
HAL Id: hal-01869991
https://hal.science/hal-01869991

Submitted on 7 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Contraction-free and Cut-free Sequent Calculus for
Propositional Dynamic Logic

B Hill, F Poggiolesi

To cite this version:
B Hill, F Poggiolesi. A Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic
Logic. Studia Logica, 2010, 94 (1), pp.47-72. �10.1007/s11225-010-9224-z�. �hal-01869991�

https://hal.science/hal-01869991
https://hal.archives-ouvertes.fr

B. Hill

F. Poggiolesi

A Contraction-free and Cut-free

Sequent Calculus for

Propositional Dynamic Logic

Abstract. In this paper we present a sequent calculus for propositional dynamic logic

built using an enriched version of the tree-hypersequent method and including an infini-

tary rule for the iteration operator. We prove that this sequent calculus is theoremwise

equivalent to the corresponding Hilbert-style system, and that it is contraction-free and

cut-free. All results are proved in a purely syntactic way.

Keywords: Contraction-free; Cut-free; Propositional Dynamic Logic; Tree-hypersequent;

Proof theory.

1. Introduction

Propositional dynamic logic, or PDL for short, is a (modal) logic, first stud-
ied at the end of the 60’s by Engeler [3], Hoare [5] and Yanov [14], that is
based on the idea of associating with each program term a of a programming
language a modality [a]. This means that in PDL we still deal with boxed
formulas as we do in modal logic, but the box is no longer empty but filled
with program terms.

One could naturally ask: what kind of programs1 can fill the box of modal
logic? Well, we have atomic programs (a0, a1, a2, ...), but also more com-
plex programs that can be constructed by means of the following program
operators: the union operator, α∪β, that should be interpreted as: “do α or
β non-deterministically;” the composition operator, α ⊗ β,2 that should be
interpreted as: “first do α and then do β;” the test operator, A?, that should
be interpreted as: “verify that A is true;” and finally the iteration operator,
α∗, that should be interpreted as: “repeat α a finite number of times.”

In PDL, we thus deal with formulas of the following form: [a]A, [α∪β]A,
[α ⊗ β]A, [B?]A, [α∗]A, each of which should be read as: “A is true after
every terminating execution of the program that is in the box.”

1Without risk of confusion, we shall use “programs” and “program terms” interchange-
ably.

2Note that standardly the composition operator is indicated by a semicolon. However
since the semicolon plays a central role in the tree-hypersequent method used below, in
order to avoid any confusion, we prefer to use the symbol ⊗ for the composition operator.

Presented by Heinrich Wansing; Received June 3, 2009

Studia Logica (2010) 94: 69–94 c©Springer 2010

70 B. Hill and F. Poggiolesi

From the point of view of Hilbert systems, propositional dynamic logic
is well-defined. Indeed, there are several equivalent axiomatisations of PDL
(see for example [4, 7]), each of which is obtained by adding to classical
propositional logic: (i) the distribution axiom schema, that now has the
form: [α](A → B) → ([α]A → [α]B), for each program α; (ii) modus
ponens and the rule of necessitation; and (iii) at least one axiom schema or
inference rule for each program operator. What about Gentzen calculi for
propositional dynamic logic? In this case the situation is not so positive. As
far as we know only two sequent calculi have been proposed; namely, the
calculus of Nishimura [8] and the calculus of Wansing [13]. The first calculus
exploits classical sequents, treats the iteration operator with a finitary rule
and it is proved not to be cut-free. By contrast, Wansing’s calculus exploits
display sequents, it is cut-free but it does not treat the program operator ∗.
Given this situation, a question seems to naturally arise: what happens if
we want a sequent calculus which is cut-free and has rules for the iteration
operator? In this article we provide an answer to this question. We exploit
the tree-hypersequent method, introduced in [9], in order to build a cut-
free tree-hypersequent calculus for the full system of PDL. As is often the
case, to get this result, there is a price to pay, which is the finiteness of the
calculus. Indeed the rule that introduces the program operator ∗ on the
right side of the sequent has infinitely many premises. On reflection, this
fact may turn out to be unsurprising. Although there is an axiomatisation of
PDL which does not contain infinitary rules, from the semantic point of view
the ∗ operator is potentially infinitary. But the tree-hypersequent method,
though a purely syntactic method since it does not use any explicit semantic
elements, fully exploits Kripke semantics and therefore in such a framework
the infinitary aspect of the program operator ∗ emerges quite naturally. On
the other hand, the tree-hypersequent method has revealed itself to be useful
in the case of modal logic, enabling a syntactic proof of the cut-elimination
theorem. Even in the application to PDL, it does not disappoint: there is a
quite straightforward, syntactic proof of cut-elimination.

We will proceed in the following way: in Section 2 we will explain how
the tree-hypersequent method can be adapted to the case of propositional
dynamic logic and we will introduce the calculus CSPDL; in Section 3
we will show which structural rules are (height-preserving) admissible in
CSPDL; in Section 4 we will prove that the calculus CSPDL is valid and
complete with respect to the Hilbert system HPDL; finally, in Section 5,
we will prove the cut-elimination theorem for CSPDL.

Sequent Calculus for PDL 71

2. The calculus CSPDL

The tree-hypersequent method is a generalisation of the classical sequent
calculus originally built in order to generate sequent calculi for the main
systems of modal propositional logic. Let us briefly see how this method can
be naturally enriched to taking account of the propositional dynamic case.

The intuition behind the tree-hypersequent calculus is that of internalis-
ing in the framework of the Gentzen calculus the structure of the tree-frames
of Kripke semantics.3 In order to understand how this internalisation works,
let us consider the following simple tree:

• • •

տa1 ↑a2րa3

•

We internalise the structure of this tree-frame in the following way (of course
the same technique can be applied to any other tree-frame). The place of
the worlds is taken by classical sequents, i.e. in this case we have the four
sequents Γ1,Γ2,Γ3,Γ4 that stand for the root of the tree and the three worlds
at distance one, respectively. The accessibility relation is simply rendered
by using a slash in the following way: Γ1/Γ2Γ3Γ4. The separation between
worlds that are at the same distance is rendered with a semicolon, i.e. we
have the more precise: Γ1/Γ2; Γ3; Γ4. Tree-hypersequents were introduced
in [10], [11], where they were used to develop sequent calculi for a large
family of modal logics including modal logics corresponding to frames with
different properties, such as reflexivity, transitivity and symmetry. For the
case of PDL we need to internalise the programs a1, a2, a3 associated with
the accessibility relation. This is done as follows: Γ1/a1: Γ2; a2: Γ3; a3: Γ4.

