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Abstract. We motivate and introduce a new method of abduction, Matrix Abduction,

and apply it to modelling the use of non-deductive inferences in the Talmud such as Ana-

logy and the rule of Argumentum A Fortiori. Given a matrix A with entries in {0, 1}, we

allow for one or more blank squares in the matrix, say ai,j =?. The method allows us

to decide whether to declare ai,j = 0 or ai,j = 1 or ai,j =? undecided. This algorithmic

method is then applied to modelling several legal and practical reasoning situations in-

cluding the Talmudic rule of Kal-Vachomer. We add an Appendix showing that this new

rule of Matrix Abduction, arising from the Talmud, can also be applied to the analysis of

paradoxes in voting and judgement aggregation. In fact we have here a general method

for executing non-deductive inferences.
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1. Introduction and Motivation

This section explains and motivates the intuitive use of the new method
of Matrix Abduction to analyse the non-deductive rules of Analogy and
Argumentum A Fortiori. This rule is a form of Induction rule when used in
an Artificial Intelligence context and is a recognised Jurisprudence rule in
Jewish, Islamic and Indian legal reasoning. In the Jewish Talmud it is known
as the Binyan Abh and the Kal-Vachomer rules. In Islamic jurisprudence
it is known as Qiyas (analogy) and in Sanskrit logic (Nyaya) it is known as
Kaimatya Nyaya (or Kaimutika Nyaya, the even more so) rule.

1.1. Matrix Abduction in AI

Let us begin by trying to buy, over the Internet, two items:

1. An LCD computer screen

2. A digital camera

We start with the LCD screen. We want something good, within a price
range we can afford and we would especially like it to have stereophonic
speakers. So the usual thing to do in such cases is to go to a price com-
parison website. In our case.1 We went to www.wallashops.co.il and got
comparison tables for four candidates.

Screen 1. Xerox XM7 24A

Screen 2. Viewsonic FHD VX 2640w

Screen 3. Nec 2470 WVX

Screen 4. Nec 24 WMCX

The specifications of interest we got are shown in Figure 1 below.

It seems that for screen 3 there is no information about the stereophonic
feature. It was not possible to get the information from other sites. Can we
abduce the information from the table itself? How do we do that?

Let us check another example, where a similar problem arises. We look
for cameras at the same site.

Camera 1. Canon A590 8MP + 4GB

Camera 2. Olympus FE20 (thin) 8MP + 4GB

Camera 3. Olympus FE60 + 2GB

Camera 4. Olympus 8MP in Hebrew + 1GB.
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P C I R D S
price self screen reaction dot size stereo-
over collection bigger time below less than phonic
£450 than 24inch 4ms 0.275

Screen 1 0 1 0 1 0 1

Screen 2 0 0 1 1 0 1

Screen 3 0 0 0 0 1 ?

Screen 4 1 1 0 0 1 1

1 = yes; 0 = no; ? = no data given

Figure 1.

P M D B W F E

price over 12 quick more weighs flash has can edit

over monthly delivery than one more than more than image

£100 payments battery 150g 3 states afterwards

Camera 1 1 1 0 1 1 0 ?

Camera 2 0 0 0 0 0 1 1

Camera 3 0 0 1 0 0 1 1

Camera 4 1 0 1 0 0 0 1

Figure 2.

Figure 2 gives the specifications for comparison.
Again, there is no information whether Camera 1 can edit an image taken

into the camera memory. Our question is, can we assume that this type of
camera, as compared with the others, will have this feature? Can we use
the matrix to get the answer? See Example 3.25 for a solution.

We can now formulate the general problem:

Definition 1.1 (Matrix abduction problem). Let A = [ai,j] be a 0 − 1
matrix, where ai,j ∈ {0, 1, ?} i = 1, . . . ,m (m rows) j = 1, . . . , n (n columns)
such that the following holds:

a. m ≤ n (there are more columns than rows2

b. exactly one ai0,j0 is undecided all the others are in {0, 1}.

The abduction problem is to devise some algorithm which can decide
whether ai0,j0 =? should be 1 or ai0,j0 =? should be 0 or ai0,j0 =? must
remain undecided.

We cannot solve this problem without further assumptions on the mean-
ing of the entries. Put in different words, if we give an algorithm A to

1This is a real example we are describing, of what we did on 1.2.09.
2This condition does not matter in the formal abstract case, since we can rotate the

matrix. However, in some applications the rows and columns may have special meaning.
The formal machinery works even if n < m.
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be applied to A, we need to specify its range of applicability. To specify
whether A can be meaningfully applied to A, we need to know how A was
constructed. In other words, we need some assumptions about the meaning
of the rows and columns of A.

The examples above suggest that we can look at the roles of A as repre-
sentative agents or causes, which can generate various features. The columns
of the matrix represent the features. So objects like cameras or LCD screens
can “generate” the properties listed in the columns. There are other exam-
ples, for instance, hurricanes can generate a lot of damage through various
features. If we go to the web, we can find a list of names for hurricanes and
a list of the main kinds of features they generated. We can construct, for
example, Figure 3.

rip winds storm flooding tornado
tide surge

Katrina

Andrew

Ivan

Hugo

Camille
...

Figure 3.

The ai,j slots usually contain numerical data or even qualitative data.
For example, the wind column may contain the maximum speed in miles per
hour of each hurricane.

To turn the data into 0−1 data we need to decide on a cut-off point. Say
for winds we choose 150 miles per hour. We have two choices for the wind
column. Do we take 1 to mean over 150 miles per hour or do we take it to
be 1 = under 150 miles per hour? The reader might think it is a matter of
notation but it is not! We need to assume that all the column features pull
in the same direction. In the hurricane case the direction we can take is the
capacity for damage. In the LCD screen and camera case it is performance.
So to put 1 as opposed to 0 in a box indicates more strength to the feature
in the general agreed shared direction. So the representation of the columns
must be compatible with the chosen direction. So if 1 in the winds means
over 150 miles (in direction of increased damage), then 1 in the tornadoes
column must go in the same direction. To give an example of a matrix where
there is no direction to the columns, take a simple graph, see Figure 4.
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a b ?

Figure 4.

This is a binary relation R

(a, b) ∈ R, (b, a) ∈ R, (a, a) �∈ R.

We ask is (b, b) ∈ R? Form the characteristic matrix in Figure 5

a b

a 0 1

b 1 ?

Figure 5.

There is no direction or meaning here. We might apply our algorithm
formally and get an answer but it means nothing.

Let us give another example. Imagine a society of agents and various
context in which the agents might wish to apply actions. Say action a might
be to shoot to kill and the context B might be a burglar in the middle of the
night. The matrix A might give 0−1 values to indicate the accepted norms.

So we may get Figure 6

A B C D

a 0 1 1 0

b 1 ? 0 0

c 1 1 0 1

Figure 6.

a,b, c are actions and A,B,C,D are situations.

We know that action b for example is allowed in situation A but we don’t
know about situation B.

The reader may ask how can such a problem arise? If actions are de-
scribed by pre-conditions and post-conditions and situations (states) are also
described properly then we can check whether the preconditions hold and
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whether there are any restrictions on the execution of the action.
The problem is that the above presentation is already a formal model.

If we construct a table and use common sense, there may be clear answers
in some places and question marks in others. Figure 7 is such a case:

burglar burglar burglar burglar
unarmed armed could be could be

armed armed but
several murders

same week

shoot the burglar 0 1 ? 1

beat up the burglar ? 1 1 1

Figure 7.

This example also has a “direction”. We allow severe actions for severe
situations. So we may decide on the basis of the matrix that if the burglar
may be armed then better shoot him and maybe then decide that if he is
definitely not armed then beat him up, sensing the general “severe” spirit
of the case.

Another example could be from monadic predicate logic over a finite
domain. The domain can be {d1, . . . , dn} and the monadic predicates
A1(x), . . . , Am(x). Assume we know all values of Ai(dj) = ei,j except one,
say Ak(dr) =?. We get the matrix of Figure 8

d1 d2 . . . dr . . . dn

A1 e1,1 e1,2

A1 e2,1 e2,2
...

Ak ek,1 ek,2 ?
...

Am em,1 em,2

Figure 8.

Our method allows us, under certain assumptions, to get a value for
Ak(dr) = ek,r. More on this example in Appendix D.

The above discussion gives us an idea of when a matrix A is within
the range of applicability of our matrix abduction algorithm. However
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the explanation is not formal but in terms of examples showing how the ma-
trix is constructed we have not given a formal definition which says when
an arbitrary 0− 1 matrix is within the range of applicability.

We shall do this in Section 3 where we develop some matrix machinery.
Definition 3.7 describes when a matrix has a ‘direction’. Meanwhile consider
the two matrices in Figure 9. The first is not within range, it has no direction,
the second is within range, as we shall see later.

(1)

A B C

a 1 0 0

b 0 1 0

c 0 0 1

(2)

A B C

a 1 1 1

b 0 1 1

c 0 0 1

Figure 9.

1.2. The Talmudic Kal-Vachomer3

Here we give a small example. An extensive model will be given later in
the paper.

A bull can do damage in two ways.4 It can trample something with its
feet or it can use its horns. Also the location of the arena of the damage
can either be in a public place or a private place (e.g. a public road or a
private garden). The amount of compensation paid by the owner of the bull
depends on these features.

Figure 10 describes the situation.5 The entries indicate proportion of the
damage to be paid, as indicated in the Bible.

3Also written as Qal-Vahomer, or Qal-Vachomer.
4Actually a bull can damage in three ways. He can eat (Tooth), trample (Foot) and

gore (Horn). The Horn is intentional damage. The Tooth and Foot are not intentional,
but the Tooth gives benefit to the perpertrator and the Foot gives no benefit.

5If we insist on {0, 1} values in the matrix we can read the entries as taking either the
value 0 or taking the value of 1

2
or 1 in which case the (Horn, public place) square will

be 1. Subsequent considerations for x =? in Section 1.3 always use x ≥ 1
2

or x = 0 as
options anyway.
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public place private place

Foot action 0 1

Horn action 1
2 x =?

Figure 10.

The Talmudic law specifies that foot damage by a bull at a public place
needs to pay 0 compensation. Horn damage at a public place pays 1

2 the
cost of damage as compensation.

In a private area foot damage must be paid in full. What can we say
now about payment for horn action in a private place? This is not specified
explicitly in the Biblical written law and the Talmud is trying to abduce it
from the above matrix using Kal-Vachomer.

The next section shows how the Talmud does it.

1.3. Preview of the model

We use the bull example of Section 1.2 to show how the model works.

First the intuitive argument:
We see from the public arena, that horn damage is considered more serious
than foot damage. You need to walk but certainly you don’t need to use
your horn in a public road! If this is the case, then if in a private place foot
damage has to pay in full, then certainly horn damage has to pay in full.

We can also look at Figure 10 from the row point of view. We see from
row 1 that damage in private area is considered more seriously than damage
in public area. You are allowed routinely to walk and move in public areas
but not in a private area. So if horn action in public area pays 1

2 then
certainly it has to pay at least half if done in a private area!

We now give you a glimpse of the maths of the model. Consider the ma-
trix of Figure 10 and consider columns as vectors and consider two cases:

Case 1 we put for ? the value x ≥ 1
2 .

Case 2 we put for ? the value x = 0.

For x ≥ 1
2 we have

Public Private(
0
1
2

)
≤

(
1
x

)

but for x = 0 we get that the two columns are not comparable.
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We get two types of orderings, described in Figures 11 and 12. a, b are
two abstract points of ordering which in our case can represent the public
column and the private column. The two abstract orderings we get are

a → b

Figure 11.

• b • a

Figure 12.

So one is a linear ordering a ≤ b and the other is no ordering of a, b.
We ask which one is “nicer”. The intuitive answer is that Figure 11 is nicer.
So x ≥ 1

2 is our answer to the question in this case.
Comparing rows we get for x = 1:

Horn (1
2 , 1) ≥ Foot(0, 1),

i.e. the abstract ordering of Figure 11 again, where now a, b represent foot
and horn rows.

For x ≤ 1
2 we get two incomparable rows, i.e. Figure 12 again. So again,

if Figure 11 is considered “nicer”, we must take x = 1 as our answer.
The actual case is decided in Jewish law as x = 1

2 .

1.4. Qiyas and Kaimutika Nyaya

We saw that the Talmudic rule of Kal-Vachomer is used in Jewish Jurispur-
dence to derive further conclusions and laws from the explicit existing laws
in the Bible. A similar rule in Islamic Jurisprudence is in the Qiyas, see [19]
and [17].

Literally Qiyas means measuring or ascertaining the length, weight or
quality of something. It is used to extend a Shariah ruling from an original
case to a new case. This is done by identifying a common cause between the
original case and the new case. See Examples 1.2 and 1.3.

Example 1.2 (Example of Qiyas (from Wikipedia)). For example, Qiyas
is applied to the injunction against drinking wine /wiki/Wine to create an
injunction against cocaine /wiki/Cocaine use.



Analysis of the Talmudic Argumentum A Fortiori Inference Rule . . . 291

1. Identification of a clear, known thing or action that might bear a resem-
blance to the modern situation, such as the wine drinking.

