
Studia Logica (2009) 92: 437–477
DOI: 10.1007/s11225-009-9203-4 © Springer 2009

Steve Barker
Guido Boella

Dov M.Gabbay
Valerio Genovese

A Meta-model
of Access Control in
a Fibred Security Language

Abstract. The issue of representing access control requirements continues to demand

significant attention. The focus of researchers has traditionally been on developing partic-

ular access control models and policy specification languages for particular applications.

However, this approach has resulted in an unnecessary surfeit of models and languages.

In contrast, we describe a general access control model and a logic-based specification

language from which both existing and novel access control models may be derived as

particular cases and from which several approaches can be developed for domain-specific

applications. We will argue that our general framework has a number of specific attrac-

tions and an implication of our work is to encourage a methodological shift from a study

of the particulars of access control to its generalities.

Keywords: Logic, Fibring, Access Control, Security.

Introduction and overview

Over a number of years, researchers in access control have proposed a variety
of models and languages in terms of which authorization policies may be
defined (see, for example, [6, 8, 21, 11]).

In this paper, we argue that existing access control models are based on
a small number of primitive notions that can often simply be specialized for
domain-specific applications. The problems that we address are to estab-
lish what the primitives of access control models are and to propose a logic
language for their representation. The problem that we consider is not too
dissimilar to the one that Landin [25] observed in relation to programming
languages: rather than computer scientists developing n special program-
ming languages for n application areas (n ∈ N), it is essential for them to
identify instead a set of programming language “primitives” from which a
specific subset may be selected as the basis for deriving a particular language
(for a particular area of application). We will argue that by addressing the
problem of finding a general model of access control and a logic language for
policy formulation, expressed in terms of the model, a number of additional

Special Issue: New Ideas in Applied Logic
Edited by Dov M. Gabbay and Jacek Malinowski



438 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

problems can be addressed (e.g., the problem of sharing access control policy
information).

The essential primitive notions that we identify as common to access
control models (and access control specification languages that are based
on these models) are: approaches for categorizing principals, methods for
describing their properties and the relationships between them, and a means
for specifying a range of modalities (of which permission and authorization
are of interest, but not exclusively so). We argue that multiple existing access
control models can be expressed in terms of the primitive notions that we
identify, that the degree of overlap amongst existing access control models is
significant, and that many “novel” access control models can potentially be
developed by simply combining the primitives of access control in novel ways.
We formalize all of the notions that underlie our approach by developing
a new logic language.

In precise detail, the main contributions of the paper are as follows.
We introduce a meta-model of access control, we demonstrate that partic-
ular access control models are special cases of our meta-model of access
control, we formally define the meta-model using a logical framework called
Fibred Security Language (FSL) [15, 14] and we show how the generality of
FSL allows for the the formal specification of a wide range of access control
policies that are particular instances of our meta-model. As such, we define
a rich framework for formulating access control policies.

Having a general, unifying access control meta-model provides a ba-
sis for a common, well-defined specification of access control requirements.
Having a common, agreed semantics is essential when access control infor-
mation needs to be shared (as is the case with many distributed applica-
tions) and is important for reducing the burden on policy administrators
when it comes to representing application-specific access control require-
ments. That is, a policy author can specialize the meta-model to define
a domain-specific model and the access control policies that can be repre-
sented within that model. These access control policies can be naturally
formulated in FSL; thus, a policy author is provided with a general frame-
work for specifying access control requirements. Because the meta-model
reduces the burdens on policy authors (i.e., it provides a well defined frame-
work for policy authors to specialize), it is useful for the rapid prototyping
of policies and for abstracting away the complexities of access control policy
specification. Identifying a common access control model is also desirable
because it allows for various general syntaxes to be developed in terms of the
generic model (e.g., a natural language syntax for simplifying access control
specification and an XML-based syntax for access control policy exchange).



A Meta-model of Access Control in a FSL 439

We also note that an important consequence of our work is to demonstrate
that research into the universal aspects of access control models should be
given prominence rather than the research community continuing to focus
on the development of the next 700 particular instances of access control
models and access control languages (cf. [25]).

Although proposals have previously been made for general access control
models (see, for example, [22] and [23]), in the ensuing discussion we argue
that these approaches are not sufficiently general to warrant the attribution
“general access control model” because, as we will see in Section 4, they
assume a very limited, particular set of categorizations of principals and
have restricted interpretations of some of the key, primitive aspects of access
control models.

On the use of logic, in general, for representing access control require-
ments, we note that logics are important for providing an unambiguous,
formal semantics for access control policies, which is essential, for instance,
to enable policy authors to prove properties of policy specifications (e.g., se-
curity and availability cf. [9]). The particular benefits of using FSL for access
control policy specifications include that it provides a very general seman-
tics based on composition of logics, it allows for the specification of a range
of modalities that are useful for representing access control requirements in
distributed computing contexts, and it allows for the representation of fea-
tures like joint permission assignment to a group of principals (rather than
individual principals). As a drawback, FSL is generally undecidable because
it is based on a first order language. We refer to [20] for a discussion on how
to constrain first order languages in order to get tractable computational
properties in the derivation procedure.

The remainder of this paper is organized thus. In Section 1, we describe
the conceptual primitives on which our approach is based: the categorization
of principals, the relationships between these categories, and the modalities
of relevance in access control. In Section 2, we present the fibring method-
ology and we introduce the Fibred Security Language. In Section 3, we
describe our meta-model of access control in FSL and we show how a range
of existing access control models and some novel access control models may
be viewed as instances of our meta-model, when it is formally expressed
in terms of FSL, and how FSL may be used as a general language for the
specification of access control policies in terms of different access control
models (e.g., DAC, RBAC, SBAC). In Section 4, we discuss related work.
In Section 5, conclusions are drawn and further work is suggested.



440 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

1. Fundamental Concepts

In this section, we describe the conceptual features upon which our work is
based.

Our access control meta-model is defined in terms of the primitive notions
of categories, relationships between categories and between categories and
principals, and modalities.

Intuitively, a category (a term which can, loosely speaking, be interpreted
as being synonymous with, for example, a type, a sort, a class, a division,
a domain) is any of several fundamental and distinct classes or groups to
which entities may be assigned. In the approach that we introduce, we
regard categories as a primitive concept and we view classification types
used in access control, like classifications by role, user attributes, status,
clearances, discrete measures of trust, team membership, location, . . . , as
particular instances of the more general class of category.

It is important to note that we are not concerned with establishing an
a priori necessarily complete set of categories for access control, and we also
only give a descriptive, language-based account of categories. However, the
categories that may be used in our meta-model can be arbitrarily complex
(e.g., by combining subcategories) and multiple subcategories can be derived
from any number of (super-)categories.

In the alphabet that we use to describe our family of access control
models, we take the set of entities, which may be referred to in a specification
of access control requirements, as a primitive ontological category. Entities
are the subjects of predication and cannot themselves be predicated. Entities
are denoted uniquely by constants in a many sorted domain of discourse.
The key sets of constants in the universe of discourse that we assume in our
formulation are as follows:

• A countable set C of categories, where c0, c1, . . . are used to denote
arbitrary category identifiers.

• A countable set P of principals, where p0, p1, . . . are used to identify
principals.1

• A countable set A of named actions, where a0, a1, . . . are used to denote
arbitrary action identifiers.

• A countable set R of resource identifiers, where r0, r1, . . . denote arbi-
trary resources.

1Example of principals are: Users, machines, channels, conjunction of principals,
groups . . . [4]



A Meta-model of Access Control in a FSL 441

Entities in the set P will include any elements (typically principals de-
noted by their public key) that may access a resource in a computer system
to which access must be controlled or which may make assertions about other
principals (cf. credentials). We assume that principals that request access to
resources are pre-authenticated. The actions that we allow are represented
by using arbitrary strings of characters that name arbitrary actions that
principals may perform; we do not restrict attention to a small, pre-defined
set of operations (as is typical in a number of access control models).

In addition to the sets of constants above, we include two other sets of
constants of special importance in defining the type of general access control
framework that we wish to develop:

• A countable set S of situational identifiers.
• A countable set E of event identifiers, e0, e1, . . .

The situational identifiers that we admit are used to denote contextual or
environmental information (e.g., IP addresses, times, system states, external
states, etc). The precise set S of situational identifiers that is admitted will,
of course, be application specific. On times, we adopt a one-dimensional,
linear, discrete view of time, with a beginning and no end point. That is,
the model of time that we choose is a total ordering of time points that is
isomorphic to the natural numbers. In this paper, we represent times in
YYYYMMDD format, an encoding of times as natural numbers. Locations
and system state indicators are assumed to be represented by strings of char-
acters (e.g., “Europe”, “System under attack”). Event identifiers uniquely
denote happenings at a point in time.

In addition to the different types of entities that we admit, we consider
properties of and relationships between entities.

A property is expressed by a 1-place predicate of the form p(τ), where
τ is a term. For example, current time(t) specifies that t has the property
of being the current time according to a system clock. Relations are used
to describe how one entity may be related to another. Terms of the type
that are included in our alphabet may be used in relations. For example,
p(b, d, t) may be used to express that p(b, d) holds at time t. Notice too
that particular relations may be admitted for particular representations of
access control requirements and any number of application-specific relations
may be defined in order to satisfy domain-specific requirements. We assume
that arithmetic operators ×,÷, +,− and mod and comparison operators
=,≥,≤, >, < and �= may be used in access control policy specifications.



442 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

In our approach, the following two relations are of primary importance:

• PCA is a relation, PCA ⊆ P × C.

• ARCA is a ternary relation, ARCA ⊆ A×R× C.

The semantics of the elements in PCA and ARCA are defined thus:

• (p, c) ∈ PCA iff a principal p ∈ P is assigned to the category c ∈ C.
Henceforth, pca(p, c) is used to express that principal p is assigned to
the category c.

• (a, r, c) ∈ ARCA iff the action a ∈ A on resource r ∈ R can be performed
by principals assigned to the category c ∈ C. Henceforth, arca(a, r, c) is
used to express that the a action can be performed on resource r by a
principal assigned to category c.