Enough for the intuitive level. Let us now introduce important nota-
tions and definitions (for more details see [4]). The language of dynamic
propositional language LPDL contains:

A set Φ0 of propositional atoms

A set Π0 of atomic programs

Propositional Operators: ∧, ¬

Program Operators: ⊗,∪, ∗

Mix operators: ?, []

3Note that the restriction to tree-frames is not limitative thanks to the unraveling result
[2, pp. 62–63]; for more details see [9].

72 B. Hill and F. Poggiolesi

The other connectives as well as the mix operator <> are defined as usual.
We follow the standard syntactic conventions: atomic formulas are denoted
p, q, . . . , formulas are denoted A,B, ..., atomic programs are denoted a, b, . . . ,
and programs are denoted α, β, The set Φ of formulas and the set Π of
programs of LPDL are defined to be the smallest sets such that:

• Φ0 ⊆ Φ

• Π0 ⊆ Π

• if A,B ∈ Φ, then A ∧ B and ¬A ∈ Φ

• if α, β ∈ Π, then α ⊗ β, α ∪ β and α∗ ∈ Π

• if A ∈ Φ, then A? ∈ Π

• if α ∈ Π and A ∈ Φ, then [α]A ∈ Φ.

One axiomatisation of PDL, let us call it HPDL, consists of the following
axioms:

1. Axioms of propositional logic

2. [α](A → B) → ([α]A → [α]B) (distribution axiom)

3. [α ∪ β]A ↔ [α]A ∧ [β]A

4. [α ⊗ β]A ↔ [α][β]A

5. [B?]A ↔ (B → A)

6. A ∧ [α][α∗]A ↔ [α∗]A (mix axiom)

7. A ∧ [α∗](A → [α]A) → [α∗]A (induction axiom)

and the following rules of inference:

(MP) From A, A → B, infer B

(Nec) From A, infer [α]A.

In order to introduce tree-hypersequents we adopt the following syntac-
tic conventions: multisets of formulas are denoted M,N, . . . , sequents are
denoted Γ, ∆, . . . , and tree-hypersequents are denoted G, H, For the
sake of brevity we will use the following notation: given Γ ≡ M ⇒ N and
Π ≡ P ⇒ Q, we will write:

- B,Γ, A instead of B,M ⇒ N,A,

- Γ �Π instead of M,P ⇒ N,Q,

Sequent Calculus for PDL 73

- B,Γ � Π, A instead of B,M,P ⇒ N,Q,A.

Definition 2.1. The set of sequents (SEQ) is defined as standard. The set
of tree-hypersequents (THS) is inductively defined in the following way:

- if Γ ∈ SEQ, then Γ ∈ THS,

- if Γ ∈ SEQ, a1, ..., an are atomic programs, and G1, ..., Gn are tree-
hypersequents, then Γ/a1 : G1; ...; an : Gn ∈ THS.

Note that instead of writing a1 : G1; ...; an : Gn we will often adopt the
shorter notation X .

Definition 2.2. The intended interpretation of a tree-hypersequent is in-
ductively defined in the following way:

- (M ⇒ N)τ : =
∧

M →
∨

N

- (Γ/a1 : G1; ...; an : Gn)τ : = Γτ ∨ [a1]G
τ
1 ∨ ... ∨ [an]Gτ

n

In order to display the rules of the calculi, we will use the notation G[∗]
defined as follows:

Definition 2.3. The set of zoom tree-hypersequents (ZTHS) is inductively
defined in the following way:

- [−] ∈ ZTHS,

- if G1, ..., Gn ∈ THS, a1, ..., an are atomic programs, then [−]/a1 :
G1; ...; an : Gn ∈ ZTHS,

- if Γ ∈ SEQ, G2, ..., Gn ∈ THS, a1, ..., an are atomic programs and G1[−]
∈ ZTHS, then Γ/a1 : G1[−]; ...; an : Gn ∈ ZTHS.

Definition 2.4. For any zoom tree-hypersequent G[−], and tree-hyperse-
quent H, we define G[H], the result of substituting H into G[−], as follows:

- if G[−] = [−], then G[H] = H

- if G[−] = [−]/a1 : G1; ...; an : Gn and H = ∆/b1 : J1; ...; bm : Jm, then
G[H] = ∆/a1 : G1; ...; an : Gn; b1 : J1; ...; bm : Jm

- if G[−] = Γ/a1 : G1[−], ..., an : Gn, then G[H] = Γ/a1 : G1[H], ..., an : Gn

74 B. Hill and F. Poggiolesi

Note that a sequent is a tree-hypersequent so that Definition 2.4 also applies
to the case of substituting a sequent into a zoom tree-hypersequent.

Given what we have said up to now, one might wonder: (i) what is the
intuitive meaning of the last two definitions? (ii) how are we going to use
them? Let us start by answering the first question. Intuitively G[−] can be
thought of as a tree-hypersequent G together with one hole [−], where the
hole should be understood, metaphorically, as a zoom by means of which
we can focus attention on a particular part, −, of G. The operation of sub-
stitution fills the hole with a sequent or a tree-hypersequent, and therefore
allows us to make explicit the particular part in the tree-hypersequent that
we want to concentrate our attention on. As concerns the second question,
a brief inspection of the calculus CSPDL makes clear the importance of
Definitions 2.3 and 2.4. The postulates of the calculus CSPDL are:

Initial Tree-hypersequents

G [p, Γ, p]

Propositional Rules

G[Γ, A]

G[¬A,Γ]
¬A

G[A,Γ]

G[Γ,¬A]
¬K

G[A,B,Γ]

G[A ∧ B,Γ]
∧A

G[Γ, A] G[Γ, B]

G[Γ, A ∧ B]
∧K

Modal Rules

G[[b] A,Γ/(b : A,Σ/X)]