2. Identification of the ruling on the known thing. Wine drinking is pro-
hibited.

3. Identification of the reason behind the known ruling . For example, wine
drinking is prohibited because it intoxicates. Intoxication is bad because
it removes Muslims /wiki/Muslim from mindfulness of God.

4. The reason behind the known ruling is applied to the unknown thing.
For instance cocaine use intoxicates the user, removing the user from
mindfulness of God. It is therefore prohibited.

Example 1.3. This example is from www.islamtoday.com.

What is the ruling on giving one’s parents a good smack?

We will not find any text in our scriptures that directly addresses this ques-
tion. However, we are in no doubt that it is absolutely prohibited and sinful
to do so.

We find in the Qur’ân that it is sinful to even mutter “ugh” or “uff” to
our parents in exasperation when they ask us to do something for them.

Allah says: “And your Lord has commanded that you shall not worship
any but Him, and that you show kindness to your parents. If either or both
of them reach old age with you, say not to them so much as “ugh” nor chide
them, but speak to them a generous word.” [Sûrah al-Isrâ: 23]

We are prohibited to say “ugh” to our parents, because it is abusive
behaviour. At the very least, it hurts their feelings. We can have no doubt
that shoving them or smacking them is even more abusive and hurtful. Since
the reason for prohibition is even more evident here, we can be certain that
smacking our parents is unlawful and very sinful.

A similar rule exists in Indian Logic. We quote an example:

Example 1.4. (Kaimutika Nyaya (from sadagopan.org)
http://www.biblio.org/sadagopan/ahobilavalli/sus_v2p2.pdf)

It has been said also in SANdilya-smriti: “There may be doubts concerning
the redemption of those who serve AchArya, but there is absolutely no doubt
about the redemption of those who delight in the service of His devotees”
(1-95). So, in the case of those who depend solely on the AchArya, there
is no doubt at all concerning the fruition of prapatti, by the principle of
“kaimutika nyAya”.
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(Will not the Lord, who saves those who take refuge in His devotees,
save those who take refuge in their AchAryas? Will not a benefit,
which is got by one who is not qualified, be obtained by one who is
qualified?).

It is thus established that sarveSvara, the Lord of all, will not grant
us the supreme goal of existence, unless prapatti is performed in any
of these two forms, and by some one or other. Thus the Lord has
done another favour by revealing these important messages inbuilt in
these mantras, said SwAmi Desikan, in this sub-section

It is now time to define the mathematical model.

2. Motivating the matrix model

Before we give the algorithm, let us say how it is to be used.
The algorithm works as follows. We are given a matrix A with one place

with x =? and all the rest are entries from {0, 1}. We need to decide which
is better x = 0 or x = 1 or declare the case as formally undecided.

Let A1 be the matrix with x = 1 and A0 be the matrix with x = 0.

Step 1
Let Π1 be the partial order of the columns of A1 , taken as vectors and
compared coordinate wise. Let Π0 be the same for A0.

Step 2
Decide, if you can, which is “nicer”. (Formal definitions will be given later.)

Step 3
If Π1 is definitely nicer than Π0 then say x = 1 is the output. If Π0 is
definitely nicer than Π1 then let output be x = 0.

If neither can be shown to be nicer then say that x is undecided.

Thus we need an algorithm on two partial orders X and Y to say either
“X is better than Y ” or “Y is better than X” or “X,Y are not comparable”.

This algorithm must be compatible with the meaning of the rows and
columns of the matrix as discussed in Section 1.1 and may use the matrix
for help.

The next section will give precise mathematical definitions but before
than we need to give some methodological remarks.

The Kal-Vachomer rule (and the algorithms supporting it) are nonmono-
tonic rules of induction. This means they are not absolute deductive rules
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but defeasible common sense rules. So we may use these rules to obtain
a conclusion A, but further information and further arguments may force us
to doubt A or even come to accept ∼ A.

Let us compare this rule with ordinary Abduction.
Imagine we have hard facts, accepted statements of the form ∆ =

{A1, . . . , Am}, we are looking for further information. We consider ∆ and
using common sense, experience, our knowledge of the way the world works,
our creative imagination, our religion and whatever else we bring to bear on
the case, we put forward that H should be added to ∆. The decision to add
H is defeasible. We may find out later, through more facts, etc., that H was
the wrong addition.

On the other hand, compare this with a proof in school geometry.
If A1, . . . , Am are assumptions about geometric figure and we prove H, then
H follows absolutely! It is not defeasible no matter how much more infor-
mation we get.

Matrix abduction is a defeasible rule. We looked for the missing informa-
tion about the camera and could not get it. We may use matrix abduction
to conjecture that the camera did have a stereophonic feature and decided to
order it from the dealer. It is quite possible that when we get the camera we
find out that it does not have this feature. This does not mean our matrix
abduction rule was wrongly applied. The rule was correctly applied but was
defeated by further data.

Another typical case of abduction can be described as follows. Given
a theory ∆, say ∆ = {A,A ∧ B → C,X} and a result G, say that G = C

such that we know that ∆ � G must hold. However without knowing what
X is, G does not follow from ∆. We therefore want to abduce a hypothesis
H such that

1. H �� G

2. ∆ + H � G.

There may be several such candidates but we decide that a certain algo-
rithm is the one we use. Once we decide on that, we can calculate H and let
X = H. In the above case we can use a goal directed algorithm for G = C

which goes as follows:

1. What can give us C? We can get C from the data A∧B → C if we have
two items A and B.

2. We do have A, but B is not available, however we have X which we don’t
know what it is.

3. So abduce X = B.
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Thus H = B

Note that the weaker assumption X = (A → B) would also do the job
but this is not what our algorithm does.

So for the case of the matrix A the inductive/abductive step is to use our
specific algorithm. Once we decide on that, the answer becomes mathemati-
cally determined. However the whole process gives us defeasible conclusions,
not absolute conclusions.

3. Superiority relation on partial orders

This section develops the mathematical machinery for our Matrix Abduction
algorithm.

Definition 3.1 (Graphs).

1. A partial order is a set S with a binary relation < which is transitive
and irreflexive. We write τ = (S,<) for a partial order. We write ≤ for
the reflexive closure of <.

2. Let x ≺ y be the relation

x ≺ y iff x < y∧ ∼ ∃z(x < z < y)

We represent graphically “x ≺ y” by “x← y”. So for example in Figure
13, we have x1 ≺ x2, x2 ≺ x3, y1 ≺ x3, etc., etc.
x ≺ y means that x is an immediate predecessor of y (or equivalently y

is an immediate successor of x).
We have that < is the transitive closure of ≺. From now on we look
at (S,≺).

3. A path in (S,≺) of length n, is a chain of the form x1 ≺ x2 ≺ . . . ≺ xn.
A path is maximal if there is no longer path containing it.

4. Let T ⊆ S. Let T ∗, the projection of T , be the set

T ∗ = {y | y ≤ t, t ∈ T}.

5. Let T be a maximal path in (S,≺). T is said to be maximal thin path if
there is no other maximal path T1 such that T ∗

1 has less elements than T ∗.

6. Figure 13 is a good graph to serve as an example for our concepts. There
are two maximal paths.
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T1 : x1 ≺ x2 ≺ x3 ≺ z ≺ x4 ≺ v

and T2 : x1 ≺ x2 ≺ x3 ≺ z ≺ x4 ≺ x5.

The path ending up in v is thinner, because y3 ∈ T ∗

2 but y3 �∈ T ∗

1 .

x5

x4

x2

x3

z

x1

y1

y2

y3

u

w

v

Figure 13.

7. We now divide (S,≺) into levels.
Level 1
All minimal points, i.e. all points x such that ∼ ∃y(y < x).
Level n + 1
Let Pr(y) be the set of all predecessors of y. Then y is of level n + 1 if
all predecessors of y are of level ≤ n, with at least one such prececessor
being of level n.
For example, in Figure 13, the following are the levels of the nodes:
Level 1 x1, y1, y2, y3

Level 2 x2, u

Level 3 x3, w

Level 4 z

Level 5 x4

Level 6 x5, v.
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8. A point z ∈ S is a critical point if the following holds:

(a) z has at least two predecessors

(b) there exists y such that ∼ (z < y) and all predecessors of z are less
than y.

Definition 3.2 (Abduction matrices). An abduction matrix A has the form

A = [ai,j], 1 ≤ i ≤ m, 1 ≤ j ≤ n

where i runs over rows and j over columns we require

1. m ≤ n

2. ai,j ∈ {0, 1, ?}

3. exactly one ai,j has value ?

Definition 3.3.

1. A matrix A is definite if ai,j �=? for all i, j, that is we always have values
in {0, 1} for the entries.

2. Given a definite matrix A, its columns are 0− 1 vectors of length m, i.e.

Vj = (a1,j , a2,j , . . . , am,j).

Define an ordering on two vectors V, V ′, by comparing coordinates.

V ≤ V ′ iff for all i, vi ≤ v′i,

where
V = (v1, . . . , vm), V ′ = (v′1, . . . , v

′

m).

We also indicate the ordering by writing

V → V ′.

Lemma 3.4 (Graph representation theorem). Let (S,<) be an abstract par-
tial ordering based on a finite set S = {a1, . . . , an}. Then there exists a
definite matrix with m column and m rows such that the column ordering is
the same as (S,≤).

Proof. Let A = [ai,j], 1 ≤ i, j ≤ 1 be the matrix defined by ai,j = 1 iff
ai ≤ aj .

This is the characteristic matrix of the ordering. We shall see that we
can identify that column Vi with the element ai

we have
Vk ≤ Vj

iff (by definition)
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for i = 1, . . . , n we have ai,k ≤ ai,j

iff for i = 1, . . . ,m
ai ≤ ak ⇒ ai ≤ aj

iff ∀x ∈ S(x ≤ ak → x ≤ aj)

iff (since ≤ is reflexive and transitive

ak ≤ aj.

Remark 3.5. The lemma is important because we can assume that the
definition for “nicer” or superiority among ordering can use conditions and
properties of the matrix generating them.

So from now on we can assume that every ordering τ = (S,≤) comes
from a matrix M = Mτ , or τ = τ(M).

We now want to get some intuition about when one ordering is superior
to another. Our strategy is as follows

1. Look at some orderings and give some plausible mathematical definition
of when one is superior to another. Such a definition must use topological
and mathematical properties of the ordering and in no way have any
connection with problems of abduction and reasoning.

2. It is inevitable that such a definition will be partial and incomplete and
in many cases will have nothing to say.

We now run our definition on orderings derived from matrices arising from
actual reasoning cases where we know what answers we should be getting.
We use these cases to make our partial definitions more precise.

If the extra precision required turns out to be topologically meaningful,
then we can say we got a good model, because of the intuitions of the
reasoning do correspond to topological conditions on the ordering.

Example 3.6 (Examples of ordering). The following (Figure 14) are some
examples of orderings. Note that for b ≺ a we also write

a→ b

or
a

↓
b

when we present the ordering as a graph.
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a b

• •
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Figure 14.
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We now give a partial definition of superiority. To expand the partial
definition into a full definition we need to know the application area, and
take it into consideration.

Definition 3.7 (Multisets).

1. Let L be a set of labels L = {α1, α2, . . .}. Let M(L) be the family of
all multisets based on L. So these are subsets with copies from L. For
example {2α, 3β}, this is a multiset with 2 copies of α and 3 copies of β.

2. Let M1(L) be all multisets of the form {mα,β1, . . . , βk−1}, i.e. at most
one element appears with more than one copy. So for example {2α, 3β, γ}
is not in M1(L).
We call the number k in {mα,β1, . . . , βk−1} the dimension of the element
and the number m in its (multi-valued) index.

3. Let E be a finite subset of M1(L). Define the dimension and index of E

as the maximum of the respective dimensions and indices of its elements.

Definition 3.8 (Multiset representation of ordering). Let (S,<) be a par-
tially ordered set and let L be a set of labels. A function f giving for each
x ∈ S a multiset f(x) be in M1(L) is called an (L, f) realisation of (S,<) iff
the following holds:

(∗) x ≤ y iff f(x) ⊆ f(y) where ⊆ is a multiset inclusion

The dimension and index the realisation are defined as those of E =
{f(x)|x ∈ S}.

Lemma 3.9. For every (S,<) there exists an L and f such that (L, f) is
a realisation of (S,<).

Proof. Let L = S and let f(x) = {y|y ≤ x}.

Definition 3.10 (Multiset representation of matrices). Let A = [ai,j ] be
a definite abduction matrix. Let V1, . . . , Vn be its columns and U1, . . . , Um

be its rows. Let L be a set of labels.

1. A function f giving each column and each row X a multiset f(X) ∈ M1(L)
is considered a realisation of A iff the following holds

(∗) ai,j = 1 iff f(Ui) ⊃ f(Vj)

2. We say that the matrix A has a direction if it has a representation where
the number of labels in L is strictly less than the number of columns in A.
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Lemma 3.11. Let A be a definite matrix. Let Ui, Vj be the rows and columns
respectively. Let L = {Vj}. Let f be defined as follows:

f(Vj) = {Vj}
f(Ui) = {Vj |ai,j = 1}.