For access control models, two modalities are of prime importance: per-
missions and authorizations. A permission is a pair (a, r) that denotes that
the action a can be performed on resource r. Hence, arca(a, r, c) denotes
that the permission (a, r) is assigned to c ∈ C. An authorization in access
control is an assignment of a permission to a specified principal, which can
be formalized as follows:

• PAR is a ternary relation, PAR ⊆ P ×A×R.

• (p, a, r) ∈ PAR iff a principal p ∈ P can perform the action a ∈ A on
the resource r ∈ R. Henceforth, par(p, a, r) is used to express that the a
action on resource r, the permission (a, r), is assigned to the principal p.

The set PAR is the set of authorizations that hold according to a spec-
ification of an access control policy, Π; the set of par(p, a, r) facts that hold
with respect to Π may be expressed as follows:

∀p ∈ P ∀a ∈ A ∀r ∈ R ∃c ∈ C[pca(p, c) ∧ arca(a, r, c)
→ par(p, a, r)]

Access control models will typically include a relationship ρ between cat-
egories that defines (typically) an inclusion relationship between categories
c and c′. Hence, par may be more generally defined thus:

∀p ∈ P ∀a ∈ A ∀r ∈ R ∃c ∈ C ∃c′ ∈ C[pca(p, c) ∧
ρ(c, c′) ∧ arca(a, r, c′) → par(p, a, r)]



A Meta-model of Access Control in a FSL 443

In concluding this section, we underline a couple of points that should be
noted. We have used the word “can” (above) when referring to the actions
a principal is allowed to perform with respect to a resource. In access con-
trol, “can” is standardly interpreted as being synonymous with a principal’s
possession of a permission. In later sections of this paper we will consider
a more general interpretation of “can” than is normal in access control.
We note too that the RBAC notion of a session [6] can be accommodated
in our approach, to wit: a principal can choose to be active in particular
categories during a session. However, we view sessions as an operational
detail and, as such, this notion is not of concern to us in this paper.

2. Fibring Logics and FSL

In this section, we describe the logic that we use to formalize our meta-model
of access control. More specifically, we introduce a Fibred Security Language
(FSL) [15] for access control in distributed systems. Fibring is a general
methodology due to Gabbay [19] that aims at combining logics.

We begin our discussion by noting that first-order logic has proven to be
sufficient for representing historically important access control models (e.g.,
an access control matrix can be viewed as a conjunction of propositions).
However, there are access control policy requirements for which classical logic
is not sufficient for specification. For example, for the policy information
“administrator says that Alice can be trusted when she says to delete file1”,
Alice speaks for the administrator concerning the deletion of file1 and thus
she should be trusted as much as the administrator.

From a semantical point of view, logics for distributed access control rely
on one of the following approaches

• Operational Semantics [10].

• Declarative Semantics [13, 26].

• Classical/Intuitionistic Modal logic [1, 2, 4, 24].

Each view has its positive and negative aspects.
Operational Semantics, if rules are wisely crafted, could be extremely

clear but very often tractability must be sacrificed for simplicity. Sec-
PAL [10], for instance, has an extremely clear semantics expressed with just
three rules, but in practice they are awkward to employ in evaluating formu-
las. To overcome this difficulty, queries in [10] are evaluated by exploiting
Datalog, which has a stable model semantics that is not clearly related with
the rules of the operational semantics.



444 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

Logics that rely on declarative semantics have a clearly specified notion of
proof of compliance of a request with respect to local policy, which is strictly
based on the framework in which the reasoning is carried out. On that,
PROLOG and Datalog are often used to obtain answer sets from a database
of distributed policies. The negative aspect is that when using declarative
approaches it could be extremely difficult to have a formal “meaning” for
every set of access control policies, such that one can compute this meaning
and inspect whether it is the same as the policy author’s intention.

Modal logic has been employed by Abadi [4] to model logics for access
control. In this view, a logic can be studied through its axiomatization or on
the basis of its semantics analyzing how to link models with formulas. One
major advantage is that, by making a clear distinction between syntax and
semantics, the proof of compliance procedure is based on well-understood,
formal foundations. However, a significant disadvantage is that it could be
extremely difficult to compose different logics within a common framework
if we do not rely on fibring.

Every approach has some positive aspects and each such positive aspect
should not be left out in modelling a logic for our meta-model of access
control.

To represent the rich forms of access control policies that are often re-
quired in distributed applications, we use FSL. On that, suppose that we
have two different logics C and D with languages LC , LD and semantics SC ,
SD, respectively. Intuitively, the fibring process consists in defining a com-
bined language L ⊃ LC ∪ LD together with a new semantics S in which we
can evaluate formulas of both C and D. This generality will, as we will see,
be very important in the context of the meta-model of access control that
we will develop and for general access control policy specification for policies
that are derivable from the meta-model.

With FSL we propose a general language to compose (by fibring) existing
logics on the basis of their semantics; in particular, Section A.2 is devoted
to the formalization of an authorization logic called predicate FSL in which
we combine by using fibring intuitionistic logic with multimodal logic.

In predicate FSL we have formulas of the kind,

{x}ϕ(x) says ψ (I)

where {x}ϕ(x) represents the group composed by all the principals that
satisfy ϕ(x) and ψ is a general formula. We view says as a modality for
expressing that a certain principal supports some statement (see Section 2.1).



A Meta-model of Access Control in a FSL 445

In this view, Formula I becomes

�{x}ϕ(x)ψ (II)

In Formula II, ψ is the statement that the extension of ϕ(x) as a group
of individuals supports; note also that the modality is indexed by principals.
To the best of the authors’ knowledge, existing approaches that employ the
says operator do not offer the possibility of having a first-order formula
specifying the principals.

Our fibring on access control logics offers freedom in crafting logics to
express a wide range of policies. In fact, we can let ϕ(x) and ψ belong to
two different languages Lp and Le as language of principals and security
expressions, respectively, which refers to two different systems (semantics).
For instance, we can think of formulas in Lp as being SQL queries and
formulas in Le as being Delegation Logic [26] expressions.

The main problem to be addressed in this context is to specify formally
how to evaluate expressions like II; this is the main role of the fibring method-
ology [19], which, depending on the chosen languages (and systems), must
be carefully defined in order to form a combined logic that is coherent and
does not collapse.

In this paper, in order to show the full expressiveness of our approach,
we decide to make Lp = Le = L, where L is a classical first order language,
whereas the relying system S is intuitionistic modal logic; this is predicate
FSL. This particular approach allows us to, for instance, iterate the says
modality and to have complex formulas in which free variables are shared
between different levels of nesting of the � (see Section 2.2 for examples).

Moreover, in [3], the intuitionistic semantics has been proven to be more
appropriate to axiomatize the says modality by designing more expressive
logics.

It should be noted that the importance of the FSL framework is that it
enables us to define a meta-model of access control that can be specialized to
define instances of existing access control models and that can be specialized
in novel ways to define instances of new forms of access control models.
Moreover, as we will see in Section 3, the FSL framework allows for the
representation of any number of specific access control policies which are
derivable from the general framework of the meta-model (in terms of which
policies are grounded).



446 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

2.1. Properties of access control logics

In this section, we first summarize how the says operator is used in access
control logics and how it is used in our meta-model. We then underline the
expressive power of FSL by listing some examples of policy formulation.

The access control logic that we propose aims at distributed scenarios.
Thus, to express delegation among principals, it is centered, like the access
control logic of [24, 26], on formulas such as “A says s” where A represents
a principal, s represents a statement (a request, a delegation of authority, or
some other utterance), and says is a modality. It is important to underline
that it is possible to derive that A says s even when A does not directly
utter s. For example, when the principal A is a user and one of its programs
includes s in a message, then we may have A says s, if the program has
been delegated by A. In this case, A says s means that A has caused s to
be said, that s has been said on A’s behalf, or that A supports s.

We assume that such assertions are used by a reference monitor in charge
of making access control decisions for resources, like o (where o denotes an
arbitrary data object, e.g., a file). The reference monitor may have the pol-
icy that a particular principal A is authorized to perform action a on object
o. This policy may be represented by the formula: (A says do on(a, o)) →
do on(a, o), which expresses that A controls do on(a, o).2 Similarly, a re-
quest for the operation a on o from a principal B may be represented by the
formula: B says do on(a, o). The goal of the reference monitor is to prove
that these two formulas imply do on(a, o), and to grant access if it succeeds.
While proving do on(a, o), the reference monitor does not need to prove that
the principal B controls do on(a, o). Rather it may exploit relations between
A and B and certain other facts. For example, it may know that B has been
delegated by A, and, thus, that B speaks for A as concerns do on(a, o):

(B says do on(a, o)) → (A says do on(a, o))

This simple example does not show the subtleties arising from the formal-
ization of the says operator, since expressing simple properties like control-
ling a resource or speaking for another principal may imply less desirable
properties, leading to security risks, or even to inconsistent or degenerate
logic systems [3], we refer to [14] for a detailed discussion of these problems
with respect to FSL.

2In this view. with A controls ψ we express that A has a direct permission to do ψ.



A Meta-model of Access Control in a FSL 447

The fibring methodology permits us to craft a framework which extends
previous logics for access control by introducing joint responsibility between
principals and group of principals as first-class citizen described by means
of first-order formulas.

2.2. FSL: An extended logic of principals

In this section we make a further step towards predicate FSL by taking into
account how to express properties of access control policies in the proposed
language, like joint responsibility, delegation or speaks-for relationships.

As underlined in Section 2, in a general FSL formula {x}ϕ(x) says ψ
we use {x}ϕ(x) as a construct to select the set of principals making the
assertion says. Note that ϕ(x) and ψ can share variables and ϕ may include
occurrences of the says operator. Notice too that x can occur in ψ but then
this occurrence is not related to the x in {x}ϕ(x).

To select a single principal whose name is A we write:

{x}(x = A) says ψ.

We write A says ψ s for {x}(x = A) says ψ, where A is an individual
principal.