G[[b]A,Γ/(b : Σ/X)]
�A

G[Γ/b :⇒ A]

G[Γ, [b] A]
�K

Program Rules

G[[β]A, [γ] A,Γ]

G[[β ∪ γ] A,Γ]
∪A

G[Γ, [β] A] G[Γ, [γ] A]

G[Γ, [β ∪ γ] A]
∪K

G[[β] [γ]A,Γ]

G[[β ⊗ γ]A,Γ]
⊗A

G[Γ, [β] [γ]A]

G[Γ, [β ⊗ γ]A]
⊗K

G[Γ, A] G[B,Γ]

G[[A?]B,Γ]
?A

G[A,Γ, B]

G[Γ, [A?]B]
?K

Sequent Calculus for PDL 75

G[[β∗]A, [β]n A,Γ]

G[[β∗]A,Γ]
∗A

G[Γ, [β]n A] for each n < ω

G[Γ, [β∗] A]
∗K

Cut Rule

G[Γ, A] G[A,Γ]

G[Γ]
CutA

Note that in both the rules ∗A and ∗K, we use the notation [β]n A, which
is inductively defined in the following way:

• [α]0 A := A

• [α]k+1 A := [α] [α]k A

Therefore [α]n A ≡

n︷ ︸︸ ︷
[α] ... [α]A.

Let us make two remarks. The first one concerns the modal rules. Note
that these rules only apply to boxed formulas in which the program that
occurs in the box is atomic. The second remark concerns the ∗K rule. Note
that this rule has ω-many premisses.

3. Admissibility of the Structural Rules

In this section we will show which structural rules are admissible in the cal-
culus CSPDL. Moreover, in order to show that the two rules of contraction
are height-preserving admissible, we will show that all the logical, modal,
and program rules are height-preserving invertible. In Section 5 it will be
proved that the cut-rule is admissible.

Definition 3.1. We define the complexity of a formula A in the following
inductive way:

• cmp(p) = 1,

• cmp(¬A) = cmp([a]A) = cmp(A) + 1,

• cmp(A ∧ B) = cmp([A?]B) = max(cmp(A), cmp(B)) + 1,

• cmp([α ∪ β]A) = max(cmp([α]A), cmp([β]A)) + 1,

• cmp([α ⊗ β]A) = cmp([α][β]A) + 1,

• cmp([α∗]A) = cmp([α]A) + ω.

76 B. Hill and F. Poggiolesi

Definition 3.2. We associate to each proof d in CSPDL an ordinal h(d)
— the height — in the standard way. That is, h is inductively defined
as follows:

d = G[p,Γ, p] : h(d) = 0,

d =

... di

. . . G
′
[Γ

′
] . . .

G[Γ]

with i ∈ I: h(d) = supi∈I(h(di) + 1).

Note that I can generally have 1, 2 or ω elements (see rules p. 5).

Definition 3.3. For any ordinal κ, we write ⊢〈κ〉 G (respectively, ⊢〈<κ〉 G)
or just 〈κ〉G (resp. 〈<κ〉G), for: “there exists a proof d of G such that h(d)
≤ κ (resp. h(d) < κ).”

Definition 3.4. If R is the rule that allows us to infer G from G
′
, then call

the inverse of the rule R, written as R̂, the rule that allows us to infer G
′

from G.

In the sequent calculus for classical logic, we usually say that a (some)
formula(s) is (are) auxiliary in the premise(s) of a rule when the rule oper-
ates on that (those) formula(s). In a similar way, we will say that a (some)
sequent(s) is (are) auxiliary in the premise(s) of a rule, when the rule con-
cerns that (those) sequent(s). More precisely we will consider as auxiliary
those sequents that are displayed in the premise(s) of the rules of the tree-
hypersequent calculi.

In the following proofs of the (height-preserving) admissibility of the
structural rules and invertibility of the logical, modal and program rules,4

we will only take into account those cases in which the last applied rule
operates on the auxiliary sequent(s) of the rule that we want to show to be
admissible or invertible. All the other cases are dealt with easily, as shown
in Lemmas 3.13 and 3.14, which are proved at the end of the current section.

Lemma 3.5. Tree-hypersequents of the form G[A,Γ, A], with A an arbitrary
formula, are derivable in CSPDL.

Proof. By induction on the complexity of A.

Lemma 3.6. (Admissibility of the Structural Rules) In CSPDL the fol-
lowing rules are height-preserving admissible:

4For a precise definition of these notions, see [12, pp. 65–68].

Sequent Calculus for PDL 77

(i) the necessitation rule:
G

⇒ /a : G
rn

(ii) the weakening rules:

G[Γ]

G[A,Γ]
WA

G[Γ]

G[Γ, A]
WK

(iii) the external weakening rule:

G[Γ]

G[Γ/b : Σ]
EA

(iv) the merge rule:

G[∆/(b : Γ/X); (b : Π/X
′

)]

G[∆/(b : Γ � Π/X ;X
′
)]

merge

Proof. By straightforward induction on the height of the derivation of
the premise.

Lemma 3.7. The logical rules of CSPDL are height-preserving invertible.

Proof. The proof, by induction on the height of the derivation of the
premise of the rule considered, can be developed in the classical way. Indeed,
the only differences — the fact that we are dealing with tree-hypersequents,
and the cases where the rule before the logical rule is a modal or a program
rule — are dealt with easily.

Lemma 3.8. The rules �A and ∗A of CSPDL are height-preserving invert-
ible.

Proof. Thanks to the height-preserving admissibility of the weakening
rules.

Lemma 3.9. The rules ∪A, ∪K and ?A, ?K of CSPDL are height-preser-
ving invertible.

Proof. The proof, by induction on the height of the derivation of the
premise of the rule considered, is analogous to the classical one for the con-
nectives ∨ and →, respectively.

Lemma 3.10. The rules ⊗A and ⊗K are height-preserving invertible.

78 B. Hill and F. Poggiolesi

Proof. By induction on the height of the derivation of the premise of the
rule considered. We only consider the invertibility of the ⊗K rule. The proof
of the invertibility of the ⊗A rule is analogous.