Then f is a representation for A.

We have indeed

f(Ui) ⊇ {Vj} iff ai,j = 1.

We now define the concepts we shall use to give a definition of when one
ordering τ1 is superior to another ordering τ2.

Definition 3.12 (Minimal realisation). Let (S,<) be an ordering and let
(L, f) be a realisation of it. The realisation is said to be label-minimal iff
there is no other realisation (L′, f ′) with less labels, i.e. the dimension of
(L, f) is minimal among all the realisations of (S,<).

The proof of Lemma 3.9 presented a multiset realisation for (S,<), using
the same number of labels as the number of points in S. It is important for
us to minimise the number of labels needed for the realisation, as we use this
number as a simplicity indicator for the ordering. We shall therefore give
a construction for obtaining realisations a with minimal number of points.

To explain to the reader the ideas and difficulties with this algorithm, we
begin by executing it for the graph in Figure 13 and pointing step-by-step
all key points. Examples 3.13, 3.14 and 3.15 do the job.

Example 3.13 (Maximal chains). First note some important strategic
points. Consider the graph in Figure 15.

dz

y

w x

a

b

c

Figure 15.



Analysis of the Talmudic Argumentum A Fortiori Inference Rule . . . 301

We want to give it a realisation with a minimal use of labels. We are
allowed to duplicate only one label, say α. So we can use 2α, 3α, . . ..

For this purpose it is good to identify a long chain and increase the
number of copies of the α label along the chain. In Figure 15 we have two
chains

a < b < c < d

and

a < x < y < z.

The second chain has w < y, this contributes a new label to y and so saves
us from the need of duplicating α. It is therefore better to increase the α

along the other chain.

Figures 16 and 17 show the two options

γ

y

w x

a

b

c

dz α, β, γ, δ

α, β, γ

4α

3α

2α

α

α, β

Figure 16.

α, γ, δ, ε

y

w x

a

b

c

dz

α

3α, β

2α, β

2αβ α, γ

α, γ, δ

Figure 17.
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Obviously Figure 17 requires more labels.
We can be clever and duplicate α along both chains. So in Figure 17

we can make δ = α (i.e. increase α and have for c 2α, γ). This will not
work because it makes x < c. Similalry we cannot make δ = α in Figure 16
because this will make b < z. So our strategy is to choose a maximal chain
with as little as possible points smaller than members of it.

This is what we called thin chain in Definition 3.1.
There is a trick we can use when the number of points in S is finite, say

less than a fixed k. In our Figure 15 the number of points is less than 8.
So we progress with α along the main axis along the progression α,

(m + 1)α, (m + 2)α, etc., where m is the number of points remaining in the
chain and m ≤ k.

Using this trick Figure 16 becomes Figure 18.

γ

y

w x

a

b

c

dz

α

6α

5α

4α

2α, β γ

α, β, γ

α, β

Figure 18.

Similarly Figure 19 can improve on Figure 17.
So the strategy is to choose a good maximal chain and increase α by at

most by multiples of kα as necessary along the chain and increase α by 1 in
all other directions.

The reason we advance possibly in multiples of kα along the main chain
is because of the following possible situation in Figure 20

We would have had e < x if we had not advanced in more than just one
α along the main chain a < c < e < y < z.

Note that we don’t really need to increase the numbers of α by a jump
of up to kα at every point of the main chain. We need to do that only after
split points such as c in Figure 20. Since at e there is no split y can get 10α
and similarly z can get 11α.
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6α, β

y

w x

a

b

c

dz

α

3α, γ

2α, γ

α, γ4αβ

β, 5α,

Figure 19.

In fact, we need to increase after a split at point s by at most the number
d(s) + 1, where d(s) is equal to the remaining points in the chain. In the
case of the point c, there were 3 points remaining in the chain so we jumped
by 4α.

The reason this is OK is that we are on a maximal chain and so other
points in other directions, e.g. x cannot accumulate more αs than the jump.

In fact in many cases we need less than d(s)+1. One strategy is to jump
in each case by some variable letter k(s) and adjust it at the end so that all
is OK.

Example 3.14 (Critical nodes). This example explains another problem we
have to watch for. Consider the situation in Figure 21.

The longest chain in this figure is

w < z < y.

So we allocate
w : α < z : 2α.

We allocate a : β, and b : γ and now since x comes immediately above a and
b it gets x : α, β and similarly y gets γ, β, 2α. This algorithm however makes
x < y.

We need to recognise the critical points x such that there is a y such that
∼ (x < y) and y is such that it is above all the immediate predecessors of x.
In such a case to avoid the result x < y, we add a label to x. We do not need
to worry if x has only one predecessor. In such a case we add additional
label to x anyway. It is only when x has more than one predecessor that we
need to worry. Hence the definition of critical points in Definition 3.1.
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a

α

x

b

d
5α, β,

6α, β

c 5α

e 9α

y 10α

z 11α

Figure 20.

So the labelling becomes as in Figure 22, where we added an additional
label to the critical node x.

Critical points can be identified from the ordering.

In Figure 23, both x and y are critical, and so is z.

However, if we deal with x, y, we do not need to deal with z. Our
algorithm will pay attention to do that.

Also if a = b, then x, y are not critical because we increase the allocation
of both x and y.

Example 3.15. We now apply our algorithm to be given in Construction
3.16 Figure 13.

Step 0 (Preparatory step)
Identify the set of critical points C and a maximal thin chain T .

In our case

C = {u}
T = {x1 < x2 < x3 < z < x4 < v}

Identify the number of points for the graph. In Figure 13, k = 12.
Step 1
Consider all points of level 1. Give a different atomic label to each point.
Give α to the point which is on the chain T . Let the function be λ.
In our case
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x

b z

y

w

a

Figure 21.

x

b z

y

w

a

α, β, δ 2α, γ, β

2α

α

β γ

Figure 22.
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x

ba

y

z

Figure 23.

λ(y1) = β1

λ(y2) = β2

λ(y3) = β3

λ(x2) = α

Step 2
Identify the points of level 2.

In this case, we have point x2 and u. x2 is on the main chain T1 and u

is a critical point. We allocate

λ(x2) = 5α
λ(u) = {β1, β2, γ}.

Step 3
Identify points of level 3. These are x3 and w.

x3 is immediately above x2 and y1, so we allocate

λ(x3) = {β1, 5α}

w is above u and x1 so

λ(w) = {α, β1, β2, γ}.

Step 4
Identify level 4 points. This is z. It is on T , so we advance α (add α to the
allocation of its predecessor)

λ(z) = {β1, 6α}
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Step 5
Consider nodes of level 5. This is x4. x4 has two immediate predecessors, z

and y2. It is on T but we do not need to advance α because its allocation
will increase anyway from y2 and z. It is not critical so we do not need to
add extra. So

λ(x4) = {β1, β2, 6α}

Step 6
Level 6 points are x5 and v. We allocate

λ(x5) = {β1, β2, β3, 6α}
λ(v) = {β1, β2, 7α}

We advanced α to v because v ∈ T .
To summarise, we get Figure 24. The algorithm can be improved to

decide more carefully how much to advance α but we don’t do that in order
to keep the algorithm simple. See Remark 3.17.

x4

z

x3

x2

x1 α

5α

β1, 5α

β1, 6α

β1, β2, 6α

β1, β2, β3, 6α

x5
v β1, β2, 7α

w

α, β1, β2, γ

y1

β1

y2

β2

y3

β3

β1, β2, γ

u

Figure 24.

We are now ready to give the algorithm for allocating multiset labels to
any finite graph.
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Construction 3.16 (Multiset realisations for finite graph). Let (S,<,≺)
be a graph, as defined in Definition 3.1. We shall construct a realisation λ

on (S,≺) using the partition into levels of S as presented in Definition 3.1.
The construction proceeds by induction on the levels. We assume we have
an infinite sequence of labels {α, βi} to use as we need. α is the only label
that we allow to make copies, 2α, 3α, etc.

We define a function λ in steps 1, 2, 3,. . . defining λ in step n on all
points of level n. Step 0 just prepares the ground for the induction by doing
some preliminary processing.

Step 0
Identify and choose one maximal thin path in (S,≺), call it T . For example
in Figure 13 this is T1. Also identify all critical points.
Step 1
Consider all level 1 points (i.e. minimal points). One of them, say x1 is in
T . Let λ(x) = {α}. If the other minimal points are y1, . . . , yn let λ(yi) = βi,
βi are all different labels. In Figure 13, n = 3.
Step n + 1
Consider all level n + 1 points. One of them, say w is in T . Let the others
be a1, . . . , ak. In Figure 13, for n = 2, we have w = x2 is in T1 and a1 = u.

There are the following possibilities for a level n + 1 point e.

a. e has only one predecessor and e is in T .

b. e has only one predecessor and e is not in T

c. e has several predecessors and e is the only one with these predecessors.
We have two subcases:

c1. e is a critical point

c2. e is not critical

d. e and e1, . . . , ek have the same set of predecessors and e �∈ T

e. e and e1, . . . , ek have the same set of predecessors and e ∈ T .

In Figure 13 for level 2, point u is of Case (c1) and point x2 is of case
(a).

We now extend λ to the new level n + 1 points of the graph. Let e be of
level n + 1. We use case analysis and define λ(e) as follows:

Case (a)
Let y be the single predecessor of e. Then since e ∈ T , we also have y ∈ T .

We distinguish two subcases:
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(a1) e is the only immediate successor of y.
Let λ(e) = λ(y) ∪ {α}.

(a2) y has other immediate successors besides e. Let m(y) be the remaining
number of nodes above y in the chain T . Then let λ(e) = λ(y)∪{(m+
1)α}.

Note that the choice to advance by (m + 1)α is safe but in many cases not
minimal. Let k(y) be a variable letter which can take values 1 ≤ k(y) ≤
m + 1. We can advance α by k(y), i.e. λ(e) = λ(y) ∪ {k(y)α}. We can
carry on the construction until we finish. We get allocations of multisets
with some numerically bound variables k(y), y ∈ T in it. We can now check
by a computer program what values of k(y) will maintain the graph ordering.
These are the values we take. The program terminates because k(y) ≤ m(y)+
1. See Remark 3.17.
Case (b)
Here y �∈ T . We distinguish two subcases:

(b1) α ∈ λ(y). Let λ(e) = λ(y) ∪ {α}.

(b2) α �∈ λ(y). Let δ be a new atomic label and let λ(e) = λ(y) ∪ {δ},

(b3) α ∈ λ(y) and there exists a point z is above y and also above some point
in T . In this case let δ be new label and let λ(e) = λ(y) ∪ {δ}. See
for example Figure 63, node G. Here T = A < H < G, e = G, y = K.
Point Y is above K and if we advance α and let G have 2α, β it will
become below Y . The reason is that Y is above H ∈ T and so gets more
α from H.

Case (c)
Let the predecessors of e be y1, . . . , yk.

(c1) e is not critical. Let D be the smallest multiset containing λ(yi) for all
i = 1, . . . , k. Let λ(e) = D.

(c2) e is critical. In this case let δ be a new atomic label. Let λ(e) = D∪{δ}.

Case (d)
Let y1, . . . , yk be the predecessors. Let δ, δ1, . . . , δk be completely new set of
labels.

Let λ(ei) = E ∪ {δi} where E is the smallest multiset containing all of
λ(yi). Similarly λ(e) = E ∪ {δ}.
Case (e)
This case is like Case (d) except that e ∈ T . In this case we proceed just like
Case (d), we take δi, i = 1, . . . , k new atoms, let λ(ei) = E ∪ {δi}. However,
for e we take λ(e) = E ∪ {(m + 1)α}.
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Remark 3.17. We are pretty sure that the previous construction gives a min-
imal realisation as far as the number of different letters is concerned. It does
not minimise the number of copies of α. For a practical strategy, we find the
number of letters and copies of α we need using the algorithm possibly with
some variables k(y) and then use another complete adjustment program to
optimise the allocations and assign values to the variables k(y).

It is like the Newton method for finding roots of a polynomial. We get
an approximate root first and then use a computer to get a better solution.
In our cse, get a realisation from the algoirthm possibly with some variables
and then simplify and optimise it.

Construction 3.18 (Multiset realisation for matrices). Let A be a matrix
with 0, 1 values construct the graph of the columns of A. If V1 and V2 are two
columns, define V1 ≤ V2 iff for every row in the matrix, the value of V1 is
bigger than that of V2 (thus larger values are lower in the order. Remember
the more 0 in the column, the harder it is to achieve whatever that column
represents, hence the column is higher in the ordering).

We also write graphcially

V1 ← V2

So we get a graph (S,≺). Now apply the construction to get a realisation f for
the graph. Since the elements of the graph are all the columns of the matrix,
we get a multiset value assigned for each column. Suppose A = [ai,j], i =
1, . . . ,m, j = 1, . . . , n. Then Vj = (a1,j , . . . , am,j). f(Vj), j = 1, . . . , n is now
available.

We can now compute a multiset value for each row. Let Ui = (ai,1, . . . ,

ai,n) be the ith row. We define f(Ui) to be the smallest multiset containing
all the column multisets f(Vj) for which ai,j = 1. With this definition we get
a multiset representation for the matrix A = [ai,j ]. We have

ai,j = 1 iff f(Ui) ⊇ f(Vj).