The following formula means that all users together ask to delete file1:

{x}user(x) says do on(delete, file1)

Since ϕ(x) and ψ can share variables, we can put restrictions on the
variables occurring in ψ. For example, the set of all users who all own file(s)
y asks to delete the file(s) y:

{x}(user(x) ∧ own(x, y)) says do on(delete, y)

However, the formula above is satisfactory only in the particular situation
where we are talking about the set of all users who assert says at once as a
group (committee).

We can also express that each member of a set identified by a formula
can assert says separately. For example, the policy requirement “each user
deletes individually the files he owns”, can be represented thus:

∀x(user(x) ∧ own(x, y)) → {z}(z = x) says delete(y).



448 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

Note that the latter formula usually implies the former but not vice
versa.3

More generally, in FSL you have the possibility to express how the set
{x | ϕ(x)holds} says what it says. For instance, suppose we have ϕ(x) ≡
(x = A1)∨ (x = A2)∨ (x = A3) then if at least one of {Ai} says ψ is enough
for the group to support ψ we add:

{x}ϕ(x) says ψ ↔
∨

1≤i≤3

{x}(x = Ai) says ψ

This represents the fact that each principal in the group can speak for
the whole group. We can as well express that group ϕ has a spokes-person y:

spoke(ϕ, y) = (∀X[{x}ϕ(x) says X ↔ {x}(x = y) says X])

In FSL, with features like the sharing of variables between ϕ(x) and
ψ, the nesting of the says and the employment of negation we can express
complex policies like separation of duties in a compact way. For instance,
we can express the following: “A member m of the Program Committee can
not accept a paper P1 in which one of its authors says that he has published
a paper with him after 2007”

¬({m}[PC(m) ∧ {y}author of(y, P1) says ∃p(paper(p) ∧
author of(m, p) ∧ author of(y, p) ∧ year(p) ≥ 2007)] says accept(P1))

For a deeper treatment of the expressive power of the language we refer
to [14].

3. An Access Control Meta-Model in Predicate FSL

In this section, we define our meta-model of access control in terms of pred-
icate FSL, as the latter has been defined in the previous section.

Our meta-model of access control, henceforth denoted by M, is based
on a single core axiom, which is derived from the first order expression of
par from Section 1 and which we report here:

3In fact, it could be sensible to have situations in which if all the members of a group
say something then the whole group says it but not conversely:

∀x(ϕ(x) → x says ψ) → {x}ϕ(x) says ψ

For instance, a committee may approve a paper that not all of its members would have
accepted.



A Meta-model of Access Control in a FSL 449

pca(P, C) ∧ ρ(C, C ′) ∧ arca(A, R, C ′) → par(P, A, R)

By choosing different definitions of pca, ρ and arca, the core par axiom
of M can be specialized in multiple ways to define different instances of
access control models. It should also be clear that it is perfectly possible for
par not to include a ρ condition if that is not required for a domain-specific
application, and it is equally possible for more than one ρ relation to be
defined in an instance of M.

The integration of the meta-model, first introduced in [7], with predicate
FSL involves the following mapping:

• Categories as types: Instead of having the pca relationship we view
categories as first-order formulas with one free variable C(x). We say
that a principal p is assigned to category C (expressed by a first order
formula) iff |=A C(p) holds in the first order structure A. So, intuitively,
we translate pca as follows:

pca(P, C) ≡ C(P ).

In fact, in FSL, group membership is expressed by means of first order
formulas. Moreover, by having categories as types we can express roles
as a special instance of categories, as in RT [27] (see Section 3.2 for
a detailed discussion).

• ρ relationship as operator: If we view categories as types, we have
to redefine the ρ relationship. We do this formally by considering two
different levels:
– First-order structure A: We define the meta-model relationship ρA

as a subset of 2P × 2P .4

– Meta-model merged with FSL: We define a novel binary operator ρ
with the following semantics:

|=A ρ(ϕ(x), ψ(y)) iff ({p ||=A ϕ(p)}, {t ||=A ψ(t)}) ∈ ρA

• par and arca relationships: Both par and arca refer to permission
assignment, the only difference between them is the fact that par refers
to a single principal, whereas arca refers to single category. If we view
categories as types, we have that arca refers to sets of principals, so we
can exploit the FSL machinery to apply the following translation:

par(P, A, R) ≡ P controls do on(A, R)
arca(A, R, C(x)) ≡ C(x) controls do on(A, R)

4That is, as a relationship between sets of principals.



450 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

This view offers the possibility to have a more fine-grained definition of
how arca is related with par, for instance:

– If a category c(x) has the permission to do action a on r, then all the
principals assigned to that category have the same permission:

(c(x) controls do on(a, r)) → ∀t(c(t) → t controls do on(a, r))

– If a category c(x) has the permission to do action a on r, then a
spokes-person for the group, identified by c(x), has the direct control
of doing a on r:

(c(x) controls do on(a, r)) → (spoke(c(x), t) → t controls do on(a, r))

In the next three sections, we consider alternative definitions of the
predicates pca, ρ and arca within the FSL framework and the different
access control models that can be naturally derived from M by changing
the definition.

3.1. pca definitions

One way in which a policy author can define access control models in terms
of M is to use pca definitions to define, specialize or combine categories of in-
terest to meet domain-specific requirements. Definitions of pca are specified
by using rules of the form defined next.

Definition 3.1. Definitions of pca are expressed in the form:

P1 ∧ · · · ∧ Pn ∧ L1 ∧ · · · ∧ Lp ∧ C1 ∧ · · · ∧ Cm → C(P )

Pi (1 ≤ i ≤ n) is a condition (possibly negated) that is expressible (re-
cursively) in terms of pca, Li (1 ≤ i ≤ p) is an arbitrary literal, and Ci

(1 ≤ i ≤ m) is a sequence of constraints that are expressed in terms of the
arithmetic or comparison operators that we admit in our language.

Once a category C(x) has been defined by a policy author α, α’s def-
inition of C(x) can be used by any number of other policy authors. In
particular, if α asserts that a principal P is assigned to a category C then
any policy author that sufficiently trusts α’s categorization of P as one of C
can refer to that category in its specifications of access control requirements.



A Meta-model of Access Control in a FSL 451

Example 1. Consider the following policy requirements:

Principals are assigned to the preferred category if they are catego-
rized as being loyal and their current account balance is greater than
1000 Euro (which causes them to be categorized as members of the
goodbalance category).

To represent these requirements by using our approach, it is sufficient to use
the following definitions (assuming that all definitions are local):

loyal(P ) ∧ goodbalance(P ) → preferred(P )
balance(P, X) ∧ X ≥ 1000 → goodbalance(P )

Here, pref , loyal and goodbalance are domain-specific elements in the
general class of categories. �

The important thing to note from the previous example is that any cat-
egories can be referred to in the generic meta-model that we are proposing;
our proposal is not restricted to particular types of categories. Thus, princi-
pals may be assigned to categories according to whether they have a shared
attribute, a shared measure of trust, a common security clearance, as a con-
sequence of an assignment to the same department, division, organization,
as a consequence of actions or events, or any combination of these forms of
category types. As access control models are based on category types, it
follows that different access control models can be flexibly constructed by
combining different types of categories. Moreover, a range of access control
concepts can be understood in category-based terms. For example, notions
like provisional authorizations (or pre-access obligations) can be represented
in category-based terms: a principal that assumes an obligation may be
assigned to a category of principals that are obligated to discharge that obli-
gation at some future time. It follows from this that we do not distinguish
between, for example, what a principal is, has, could be, etc. A principal
may be a member of a manager role, have the attribute of being an adult,
assume an obligation, . . . The notion of category is sufficiently powerful to
accommodate these particular interpretations. As such, there is no reason
to develop 700 access control models to treat these requirements individu-
ally; categories are a unifying concept for a meta-model that is capable of
accommodating access control requirements, in general.

It should also be noted that although conditions for principal-category
assignment can, of course, be expressed in arbitrary (Turing-complete) rule-
based access control languages, our motivation is to make categories the basis
for access control rather than rules being used to define categories in an



452 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

ad hoc manner. Several rule-based access control models have been described
in the access control literature (see, for example, [9]), but these are just
particular variants of the meta-model that we propose in this paper.

The next example that we give illustrates the representation of trusted
third-party assertions in our approach.

Example 2. Consider the following policy requirements:

In a local policy specification, any principal P is assigned to the
category approved uni if a principal Y is assigned to the
trusted on uni category and Y says that P is assigned to the category
good university.

To represent these requirements, the following definition of pca is sufficient:

trusted on uni(Y )∧�Y (good university(P )) → approved uni(P ) �

For extra convenient expressive power, categories can be parameterized.
For instance, manager(P, b1) may be used as an alternative to

manager b1(P )

More generally, variables may be used in paramaterized expressions.

3.2. ρ and par definitions

In the previous section, we considered the flexible specification of access
control requirements in terms of pca definitions. In this section, we combine
pca definitions and definitions of relations between categories (ρ) to define
flexibly a range of particular existing access control models and we show how
any number of novel access control models can be represented as specialized
instances of our meta-model, M.

In the field of access control, role-based access control (RBAC) has a
special importance currently; it has even been speculated that RBAC in
itself provides the basis for a meta-model for access control [17]. However,
we reject the latter view on the grounds that a role is just a special case
of the more general notion of category and, as we will see, RBAC is also a
specialized instance of M.

Standard RBAC models [6, 18] assume a single (limited) form of cate-
gory: the role. In ANSI Hierarchical RBAC, role hierarchies are the only
form of category-category relationships that are admitted. In all of the ANSI
RBAC models only limited modalities of permissions and authorizations are
considered (under a restricted interpretation of “can” cf. Section 2).



A Meta-model of Access Control in a FSL 453

In terms of our access control primitives, the axioms that define hierar-
chical RBAC can be expressed as follows (where ‘ ’ denotes an anonymous
variable):

C(P ) ∧ ρ(C(x), C ′(y))∧
c′(y) controls do on(a, r) → P controls do on(a, r)
dc(C, ) → ρ(C, C)
dc( , C) → ρ(C, C)
dc(C ′, C ′′) → ρ(C ′, C ′′)
dc(C ′, C ′′′) ∧ ρ(C ′′′, C ′′) → ρ(C ′, C ′′)

In this instance, ρ is a definition of a partial order relationship between
pairs of categories (here restricted to roles) that are in the reflexive-transitive
closure of a “directly contains” relation on role identifiers, dc(ri, rj), such
that: Π |= dc(ri, rj) iff the role ri ∈ C (ri �= rj) is senior to the role rj ∈ C
in an RBAC role hierarchy defined in the access control theory Π and there
is no role rk ∈ C such that [dc(ri, rk) ∧ dc(rk, rj)] holds where rk �= ri and
rk �= rj .