If G[Γ, [β ⊗ γ] A] is an initial tree-hypersequent, then so is G[Γ, [β] [γ] A].
If G[Γ, [β ⊗ γ]A] is preceded by a logical rule R, we apply the inductive
hypothesis on the premise(s), G[Γ

′
, [β ⊗ γ]A] (G[Γ

′′
, [β ⊗ γ] A]) and we ob-

tain derivation(s), of height less than κ, of G[Γ
′
, [β] [γ]A] (G[Γ

′′
, [β] [γ] A]).

By applying the rule R, we obtain a derivation of height at most κ of
G[Γ, [β] [γ]A].

If G[Γ, [β ⊗ γ]A] is of the form G[Γ
′
, [β ⊗ γ] A, [b] B] and is concluded

by the modal rule �K (for the modal rule �A the procedure is analogous),
we apply the inductive hypothesis on G[Γ

′
, [β ⊗ γ] A/b :⇒ B] and we obtain

a derivation of height less than κ of G[Γ
′
, [β] [γ]A/b :⇒ B]. By applying the

rule �K, we obtain a derivation of height at most κ of G[Γ
′
, [β] [γ]A, [b] B].

If G[Γ, [β ⊗ γ] A] is concluded by one of the program rules, including
the ⊗K rule without [β ⊗ γ]A as principal formula, then the procedure is
analogous to the one for the logical rules.

Finally, if G[Γ, [β ⊗ γ] A] is preceded by the program rule ⊗K and
[β ⊗ γ] A is the principal formula, the premise of the last step gives the
conclusion.

Lemma 3.11. The rules �K and ∗K are height-preserving invertible.

Proof. By induction on the height of the derivation of the premise of the
rule considered. We only consider the invertibility of the ∗K rule. The proof
of the invertibility of the �K rule is analogous.

If G[Γ, [β∗]A] is an initial tree-hypersequent, then so are the premises:
G[Γ, [β]n A] for all n > 0. If G[Γ, [β∗] A] is preceded by a logical rule R, we
apply the inductive hypothesis on the premise(s), G[Γ

′
, [β∗] A] (G[Γ

′′
, [β∗]A])

and we obtain derivations, of height less than κ, of G[Γ
′
, [β]n A], for all n > 0,

(G[Γ
′′
, [β]n A], for all n > 0). By applying the rule R, we obtain derivations

of height at most κ of G[Γ, [β]n A], for all n > 0.
If G[Γ, [β∗] A] is of the form G[Γ

′
, [β∗]A, [b] B] and is concluded by the

modal rule�K (for the modal rule �A the procedure is analogous), we apply
the inductive hypothesis on G[Γ

′
, [β∗]A/b :⇒ B] and we obtain derivations

of height less than κ of G[Γ
′
, [β]n A/b :⇒ B], for all n > 0. By applying the

rule �K, we obtain derivations of height at most κ of G[Γ
′
, [β]n A, [b]B], for

all n > 0.
If G[Γ, [β∗] A] is concluded by one of the program rules, including the

∗K rule without the formula [β∗]A as principal formula, then the procedure
is analogous to the one for the logical rules.

Sequent Calculus for PDL 79

Finally, if G[Γ, [β∗]A] is preceded by the program rule ∗K and [β∗]A is
the principal formula, the premises of the last step give the conclusion.

Lemma 3.12. The rules of contraction:

G[A,A,Γ]

G[A,Γ]
CA

G[Γ, A,A]

G[Γ, A]
CK

are height-preserving admissible in CSPDL.

Proof. By induction on the derivation of the premise G[Γ, A,A]. We only
analyse the case of the rule CK. The case of the rule CA is similar.

If G[Γ, A,A] is an initial tree-hypersequent, so is G[Γ, A]. If G[Γ, A,A]
is preceded by a rule R which does not have any of the two occurrences
of the formula A as principal, we apply the inductive hypothesis on the
premise(s) G[Γ

′
, A,A] (G[Γ

′′
, A,A] or the infinite premises of the ∗K rule),

obtaining derivation(s) of height less than κ of G[Γ
′
, A] (G[Γ

′′
, A] or the

infinite premises of the ∗K rule). By applying the rule R we obtain a
derivation of height at most κ of G[Γ, A].

Now we consider the case where G[Γ, A,A] is preceded by a logical or
modal or program rule and one of the two occurrences of the formula A is
principal. Hence the rule which concludes G[Γ, A,A] is a K-rule and we
have to analyse the following cases: ¬K, ∧K, �K, ∪K, ⊗K, ?K, ∗K. Since
the procedure in all these cases is similar, we will only deal with the most
significant ones.

[∧K]:

〈<κ〉G[Γ, B,B ∧ C] 〈<κ〉G[Γ, C,B ∧ C]
〈κ〉G[Γ, B ∧ C,B ∧ C]

∧K 99K5

〈<κ〉G[Γ, B,B]
〈<κ〉G[Γ, B]

i.h.

〈<κ〉G[Γ, C,C]
〈<κ〉G[Γ, C]

i.h.

〈κ〉G[Γ, B ∧ C]
∧K

5The symbol 99K means: the premise of the right side is preceded by application of one
of the lemmas 3.7 - 3.11 on the premise of the left side.

80 B. Hill and F. Poggiolesi

[�K]:

〈<κ〉G[Γ, [b] B/b :⇒ B]
〈κ〉G[Γ, [b]B, [b] B]

�K 99K

〈<κ〉G[Γ/b :⇒ B; b :⇒ B]
〈<κ〉G[Γ/b :⇒ B,B]
〈<κ〉G[Γ/b :⇒ B]

〈κ〉G[Γ, [b]B]
�K

i.h.

merge

[∗K]:

〈<κ〉 ... G[Γ, [β∗] B, [β]n B]
...

〈κ〉 G[Γ, [β∗] B, [β∗]B]
∗K 99K

...

〈<κ〉G[Γ, [β]n B, [β]n B]
〈<κ〉G[Γ, [β]n B]

i.h. ...
〈κ〉G[Γ, [β∗]B]

∗K

where i.h. stands for inductive hypothesis.