This is a more minimal realisation than the one proposed in Lemma 3.11.

Definition 3.19. Let (S,<) be given. Define xRy as x < y ∨ y < x. Let
R∗ be the transitive closure of R.

1. For s ∈ S, let [s] be the set of all elements such that sR∗y. We get
S = S1∪. . .∪Sk where each Si is R∗ connected, and for i �= j, Si∩Sj = ∅
Let ξ be the number k of connected components.
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2. Take two points x and y such that xR∗y. Then there exist z1, . . . , zk

such that
xR1z1R0z2R1z3, . . . , RizkR1−iy

where
R1, R0 are in {<,>} and R1 �= R0

Let ρ(x, y) be the minimal number k such that a sequence z1, . . . , zk

exists.
Let ρ = maxx,yρ(x, y).
ρ measures the maximal number of changes in direction required to move
from one point to another. This is a measure of the complexity of the
ordering.

We call ρ the index of directional change is (S,<,>) and ξ the index of
connectivity.

Example 3.20. Consider Figure 25

b

c

d

ea

Figure 25.

To get from a to e we change direction three times. From c we can get
to any point by changing direction once only. Here ρ = 3.

To get a better feel for this example, consider this ordering as a temporal
ordering of temporal points. a < b means b is in the future of a and a is in
the past of b.

The temporal logic Kt has two temporal connectives FA and PA.
We have

• X � FA iff ∃x(x < y ∧ y � A)

• X � PA iff ∃y(y < x ∧ y � A)

If A were true at point c, then we have

a � FPFPA

We see that we require three changes of connectives.
FPFP is known as a “modality”, and in modal logic there are many

theorems for many logics about how their modalities relate to one another.
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Remark 3.21 (Summary of topological indices and their meanings).

1. Number of points
This parameter is obvious. We have that less number of points makes
a simpler ordering.

2. Connectivity
This is a known topological notion. More connectivity make a simpler
graph.

3. Changes of direction
Less changes makes a better graph. As we have seen in Example 3.20, it
makes for a simpler logic.

4. Dimension
A realisation with lower dimension and lower index is better. I shows
more connections in the graphs.

5. Other indices
Note that the indices we use must have a direction. So if a small number
of points is a good index, then the smaller the better. Consider for
example, the graph theory criterion of how many arrows go into a point.
In Figure 29 for example, node A has index 2 while node N has index 1.

We now argue that this topological feature is not a good index.

Consider Figure 14, the graphs of items 4, 5, and 7. In order of simplicity,
4 is best, 5 is middle and 7 is worst. The proposed graph index is one for
4, two for 5 and 0 for 7. So it has no direction, it just goes up and down.

We now discuss the meaning of a realisation and the meaning of dimen-
sion. First observe that giving realisations (or representations) is common
in mathematics.

Representing algebraic structures by matrices is very common and also
representing orderings by set inclusion. So the idea of representing a partial
order by inclusion of multisets is a move every mathematicians will under-
stand. The question is what more does it give us? We mentioned in Sec-
tion 1.1 that the matrices should have the meaning that the rows are actions
and the columns are features generated by the actions. We also argued that
all features should be pulling in the same direction. We gave some examples.
We give one more which will help us with our notation. Consider a matrix
where the rows are types of foods and the columns are health features. Here
is a partial matrix (Figure 26):

Eggs are bad for the veins, caffeine for the heart, carrots good for
the eyes, etc.
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heart blood flow eyes bones

carrots 1

eggs 0

coffee 0 1

milk 1

Figure 26.

The reason behind this table are the specific ingredients the foods con-
tain. It is the ingredients that do the job. If the columns are represented
correctly, i.e. all pulling in the same general direction of better health, then
1 in the caffeine or egg column means quantity while 1 in the carrot column
means larger quantity. So in this case, if the egg heart slot gets represented
by say {3α, β, γ} this means there are some ingredients in eggs (say β, γ)
that give the effects on the heart. α is the only label that can have a strength
index, so here 3α means average strength in the direction of health.

Mathematically it is sufficient to allow for only one parameter to indicate
strength.

Consider Figure 27

◦

◦ ◦

◦

◦◦

◦

α, β, γ

γ, α

β, 2α

β, 3α

β, α

γ, 3α

γ, 2α

Figure 27.

β, γ give the qualitative directions and α gives the strength. This repre-
sentation has dimension 3 (3 ingredients) and index 3 (strength of α).6 So if
we have an ordering which can be realised with less ingredients (dimension)

6Technically in the finite case we can manage with just α, β. So in our graph of
Figure 27, let γ = 3α and the left branch becomes 4α, 5α, 6α. This representation is only
technical. We want γ to indicate quality not quantity.
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and lower index, then it is a better ordering, giving a more detailed picture
of what is going on.

Example 3.22 (Restriction on the representation). We saw that a lower
dimension on the representation is an indication of a superior ordering.
Therefore any restriction imposed on the representation might increase the
dimension for the same ordering and we expect it must make sense. We best
explain through an example. Consider the matrix of Figure 28

N A P Y

m 0 1 1 0

h 1 x =? 0 0

b 1 1 0 1

Figure 28.

We use the notation of capital letters for columns and small bold letters
for rows.

To decide whether we should recommend x = 0 or x = 1, let us do the
graphs for each case, and calculate the realisation using our algorithm

For the choice x = 1, we get Figure 29

N

A

P

{3α}

Y {2α}

{α, β}

{α}

Figure 29.

For the choice x = 0 we get Figure 30.

We now have to check the various criteria for the two orderings.

The table in Figure 31 gives the answers:

The dimension and index needs to be checked against all possible re-
alisations of the graphs. The following Figure 32 is a table of realisations
with dimension 2 (labels {α, β}). We need to prove that neither graph can
manage to have a realisation with only one label {α}. This is easy to see.
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P

Y

N

A

{β}

{α}

{α, β}

{2α}

Figure 30.

Dimension connectivity change number
direction points

Case x = 1 2 1 1 4

Case x = 0 2 1 2 4

Figure 31.

According to this x = 1 has a better ordering because it has less change
of direction. So the answer to the abduction problem of Figure 28 is to
take x = 1.

We can now compute the realisation g for the rows matrix of Figure 28,
using the algorithm of Construction 3.18. We get two functions, g1 for the
case x = 1 and g0 for the case x = 0. The values of g1 and g0 for the
columns can be read from Figures 29 and 30 respectively.

To find what ingredient row i has in a representation, we must find a
minimal multiset g(Ui) such that

g(Ui) ⊇ f(Vj), j = 1, . . . , n, ai,j = 1.

So in the matrix for x = 1 we get

g1(m) = {2α, β}
g1(h) = {2α}
g1(b) = {3α}

For the matrix x = 0 we get

g0(m) = {2α}
g0(h) = {β}
g0(b) = {α, β}

Let us now add the restriction that rows m and b (i.e. the actions m
and b) must contain an ingredient which is not in h. For example, if the rows
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N A P Y

Case x = 1 2α α α, β 3α

Case x = 0 β α 2α α, β

Figure 32.

are foods or medicines, we may know that there is something (e.g. vitamin
present in m and b and not in h).

Both realisations g0 and g1 fail to satisfy the restriction.
The following Figures 33 for the case x = 1 and 34 for the case x = 0

give realisations which do satisfy the condition. However, the dimension
goes up. We need to prove mathematically that it is not possible to give any
realisation of dimension 2 which satisfies the restriction.

P

{2α}

N

{2α, γ}

Y

{α}

A

{α, β, γ}

Figure 33.

P

Y

N

A

{β}

{γ}

{γ, β}

{2γ}

Figure 34.

Again the case x = 1 wins because of changes of direction. We get in
this case, Figure 35

Clearly γ is an ingredient in m and b but not in h.

Definition 3.23 (Superiority). Given two graphs τ1 and τ2 we calculate the
value of the parameters for each graph.
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x = 1 x = 0

g(m) {α, β, γ} {2γ}

g(h) {2α} {β}

g(b) {2α, γ} {γ, β}

Figure 35.

1. If graphs τ1 (resp. τ2) has better or equal values to all parameters than
τ2, (resp. τ1), with one parameter strictly better, then τ1 is superior.

2. If all parameters are equal or if one graph is better in one parameter and
the other graph is better in another then the answer is undecided.

We now describe how we reason and argue with these matrices. We
imagine a proponent and an opponent.

The proponent puts forward a matrix A with ai,j =?. All the entries
except ai,j are considered known and agreed values. He applies the matrix
abduction rule to A and proves (i.e. the algorithm of Section 3 shows) that
x = 1 is a winning value. Thus the proponent showed non-monotonically
using the matrix A and our rule that x = 1.

Remember that these entries have meaning: so for example if the entries
are from monadic predicate logic with predicates Ai(x), i = 1, . . . ,m and
the elements of the domain are d1, . . . , dn then the proponent proved that
Ai(dj) = 1.

How can the opponent attack? He adds more facts to the argument by
adding more columns and rows to the matrix. So assume A = [ai,j ], 1 ≤
i ≤ m, 1 ≤ j ≤ n. The opponent expands the matrix to A∗ = [ai,j]1 ≤ i ≤
m∗, 1 ≤ j ≤ n∗, where m ≤ n∗ and n ≤ n∗ and at least one of m � m∗ and
n � n∗ holds.

All the new entries in A∗ are in {0, 1} (i.e. ai,j =? is still the only un-
known, ? entry). Furthermore, when we apply our matrix abduction algo-
rithm to A∗ we get ‘undecided’ as values.

The proponent can defend by expanding A∗ to A∗∗ where in A∗∗ we do
get that ai,j = 1 is a winning value. This attack and defence can go on and
on until it stops. The last value is the conclusion value.

Example 3.24. Here is a sequence of attacks and counterattacks

In the matrix A of Figure 36 without column Y, x = 1 wins. When we
add Y to it to get A∗ we get ‘undecided’.
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N A Y

h 1 x =? 0

b 1 1 1

Figure 36.

Graph of A for x = 1

•

AN =

Graph of A for x = 0

A N

Here x = 1 wins because it has less points (N = A)

Figure 37.

Let us check this, see Figures 37 and 38.

Example 3.25 (Screens and cameras). We can now settle the question of
whether the NEC2470/WVX LCD screen has stereophonic speakers.7

Let us do the graph for the columns of the matrix of Figure 1. This is
displayed at Figure 39.

Clearly the case x = 1 is superior because it is connected.

We now consider the camera example of Figure 2.

The two graphs for case x = 1 and case x = 0 are displayed in Figure 40

Again the case x = 1 wins, because for x = 0 we get a disconnected graph.

Remark 3.26 (Two question marks). How do we deal with abduction matri-
ces which have more than one slot with a question mark? Say, for example
ai0,j0 =? and ai1,j1 =?. The simplest course of action is to substitute all
possible 0, 1 values and see which combination wins.

In our Hebrew paper [1] there are examples of this sort. It is possible
to find, for example, that no matter what the value of ai0,j0 is we have that
ai1,j1 = 1 is a winning substitution (over the option ai1,j1 = 0) while when
we substitute ai1,j1 = 1 in the matrix, we find no winning value for ai0,j0 =?.

7Searched the web again today, 1 March 2009. Could not find a definite answer.
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N

Graph of A∗ for x = 1

Graph of A∗ for x = 0

Y N, A

A, Y

Neither graph wins.

Figure 38.

Example 3.27 (Dependency of columns). Assume we are given a definite
{0, 1} matrix A. Our procedures so far for handling it run through the
following steps:

1. Describe the column graph of the matrix

2. Apply an algorithm to find a minimal multiset realisation of the graph

3. Use the above to find a minimal multiset realisation f of the matrix.

Let us concentrate our attention on (3) above.

First note that if we have a multiset realisation of the matrix we can get
(1) and (2) anyway. Namely, we have

(*) ai,j = 1 iff f(Ui) ⊇ f(Cj) where Ui is row i and Cj is column j of the
matrix.

(**) We have Cj ≤ Ck iff f(Cj) ⊆ f(Ck)

Thus f actually determines everything using (*) and (**).

We now consider a new type of restriction on the realisation f. We
call it column dependencies. It arises from applications and it is a new
interpretation of the matrix entries.

Consider the matrix of Figure 1. Consider the two columns R-reaction
time and D-dot size. We can easily imagine that for technical reasons, the
reaction time of Screen 3 is enhanced because Screen 3 has also small dot
size. In other words the technical modifications required to make small dot
size also help with reaction time. The entry therefore for Screen 3 column



320 M. Abraham, D. Gabbay, and U. Schild

Case x = 1

S

C

P

D R

I

Case x = 0

S

C

P

D R

I

Figure 39.
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Case x = 1

W = B = D

P

D

E

F

Case x = 0

P

D

E

F

W = B = D

Figure 40.
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R depends (or is helped by) the entry for Screen 3 Column D. How do we
express this formally? The answer is that it manifests itself in the restrictions
on the realisation f of the matrix of Figure 1.

Instead of the equation(*)

• a3,R = 1 iff f(Screen 3) ⊇ f(R)

we have

• a3,R = 1 iff f(Screen 3) ∪ f(D) ⊇ f(R).