The definition of ρ assumes that the following property holds on cate-
gories (restricted here to roles):

∀ri ∈ C ∃rj ∈ C [(dc(ri, rj) ∨ dc(rj , ri)) ∧ (ri �= rj)]

The axiomatization of Hierarchical RBAC models reveals an attractive
simplicity of this form of RBAC model. The simplicity appears to be reason-
ably sufficient for the types of restricted authorization policies that RBAC
admits under the simplifying assumptions that it adopts (e.g., principals can
be assigned to well-defined, relatively static job functions in “traditional”
forms of organizations, . . . ). Nevertheless, there are many types of practical
access control policies and requirements that need to be represented, but
which cannot be adequately expressed in the ANSI RBAC family. Hence,
many extended forms of RBAC have been proposed in the access control
literature. One such (apparently) extended form of RBAC is Status-based
Access Control (SBAC) [8].

At first sight, it may appear that SBAC generalizes RBAC by making an
important distinction between ascribed status (of which a role assignment
is a particular type) and action status. That is, principals can be assigned
to a category as a consequence of them being a particular office-holder, but
their actions (as office-holders) are also taken into account to determine
their overall status. This overall status is used as the basis for determining
authorized forms of actions. Thus, ascription is a basis for categorization
and so too is the history of an agent’s actions. However, ascription and



454 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

action are simply particular types of category in SBAC. As such, the SBAC
extension of RBAC is, in effect, simply one that combines two category types
in order for access control decisions to be made. In the meta-model of access
control that we propose, any number of categories can be so combined and
thus many access control models may be accommodated, including SBAC.

To accommodate action status from SBAC, the axioms of our general
model of access control may be simply specialized thus (with the above
definition of ρ assumed and with T - Ts being the interval of time during
which a relationship holds):5

C(P ) ∧ ρ(C(x), C ′(y))∧
C ′(y) controls do on(A, R) → P controls do on(A, R)

current time(T ) ∧ happens(E, Ts)∧
agent(E, P ) ∧ act(E, A) ∧ Ts < T∧
pca init(E, P, A, C, Ts, T )∧
not ended pca(P, C, Ts, T ) → C(P )

happens(E′, T ′) ∧ agent(E′, P )∧
act(E′, A′) ∧ pca term(E′, P, A′, C, Ts, T )∧
Ts < T ′ ∧ T ′ ≤ T → ended pca(P, C, Ts, T )

By changing the definitions of pca and ρ (and, as we will see later, by
changing the definitions of arca) new forms of access control models can be
derived as particular instances of our meta-model. As an example of that,
suppose that a categorization of principals by spatial position were required
to determine the principal’s set of authorizations. For that, an access con-
trol model may be defined as being based, in part, on a categorization of
principals by their current location (say). A ρ relation may then be defined
in terms of dc where dc is used to define geographical regions that are or-
dered by direct containment (e.g., dc(europe, uk) ). In this case, pca may
be defined by using rules of the standard form,

P1 ∧ · · · ∧ Pi ∧ L1 ∧ · · · ∧ Lm ∧ C1 ∧ · · · ∧ Cn → C ′(P )

but where C ′ is a categorization of P by location and expressed by C ′(P ) and
where C(P ) is one of P1, . . . ,Pi. Again, the key point to note is that multiple
forms of access control models can be defined as particular cases ofM.

5For the definitions of SBAC-specific predicates, like pca init, we refer the reader to [8].



A Meta-model of Access Control in a FSL 455

Although SBAC may be viewed as a general form of RBAC, MAC and
DAC can be viewed as special cases of RBAC (as has already been noted in
the access control literature, see, for example, [30]). In terms of our proposed
framework, a version of the Bell-LaPadula model [11] may be viewed as a
restricted form of the Hierarchical RBAC model, in which ρ is as previously
defined and with par defined thus:

C(P ) ∧ ρ(C(x), C ′(y))∧
C ′(y) controls do on(R, C) → P controls do on(read, R)

C(P ) ∧ ρ(C(x), C ′(y))∧
C(x) controls do on(write, R) → P controls do on(write, R)

In this case, the ρ relationship is an ordering of categories that are re-
stricted to being defined on a common set of security classifications for re-
sources and security clearances for principals. The par definitions represent
the rules “no read up” and “write only at the subject’s classification level,”
which are the core axioms of strict MAC (as the latter term is interpreted
in Bell-LaPadula terms). The key point to note is that par may be defined
as a specialized form of the axiomatization of M.

At this point, another aspect of the generality of M needs to be consid-
ered. Recall that we allow the set A to include strings of characters that
denote arbitrary actions. In access control, in general, it is often assumed
that read and write are the only actions of interest (cf. strict MAC); ac-
cess control models that make this assumption are invariably constrained in
terms of their expressiveness.

Although there are a many variations, any number of discretionary access
control models may also be understood in category-based terms. This should
not be too surprising given that groups are a particular type of category and
an individual principal p is itself a category: the category that is defined
by the singleton {p}. Delegation via a “with grant option” can also be
represented by defining a ρ relation as the transitive closure of a form of
the dc(c, c′) relation, which may be used to specify that c directly delegates
permissions to c′. In this case, members of c′ are in the category of being
delegatees of the delegator c. From the logical point of view, delegation
can be represented by the speaks-for relationship We also note that the
discretionary access control model of Unix can be understood in terms of
group and other as categories of principals.

Thus far in our discussion, we have considered a variety of basic forms
of access control models and their representation in terms of M. Once
these basic models have been constructed, they can be specialized further



456 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

to satisfy a yet wider range of application-specific requirements. For ex-
ample, pca(P, C, Tstart, Tstop) and arca(P, R, C, Tstart, Tstop) definitions may
be introduced to express intervals of time (i.e., [Tstart, Tstop]) during which
principal-category assignments and permission-category assignments hold.
To accommodate such generalizations, we simply require that the core ax-
ioms of M be specialized too. Specifically, the following form of par may
be used:

current time(T ) ∧ C[T ′,T ′′](P ) ∧ ρ(C ′(x), C ′′(y))∧
C(x) controls[T ′′′,T ′′′′] do on(A, R)∧
T ′ ≤ T ∧ T ≤ T ′′ ∧ T ′′′ ≤ T ∧ T ≤ T ′′′′ → P controls do on(A, R)

Notions like relative times and periodic times (cf. [12]) can also be natu-
rally defined in order to represent application-specific requirements that are
expressible in terms of par.

It should also be noted that par can be defined recursively. This allows
for multiple additional access control models to be constructed as particular
instances of M. For example, suppose that the domain-specific requirements
were for an access control model that combined categorization by status
(from SBAC) and categorization by clearance/classification (from MAC).
For that, an SBAC program υ1 may be combined with an MAC program υ2

by using the following definition:

�υ1P controls do on(A, R), �υ2P controls do on(A, R) →
P controls do on(A, R)

As far as access control models based on trust are concerned, we regard
the association of a trust measure with a principal as the assignment of the
principal to a category of users that have the same degree of trust according
to some authority. Moreover, we accommodate assertions made by trusted
third parties (TTPs) in our framework by allowing specifications of proper-
ties by �υp(τ) (i.e. υ says p(τ)) and relations by �υp(τ1, . . . , τn) (where τ
and τi, i ∈ {1, . . . , n} are terms and υ is the source of the TTP assertion).
We note that, interpreted in terms of certification-based access control, our
use of relations of the form �υp(τ1, . . . , τn) is essentially the same as prin-
cipals using n-tuples of the form p(τ1, . . . , τn) to express assertions about
public keys via a certificate space υ (cf. SPKI certificates [16]).

On the RT family of role-trust access control models specifically, we
note that the proposers of the RT family [27] begin to address some of the
concerns that motivate our paper (concerns on providing a general frame-
work for specifying access control policies). In RT , the notions of roles and



A Meta-model of Access Control in a FSL 457

“attributes” of principals are used, and trust and role concepts can be com-
bined to allow for a range of access control models to be represented using
a common syntactic basis. Nevertheless, roles and trust are simply partic-
ular types of category and multiple forms of categories can be combined in
M to accommodate a wider range of access control models than the models
admitted in RT .

In RT , a number of general rules are proposed for specifying creden-
tials. For example, the following RT credential (in which A.r(τ1, . . . , τn) and
B.r1(σ1, . . . , σm) are roles expressed using the terms τ1, . . . , τn, σ1, . . . , σm

B.r1(σ1, . . . , σm) → A.r(τ1, . . . , τn)

has the following equivalent representation in terms of pca definitions (where
C1, . . . , Cm are constraints on terms that are variables cf. the definition of
pca above):

A.r(τ1, . . . , τn)(P ) → B.r1(σ1, . . . , σm)(P ) ∧ C1 ∧ . . . ∧ Cm

Other forms of credentials that are expressible in the RT syntax can be
equivalently represented in terms of the primitives and axiomatization that
we admit in M. What is more, we adopt a more general interpretation
of category, than the one used in RT , which includes categories defined in
terms of events, ticks of a clock, histories of actions, the current location
of a requester for access, system states, . . . ; in short, any category can be
admitted in a policy specification expressed in terms of M.

To appreciate further the expressiveness that our proposal affords, con-
sider the following example, which demonstrates how complex access control
requirements can be simply represented in M and how a range of different
access control models can be flexibly accommodated in this meta-model.

Example 3. Suppose that the following access control requirements need
to be represented:

Any principal that is a member of the category Senior Executive
(s exec), is permitted to read the salary information (as recorded
in υ2) of any principal that is assigned to the category of manager
((mgr) details recorded locally) of a branch that is categorized as
profitable (as recorded in υ3). To be categorized as a senior executive,
a principal must be categorized as being a manager of at least five
years standing (according to the source of this information, υ1).