Lemma 3.13. Let G[H] be any tree-hypersequent of the calculus CSPDL
together with an occurrence of a tree-hypersequent in it, and G

′
[H] the result

of the application of one of the height-preserving admissible rules - rn, WA,
WK, EW , merge, CA, CK - on G[H]. If for a rule R we have:

G[H
′
]

G[H]
R

then it holds that:

G
′
[H

′
]

G′ [H]
R

Proof. By induction on the form of the tree-hypersequent G[H].

Lemma 3.14. Let G[H] be any tree-hypersequent of the calculus CSPDL
together with an occurrence of a tree-hypersequent in it, and G[H

′
] the result

Sequent Calculus for PDL 81

of the application of one of the logical, modal, or program rules on G[H].
If for a rule R we have:

G
′
[H

′
]

G[H ′]
R

then it holds that:
G

′
[H]

G[H]
R

Proof. By induction on the form of the tree-hypersequent G[H
′
].

4. The Adequacy Theorem

In this section we prove that our calculus CSPDL proves exactly the same
formulas as its corresponding Hilbert-style system HPDL.

We begin with the proof of soundness. This proof is quite straightforward
except for the case of the rule ∗K. In order to deal with this case, we
introduce the following definition and lemma.

Definition 4.1. Let F be the set of propositional functions such that:

• F0 = {−}

• Fi+1 = {B ∨ [b]C | B ∈ Φ, b ∈ Π0, C ∈ Fi}

• F =
⋃

i<ω Fi

For a propositional function f ∈ F and a formula A ∈ Φ, f(A) is the
formula obtained by substituting A for the dash.

Intuitively the set F can be thought of as the equivalent, in LPDL, of the
set of zoom tree-hypersequents ZTHS: in fact the translation of any zoom
tree-hypersequent is an element of F .

Lemma 4.2. The rule:

⊢ f(B → [α]nA) for each n < ω

⊢ f(B → [α∗]A)

is derivable in HPDL.

Proof. The proof uses the completeness of PDL with respect to the stan-
dard semantics (see [4], for example). In fact, we prove that, for any
f,A,B, α, for any state i in any model M, if i �M f(B → [α]nA) for all

82 B. Hill and F. Poggiolesi

n < ω, then i �M f(B → [α∗]A). The proof operates by induction on
the construction of f . By the interpretation of the ∗ operator, we have the
base case: for any state i in any model M, we have that, if i �M B → [α]nA
for all n < ω, then i �M B → [α∗]A. Now suppose that the inductive hy-
pothesis holds for f , and consider C∨[b]f(B → [α]nA). If i �M C∨[b]f(B →
[α]nA) for every n < ω, then i �M C or, for every state j related to i via the
accessibility relation for b, j �M f(B → [α]nA), for all n < ω. Hence, by the
inductive hypothesis, either i �M C or, for every state j related to i via the
accessibility relation for b, j �M f(B → [α∗]A), so i �M C∨ [b]f(B → [α∗]A)
as required.

Since, if i �M f(B → [α]nA) for all n < ω, then i �M f(B → [α∗]A),
we have that, if �M f(B → [α]nA) for all n < ω, then �M f(B → [α∗]A),
whence, by completeness, if ⊢ f(B → [α]nA) for all n < ω, then ⊢ f(B →
[α∗]A), as required.

Theorem 4.3. If ⊢ G in CSPDL, then ⊢ (G)τ in HPDL.

Proof. By induction on the height of derivations in CSPDL. The cases
of the finitary rules are easily dealt with. The technique for each consists of
the following two steps: first of all, the sequent(s) affected by the rule should
be isolated and the corresponding implication proved, then the implication
should be transported up all along the tree so that, by modus ponens, the
desired result is immediately achieved. Lemma 4.2 deals with the case of
the infinitary rule ∗K.

In order to simplify the quite complex proof of completeness, we will
firstly prove the following two lemmas.

Lemma 4.4. Let A ,B, ... denote sequences of program modalities. Then the
following two rules:

G[A [α]nA,Γ]

G[A [α∗]A,Γ]
PA

... G[Γ,A [α]nA]
...

G[Γ,A [α∗]A]
PK

are admissible in CSPDL.

Proof. By induction on the height of the derivation of the premises.
We only analyse the case of the rule PK. The case of the rule PA is similar.

If A is empty, then the lemma is trivial. Let us consider the case where A

is not empty. We distinguish cases by the last rules applied on the premises
of the rule PK.

Sequent Calculus for PDL 83

Case 1. For all i > 0, G[Γ,A [α]iA] are initial tree-hypersequents. In this
case the conclusion is also an initial tree-hypersequent.

Case 2. Each G[Γ,A [α]iA] is inferred by a rule in which A [α]iA is prin-
cipal. Therefore the rules are the same. Since A denotes a sequence of
program modalities, the last applied rule with A [α]iA as principal formula,
can only be a program rule or a modal rule. We distinguish cases.

(2a) Suppose the first program of the sequence A is an atomic program
b and the last applied rule is �K, then we have the following situation:

. . .
G[Γ/b :⇒ A

′
[α]iA]

G[Γ, [b]A ′ [α]iA]
�K . . .

G[Γ/b :⇒ A
′
[α∗]A]

G[Γ, [b]A ′ [α∗]A]
�K

(2b) Suppose the first program of the sequence A is the test program
and the last applied rule is ?K, then we have the following situation:

. . .
G[B,Γ,A

′
[α]iA]

G[Γ, [B?]A ′ [α]iA]
?K . . .

G[B,Γ,A
′
[α∗]A]

G[Γ, [B?]A ′ [α∗]A]
?K

(2c) Suppose the first program of the sequence A is the composition
program (for the union program the procedure is analogous) and the last
applied rule is ⊗K, then we have the following situation:

. . .
G[Γ, [β][γ]A

′
[α]iA]

G[Γ, [β ⊗ γ]A ′ [α]iA]
⊗K . . .

G[Γ, [β][γ]A
′
[α∗]A]

G[Γ, [β ⊗ γ]A ′ [α∗]A]
⊗K

(2d) Suppose the first program of the sequence A is the iteration program
and the last applied rule is ∗K, then we have the following situation:

84 B. Hill and F. Poggiolesi

. . .

... G[Γ, [β]kA
′
[α]iA]

...