It is clear that f(Screen 3) is helped by the multiset f(D).
This example prompts us to change (*) to (*1) as follows: Given a definite

matrix A with dependencies D of the form

• ai,j = 1 provided column j depends on columns k
i,j
1 , . . . , k

i,j
r .

Then a function f assigning multisets to rows and columns is a realisation
of (A, D) provided (*1) holds

(*1) ai,j = 1 iff f(Ui) ∪
⋃ri,j

m=1 f(C
k

i,j
m

) ⊇ f(Cj).

To see the difference in a real Talmudic example, consider the argument
of Figure 46 below for the cases x = 1 and x = 0.

The graphs for it are in Figure 47. The realisation we get from the graphs
are f1 and f0 as follows. See Figure 41 below.

Case x = 1

f1(A) α

f1(N) 2α
f1(m) α

f1(h) 2α

Case x = 0

f0(A) α

f0(N) β

f0(m) α

f0(h) β

Figure 41.

The Talmudic argument is for x = 1 to win, as indeed it does.
This argument is attacked by claiming that there is a dependency, and

that actually the value ah,N at the square (h, N) depends on the column A.
Thus we need a new matrix realisation f∗ which satisfies

ah,N = 1 iff f∗(h) ∪ f∗(A) ⊇ f∗(N).

If this is the case we get the following realisations f∗ for the matrices,
for cases x = 0 and x = 1. See Figure 42.

We need to formulate algorithms to find minimal realisations for matrices
(A, D) with dependencies as well as criteria to compare realisations, but
clearly the attack succeeds as Case x = 1 of Figure 42 is not superior to
Case x = 0.
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Case x = 1

f∗1 (A) α

f∗1 (N) 2α
f∗1 (m) α

f∗1 (h) α

Case x = 0

f∗0 (A) α

f∗0 (N) 1.5α
f∗0 (m) α

f∗0 (h) 0.5α

Figure 42.

4. Case study: Sentences for traffic offences

As an additional example of our general method we shall consider an appli-
cation in the domain of Traffic Offences. We stress that it is not our intention
to suggest that traffic judges should actually use a computer system imple-
menting this approach. It is though conceivable that some day in the future
decision support systems for judges could incorporate this method.

Let us first briefly survey the area of sentencing within the framework
of law and order in society. This is usually the point of view taken by
judges about to pass sentence on an offender. One distinguishes four clas-
sical approaches to punishment: Retribution, Deterrence, Prevention and
Rehabilitation [Lawton L.J., in: Sargeant (1974) 60 Cr. App. Rep. 74 C.A.
at pp.77-84].

This classification does not mean that a judge about to pass sentence
on an offender asks himself an explicit question: “Which approach shall I
use here?” It is generally assumed that he forms an opinion about which
approach (or approaches) to apply in an intuitive manner. The next step
is then to decide on a sentence appropriate for the specific offender and
offence within the sentencing approach (or approaches). This is also an
intuitive process: “It comes from within”, as several judges have expressed
it. Our formulation would be that the sentence chosen by the judge is the one
that he intuitively believes includes the appropriate mixture of ’microscopic
elements’, thus leading to one or more of the four sentencing aims.

The possible punishments for traffic offences are (in Israel): Imprison-
ment, driving disqualification, fine, community service. These punishments
may also be suspended, i.e. applied only if the offender commits a new
offence. Sentences are often a combination of the above, e.g., suspended
driving disqualification plus fine. In the following we shall not consider com-
munity service.

Consider now the following example. A judge has passed sentence on
six traffic offenders. He has already decided on part of a sentence for a
seventh offender, but has not made up his mind whether to sentence him to
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imprisonment or not. Our algorithm will indicate what would be a logical
decision, based on the previous six sentences.
Offender 1: Killed a pedestrian. The sentence: Suspended imprisonment
and actual disqualification.
Offender 2: Killed pedestrian while driving under licence disqualification.
The sentence: Imprisonment, disqualification, and also suspended imprison-
ment and suspended disqualification.
Offender 3: Drunk driving. The sentence: Disqualification, fine, and also
suspended disqualification and suspended fine.
Offender 4: Driving through a red light. The sentence: Fine and suspended
disqualification.
Offender 5: Driving while under disqualification. The sentence: Disqualifi-
cation, fine and suspended fine.
Offender 6: Driving without valid driver’s licence. The sentence: Fine and
suspended fine.
Offender 7: Driving while under the influence of drugs. The sentence: Dis-
qualification, fine and suspended disqualification and suspended fine. In
addition the judge has decided on suspended imprisonment and is thinking
about an actual prison sentence.

What advice should we give him, in order to preserve a logical uniformity
of sentencing?

It is important to assume that the above sentences were passed by the
same judge. Only by this assumption can we be sure that the ”microscopic
ingredients’ are the same. For different judges may use different ingredients
in different amounts.

This of course is strongly related to the problem of uniformity of punish-
ment, or rather the lack of uniformity. Were different judges to use the same
ingredients in the same amounts the problem of sentencing disparity would
diminish. It is interesting to speculate that iterative use of our approach on
sentences by different judges could lead to some kind of convergence bringing
increased uniformity.

The following table 43 represents the cases described above. The unde-
cided sentence for offender 7 is indicated by a ? sign.

The following diagram 44 represents the choice: actual imprisonment,
i.e. the value 1 is substituted for the question mark.

The following diagram 45 represents the choice: No actual imprisonment,
i.e., the value 0 is substituted for the question mark.

We immediately realize that the first diagram is superior to the second
one. This means that our approach will recommend that the judge imposes
an actual prison sentence on offender seven.
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O1 O2 O3 O4 O5 O6 O7

imprisonment 0 1 0 0 0 0 ?

suspended imprisonment 1 1 0 0 0 0 1

disqualification 1 1 1 0 0 0 1

suspended disqualification 0 1 1 1 1 0 1

fine 0 0 1 1 1 1 1

suspended fine 0 0 1 0 1 1 1

Figure 43.

O1O2

O7

O3

O5

O6

O4

Figure 44.

5. Analysis of the Talmudic Kal-Vachomer from Kidushin
5a-5b

The Talmud was finalised in the fifth century AC. It contains many legal
arguments about a variety of issues and one of the rules used was the Kal-
Vachomer. The following text is one of the most complicated uses of this
rule. The rule has never been properly formulated, though there have been
many attempts.

Louis Jacobs [18], distinguishes two types of Kal-Vachomer. The simple
one and the more complex one. The simple one has the structure:

• If A has x then B certainly has x.

The complex one has the structure

• If A, which lacks y, has x, then B which has y certainly has x.

The following are examples of the simple case from the Old and New Testa-
ments. We already saw examples of the complex case in Sections 1.2 and 1.3.

The Bible does not contain instances of the complex case. This has
emerged later, after the Bible.
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O3

O7

O2

O1

O6

O4

O5

Figure 45.

Example 5.1 (Kal Vachomer in the Old and New Testaments).

Exodus 6
10 And Jehovah spake unto Moses, saying,
11 Go in, speak unto Pharaoh king of Egypt, that he let the children of
Israel go out of his land.
12 And Moses spake before Jehovah, saying, Behold, the children of Israel
have not hearkened unto me; how then shall Pharaoh hear me, who am of
uncircumcised lips?

Deuteronomy 31
27 For I know thy rebellion, and thy stiff neck: behold, while I am yet alive
with you this day, ye have been rebellious against Jehovah; and how much
more after my death?

Matthew 12
9 And he departed thence, and went into their synagogue:
10 and behold, a man having a withered hand. And they asked him, saying,
Is it lawful to heal on the sabbath day? that they might accuse him.
11 And he said unto them, What man shall there be of you, that shall have
one sheep, and if this fall into a pit on the sabbath day, will he not lay hold
on it, and lift it out?
12 How much then is a man of more value than a sheep! Wherefore it is
lawful to do good on the sabbath day.

Luke 13
14 And the ruler of the synagogue, being moved with indignation because
Jesus had healed on the sabbath, answered and said to the multitude, There
are six days in which men ought to work: in them therefore come and be
healed, and not on the day of the sabbath.
15 But the Lord answered him, and said, Ye hypocrites, doth not each one
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of you on the sabbath loose his ox or his ass from the stall, and lead him
away to watering?
16 And ought not this woman, being a daughter of Abraham, whom Satan
had bound, lo, /these/ eighteen years, to have been loosed from this bond
on the day of the sabbath?
17 And as he said these things, all his adversaries were put to shame: and
all the multitude rejoiced for all the glorious things that were done by him.

Romans 5
8 But God commendeth his own love toward us, in that, while we were yet
sinners, Christ died for us.
9 Much more then, being now justified by his blood, shall we be saved from
the wrath /of God/ through him.
10 For if, while we were enemies, we were reconciled to God through the
death of his Son, much more, being reconciled, shall we be saved by his life;
11 and not only so, but we also rejoice in God through our Lord Jesus Christ,
through whom we have now received the reconciliation.

The simple Kal-Vachomer was analysed as an Aristotelian syllogism by
A. Schwarz [27]. Compare Barbara with what Moses says:

Barbara:

1. All men are mortal.

2. Socrates is a man,
therefore

3. Socrates is mortal

1. ∀x(Men(x)→ Mortal(x)

2. Men(Socrates)
therefore

3. Mortal(Socrates)

Deuteronomy 31:
Let s be something Moses says or demands. We have

1. ∀x¬ ListenIsrael(x) → ¬ListenPharaoh(x)

2. ¬ListenIsrael(s)
therefore

3. ¬ListenPharaoh(x).



328 M. Abraham, D. Gabbay, and U. Schild

Louis Jacobs refutes the similarity, see [18, chapter 1], see also [22].

Certainly the more complex cases of Kal-Vachomer are not syllogisms
at all.

We now analyse one of the most involved arguments in the Talmud. We
first quote the text. A detailed analysis of the Kal-Vachomer in general and
of this text in particular can be found in our companion paper in Hebrew [1].

Consider the following text from the Talmud, Kidushin 5a–5b.8

(1a) Rav Huna said: Huppa acquires a fortiori, since money, which does
not allow one to eat teruma does acquire, Huppa which allows one to
eat teruma, how much more should it acquire.

(1b) And does money not allow one to eat. But ‘Ulla said: According
to the Torah, a betrothed Israelite daughter eats of teruma, for it is said
“But if a priest acquire any soul, the acquisition of his money”, and this
is the acquisition of his money. For what reason did they say that she
does not eat? It was feared that a cup may be poured for her in her
father’s house, and she will let her brothers and sisters drink it.

(2) Rather argue thus: If money, which does not finalise, does acquire
Huppa, which does finalise how much more should it acquire.

(3) As to money, it is because one can redeem it with heqdeshoth and
the Second Tithe.

(4) Intercourse shall prove it.

(5) As to intercourse, it is because it acquires in the case of a Yevama.

(6) Money shall prove it.

(7) And the inference revolves; the character of this is not like the char-
acter of that is not like the character of this:

(8) the feature common to them is that they acquire elsewhere and they
acquire here. I can also bring Huppa, which acquires elsewhere and
acquires here.

(9) As to the feature common to them, that is that their enjoyment is
great!

(10) ‘Writ’ shall prove.

(11) As to writ, that it sets free an Israelite daughter,

(12) money and intercourse shall prove.

(13) Again the inference revolves. The character of this is not like the
character of that and the character of that is not like the character
of this.

8The insert numbers refer to the steps in arguments. The translation is from the
El-Am edition.
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(14) The feature common to them is that they acquire elsewhere and
they acquire here. I can also bring Huppa which acquires elsewhere and
acquires here.

(15) As to the feature common to them, it is that they are possible by
compulsion.

(16) And Rav Huna? Money, however, we do not find in matrimony by
compulsion.9

We now give the argument sequence of the text above. First, some
background material. When a boy wants to wed a girl as his wife, he can do
it in stages. First he can give her a ring and if she accepts they are engaged.
The text refers to this state as Kidushin. It has to be done by giving the
girl a ring or something of value. The important point is the value. So the
text refers to the act as “money” (i.e. something of value). The next step
is the marriage ceremony which the text calls ‘Huppa’. It is known that the
ceremony is essential for marriage and cannot be replaced by another ring.
So if the boy gives the girl another ring this does not make her his wife.
She just gets a second ring for noting. He has to go through the ceremony.
There are other options for marriage. For example they can be together in a
‘familiar way’, which can be anything you are not supposed to do otherwise,
e.g. a kiss or a short period alone in a room (long enough to be naughty),
etc. This is why for example, in a marriage ceremony the boy is allowed to
kiss the bride. The text calls this ‘intercourse’. The question we ask here is
whether the marriage ceremony can do the job of the ring. So imagine that
you are ready to get married and your silly best man forgot the ring. Can
we go on or do we actually have to wait for the ring? The first argument
by the proponent named Rav Huna is to prove that the ceremony itself can
do the job of the ring, i.e. it can do the engagement as well as the marriage
itself. Figure 46 is this argument (item 2 in the text).

N = married A = engaged

m (ring) 0 1

h (Huppa) 1 x =?

Figure 46.