In this case, it is necessary to deal with various forms of categorization
including categorization of an institution (a branch office) having a particular



458 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

status (of being profitable). To represent these requirements, the following
specialized axioms of M are sufficient to include in a policy specification
expressed in terms of predicate FSL (together with the axioms that define
pca, as a 2-place or 3-place predicate, and salary, and where year(T, Y ) is
used to extract the year Y from a time T in YYYYMMDD form):

C(P ) ∧ ρ(C(x) ∧ C ′(y))∧
C ′(y) controls do on(A, R) → P controls do on(A, R)

�v1mgrT (P ) ∧ current time(T ′) ∧ year(T, Y ) ∧ year(T ′, Y ′)∧
Y ′ − Y ≥ 5 → s exec(P )

managerY (X) ∧ �v3profitable(Y ) ∧ �v2salary(X, Y ) →
s exec(x) controls do on(read, salary(X, Y )) �

Any number of additional, novel forms of access control models may be
similarly defined in terms of M and then expressed in terms of FSL. For
instance, suppose that an access control model were required with a type of
ρ relationship on categories such that if members of category c2 trust the
assertions of an immediately “superior” authority category c1 and members
of category c3 similarly trust c1 then c2 and c3 trust each others’ assertions
(such relationships are often useful in trust-based models [28]). Henceforth,
we refer to this access control model as the Shared Trust Model (STM). The
(Euclidean) relationship that is required in STM can simply be captured by
defining, in FSL and in terms of dc, a ρ relation of the following form:6

dc(C, C ′) ∧ dc(C, C ′′) → ρ(C ′, C ′′)

Next, suppose that an access control requirement is such that a principal
will engage with whichever principals it chooses to form a mutual access
partnership (MAP) (cf. policies required in the context of the “policy aware
web” [31]). Thus, if p′ ∈ P and p′′ ∈ P are in a MAP then p′ will allow
p′′ to access its resources and conversely. To represent the MAP model in
M, it is sufficient for a policy author to: declare MAP category pairings,
using definitions of dc, and to define a symmetrical containment relationship
between two principals in a MAP. For the latter, it is sufficient for a policy
author to use FSL to define a rule of the following form:

ρ(C ′, C) → ρ(C, C ′)

6More complex forms of this type of Euclidean relation are, of course, clearly possible.



A Meta-model of Access Control in a FSL 459

It is important to note that the specific details of the STM and the
MAP models are relatively unimportant. It is more important to recognize
that these models can be naturally represented as instances of M and that
policies that are specified in terms of M can be naturally represented in
predicate FSL. Moreover, multiple “novel” forms of existing access control
models may be similarly developed from the core axioms and predicates of
M and can be expressed in policy specifications using FSL (e.g., RBAC with
“downward” inheritance of permissions via isa hierarchies of roles).

Next, we note that access control models are often defined, in part, in
terms of the classes of constraints that they admit. In M, constraints are
expressed in terms of categories. These constraints have a natural represen-
tation in terms of predicate FSL.

In Constrained RBAC [18], Separation of Duties (SoD) is the only gen-
eral form of constraint that is admitted (albeit static and dynamic versions
of SoD are included). A separation of categories (SoC) constraint, which
equivalently represents the static SoD constraint in Constrained RBAC, can
be specified, in M and FSL, in terms of pca, thus (where ⊥ read as “is incon-
sistent” and c ∈ C and c′ ∈ C are constants that denote specific categories):

C(P ) ∧ C ′(P ) → ⊥
However, many additional forms of constraints can be similarly represented
in M. For example, the following variant of the previous specification of
SoC, expressed using FSL,

C(P ) ∧ C ′(P ) ∧ me(C, C ′) → ⊥
can be used to define arbitrary pairs of categories that are mutually exclusive
i.e., me is the case. We note that a shortcoming of RBAC as a general access
control model is that it admits only one restricted form of mutual exclusivity
constraint on the one type of category that it assumes, the role. In contrast,
in M, mutual exclusivity constraints may be defined with respect to any
number of categories.

Many other forms of constraint (beyond SoD/SoC) may be defined in
terms of M and expressed using predicate FSL. For example, the constraint,

C(P ) ∧ ¬C ′(P ) → ⊥
can be used to express that a principal P cannot be assigned to a category
c unless P is assigned to the category c′. That is, a prerequisite constraint
can be naturally defined in M and can be expressed using predicate FSL.
Cardinality constraints may also be defined. Moreover, once the notion of



460 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

a category is admitted as the basis of M then constraints on combined
category-based access control models are possible. For example, if it were
required to define an access control model that combined status categories
from SBAC and categories as clearances/classifications from a MAC model
then the following constraint can be formulated in M and can be expressed
using predicate FSL in order to specify that no principal with the status of
debtor (as recorded in the TTP source, υ1) can be cleared to access anything
other than the resources that are accessible to principals with unclassified
clearance (as recorded in the TTP source, υ2):

�v1debtor(P ) ∧ �v2C(P ) ∧ C �= unclassified →⊥

Constraints may be similarly expressed, using FSL, in terms of pca and
can be included in any number of access control models that are derivable
from M. Moreover, it is possible to use the constructs of M and FSL to
permit other forms of constraints to be defined. For example, history-based
constraints may be defined in terms of events, which, in access control terms,
are happenings at an instance of time that typically involve a principal p ∈ P
(an actor) performing an action in relation to a resource. Thus, to represent
that a resource r1 cannot be read more than once on the same day by the
same principal (a constraint that is often useful for satisfying the Principle of
Least Privilege) the following constraint may be defined in M and expressed
using FSL:

happens(E, T ) ∧ actor(E, P ) ∧ action(E, read) ∧ resource(E, r1)∧
happens(E′, T ′) ∧ actor(E′, P ) ∧ action(E′, read)∧
resource(E′, r1) ∧ E �= E′ ∧ T ′ − T < 1 → ⊥

In general, by combining the elements of M and by using FSL for policy
formulation, any number of specific access control models and access con-
trol policies may be defined in using the general framework that we have
introduced.

3.3. arca definitions

Thus far, our discussion has been focused on demonstrating how predicate
FSL may be used to express a wide range of access control models and poli-
cies that can be expressed in terms of our meta-model M, by changing the
definitions of pca and ρ, and par. However, there is, as we have mentioned
previously, a useful generalization of the notion of permissions that is very
important to adopt in richer interpretations of access control. By adopting



A Meta-model of Access Control in a FSL 461

this general interpretation, many additional access control models can be
defined in terms of M for satisfying the requirements of domain-specific ap-
plications. Moreover, predicate FSL provides a means for specifying access
control policy requirements in this context.

To motivate the discussion on this point, consider the language of the
Flexible Authorization Framework (FAF) [22]. In the FAF, authorizations
are represented by the predicates cando(p, a, r) or dercando(p, a, r). In the
case of FAF, as is standard in access control, “can do” is interpreted in terms
of permission only; FAF does not take alternative interpretations of “can”
into account. However, alternative interpretations of “can do” are not only
possible, but often need to be represented in access control models in order
to capture domain-specific requirements. These alternative interpretations
of “can do” are therefore important to accommodate in a meta-model of
access control.

In many scenarios it is, for instance, perfectly possible for a principal p to
have a permission (a, r), but for p not to be able to do a on r. Moreover, the
view of “can do” as synonymous with authorization is not always satisfactory.
For example, a server may not have the capability of bringing about a state
in which p can do a on r even though p has the permission to do a on
r (e.g., because p requests to perform an action that cannot be physically
satisfied even though it is permitted). It follows that for a richer form of
access control meta-model, a more liberal interpretation of “can do”, that
can capture such nuances, is desirable.

To address the problems of the limited interpretation of “can do” in
standard access control, we propose a more general definition of arca, in
M, than the one that has traditionally been considered. This generalized
form of arca also generalizes the notion of authorization (i.e., as principal
assigned permissions) that is standard in access control models. Specifically,
we advocate defining arca in terms of a range of modalities beyond the
interpretation of “can” as permission. For example, in M, “can” may be
interpreted in terms of physical capability or in the sense of requiring a
willingness on a party, with a resource to protect, to act in order for a
requester to perform an action on a resource. Moreover, obligations, in
the sense of provisional authorizations, can be understood under a general
interpretation of “can”. That is, for a principal p ∈ P to “do” action a
on resource r at time t the “can” requires a willingness by the party that
controls access to r to allow access on the basis of p’s promise to perform an
act at some time point t′ such that t′ > t.
To accommodate these rich interpretations of “can”, arca rules may be used.
These rules are defined in essentially the same way as pca rules are defined.



462 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

Definition 3.2. Rules defining arca are expressed in the following general
form:

A1 ∧ · · · ∧ An ∧ L1 ∧ · · · ∧ Lp ∧ C1 ∧ · · · ∧ Cm → arca(A, R, C)

Here, Ai (1 ≤ i ≤ n) is a condition that is expressible (recursively) in
terms of arca, Li (1 ≤ i ≤ p) are literals, and Ci (1 ≤ i ≤ m) is a sequence
of constraints. Any of A1, . . . ,An, L1, . . . , Lp can be defined at a remotely
accessible source or locally. In the latter case, the condition is of the form
�υAi or �υLi where υ is the source of the definition of the literal that
appears in the body of an arca rule. A1, . . . ,An, L1, . . . , Lp and C1, . . . , Cm

are sets of conditions that are disjoint, in a arca rule, ν, and any of these
sets may be empty in ν.

It should be clear from the general definition of arca above that different
interpretations of this predicate can be flexibly employed in a variety of
different ways and, as a consequence, any number of additional access control
models can be defined as instances of M. The following example illustrates
the possibilities afforded by a generalized interpretation of arca.

Example 4. Consider the following policy requirements:

A principal’s request to buy gold is permitted (in the sense of being
physically possible) provided that the amount of gold requested is
not greater than the current stock level recorded in υ1. In a gold
market that is currently categorized as “volatile”, according to the
source υ2, a principal that requests to perform an act of buying is
permitted to buy a maximum of 50 units of gold (i.e., permission as
consistency with supplier intentions). All principals are permitted (in
the sense of being authorized) to perform a buying action in relation
to the resource gold provided that the principal is not a member of
the debtor category.