G[Γ, [β∗]A ′ [α]iA]
∗K . . .

... G[Γ, [β]kA
′
[α∗]A]

...

G[Γ, [β∗]A
′
[α∗]A]

∗K

Case 3. None of the A [α]iA are principal, but the same rules are applied
to the same formulas of the same sequents in the premises. This case is
straightforward.

Case 4. The rules are not all the same, or they have not all been applied
to the same formula of the same sequent in the premises. Proceed in the
following way.

Define the relation ∼ on the natural numbers as follows. i ∼ j iff the
last rule applied on G[Γ,A [α]iA] is the same as the last rule applied on
G[Γ,A [α]jA] and the rules have been applied to the same formula of the
same sequent. Note that ∼ is an equivalence relation.

Let S1, ..., Sm be the equivalence classes under ∼. Note that since there
is a finite number of rules and the tree-hypersequents are finite objects,
there is a finite number of equivalence classes. Note also that to each Sk,
1 ≤ k ≤ m, is naturally associated a rule and a formula to which the rule
has been applied. Let Rk denote the rule associated with Sk.

For each Sk and for each i ∈ Sk, apply the inverses of the rules Rl, for
all l 6= k, to the tree-hypersequent G[Γ,A [α]iA], i.e. the tree-hypersequent
associated to the natural number i. Note that thanks to Lemmas 3.10-3.14,
the height of the derivations of each tree-hypersequent is preserved.

Now all premises have the same form with their derivations having the
same height as previously. Apply the inductive hypothesis on these premises
and then apply the rules R1,..., Rk to obtain a derivation of G[Γ,A [α∗]A].

Lemma 4.5. The following rule:

A1, ..., An ⇒ A

[α]A1, ..., [α]An ⇒ [α]A
RN

is admissible in CSPDL.

Proof. By induction on the complexity of the formulas.

Theorem 4.6. If ⊢ α in HPDL, then ⊢⇒ α in CSPDL.

Sequent Calculus for PDL 85

Proof. By primary induction on the complexity of the formula α and
secondary induction on the height of the proof. The classical axioms and
the modus ponens rule are proved as usual, we present the proof of: (i) the
distribution axiom; (ii) axioms for programs; (iii) necessitation rules.

(i) Distribution axiom. We distinguish cases depending on the program
α that occurs in the box. If α is an atomic program a, then the proof is
the following:

[a](A → B), [a]A ⇒ /a : A ⇒ A [a](A → B), [a]A ⇒ /a : B ⇒ B

[a](A → B), [a]A ⇒ /a : A,A → B ⇒ B
→A

[a](A → B), [a]A ⇒ /a : A,⇒ B
�A

[a](A → B), [a]A ⇒ /a :⇒ B
�A

[a](A → B), [a]A ⇒ [a]B
�K

[a](A → B) ⇒ [a]A → [a]B
→K

⇒ [a](A → B) → ([a]A → [a]B)
→K

If α is the test program B?, then the proof is the following:

C, [C?](A → B) ⇒ B,C

A,C ⇒ B,C

A,C ⇒ B,A B,A,C ⇒ B

A → B,A,C ⇒ B
→A

A,C, [C?](A → B) ⇒ B
?A

C, [C?](A → B), [C?]A ⇒ B
?A

[C?](A → B), [C?]A ⇒ [C?]B
?K

[C?](A → B) ⇒ [C?]A → [C?]B
→K

⇒ [C?](A → B) → ([C?]A → [C?]B)
→K

If α is the union, composition or iteration program, then we have to
use the inductive hypothesis. Let us consider the case of the composition
program (the procedure for the union and iteration programs is analogous).
So suppose that α ≡ β ⊗ γ, we have:

⇒ [β][γ](A → B) → ([β][γ]A → [β][γ]B)

[β][γ](A → B) ⇒ [β][γ]A → [β][γ]B
→̂K

[β][γ](A → B), [β][γ]A ⇒ [β][γ]B

[β ⊗ γ](A → B), [β][γ]A ⇒ [β][γ]B
⊗A

[β ⊗ γ](A → B), [β ⊗ γ]A ⇒ [β][γ]B
⊗A

→̂K

[β ⊗ γ](A → B), [β ⊗ γ]A ⇒ [β ⊗ γ]B
⊗K

[β ⊗ γ](A → B) ⇒ [β ⊗ γ]A → [β ⊗ γ]B
→K

⇒ [β ⊗ γ](A → B) → ([β ⊗ γ]A → [β ⊗ γ]B)
→K

86 B. Hill and F. Poggiolesi

Note that in the last two inferences, reading the proof bottom up, we have
used the inverse of the rule → K. The last tree-hypersequent, still reading
the proof bottom up, is provable by the inductive hypothesis.

(ii) The proof of the following axioms, [α∪β]A ↔ [α]A∧[β]A, [α∪β]A ↔
[α]A∧ [β]A and [A?]B ↔ A → B is trivial. We are going to show the proofs
of the mix axiom and of the induction axiom. In these proofs Lemma 4.4
and Lemma 4.5, respectively, will play an important role.

(iia) mix axiom:

A ⇒ A
[α∗]A ⇒ A

∗A

[α]n+1A ⇒ [α][α]nA

[α∗]A ⇒ [α][α]nA
∗A

[α∗]A ⇒ [α][α∗]A
PK

[α∗]A ⇒ A ∧ [α][α∗]A
∧K

⇒ [α∗]A → A ∧ [α][α∗]A
→K

(iib) induction axiom. We start the proof in the following way:

...

A, A → [α]A, [α](A → [α]A), ..., [α]n−1(A → [α]A) ⇒ [α]nA

A, A → [α]A, [α](A → [α]A), ..., [α]n−1(A → [α]A), [α∗](A → [α]A) ⇒ [α]nA
WA

...

∗A

A, [α∗](A → [α]A) ⇒ [α]nA
∗A ...

A, [α∗](A → [α]A) ⇒ [α∗]A
∗K

A ∧ [α∗](A → [α]A) ⇒ [α∗]A
∧A

⇒ A ∧ [α∗](A → [α]A) → [α∗]A
→K

Note that we have reached the second last sequent, reading the proof bottom
up, by repeated applications of the rule ∗A; this is what the dots stand for.
In order to continue the proof we distinguish cases depending on the program
α that occurs in the box.