9Glossary
Money = ring
Kidushin = engaged
Huppa = religious marriage ceremony
Writ = official document/contract.
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We do the graphs for x = 1 and x = 0, and get Figure 47

1. Graphs for x = 1

N −→ A

2α α

2. Graph for x = 0

• •
N A

β α

Figure 47.

Clearly the case x = 1 is a better graph. It is more connected. We also
wrote the multiset assignment in the figure.

The opponent (the audience to Rav Huna) attacks this in item 3 in
the text and adds column 3 to the matrix. See Figure 48.

N A P

m 0 1 1

h 1 x =? 0

Figure 48.

The two graphs are now in Figure 49.
In Figure 49 the result is undecided. The graph of x = 1 is better in the

aspect of being connected, and the graph for x = 0 is better in the aspect of
having less points. So it is a draw and the verdict is ‘undecided’.

This means the proof of the proponent fails to be conclusive.
Now the proponent tries again (item 4 in the text) and presents a different

table, using b= Intercourse, see Figure 50.
The two graphs are in Figure 51, and clearly x = 1 wins.
The opponent now attacks by adding column Y for the case of Yevama

(item 5 of the text). We explain this case: an unmarried man must marry
the widow of his brother if she is without children by biblical law. This
cannot be done by ceremony (Huppa) but must be done by familiarity, b.
In practice of course, if they don’t want to marry then a ‘divorce’-like pro-
cedure must be done.
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1. Graph for x = 1

A α

NP

2αα, β

2. Graph for x = 0

N• •A = P

β α

Figure 49.

N A

b 1 1

h 1 x =?

Figure 50.

1. Graph for x = 1

•
A = N

α

2. Graph for x = 0

A N

−→
2α α

Figure 51.
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We get Figure 52

N A Y

b 1 1 1

h 1 x =? 0

Figure 52.

The graphs we get are in Figure 53

1. Graph for x = 1

Y −→ N = A

2α α

2. Graph for x = 0

A = Y −→ N

2α α

Figure 53.

Clearly they are of equal strength and the answer is undecided.
The proponent now combines both tables to get x = 1 to win(items 6–8

of the text). We get Figure 54

N A P Y

m 0 1 1 0

h 1 x =? 0 0

b 1 1 0 1

Figure 54.
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The two graphs are in Figure 55.

1. Graph for x = 1

P α, β

3α

Y

2α

N

α

A

2. Graph for x = 0

N β

A α

P

2α

α, β

Y

Figure 55.

The case x = 1 wins because it has only value 1 for change of direction.
In the graph for x = 0, to get from N to P we have to change direction twice.

The opponent now attacks by adding a column of H (pleasurable activity,
item 9 in the text). He argues that money (m) and intercourse (b) give
pleasure, while the marriage ceremony h does not.

We get Figure 56

N A P Y H

m 0 1 1 0 1

h 1 x = 1 0 0 0

b 1 1 0 1 1

Figure 56.
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The graphs are in Figure 57 and the result is undecided

1. Graph for x = 1

α, β

N A α2α, β Y

H

2α

P

3α

2. Graph for x = 0

Nβ

A = Hα

P

α, β Y

2α

Figure 57.

Clearly case x = 1 has the advantage in change of direction index
(1 change of direction while the graph for x = 0 has 2 changes), but the
case x = 0 identifies A = H and this gives it advantage over the case x = 1.
The result is a draw.

The proponent tries again by adding a column G for divorce which can
be done by a writ, w. This discussion is in items 9–14 of the text. Figure 58
gives the table.

The graphs for this are given in Figure 59.

The case x = 1 wins because its graph has only one change of direction
and the graph of x = 0 has two changes.

The opponent now attacks by adding a column with K — meaning with-
out consent, like a girl being married by her parents without her consent. A
practice still followed by some parts of the world. This is item 15 of the text.

We get the following matrix of Figure 60.
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N A P Y H G

m 0 1 1 0 1 0

h 1 x =? 0 0 0 0

b 1 1 0 1 1 0

w 0 1 0 0 0 1

Figure 58.

1. Graph x = 1

α, γ

G

2α, β

Y

α, β

N

H

2αP

3α

A α

2. Graph x = 0

α, γ

G

2α, β

Y N

H

2αP

3α

A α

β

Figure 59.
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N A P Y H G K

m 0 1 1 0 1 0 1

h 1 x =? 0 0 0 0 0

b 1 1 0 1 1 0 1

w 0 1 0 0 0 1 1

Figure 60.

The two graphs are given in Figure 61.
The comparison of the two graphs is undecided. The graph for x = 1 has

the advantage of one change of direction, as compared with that of x = 0
which has 2. On the other hand, the graph for x = 0 has the advantage of
making A = K i.e. has less points.

So it is an undecided draw and so the proponent has not successfully
proved that x = 1 wins.

The proponent counters that he disagrees with the matrix of Figure 60, in
which the opponent put value 1 in the slot (m,K). The proponent’s opinion
is that a value 0 should be there. This gives us the matrix of Figure 62.
This corresponds to item 16 in the text.

The two graphs are in Figure 63
Clearly Case x = 0 is inferior because it has 2 changes in direction to get

from G to N .
This completes the analysis of the text.
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1. Graph for x = 1

N

K

Y

3α, β α, β

2α, γ

G

2α

α

A

3α

H

4α

P

2. Graph for x = 0

N

G

HP

3α 2α

A = K
α

α, γ

β2α, β

Y

Figure 61.

Remark: Achievement

Let us discuss what we have done here. We built a matrix abduction model
whose components and concepts use only topologically meaningful notions
(and hence the model is culturally independent) and we used it to analyse
an involved Talmudic argument and we got a perfect and meaningful fit.
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N A P Y H G K

m 0 1 1 0 1 0 0

h 1 ? 0 0 0 0 0

b 1 1 0 1 1 0 1

w 0 1 0 0 0 1 1

Figure 62.

1. Graph for x = 1

H

α

A

α, β

K

N

α, γ

α, β, δ

G

2α, β, γ Y

P

3α
2α

2. Graph for x = 0

α

A

H

2α

α, β

K

α, β, δ

G

2α, β, γ Y

P

3α

N
γ

Figure 63.
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6. Conclusion and discussion

This paper introduced a new method of abduction, which we called ma-
trix abduction and showed that it can be applied in a variety of areas.
The method arose directly from the study of the Talmudic non-deductive
inference rules of Kal-Vachomer, the Argumentum A Fortiori. See our He-
brew paper [1] for a very detailed analysis.

We would like in this concluding section to make some epistemological
comments.

Jacob Neusner [23] has argued (1987) that Talmudic thinking is very
differnet from western thinking that produced science. This explains why
the Jewish people through the ages did not make scientific achievements to
the level of other nations. This view has been strongly criticised by other
writers such as M. Fisch [10], who argues to the contrary, that rabbinic
thinking is very similar to that of western science.10

We put forward to the reader that our paper exemplifies and supports the
claim by M. Fisch. Matrix abduction is a new form of induction, arising from
the Talmud, which can solve problems currently in the scientific community.
(See [13] for a comprehensive treatise on abduction.)

We will venture to say that the logic of the Talmud is far richer and
complex than currently available western logic. We hope to systematically
investigate the logic in the Talmud in a series of papers and monographs.

Appendix

General applications of matrix abduction

A. Application to argumentation networks

Argumentation networks were introduced by P. M. Dung in a seminal paper
in 1995. Since then a strong community arose working in the area. Our
matrix abduction ideas can make a contribution to this area, as we shall
now discuss.

An abstract argumentation network has the form (S,R), where S is
a nonempty set of arguments and R ⊆ S × S is an attack relation. When
(x, y) ∈ R, we say x attacks y.

The elements of S are atomic arguments and the model does not give
any information on what structure they have and how they manage to attack

10Jews have had hard life throughout history. We don’t think they had the same op-
portunities as western scientists.
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each other.

The abstract theory is concerned with extracting information from the
network in the form of a set of arguments which are winning (or ‘in’), a set
of arguments which are defeated (or are ‘out’) and the rest are undecided.
There are several possibilities for such sets and they are systematically stud-
ied and classified. See Figure 64 for a typical situation. x→ y in the figure
represents (x, y) ∈ R.

b
...

...

a1

an

e1

en

Figure 64.

A good way to see what is going on is to consider a Caminada labelling.
This is a function λ on S distributing values λ(x), x ∈ S in the set {in,
out, ?} satisfying the following conditions.

1. If x is not attacked by any y then λ(x) = 1.

2. If (y, x) ∈ R and λ(y) = 1 then λ(x) = 0.

3. If all y which attack x have λ(y) = 0 then λ(x) = 1.

4. If one y which attack x has λ(y) =? and all other y have λ(y) ∈ {0, ?}
then λ(x) =?.

Such λ exist whenever S is finite and for any such λ, the set S+
λ = {x |

λ(x) = 1} is the set of winning arguments, S−

λ = {x | λ(x) = 0} is the
set of defeated arguments and S?

λ = {x | λ(x) =?} is the set of undecided
arguments.

The features of this abstract model are as follows:

1. Arguments are atomic, have no structure.

2. Attacks are stipulated by the relation R; we have no information on how
and why they occur.
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3. Arguments are either ‘in’ in which case all their attacks are active or are
‘out’ in which case all their attacks are inactive. There is no in between
state (partially active, can do some attacks, etc.). Arguments can be
undecided.

4. Attacks have a single strength, no degrees of strength or degree of trans-
mission of attack along the arrow, etc.

5. There are no counter attacks, no defensive actions allowed or any other
responses or counter measures.

6. The attacks from x are uniform on all y such that (x, y) ∈ R. There are
no directional attacks or coordinated attacks. In Figure 64, a1, . . . , an

attack b individually and not in coordination. For example, a1 does not
attack b with a view of stopping b from attaching e1 but without regard
to e2, . . . , en.

7. The view of the network is static. We have a graph here and a relation
R on it. So Figure 64 is static. We seek a λ labelling on it and we
may find several. In the case of Figure 64 there is only one such λ.
λ(ai) = 1, λ(b) = 0, λ(ej) = 1, i = 1, . . . , , j = 1, . . . , n.
We do not have a dynamic view, like first ai attack b and b then (if it is
not out dead) tries to attack ei. Or better still, at the same time each
node launches an attack on whoever it can. So ai attack b and b attacks
ei and the result is that ai are alive (not being attacked) while b and ej

are all dead.
We use the words ‘there is no progression in the network’ to indicate
this. The network is static.

We have addressed point 4 above in our paper [3], but points 1–3, 5–7
were addressed in [9].

There are several authors who have already addressed some of these
questions. See [5, 8].

Obviously, to answer the above questions we must give contents to the
nodes. We can do this in two ways. We can do this in the metalevel, by
putting predicates and labels on the nodes and by writing axioms about them
or we can do it in the object level, giving internal structure to the atomic
arguments and/or saying what they are and defining the other concepts, e.g.
the notion of attack in terms of the contents.

Example A.1 (Metalevel connects to nodes). Figure 65 is an example of
a metalevel extension.

The node a is labelled by α. It attacks the node b with transmission
factor ε. Node b is labelled by β. The attack arrow itself constitutes an
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η

γ : c

β : bα : a

δ

ω

ε

Figure 65.

attack on the attack arrow from b to c. This attack is itself attacked by
node b. Each attack has its own transmission factor. We denoted attacks
on arrows by double arrows.

Formally we have a set S of nodes, here

S = {a, b, c}.

the relation R is more complex. It has the usual arrows {(a, b), (b, c)} ⊆ R

and also the double arrows, namely, {((a, b), (b, c)), (b, ((a, b), (b, c)))} ⊆ R.
We have a labelling function l, giving values

l(a) = α, l(b) = β, l(c) = γ,

l((a, b)) = ε, l((b, c)) = η,

l(((a, b), (b, c))) = δ

l((a, ((a, b), (b, c)))) = ω.

We can generalise the Caminada labelling as a function from S ∪ R

to some values which satisfy some conditions involving the labels. We can
write axioms about the labels in some logical language and these axioms will
give more meaning to the argumentation network. See [3] for some details
along these lines. The appropriate language and logic to do this is Labelled
Deductive Systems (LDS) [11].

We shall not pursue the metalevel extensions approach in this paper
except for one well known construction which will prove useful to us later.

Our matrix methods allow us to give new kind of content to the nodes
and define a new mode of attack. This we now discuss.
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Consider Figure 66

a −→ b −→ c −→ d

Figure 66.

As an argumentation network, any finite acyclic graph is very simple.
We start with the nodes x that are not attacked, they get λ(x) = 1 and then
we propagate λ along the arrows. In Figure 66 we get

λ(a) = 1, λ(b) = 0, λ(c) = 1, λ(d) = 0.

The story becomes more interesting when we try and give contents to
the nodes. The main way of doing this in the literature is proof theoretical.
The nodes are theories or proofs and one node x attacks another node y if
it obstructs its proof by proving the opposite.

Figure 67 is such an example

→

x y

A, A→ B C, B →∼ C

Figure 67.

x attacks y because x proves B but y proves ∼ B.
Besnard and Hunter in [5] take the classical logic approach. The paper

of Amgoud and Caminada [8] surveys other approaches where the logic may
be nonmonotonic, i.e. we may have several defeasible arrows.