To represent these access control policy requirements in terms of M and
predicate FSL, the following rules may be used:

�v1stock(gold, Y ) ∧ Y − X ≥ 0 ∧ type(C) �= debtor ∧ X ≤ 50∧
¬�v2market(gold, volatile) → C(x) controls do on(buy, gold(X))

In this case, if a request is received from a principal p to perform the
action of buying from a principal p′ that defines the FSL specification above
then that action is allowed if and only if p′ has the capability of satisfying
p’s request, p′ permits the request, in the sense of authorizing p to perform



A Meta-model of Access Control in a FSL 463

the action of buying gold, and p′ has the intention of satisfying p’s request
given the particular state of the gold market that obtains. �

It is important to note, from the previous example, that the FSL speci-
fication is based on one possible distinction between the different interpre-
tations of “can.” Other interpretations are, of course, possible and can be
used to define different instances of M. It is also important to note that
the different interpretations of “can”, which are used in the example above,
cannot simply be captured by merging conditions into a single rule in a rule-
based approach to access control requirement representation. For instance,
physical capability does not demand that a particular state of the market
obtains. The separate arca definitions in the FSL specification emphasize
that different aspects of “can” need to be separately specified.

Any number of constraints may be expressed in terms of arca.
For example, in predicate FSL,

C(x) controls do on(write, o1) ∧ ¬(C ′(x) controls do on(write, o1)) → ⊥

may be used to specify a “prerequisite” constraint on permissions, to wit: for
the write action to be performed on the resource o1 by principals assigned
to the category c it is required that the write action on o1 is assigned to
principals assigned to the category c′.

Notice too that if multiple interpretations of “can” are accommodated
in a meta-model like M then it is possible to specify general forms of con-
straints in terms of the variants of arca that are admitted. For example, in
predicate FSL,

arcac(A, R, C) ∧ not arcap(A, R, C) → ⊥

may be used to represent the constraint that, for all categories of princi-
pals, it is impossible for a permission not to be assigned to a category if
any requested action A on any resource R is (physically) capable of being
performed.

As a final point of arca definitions, we note that a variety of different
interpretations of denials of access to categories of principals can be naturally
accommodated in an extended form of M and these denials can be expressed
in predicate FSL. It should be noted that a d arca predicate (say) could be
used in FSL specifications to define denials of permission assignments to
categories of principals in essentially the same way that we have used arca
definitions (and with different interpretations of denials being admitted, e.g.,
denials by intention, denials as physical constraints, etc.).



464 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

4. Related Work

In the discussion above, we have described a very general framework for
the specification of access control models and policies that is based on a
meta-model of access control and a fibred logic for policy specification.

As we previously mentioned, other researchers have also attempted to
define general frameworks for access control for example, the Generalized
TRBAC model and ASL [23, 22]. However, it is our view that these ap-
proaches, though valuable in their own right, cannot be meaningfully de-
scribed as general in any absolute sense; they are general only in the sense
of being more general than the particular access control models that they as-
sume as a primitive base. In GTRBAC, the focus is on one type of category,
the role (interpreted as being synonymous with the notion of job function).
In ASL, users, groups and roles (again, traditionally interpreted in func-
tional terms) are admitted in the language. FAF/ASL could, of course, be
extended to some extent to accommodate the richer notion of categories that
we advocate using. However, a richer form of ASL/FAF would be required
to accommodate the generality of M (e.g., to allow for hierarchies that are
not restricted to partial orders, for assertions made by remote authorities,
for an extended form of done that, for instance, admits proactive events and
more expressive forms of event descriptions, for a generalized interpretation
of “can”, etc).

From the discussion above, it should be clear that, despite the extensive
literature on RBAC, it is our view that RBAC is a particular instance of
M. More strongly, RBAC is not even an especially significant instance of
M for it is based on a single, semantically impoverished category (the role),
one ρ relation (a partial ordering of roles), and one type of constraint, a
SoD constraint. The proponents of RBAC point out that the elements of
RBAC can be flexibly combined to allow for a range of RBAC models and
policies to be defined, but the concepts included in RBAC are not always
sufficiently expressive to enable domain-specific requirements to be captured
even by combination. In the case where RBAC is not sufficiently expressive
to represent requirements, ad hoc extensions may be employed but these
extensions are simply particular instances of M and may compromise the
shareability of access control policy information. More importantly, there are
policies that simply cannot be expressed in RBAC because of its restricted
interpretation. For example, RBAC only admits a single form of ascribed
status (cf. [8]) that is based on a particular category (the role) interpreted
in functional terms (cf. the notion of a “job function”). As such, RBAC
does not allow for action status to be captured, for example. Moreover,



A Meta-model of Access Control in a FSL 465

permission assignment in RBAC does not allow for notions to be expressed
like “can do” as physical capability. Although it remains a useful special case
of an access control model that is applicable in certain contexts, RBAC is
not a sufficiently general model of access control; rather, RBAC is a special
case of M.

We also note that a general language for access control policy specifica-
tion has already been described in the access control literature: XACML [29].
However, in our view, it is essential to define a general access control lan-
guage in terms of a well-defined access control model with a sound formal
semantics (rather than developing ad hoc access control languages without
a generally accepted formal semantics, as is the case with XACML). Unlike
XACML, predicate FSL is based on a well defined formal semantics and al-
lows for rich, declarative specifications of access control policies. In addition
to its unsatisfactory formal underpinnings, XACML is not based on a well
defined conceptual model of access control. In contrast, in our approach the
meta-model M is well defined, conceptually and in terms of FSL.

A sceptical reader might argue that there has never been a universal
agreement on a “general” programming language and there is therefore no
reason to think that a general access control model/language needs to be
considered. However, it is our view that although many programming lan-
guages have been developed for many different applications, these languages
do have common features that derive from a general model of computation
that they assume (cf. Landin’s work [25]). Our meta-model and our use
of predicate FSL does provide a general framework for representing a wide
range of access control concepts in a uniform manner.

Some may also argue that any access control model that is claimed to
be general, as RBAC has been suggested to be [9], will necessarily end up
having numerous ad hoc features, in order to make it generally applicable,
and will thus be necessarily complex as a consequence. However, we have
argued that, by applying Ockham’s razor to the previously developed 700
access control models, a small core set of primitives can be identified that,
despite the limited concepts involved, paradoxically provides considerable
expressive power that obviates the need for multiple ad hoc features.

In relation to our use of predicate FSL for representing access control
requirements, the work by Abadi et al. [5] exhibits similarities to ours.
As with predicate FSL, ABLP logic provides a formal framework for reason-
ing about features of access control. A number of connectives are included
in the logic for representing access control requirements (e.g., P as R for
specifying principal P in role R). However, the focus in ABLP logic is on
language constructs for formulating access control policies and axioms and



466 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

inference rules for defining a system for proof (e.g., for proving authorized
forms of access). In contrast, our approach is based on deriving, from the
generalities of access control models, the common aspects of access control
from which core predicates are identified and given a fixed interpretation in
predicate FSL; application-specific predicates are added to define instances
of the meta-model.

Our approach is also related to those adopted by Barker and Stuckey [9]
and Jajodia et al. [22]. In these approaches, predicates with fixed inter-
pretations are identified for access control specification in a logic language.
However, in both of these approaches the logic languages that are employed
are less expressive than predicate FSL, they are based on specific access
control models (role-based and discretionary models) and neither approach
captures the generalities of access control that are the basis for our meta-
model. Moreover, both approaches assume that a centralized system is to
be protected. Our meta-model and our fibred logic provide a more general
access control framework.

The work by Li et al. [27] is related to ours in several respects. Li et al.’s
RT family of role-trust models provides a quite general framework for defin-
ing access control policies, it includes some standard syntactic forms that
can be specialized for defining specific policy requirements (in terms of cre-
dentials), and it is based on a well defined formal semantics, which permits
properties of policies to be proven. Our approach, however, includes con-
cepts like times, events, actions and histories that may be used to specify
principal-category assignments, but which are not included as elements of
RT . Moreover, in RT the focus is on a particular types of categorization of
principals: by their role membership or their attributes. In M, we allow for
a richer range of categories (e.g., we allow for obligations to be treated using
categories, for principal categorization according to histories of actions, . . . ),
we consider categories in relation to permission-category assignments as well
as principal-category assignments, and our permission-category assignments
are based on a more general interpretation of “can do” than that that is
standard in access control. In RT , some particular forms of rules (cre-
dentials) are included in specific elements of the family of RT models. In
contrast, we allow rules for defining pca, arca and par in predicate FSL,
in general. As such, in our meta-model it is possible to specify access con-
trol requirements in terms of the non-assignment of principals to a category,
for example.

The work on SecPAL [10] is motivated, as ours is, by the esire to define
a general, declarative framework for specifying a wide range of authorization
policies. However, in SecPAL the emphasis is on a language for realising this



A Meta-model of Access Control in a FSL 467

goal. In our approach, a general underlying model is the focus of study and
the language requirements, expressed in predicate FSL, are derived directly
from the meta-model.

5. Conclusions and Further Work

In this paper, we have considered the key question of how best to address the
problem of representing complex access control requirements in the context
of centralized and distributed computing. To answer this question, we have
proposed a novel methodological approach that focuses on the generalities
of access control rather than particulars. For that, we defined a meta-model
of access control that is based on the notion of a category; the notion of
category generalizes the particular categories that are used in access con-
trol, e.g., role, status, classification, clearance, . . . The meta-model includes
three core, primitive predicates for expressing principal-category assignments
(pca), permission-category assignments (arca) and category-category rela-
tionships. We also illustrated how a range of constraints may be represented
in terms of our meta-model and how a rich interpretation of permission as-
signment can be accommodated to allow for different interpretations of “can
do”. We illustrated how this framework for access control policy formulation
allows a number of existing access control models to be represented and how
a number of “novel” access control models may be developed by specializing
the meta-model. For policy formulation in relation to our meta-model of
access control, we have developed a logic language.