- Let us start by assuming that α is an atomic program a. Then by
applying the rule → A on A,A → [a]A, [a](A → [a]A), ..., [a]n−1(A →
[a]A) ⇒ [a]nA, we obtain the axiom A ⇒ A and the tree-hypersequent:
[a]A, [a](A → [a]A), ..., [a]n−1(A → [a]A) ⇒ [a]nA. We continue the proof
as follows:

Sequent Calculus for PDL 87

⇒ /a : A ⇒ A [a]A, [a](A → [a]A), ..., [a]n−1(A → [a]A) ⇒ /a : A, [a]A ⇒ [a]n−1A

[a]A, [a](A → [a]A), ..., [a]n−1(A → [a]A) ⇒ /a : A, A → [a]A ⇒ [a]n−1A
→A

[a]A, [a](A → [a]A), ..., [a]n−1(A → [a]A) ⇒ /a : A ⇒ [a]n−1A
�A

[a]A, [a](A → [a]A), ..., [a]n−1(A → [a]A) ⇒ /a :⇒ [a]n−1A
�A

[a]A, [a](A → [a]A), ..., [a]n−1(A → [a]A) ⇒ [a]nA
�K

By repeated applications (n-times) of passages analogous to the ones above,
we reach the axiom:

[a]A, ..., [a]n−1(A → [a]A) ⇒

n︷ ︸︸ ︷
/a : A, ..., [a]n−2(A → [a]A) ⇒ /.../a : A ⇒ A

- Let us assume that α is a test program B?, then we have to prove the
tree-hypersequent: A,A → [B?]A, ..., [B?]n−1(A → [B?]A) ⇒ [B?]nA. We
prove it by induction on n. If n = 1, then simply:

A ⇒ A [B?]A ⇒ [B?]A

A,A → [B?]A ⇒ [B?]A
→A

Let us suppose that the proof holds for n. We have to show that it holds for
n + 1. We have:

A,A → [B?]A, ..., [B?]n−1(A → [B?]A) ⇒ [B?]nA

A,A → [B?]A, ..., [B?]n−1(A → [B?]A), [B?]n(A → [B?]A) ⇒ [B?]nA
WA

B,A,A → [B?]A, ..., [B?]n(A → [B?]A) ⇒ [B?]nA
WA

A,A → [B?]A, ..., [B?]n(A → [B?]A) ⇒ [B?]n+1A
?K

- Let us assume that α is a composition program β⊗γ (for the union and
iteration programs the procedure is analogous), then we have to prove the
tree-hypersequent: A,A → [β⊗γ]A, ..., [β⊗γ]n−1(A → [β⊗γ]A) ⇒ [β⊗γ]nA.
We prove it by induction on n. If n = 1, then simply:

A ⇒ A [β ⊗ γ]A ⇒ [β ⊗ γ]A

A,A → [β ⊗ γ]A ⇒ [β ⊗ γ]A
→A

Let us suppose that the proof holds for n. We have to show that it holds for
n + 1. We have:

A ⇒ A

A, A → [β ⊗ γ]A, ..., [β ⊗ γ]n−1(A → [β ⊗ γ]A) ⇒ [β ⊗ γ]nA

[γ]A, [γ](A → [β ⊗ γ]A), ..., [γ][β ⊗ γ]n−1(A → [β ⊗ γ]A) ⇒ [γ][β ⊗ γ]nA
RN

[β][γ]A, [β][γ](A → [β ⊗ γ]A), ..., [β][γ][β ⊗ γ]n−1(A → [β ⊗ γ]A) ⇒ [β][γ][β ⊗ γ]nA
RN

[β][γ]A, [β][γ](A → [β ⊗ γ]A), ..., [β][γ][β ⊗ γ]n−1(A → [β ⊗ γ]A) ⇒ [β ⊗ γ]n+1A

.

.

.

⊗A

[β ⊗ γ]A, [β ⊗ γ](A → [β ⊗ γ]A), ..., [β ⊗ γ]n(A → [β ⊗ γ]A) ⇒ [β ⊗ γ]n+1A
⊗A

⊗K

A, A → [β ⊗ γ]A, ..., [β ⊗ γ]n(A → [β ⊗ γ]A) ⇒ [β ⊗ γ]n+1A
→A

88 B. Hill and F. Poggiolesi

where the dots stand for repeated applications of the rule ⊗A.

(iii) rule of necessitation. We distinguish cases depending on the program
α that occurs in the box. If α is an atomic program a, then the proof is
the following:

⇒ A
⇒ /a :⇒ A

rn

⇒ [a]A
�K

If α is the test program B?, then the proof is the following:

⇒ A
B ⇒ A

WA

⇒ [B?]A
?A

If α is a union, composition or iteration program, then we have to use
the inductive hypothesis. Let us consider the case of the composition pro-
gram (the procedure for the union and iteration programs is analogous).
So suppose that α = β ⊗ γ, we have:

⇒ A
⇒ [γ]A

i.h.

⇒ [β][γ]A
i.h.

⇒ [β ⊗ γ]A
⊗K

5. Cut-elimination Theorem

In this section we prove that the cut-rule is admissible in calculus CSPDL,
as the following theorem states.

Theorem 5.1. Let G[Γ, A] and G[A,Γ] be two tree-hypersequents. If:

... d1

G[Γ, A]

... d2

G[A,Γ]

G[Γ]
cutA

and d1 and d2 do not contain any other application of the cut rule, then we
can construct a proof of G[Γ] without any application of the cut rule.

Sequent Calculus for PDL 89

Proof. The proof is developed by induction on the complexity of the cut
formula (see Definition 3.1), with subinduction on the natural (or Hessen-
berg) sum of the heights of the derivations of the premises of cut (for a def-
inition of the natural sum of ordinals see, e.g., [12]). We will distinguish
cases by the last rule applied on the left premise.

Case 1. G[Γ, A] is an initial tree-hypersequent. Then either the conclusion
is also an initial tree-hypersequent or it can be obtained by an application
of the contraction rule on the right premise.