Anyway, all existing approaches are proof theoretical or classical seman-
tical involving consistency.

Our matrix system can give a completely different content to an abstract
argumentation network. Section 5 is an example of a series of attacks. Figure
68 is an example.

x attacks y by joining it from the right to form Figure 69
Our matrix abduction will tell y it must put 1 in the blank “?” place. In

Figure 69, the result of the attack by x, we get that “?” remains undecided.
We can have new kind of attacks, as in Figure 70. z attacks y by wrapping

around it.
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1

0

0 1

1 ?

x y

Figure 68.

0 1 1

01 ?

Figure 69.

1 0

0 0

1 1 10

0 1

1 ?

z

y

Figure 70. z wraps around y



Analysis of the Talmudic Argumentum A Fortiori Inference Rule . . . 345

The result is Figure 71

0 1 1 0

00?1

1 101

Figure 71.

Figure 72 is a schematic joint attack.

Z Y

X

attack from
right hand side

attack from

left hand side

Figure 72.

We get Figure 73

X YZ

Figure 73.

Our matrix abduction can deal only with rectangular matrices. So we
need to be careful with joint attacks, unless we extend our algorithms to
deal with general shapes, as for example in Figure 74.

We shall stop here. The full machinery can be developed in another
paper.11

11One way to deal with general shapes is to expand the shape into a rectangle and
regard all missing squares as having N/A (not applicable) value. This turns the matrix
A = [ai,j ] into a partial function on the index (i, j). It can give ai,j = 0 or ai,j = 1 or
ai,j = N/A = undefined, and exactly once it can give ai,j =?. The columns become
partial functions into {0, 1} and the ordering graph can be defined between columns as
≤ on all coordinates in which they are both defined. See our paper in Hebrew [1] for
examples of such matrices arising from Talmudic reasoning.
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0 1

1

1 0

0x=?

1

Figure 74.

Remark A.2 (Summary). Let us summarise what our matrix example does
for argumentation theory.

Consider again the chain in Figure 66. a attacks b by joining it and
forming a new matrix ab, which joins c to form (ab)c and then we get ((ab)c)d.
The new matrix may still have 1 as a solution in which case the attack did
not kill d. It may have undecided or 0 as a solution in which case the attack
succeeded. In any case, we present a new form of attack in argumentation
networks.

B. Application to Voting paradoxes

We now give a voting case study, (see [7]).
A group of 13 farmers from southern Germany rent a bus and go to

London for a week’s holiday. They are offered 3 extra events in London,
for which they have to pay individually, in addition tot he agreed holiday
package cost. These are:

T Evening at the theatre (the Globe)

D Fancy dinner at a posh London restaurant

B A tour in a boat along the Thames.

The farmers are asked to vote. We get the following result, where 1
means ‘I want it’, see Figure 75

The question is what to do? Where to go?
If we consider the options as packages, then packages

C = T∧ ∼ D∧ ∼ B
D = ∼ T∧ ∼ D ∧B
G = ∼ T ∧D∧ ∼ B

each received three votes and so they draw the winning package. We cannot,
however, decide between them.

If we regard the voting procedure as collecting individual votes for each
of the options {T,D,B}, then we get Figure 76.
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A B C D E F G

T 0 1 1 0 1 1 0

D 1 1 0 0 0 1 1

B 1 1 0 1 1 0 0

No. of farmers
voting for 1 1 3 3 1 1 3
this column

Figure 75.

No. of farmers No. of farmers
voting yes voting no

T 6 7

D 6 7

B 6 7

Figure 76.

The winning combination is ∼ T∧ ∼ D∧ ∼ B, namely, go to no event.
This is known as the multiple voting paradox, for three issues (T,D

and B) and 13 voters. We can generate a paradox for four issues for example,
in this case we need 31 voters, see [7].

The paradox is that by majority vote we get a result that nobody wants,
in our case this result is not to go anywhere! Nobody voted for (0, 0, 0) as
a column.

Let us see whether our matrix abduction point of view can help. Our
first question is whether the method of matrix abduction is applicable to the
voting problem. Do the criteria discussed in Section 1.1 apply here? The
answer is yes. Each farmer wants something. Each option has ingredients
to offer. If the option can satisfy what the farmer wants he will vote for it.
This example is also slightly different. There are connections between the
rows, maybe giving rise to constraints (see Example 3.20. There is also the
question of cost, some farmers must have chosen 2 out of the three options
simply because they didn’t have enough money.
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Let us construct the graph for this matrix. We get Figure 77.12 The
table in Figure 78 tells us what are the ingredients of the options. The
way we get the ingredients, is to look at Figure 75. T has 1 for columns
B,C,E, F . So T must have enough ingredients to satisfy the needs of each of
B,C,E, F . These needs we get from the allocation of Figure 77. So T needs
{2α, β}. If we take into account how many voters voted for each column,
then T needs {6α, 3β}, since 3 voters voted for C. Thus we put in Figure 78
{6α, 3β} for T. Similarly we calculate {6α, 3γ} for D and {3α, 3β, 3γ} for B.
Remember, we give T not the union of allocations of the relevant columns,
but the minimum that we need!

2α, β

B

α

F 2αE α, βA α, γ

D CG

2α, γα, β, γ

Figure 77.

12Note that the voting matrix has columns corresponding to all Boolean combinations
of {T,D,B}.

Thus in Figure 77 if we were to annotate with sets (not multisets) and annotated B

with ∅, we would have annotated as follows:

A : {α}, E : {β}, F : {γ}
D : {α, β}, G : {α, γ}, C : {β, γ}.

These are Boolean allocations representing the Boolean algebra with T,D,B as a Boolean
algebra of subsets of {α, β, γ} with Truth =∅, Falsity ={α, β, γ} and ∧ becomes ∨ and ∨
becomes ∧.

We get nothing new. So the two new mathematical steps we are making are assigning
α to B and using multiples of α.
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Ingredients

T 6α, 3β

D 6α, 3γ

B 3α, 3β, 3γ

Figure 78.

Let us now try and guess what α, β, γ can be. D and B have γ in
common. Our guess is that we can take γ to be ‘non-intellectual activity’.

B and T have β in common. Our guess would be that β is a sightseeing
factor. Food you get in Germany. Theatre and the Thames are characteristic
of London.

α is common to all. Our guess is that it can be cost. A boat ticket costs
less (per person) than a theatre ticket or a dinner check.

So how can this help our decision about what to do?
We would go for B and only one of T and D. Let us check the vote for

the (T,D) component only. We have four possibilities. See Figure 79

No of votes

T ∧D 2

T∧ ∼ D 4

∼ T ∧D 4

∼ T∧ ∼ D 3

Figure 79.

We get a tie between T∧ ∼ D and ∼ T ∧ D. Which one to choose?
Looking at the ingredients, they are symmetrical, {6α, 3β} compared to
{6α, 3γ}. It is really a vote between β and γ. We must ask the farmers.

Note that the graph is symmetrical. So we could have assigned the α, β, γ

differently.
There are two more possibilities, assign in Figure 77 the value 2α to E

or assign the value 2α to A.
We get Figures 80 and 81 respectively.
The following table, Figure 82, summarises the possible ingredients for

T,D,B according to which figure we use. It extends Figure 78.
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2α, β

B

α

F α, βE 2αA α, γ

D CG

α, β, γ2α, γ

Figure 80.

α, β, γ

B

α

F α, βE α, γA 2α

D CG

2α, β2α, γ

Figure 81.
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Ingredients Ingredients Ingredients
Figure 78 Figure 80 Figure 81

T 6α, 3β 6α, 3β 3α, 3β, 3γ

D 6α, 3γ 3α, 3β, 3γ 6α, 3β

B 3α, 3β, 3γ 6α, 3γ 6α, 3γ

Figure 82.

We see that the graphs and the tables, including Figure 75 are com-
pletely symmetrical. So the conclusion is that the farmers should do any
two events. Only a combination of two events can have enough ingredients
for all columns. Namley the vote concludes with

V = (T ∧D∧ ∼ B
∨

T∧ ∼ D ∧B
∨
∼ T ∧D ∧B).

Note that this matrix abduction approach is pretty revolutionary. We follow
neither the drawing contenders for the maximal vote (of 3, namely, C,D

and G), i.e. we do not take exactly one of {T,D,G}, i.e. T∧ ∼ D∧ ∼ B
or ∼ T ∧ D∧ ∼ B or ∼ T∧ ∼ D ∧G, nor do we follow the result of the
component vote of Figure 76, namely ∼ T∧ ∼ D∧ ∼ B.

We follow a compromise, as suggested by the matrix abduction.

This is already more than the voting procedures can give us. Also we
know what to ask the farmers in order to decide the matter!

Let us now check what happens in the case of the four issues, 31 voters
paradox, see [7]. This paradox has issues a,b, c,d. a∧b∧c∧d is a winning
combination, and yet, calculated coordinatewise we get complete reversal,
∼ a∧ ∼ b∧ ∼ c∧ ∼ d, which is an option for which nobody voted!

Figure 83 gives the voting table.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X10 X13 X14 X15

a 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

c 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

d 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

No of
Voters for 5 1 1 1 1 1 1 4 1 1 1 4 1 4 4
this column

Figure 83.



352 M. Abraham, D. Gabbay, and U. Schild

If we count the numbers of voters who voted for a column containing 1
for a (i.e. who wanted a) we get 15, as opposed to 16 voters who wanted
∼ a. Similarly we have for b,c and d. This is why we have a paradox.

If we follow the majority package vote we have to go for a ∧ b ∧ c ∧ d
because 5 voters went for it, the biggest number of voters. This makes 26
other voters unhappy. If we go for the issue by issue result, then ∼ a∧ ∼
b∧ ∼ c∧ ∼ d wins, since each issue got voted 0 by 17 against 16 who voted
1. But then this is not good either since everyone voted for something.
Nobody wanted the ‘nothing’ option.

So we propose the matrix method. Figure 84 draws the graph of the
columns of Figure 83, with an indicated allocation of ingredients.

X1

α

X2

α, δ

X3

α, γ α, β

X5 X9

2α

X4 X6 X7 X10 X11 X13

α, γ, δ α, β, δ α, β, γ 2α, δ 2α, γ 2α, β

α, β, γ, δ

X8

2α, γ, δ

X10

2α, β, δ

X14

2α, β, γ

X15

Figure 84.

If we collect the ingredients from Figure 84 using the table of Figure 83
we get Figure 85. Note that we make allowance for the number of voters.

To satisfy the needs of all voters we need at least two of {a,b, c,d}.
We do not take more because each individual a,b, c, or d was voted 0 by
the majority. The winning single package a does not have enough α to satisfy
the X8,X10,X14 and X15 voters.

Thus we need two from {a,b, c,d}. Note that we relied here on the
allocation of α, β, γ, δ on the graph. There are three other ways of doing
this allocation, giving α to X1 but 2α either to X2,X3 or X5.
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ingredients

a 5α, 4β, 4γ, 4δ

b 8α, 4γ, 4δ

c 8α, 4β, 4δ

d 8α, 4β, 4γ

Figure 85.

Since both the graph of Figure 84 and the table of Figure 83 are com-
pletely symmetrical in the swapping of X2,X3,X5 and X9, our conclusion
that we need two of {a,b, c,d} to make everyone happy does stand!

Thus our recommendation for the vote of Figure 83 is

F = (a ∧ b∧ ∼ c∧ ∼ d
∨

a∧ ∼ b ∧ c∧ ∼ d∨
a∧ ∼ b∧ ∼ c ∧ d

∨
∼ a ∧ b ∧ c∧ ∼ d∨

∼ a ∧ b∧ ∼ c ∧ d
∨
∼ a∧ ∼ b ∧ c ∧ d)

Again note that this is contrary to both the winning package vote (a ∧
b ∧ c ∧ d which is winning by 5 voters) and the winning issue by issue vote
(∼ a∧ ∼ b∧ ∼ c∧ ∼ d where each ∼ a,∼ b,∼ c,∼ d wins by 17 against 16
votes).

Again a revolutionary compromise (suggested by the matrix method)
between the two extreme components of the paradox.

Remark B.1. We stress that we are not necessarily offering here the matrix
method as new voting procedure. The matrix method relies on ingredients,
not on numerical aggregation of votes. It can help when the voting aggre-
gation is parasdoxical.

We shall examine the matrix method as a voting procedure in a future
paper.

To show the coherence and solidity of our matrix approach, let us increase
the number of voters by 2, from 31 to 33, and let them vote for X1. Figure 83
will change in the bottom of column X1 from 5 to 7.

X1 will continue to be the winning package but now the paradox will
disappear. Each of a,b, c and d will get coordinatewise 17 votes as opposed
respectively 16 to ∼ a,∼ b,∼ c and ∼ d.

The graph in Figure 84 remains the same, with its allocations of α, β, γ, δ.
What will change is Table 85, which describes the amount of ingredients
α, β, γ, δ to each row. Each of a,b, c,d will get 2 more α. So a now has 7α.
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Still not enough to satisfy the needs of the voters of X10,X14 and X15 which
require 8α.