We have argued that having a rich framework, from which specific access
control models, policies and policy specification languages may be derived,
has an number of attractions. For example, the framework that we have
described facilitates the sharing of policy information (e.g. by policy com-
position). Having a rich logic language in terms of which our meta-model
can be defined also makes it possible to have a shared semantics for different
access control models and makes it possible to prove properties of access
control policies that are defined in terms of the meta-model. Moreover, pro-
viding a general framework of access control and an expressive policy lan-
guage abstracts away many of the complexities that are involved in policy
representation in computing environments (centralized and decentralized)
and simplifies the task of policy authors that are required to capture policy
requirements.

Future work includes to generalize M to, for instance, accommodate
a richer variety of different interpretations of denials than those that have
previously been considered by researchers in access control (and to then



468 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

consider appropriate conflict resolution strategies). We also intend to inves-
tigate the development of a natural language and a markup language for the
exchange of access control policies expressed in terms of M and predicate
FSL. Moreover it is important to note that the meta-model that we have
proposed still makes it possible to define many potentially interesting access
control models as special cases of the meta-model. The investigation of ad-
ditional, specialized forms of M and their formulation using FSL are also
matters for further work.

Appendix

A. The basic system FSL

In this section we introduce our basic system FSL step-by-step from a se-
mantic viewpoint7. For that, we first introduce modalities indexed by propo-
sitional atoms, then we take into account classical and intuitionistic models
for the propositional setting, and finally we give a semantics to predicate
FSL, which we have extensively employed in previous sections of this paper.

This system can be defined with any logic L as a Fibred Security System
based on L. We will motivate the language for the cases of L = classical
logic and L = intuitionistic logic.

Basically, adding the says connective to a system is like adding many
modalities. So to explain and motivate FSL technically we need to begin
with examining options for adding modalities to L. Section A.1 examines our
options of how to add modalities to classical and intuitionistic logics. The
presentation and discussion is geared towards section A.2, which presents
predicate FSL.

A.1. Adding modalities

We start by adding modalities to classical propositional logic; our approach
is semantic.

Let S be a nonempty set of possible worlds. For every subset U ⊆ S
consider a binary relation RU ⊆ S × S.

This defines a multi-modal logic, containing K modalities �U ,
U ⊆ S. The models are of the form (S, RU , t0, h), U ⊆ S. In this view,
if U = {t|t � ϕU} for some ϕU then we get a modal logic with modalities
indexed by formulas of itself.

7This section is extensively based on Section 4 of [15], we decided to report it here to
make the article self-contained.



A Meta-model of Access Control in a FSL 469

Definition A.1 (Language). Consider (classical or intuitionistic) proposi-
tional logic with the connectives ∧,∨,→,¬ and a binary connective �ϕψ,
where ϕ and ψ are formulas. The usual definition of a wff is adopted.

Definition A.2. We define classical Kripke models for this language.

1. A model has the form

m = (S, RU , t0, h), U ⊆ S

where for each U ⊆ S, RU is a binary relation on S, t0 ∈ S is the actual
world and h is an assignment, giving for each atomic q a subset h(q) ⊆ S.

2. We can extend h to all formulas by structural induction:

• h(q) is already defined, for q atomic

• h(A ∧ B) = h(A) ∩ h(B)

• h(¬A) = S − h(A)

• h(A → B) = (S − h(A)) ∪ h(B)

• h(A ∨ B) = h(A) ∪ h(B)

• h(�ϕψ) = {t| for all s (tRh(ϕ)s → s ∈ h(ψ))}
3. m � A iff t0 ∈ h(A).

Notice that there is nothing that is particularly new about this except
possibly the way we are looking at it.

Let us now do the same for intuitionistic logic. Here things become more
interesting. An intuitionistic Kripke model has the form,

m = (S,≤, t0, h)

where (S,≤) is a partially ordered set, t0 ∈ S and h is an assignment to the
atoms such that h(q) ⊆ S. We require that h(q) is a closed set, that is:

x ∈ h(q) and x ≤ y imply y ∈ h(q).

Let D be a set; we can add for each U ⊆ D a binary relation RU on S.
This semantically defines an intuitionistic modality, �U .

In intuitionistic models we require the following condition to hold for
each formula A, i.e. we want h(A) to be closed:

x ∈ h(A) and x ≤ y ⇒ y ∈ h(A).



470 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

This condition holds for A atomic and propagates over the intuitionistic
connectives ∧,∨,→,¬,⊥. To ensure that it propagates over �U as well, we
need an additional condition on RU . To see what this condition is supposed
to be, assume t � �UA. This means that

∀y(tRUy ⇒ y � A).

Let t ≤ s. If s �� �UA, then for some z such that sRUz we have z �� A.
This situation is impossible if we require

t ≤ s ∧ sRUz ⇒ tRUz. (∗)

Put differently, if we use the notation:

R′
U (x) = {y|xRUy}

then
x ≤ x′ ⇒ R′

U (x) ⊃ R′
U (x′). (∗)

So we now talk about modalities RU , for U ⊆ S. We ask what happens
if U is defined by a formula ϕU , i.e. U = h(ϕU ). This will work only if U is
closed

t ∈ U ∧ t ≤ s ⇒ s ∈ U .

Henceforth, we talk about modalities associated with closed subsets of S.
We can now define our language (cf. Definition A.1). We first define

the semantics.

Definition A.3. A model has the form,

m = (S,≤, RU , t0, h), U ⊆ S,

where (S,≤) is a partial order, t0 ∈ S, and each U ⊆ S is a closed set and so
is h(q) for atomic q. RU satisfies condition (*) above. We define the notion
t � A for a wff by induction, and then define

h(A) = {t|t � A}.

Next, we define �:

• t � q iff t ∈ h(q)

• t � A ∧ B iff t � A and t � B

• t � A ∨ B iff t � A or t � B



A Meta-model of Access Control in a FSL 471

• t � A → B iff for all s, t ≤ s and s � A imply s � B

• t � ¬A iff for all s, t ≤ s implies s �� A

• t �� ⊥
• t � �ϕψ iff for all s such that tRh(ϕ)s we have s � ψ. We assume by

induction that h(ϕ) is known.

• m � A iff t0 � A.

It is our intention to read �ϕψ as ϕ says ψ.

A.2. Predicate FSL

Intuitively, a predicate FSL model is represented by a set of models linked
together by means of a fibring function; every model has an associated do-
main D of elements together with a set of formulas that are true in it. In
the FSL model, the evaluation of the generic formula {x}ϕ(x) says ψ is car-
ried out in two steps, first evaluating ϕ and then ψ in two different models.
Suppose m1 is our (first order) starting model in which we identify U ⊆ D
as the set of all the elements that satisfy ϕ. Once we have U we can access
one or more worlds depending on the fibring function f : P(D) → P(M),
which goes from sets of elements in domain D to sets of models. At this
point, for every model mi ∈ f(U) we must check that ψ is true; if this is the
case then α is true in the meta-model.

The fact that in the same expression we evaluate different sub-formulas in
different models it is not completely counterintuitive. For instance, consider
a group of administrators that have to set up security policies for their
company. From a semantical point of view, if we want to check if ψ holds in
the depicted configuration by the administrators, we must

1. Identify all the administrators (all the elements that satisfy admin(x)).

2. Access the model that all the administrators as a group have depicted.

3. Check in that model if ψ is true or false

Let L denote classical or intuitionistic predicate logic.8 We assume the
usual notions of variables, predicates, connectives ∧,∨,→,¬, quantifiers ∀,∃
and the notions of free and bound variables.

Let L
+ be L together with two special symbols:

• A binary (modality), x says y.

8Classical predicate logic and intuitionistic predicate logic have the same language.
The difference is in the proof theory and in the semantics.



472 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

• A set-binding operator {x}ϕ(x) meaning the set of all x such that ϕ(x).

Note that semantically, in the appropriate context, {x}ϕ(x) can behave like
∀xϕ(x) and sometimes in other contexts, we will use it as a set.

Definition A.4. The language FSL has the following expressions:

1. All formulas of L+ are level 0 formulas of FSL.

2. If ϕ(x) and ψ are formulas of L
+ then α = {x}ϕ(x) says ψ are level 1

‘atomic’ formulas of FSL. If (x, x1, . . . , xn) are free in ϕ and y1, . . . , ym

are free in ψ then {x1, . . . , xn, y1, . . . , ym} are free in α. The variable x
in ϕ gets bound by {x}. The formula of level 1 are obtained by closure
under the connectives and quantifiers of L

+.

3. Let ϕ(x) and ψ be formulas of FSL of levels r1 and r2 resp., then α =
{x}ϕ says ψ is an ‘atomic’ formula of FSL of level r = max(r1, r2) + 1.

4. Formulas of level n are closed under classical logic connectives and quan-
tifiers of all ‘atoms’ of level m ≤ n.

Definition A.5 (FSL classical fibred model of level n).

1. Any classical model with domain D is an FSL model of level 0.

2. Let m be a classical model of level 0 with domain D and let for each
subset U ⊆ D, fn(U) be a family of models of level n (with domain D).
Then (m, fn) is a model of level n + 1.

Definition A.6 (Classical satisfaction for FSL). We define satisfaction of
formulas of level n in classical models of level n′ ≥ n as follows.

First observe that any formula of level n is built up from atomic predi-
cates of level 0 as well as ‘atomic’ formulas of the form α = {x}ϕ(x) says ψ,
where ϕ and ψ are of lower level.

We therefore first have to say how we evaluate (m, fn) � α.
We assume by induction that we know how to check satisfaction in m of

any ϕ(x), which is of level ≤ n.
We can therefore identify the set U = {d ∈ D | m � ϕ(d)}.
Let m′ ∈ fn(U). We can now evaluate m′ � ψ, since ψ is of level ≤ n−1.
So we say

(m, fn) � α iff for all m′ ∈ fn(U), we have m′ � ψ.

We need to add that if we encounter the need to evaluate m � {x}β(x),
then we regard {x}β(x) as ∀xβ(x).



A Meta-model of Access Control in a FSL 473

Figure 1.

