antisymmetric then (30) becomes TRUE and, in
consequence, (29) becomes TRUE, too. <

7. Conclusions

In this paper we have presented a method suitable for analyzing quite general
methods of verification of voting protocols, checking whether a compromise
exists when particular voting results are given and, if exists, computing the
ranking compromising voters. The method is quite general, as it is based
on the second-order logic and second-order quantifier elimination, leading to
tractable methods for large classes of theories expressing votes and aggrega-
tion of results. In fact, the fragment of first-order logic for which tractability
is guaranteed is substantially more expressive than the Horn fragment and
logic programming based on Horn rules.

Let us note that the method can also be used when advanced methods
of expressing preferences are allowed (as, e.g., in [9]). The use of second-
order formalism allows also for integration of the proposed method with
comimonsense reasoning, e.g., based on circumscription.

Possible applications of the proposed methodology also include multi-
agent systems, where voting might be a substantial tool in reaching the
agreement. Specifying votes by means of theories makes the method flexible
and tractability results allow for efficient implementations.

Comparing the encoding we proposed, e.g., with the well-known Arrow’s
impossibility theorem [5], one can see the limitations of our method. Namely,
Arrow’s conditions are basically third-order. We think it is possible to work
out a specialized quantifier elimination technique, applicable to Arrow’s-like
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conditions, but such a result would be rather far outside of scope of the
current paper. We leave this topic for a future research.

Supported in part by the MNiSW grant N N206 399134.
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