So although there is no paradox, the majority of X1 is still not strong
enough to go alone. If we add one more voter who votes for X1, (bringing
the number of voters to 34) then a will get 8α, now enough to satisfy on its
own all voters.

We see here that our method is different but still reasonable and
paradox free.

As we said, a detailed study of this approach will be pursued in
another paper.

C. Application to Paradoxes of judgement aggregation

We begin with the doctrinal paradox, identified by Kornhauser and Sager
[20, 21]. The paradox arises when majority voting can lead a group of
rational agents to endorse an irrational collective judgement. Consider the
question of liability following a breach of contract. Three judges have to
decide whether

a= there was a binding contract

and

b= there was a breach of that contract.

We get liability only when both a and b are upheld.
The table in Figure 86 describes the situation.

Judge A Judge B Judge C majority vote

a 1 0 1 1

b 0 1 1 1

liability a ∧ b 0 0 1 x = 0

Figure 86.

Judges A and C think the evidence for a is convincing but not so for b.
Judges B and C think the evidence for b is convincing but not so for a. Thus
each judge individually would express judgement as in row a∧b. Therefore
two judges will give verdicts of no liability and only one, Judge C, will give
a verdict of liability. Going by majority of verdicts — the final verdict is
x = 0.



Analysis of the Talmudic Argumentum A Fortiori Inference Rule . . . 355

On the other hand, if we were to take majority judgement first on a
and b individually, then we get that both a and b get 1 having a majority
of two judges,and so x must be 1 and not 0.

This is the paradox.
We see this paradox as a special matrix abduction problem.
We can now formulate the general matrix aggregation problem.

Definition C.1 (Matrix aggregation problem).

1. Let V = (x1, . . . , xn) be a vector of numbers in {0, 1}. An aggregation
function g is a function giving a value g(V ) ∈ {0, 1}, for any such vector.
For example

gmajority(V ) = 1 iff
∑n

i=1 xi > 1
2

g∧(V ) = 1 iff xi = 1 for all i

g∨(V ) = 1 iff xi = 1 for some i

2. Let grow and gcolumn be two aggregation functions.

A matrix A with m + 1 rows and n + 1 columns is a matrix aggregation
problem if it has the form described in Figure 87.

A1 . . . An Row aggregation

a1 grow(a1)
...

am grow(am)

Column
aggregation gcolumn(A1) gcolumn(An) x =?

Figure 87.

The row aggregation column gives the aggregated value for each row.
The column aggregation row gives the aggregated value for each column.
We get a matrix abduction problem if we ask what should x =? be. Do we ag-
gregate the column above the x =? square, i.e. let x = gcolumn(grow(a1), . . . ,
grow(am)) or do we aggregate the row to the left of the x =? square, i.e. let
x = grow(gcolumn(A1), . . . ,gcolumn(An)) or do we do some matrix abduction
algorithm A on the matrix and get a value for x?

Figure 88 describes the situation of Figure 86 seen as a matrix aggrega-
tion problem.

If we apply our graph technique to this figure, we get the graphs in
Figure 89.
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A B C D=gmajority

a 1 0 1 1

b 0 1 1 1

c = g∧ 0 0 1 x =?

Figure 88.

Case x = 1

A B

C = D

Case x = 0

C D

A

B

Figure 89.

Clearly by our criteria of Section 3, x = 1 wins. Of course we need to
formulate new criteria suitable for the voting and the aggregation application
area. We have here different kinds of matrices. So we need to look at some
examples and match the intuitive ideas embedded in the examples with
criteria on graphs.

There is also symmetry between rows and columns in this problem. In
general we have two aggregation functions without any special conditions on
them. So we must also consider the graphs arising from the rows. This we
show in Figure 90 for our specific example.

Again, according to our criteria of Section 3, case x = 1 wins.

The interested reader can look up a recent penetrating analysis of the
paradox in [16]. The paper uses probabilistic methods, looking at the reli-
ability of the judges involved and aggregating accordingly. If we adopt the
reliability idea into our matrix we get the matrix in Figure 91
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Case x = 1

c

a b

Case x = 0

a • b • c •

Figure 90.

Judge Reliability Judge Reliability Judge Reliability Majority
A of A B of B C of C vote

a 1 r(A,a) 0 r(B,a) 1 r(C,a)

b 0 r(A,b) 1 r(B,b) 1 r(C,b)

a ∧ b 0 0 1

Figure 91.

The reliabilities r(A,a), r(A,b) are the numbers in {0, 1} telling us
whether Judge A is reliable on issues a and b. Similarly, r(B,a), r(B,b),
r(C,a) and r(C,b).

It was suggested to us by S. Hartmann that we process the columns first
in the matrix and then aggregate. We use the following processing formula.

• x with reliability 1 is processes as x′ = x

• x with reliability 0 is processed as x′ = 1− x.

So the formula is

x′ = x · r(x) + (1− x)(1(r(x))

So in the matrix of Figure 91 we first process the pairs of columns and get
the matrix of Figure 92.

Note that such preprocessing is done in the Talmud. We discuss this in
our Hebrew paper [1, Part 2, Section A].
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new new new vote
Judge A Judge B Judge C

a r(A,a) 1− r(B,a) r(C,a)

b 1− r(A,b) r(B,a) r(C,b)

a ∧ b

Figure 92.

Summary

The general theory of the matrix aggregation problem needs to be developed.
We see however already at this stage that we have a clear mathematical
formulation of the problem and we have a machinery to offer a solution.
This is good news for the judgment aggregation community.

We hope to address this problem in a subsequent paper.
We note that we have not explained away the aggregation paradox but

offered a possible third computation to bail us out of the aggregation
problem.

D. Learning, Labelling and Finite Models

We continue to examine the example of monadic predicate logic introduced
in Figure 8. We have a finite model with predicates A1, . . . , Am and elements
d1, . . . , dn. Let us assume that the definite matrix A = [ai,j ], i = 1, . . . ,m
and j = 1, . . . , n describes the model. That is we have for all i, j

ai,j = 1 iff Ai(dj) is true.

Our question is what can we learn from this data?
To explain how we can make use of our matrix realisation method, let us

take an example we have already analysed. Consider the matrix of Figure 60
for the case x = 1.

We consider this matrix as a matrix of a model with elements

d1 = N

d2 = A

d3 = P

d4 = Y

d5 = H

d6 = G

d7 = K
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and predicates
A1 = m
A2 = n
A3 = b
A4 = w

The graph for this matrix is in Figure 61.
Let us insist on a realisation for this graph using sets, not multisets. This

means we do not allow multiples of α.
Therefore we would get the following realisation f in Figure 93.

{α, α2, γ, β} N

H

A

P

Y

{α, α2}{α, α2, α3}

{α, γ}

{α, β}

K

{α}{α, β, δ}

G

Figure 93.

Figure 94 gives the corresponding matrix realisation.13

Ai(dj) = True iff f(Ai) ⊇ f(dj).

Note that instead of a model with 7 elements, we found a model of 6
elements (a saving in the number of elements) which contains all the infor-
mation. In this new smaller model we have that Ai, dj are all predicates and
the meaning of Ai(dj) is ∀x(dj(x) → Ai(x)).

Independently of whether we save on the number of points, this method
suggests a translation of the monadic first order theory into itself.

13This is hardly surprising. Let A = [ai,j ] be a definite matrix with m rows and n

columns, m ≤ n. Let a1, . . . , am be the rows and C1, . . . , Cn be the columns. Then each
column C is a subset C of the set M = {a1, . . . , am} of all rows. We have ai ∈ Cj iff
ai,j = 1. Thus the columns are elements of the Boolean algebra of the powerset 2M . The
graph of the columns is a subgraph of the lattice of the algebra 2M with M as the smallest
element and ∅ as the top element. Since we give α to the bottom element of the graph,
this observation implies that we can get a set realisation to the graph with m+1 elements.
In practice many graphs can manage with less, but some might need more, since we need
to realise the cancellation of edges and some possible restrictions as well.
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m : {α,α2, α3}
h : {α, γ}
b : {α,α2, β, γ}
w : {α, β, γ}
N : {α, γ}
A : {α}
P : {α,α2, α3}
Y : {α,α2, β, γ}
H : {α,α2}
G : {α, β, δ}
K : {α, β}

Figure 94.

We prepare the ground for the translation by observing that all monadic
models for m monadic predicates {A1, . . . , An} can be reduced equivalently
to models with at most 2m elements. This holds since each element d in the
domain has a type

∧
i±Ai(d), and there are at most 2m such types. So any

formula with quantifiers can be rewritten to a formula without quantifiers.
If we have 2m constants in the language d1, . . . ,d2m . We write ∀xϕ(x) ≡∧2m

i=1 ϕ(di) and ∃xϕ(x) ≡
∨2m

i=1 ϕ(di).

So any φ becomes φ∗ by eliminating the quantifiers in this manner.
So, for example

φ = ∀x∃y(A(x)→ B(y))

becomes

φ∗ =
∧
i

∨
j

(A(di) → B(dj))

We can translate now any φ into φ∗∗ as follows:

Let D1, . . . ,D2m be additional predicates. Translate any Ai(dj) into
∀x(Dj(x) → Ai(x)). Now given any closed formula φ translate first into φ∗

by using dj. φ∗ will have no quantifiers. Now replace in φ∗ any Ai(dj) as
above and get φ∗∗.

We have

Lemma D.1. φ has a monadic model iff φ∗∗ has a monadic model.

Proof. φ has a monadic model iff φ has a monadic model M with 2m

elements iff φ∗ has this same monadic model. We now construct the matrix A
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for the model M, and construct a set realisation of it using a set of labels L.
Then φ∗ holds in M iff φ∗∗ holds in L.

Remark D.2. We are aware that we can have a similar translation by re-
garding any element dj of the domain as a predicate Dj with an extension
of exactly the element dj . Thus Ai(dj) becomes

∀x(Dj(x) → Ai(x)).

We need to add the axioms

1. ∃xDj(x), j = 1, . . . , n

2. ∼ ∃x[Dj(x) ∧Di(x)], i �= j

We have φ has a model of n elements iff (1)∧ (2)∧φ∗∗ has (the same) model.
This translation does not decrease the number of elements because (1)

and (2) ensure the same number of elements is used.

Furthermore, we can use the Lemma for the previous translation and
a theorem Prover to find a minimal model for φ∗∗. This will give us the
minimal number of labels for the columns withot using the graphs. We
summarise

Lemma D.3. Let A be a definite m× n matrix. Consider it as a model with
rows as predicates and columns as elements as in Figure 8.

Let ϕ be the following formula

ϕA =
∧

ai,j=1

∀x(Dj(x)→ Ai(x)).

Let a theorem prover find a minimal model M for ϕA.
Then the sets

Dj = {a ∈M | Dj(a) is true}

form a set realisation for A.

Proof. Follows from our previous constructions and lemmas.

Remark D.4. How do we use a theorem prover to find a multiset realisation?
Let A be given. Write ϕA. Add constants to the language α1, α2, . . . , αn.

We do not need more than n since we know we can find a realisation with n

elements. We think of αk as kα. This means that we add the axiom

α =

n∧
i=1

n−1∧
j=1

Di(αj+1) → Di(αj))
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This means that if (j + 1)α labels a node then so does jα.
We use a theorem prover to find a model for α ∧ ϕ and minimise the

number of elements in the model which are not αj .

E. Applications to Access Control Reasoning

Matrix abduction can be also employed in reasoning with incomplete infor-
mation about access control policies.

Access control consist of determining whether a principal (machine, user,
program . . . ) which issues a request to access a resource should be trusted
on its request, i.e. if it is authorized.

A classical way of representing access control policies is the employment
of an ”Access Control Matrix” which characterizes the rights of each princi-
pal with respect to every object in the systems.

For instance, suppose we have an access control policy expressed in
Figure 95, where in cell (i, j) we place 1 if principal i can read filej.

file1 file2 file3

A 1 1 1

B 0 1 0

C 1 ? 0

Figure 95. Access Control Matrix

Where the ‘?’ means that the specification of the access control policy is
unknown or incomplete. The question is: what to do? Should a reference
monitor deny the access to read file2 to C or not?

There are many ways to reply to the raised questions, here we report two
simple examples

• The reference monitor can query his knowledge about the principals A,
B and C. For instance, if C has more power than A (maybe C is root
and A a user), the reference monitor can than derive that C has the
right to read file2.

• The reference monitor can rely on some knowledge about how the files are
organized, so if file1 has a higher protection level the reference monitor
may assume that file2 can be read by C.

Another possibility is to employ the methods of Matrix Abduction pro-
posed in this article. We leave for future research the formalization of an or-
dering between components of access control matrices in order to be able
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to craft access control policies that can be employed in reasoning without
complete knowledge of the domain. Recently, in [4] abduction in access
control policies has been also applied to compute a specification of missing
credentials in decentralized authorization languages. We believe that matrix
abduction can provide a practical tool to craft new access control models,
as future work we plan to extend the logical framework presented in [6, 2]
with abductive reasoning methods.

Acknowledgements. We are grateful to S. Hartmann, D. Makinson and
O. Rodrigues for helpful comments.
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