Example 3. Figure 1 is a model for

α(y) = {x}[{u}B(u) says (B(x) → A(x, y))] says F (y).

In Figure 1, m1 is a single model in f1(UB) and m3 is a single model in
f1(UE(y)), as defined later. �

The set UB is the extension of {x}B(x) in m1.
To calculate the set of pairs (x, y) such that E(x, y) = {u}B(u)

says (B(x) → A(x, y)) holds in m1, we need to go to m2 in f(UB) and
check whether B(x) → A(x, y) holds in m2, x, y are free variables so we
check the value under fixed assignment.

We now look at E(y) = {x}E(x, y) for y fixed, we collect all elements d
in D such that m2 � B(d) → A(d, y). Call this set UE(y).

To check α(y) = {x}E(x, y) says F (y) in m1 we have to check whether
F (y) holds in m3.

We now define intuitionistic models for predicate FSL. This will give a
semantics for the intuitionistic language.

Definition A.7. We start with intuitionistic Kripke models which we as-
sume for simplicity have a constant domain. The model m has the form
(S,≤, t0, h, D) where D is the domain and (S,≤, t0) is a partial order with



474 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

first point t0 and h is an assignment function giving for each t ∈ S and each
m-place atomic predicate P a subset h(t, P ) ⊆ Dm such that t1 ≤ t2 ⇒
h(t1, P ) ⊆ h(t2, P )

We let h(P ) denote the function λt h(t, P ). For t ∈ S let

St = {s | t ≤ s}
h(t, P ) = h(P ) � St

≤t=≤� St

Where � is the classical restriction operator.
Let mt = (St,≤t, t, ht, D).
Note that a formula ϕ holds at m = (S,≤, t0, h, D) iff t0 � ϕ according

to the usual Kripke model definition of satisfaction.

1. A model of level 0 is any model m: m = (S,≤, t0, h, D).

2. Suppose we have defined the notion of models of level m ≤ n, (based on
the domain D).

We now define the notion of a model of level n + 1
Let m be a model of level 0 with domain D. We need to consider not only

m but also all the models mt = (St,≤t, t, ht, D), for t ∈ S. The definitions
are given simultaneously for all of them.

By an intuitionistic ‘subset’ of D in (S,≤, t0, h, D), we mean a function d
giving for each t ∈ S, a subset d(t) ⊆ D such that t1 ≤ t2 ⇒ d(t1) ⊆ d(t2).

Let fn
t be a function associating with each dt and t ∈ S a family fn

t (dt)
of level n models, such that t1 ≤ t2 ⇒ fn

t1(dt1) ⊇ fn
t2(dt2). Then (mt, ft) is a

model of level n + 1 where dt = d � St.

Definition A.8 (Satisfaction in fibred intuitionistic models). We define
satisfaction of formulas of level n in models of level n′ ≥ n as follows.

Let (mt, fn
t ) be a level n model. Let α = {x}ϕ(x) says ψ is of level n.

We assume we know how to check satisfaction of ϕ(x) in any of these models.
We can assume that

dt = {x ∈ D | t � ϕ(x) in (mt, fn
t )}

is defined. Then t � α iff for all models m′
t in fn

t (dt) we have m′
t � ψ.



A Meta-model of Access Control in a FSL 475

References

[1] Abadi, M., ‘Logic in Access Control’, Logic in Computer Science, IEEE Computer

Society, 2003, pp. 228–233.

[2] Abadi, M., ‘Access Control in a Core Calculus of Dependency’, Electr. Notes Theor.

Comput. Sci., 172: 5–31, 2007.

[3] Abadi, M., ‘Variations in Access Control Logic’, in R. van der Meyden and L. van der

Torre, (eds.), Deontic Logic in Computer Science, vol. 5076 of Lecture Notes in Com-

puter Science, Springer, 2008, pp. 96–109.

[4] Abadi, M., M. Burrows, B. W. Lampson, and G. D. Plotkin, ‘A Calculus for

Access Control in Distributed Systems’, in J. Feigenbaum, (ed.), CRYPTO, vol. 576

of Lecture Notes in Computer Science, Springer, 1991, pp. 1–23.

[5] Abadi, M., M. Burrows, B. W. Lampson, and G. D. Plotkin, ‘A Calculus for

Access Control in Distributed Systems’, ACM Trans. Program. Lang. Syst., 15 (4):

706–734, 1993.

[6] ANSI. RBAC, 2004. INCITS 359-2004.

[7] Barker, S., The next 700 access control models or a unifying meta-model?, SAC-

MAT, 2009, pp. 187–196.

[8] Barker, S., M. J. Sergot, and D. Wijesekera, ‘Status-based access control’,

ACM Trans. Inf. Syst. Secur., 12 (1), 2008.

[9] Barker, S., and P. Stuckey, ‘Flexible access control policy specification with con-

straint logic programming’, ACM Trans. on Information and System Security, 6 (4):

501–546, 2003.

[10] Becker, M. Y., C. Fournet, and A. D. Gordon, ‘Design and Semantics of a De-

centralized Authorization Language’, CSF, IEEE Computer Society, 2007, pp. 3–15.

[11] Bell, D. E., and L. J. LaPadula, ‘Secure Computer System: Unified Exposition

and Multics Interpretation’, MITRE-2997, 1976.

[12] Bertino, E., C. Bettini, E. Ferrari, and P. Samarati, ‘An Access Control Model

Supporting Periodicity Constraints and Temporal Reasoning, ACM Transactions on

Database Systems, 23 (3): 231–285, 1998.

[13] Bertolissi, C., M. Fernández, and S. Barker, ‘Dynamic Event-Based Access

Control as Term Rewriting’, in S. Barker and G.-J. Ahn, (eds.), DBSec, vol. 4602 of

Lecture Notes in Computer Science, Springer, 2007, pp. 195–210.

[14] Genovese, V., D. M. Gabbay, G. Boella, and L. van der Torre, ‘FSL – Fibred

Security Language’, Normative Multi-Agent Systems, number 09121 in Dagstuhl

Seminar Proceedings, Dagstuhl, Germany, 2009,

[15] Boella, G., D. M. Gabbay, V. Genovese, and L. van der Torre, ‘Fibred Secu-

rity Language’, Studia Logica 92: 395–436, 2009.

[16] Clarke, D. E., J.-E. Elien, C. M. Ellison, M. Fredette, A. Morcos, and

R. L. Rivest, Certificate Chain Discovery in SPKI/SDSI, J. Computer Security, 9

(4): 285–322, 2001.

[17] Ferraiolo, D. F., and V. Atluri, ‘A meta model for access control: why is it needed

and is it even possible to achieve?’ ACM Symposium on Access Control Models and

Technologies - SACMAT, 2008, pp. 153–154.



476 S. Barker, G. Boella, D. M. Gabbay, and V. Genovese

[18] Ferraiolo, D. F., R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-

dramouli, ‘Proposed NIST standard for role-based access control’, ACM TISSEC,

4 (3): 224–274, 2001.

[19] Gabbay, D. M., Fibring Logics, Oxford University Press, 1999.

[20] Halpern, J. Y., and V. Weissman, ‘Using First-Order Logic to Reason about

Policies’, ACM Trans. Inf. Syst. Secur., 11 (4), 2008.

[21] Harrison, M. A., W. L. Ruzzo, and J. D. Ullman, ‘Protection in Operating Systems’,

Commun. ACM, 19 (8): 461–471, 1976.

[22] Jajodia, S., P. Samarati, M. Sapino, and V. Subrahmaninan, ‘Flexible Support

for Multiple Access Control Policies’, ACM TODS, 26 (2): 214–260, 2001.

[23] Joshi, J., E. Bertino, U. Latif, and A. Ghafoor, ‘A Generalized Temporal Role-

Based Access Control Model’, IEEE Trans. Knowl. Data Eng., 17 (1): 4–23, 2005.

[24] Lampson, B. W., M. Abadi, M. Burrows, and E. Wobber, ‘Authentication in

Distributed Systems: Theory and Practice’, ACM Trans. Comput. Syst., 10 (4):

265–310, 1992.

[25] Landin, P. J., ‘The Next 700 Programming Languages’, Commun. ACM, 9 (3):

157–166, 1966.

[26] Li, N., B.N. Grosof, and J. Feigenbaum, ‘Delegation logic: A logic-based ap-

proach to distributed authorization’, ACM Trans. Inf. Syst. Secur., 6 (1): 128–171,

2003.

[27] Li, N., J. C. Mitchell, and W. H. Winsborough, ‘Design of a role-based trust-man-

agement framework’, IEEE Symposium on Security and Privacy, 2002, pp. 114–130.

[28] Liau, C.-J., ‘Belief, information acquisition, and trust in multi-agent systems–

a modal logic formulation’, Artif. Intell., 149 (1): 31–60, 2003.

[29] OASIS, eXtensible Access Control Markup language (XACML), 2003.

http://www.oasis-open.org/xacml/docs/.

[30] Sandhu, R. S., and Q. Munawer, ‘How to Do Discretionary Access Control Using

Roles’, ACM Workshop on Role-Based Access Control, 1998, pp. 47–54.

[31] Weitzner, D. J., J. Hendler, T. Berners-Lee, and D. Connolly, ‘Creating

a Policy-Aware Web: Discretionary, Rule-based Access for the World Wide Web’,

Web and Information Security, 2006.

Steve Barker
Dept. of Computer Science
King’s College London
The Strand, London, WC2A 2LS, UK
steve.barker@kcl.ac.uk

Guido Boella
Dept. of Computer Science
Università di Torino
C.so Svizzera, 185 - 10149 Torino, Italy
guido@di.unito.it



A Meta-model of Access Control in a FSL 477

Dov M. Gabbay
Dept. of Computer Science
King’s College London
The Strand, London, WC2A 2LS, UK
and
Dept. of Computer Science
Bar Ilan University
Ramat Gan, Israel
dov.gabbay@kcl.ac.uk

Valerio Genovese
Dept. of Computer Science
Università di Torino
C.So Svizzera, 185 - 10149 Torino, Italy
valerio.click@gmail.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