Case 2. G[Γ, A] is inferred by a rule R in which A is not principal. Then
we can have the following situation:6

G[Γ
′
, A]

G[Γ, A]
R

...
G[A,Γ]

G[Γ]
cutA

We apply the inverse of the R rule on G[A,Γ] and we obtain G[A,Γ
′
]. Note

that the height is not modified since the rules of the calculus CSPDL are
height-preserving invertible. We can therefore proceed in the following way:

G[Γ
′
, A] G[A,Γ

′
]

G[Γ
′
]

cutA

G[Γ]
R

where this cut is eliminable by induction on the sum of the heights of the
derivations of the premises of cut.

Case 3. G[Γ, A] is inferred by a rule R in which A is principal. We distin-
guish three subcases: (3.1.) R is a logical rule; (3.2.) R is a modal rule;
(3.3.) R is a program rule. We analyse each of these cases.

Case 3.1. We consider, as an example, the case where the rule before
G[Γ, A] is ¬K. We have:

G[B,Γ]

G[Γ,¬B]
¬K

...

G[¬B,Γ]

G[Γ]
cut¬B

6Note that the rule R can also have been applied to some sequents Σ, different from
Γ, and belonging to the zoom tree-hypersequent G[∗]. The procedure is analogous to the
one considered here.

90 B. Hill and F. Poggiolesi

By applying the inverse of the rule ¬A on G[¬B,Γ], we obtain G[Γ, B].
We replace the previous cut with the following one which is eliminable by
induction on the complexity of the cut formula:

G[Γ, B] G[B,Γ]

G[Γ]
cutB

Case 3.2. R is �K and A = [b]B. We have the following situation:

G[Γ/b :⇒ B]

G[Γ, [b]B]
�K

...

G[[b]B,Γ]

G[Γ]
cut[b]B

We have to consider the last rule R
′

of d2. If there is no rule R
′

which
introduces G[[b]B,Γ] because G[[b] B,Γ] is an initial tree-hypersequent, then
we can solve the case as in 1. If R

′
is a rule in which [b] B is not the principal

formula, then we solve the case as in 2. The only problematic case is the
case where R

′
is �A and [b] B is the principal formula. We analyse it:7

G
′
[Γ/b :⇒ B; (b : ∆/X)]

G
′
[Γ, [b] B/(b : ∆/X)]

�K
G

′
[[b] B,Γ/(b : B,∆/X)]

G
′
[[b] B,Γ/(b : ∆/X)]

�A

G
′
[Γ/(b : ∆/X)]

cut[b]B

We reduce to:

G
′
[Γ, [b] B/(b : ∆/X)]

G
′
[Γ, [b] B/(b : B,∆/X)]

WA
G

′
[[b] B,Γ/(b : B,∆/X)]

G
′
[Γ/(b : B,∆/X)]

cut[b]B

G
′
[Γ/b :⇒ B; (b : ∆/X)]

G
′
[Γ/(b : ∆, B/X)]

merge

G
′
[Γ/(b : B,∆/X)]

G
′
[Γ/(b : ∆/X)]

cutB

7Note that G
′

[Γ, [b] B/(b : ∆/X)] (G
′

[[b] B, Γ/(b : ∆/X)]) is just another way of writing
G[Γ, [b] B] (G[[b] B, Γ]).

Sequent Calculus for PDL 91

where the first cut is eliminable by induction on the sum of the heights of
the derivations of the premises of cut and the second cut is eliminable by
induction on the complexity of the cut formula.

Case 3.3. In this subcase we can have several situations depending on the
program that appears in the box. We analyse each of these situations by
supposing that the right premise has also been introduced by a rule that has
A has principal formula. The other cases can be developed as in point 3.2.

∪:
G[Γ, [β]B] G[Γ, [γ] B]

G[Γ, [β ∪ γ]B]
∪K

G[[β] B, [γ]B,Γ]

G[[β ∪ γ]B,Γ]
∪A

G[Γ]
cut[β∪γ]B

We reduce to:

G[Γ, [β] B]

G[Γ, [γ]B]

G[[β]B,Γ, [γ]B]
WA

G[[β]B, [γ]B,Γ]

G[[β]B,Γ]
cut[γ]B

G[Γ]
cut[β]B

where both cuts are eliminable by induction on the complexity of the cut
formula.

⊗:
G[Γ, [β] [γ]B]

G[Γ, [β ⊗ γ] B]
⊗K

G[[β] [γ]B,Γ]

G[[β ⊗ γ]B,Γ]
⊗A

G[Γ]
cut[β⊗γ]B

We reduce to:

G[Γ, [β] [γ] B] G[[β] [γ] B,Γ]

G[Γ]
cut[β][γ]B

where this cut is eliminable by induction on the complexity of the cut
formula.

?:
G[C,Γ, B]

G[Γ, [C?]B]
?A

G[Γ, C] G[B,Γ]

G[[C?]B,Γ]
?K

G[Γ]
cut[C?]B

92 B. Hill and F. Poggiolesi

We reduce to:

G[Γ, C]

G[C,Γ, B]

G[B,Γ]

G[C,B,Γ]
WA

G[C,Γ]
cutB

G[Γ]
cutC

where both cuts are eliminable by induction on the complexity of the cut
formula.

∗:
... G[Γ, [β]n B]

...

G[Γ, [β∗] B]
∗K

G[[β∗] B, [β]n B,Γ]

G[[β∗]B,Γ]
∗A

G[Γ]
cut[β∗]B

We reduce to:

G[Γ, [β]n B]

G[Γ, [β∗] B]

G[[β]n B,Γ, [β∗] B]
WA

G[[β∗] B, [β]n B,Γ]

G[[β]n B,Γ]
cut[β∗]B

G[Γ]
cut[β]nB

where the first cut is eliminable by induction on the sum of the heights of
the derivations of the premises of cut and the second cut is eliminable by
induction on the complexity of cut formula.

6. Conclusion

We have presented a sequent calculus for propositional dynamic logic. This
calculus enjoys many attractive properties: all the structural rules, includ-
ing the contraction and cut rules, are (height-preserving) admissible, the
logical, modal and program rules are height-preserving invertible, and the
cut-elimination proof exploits the standard syntactic procedure. On the
other hand the calculus is infinitary: the rule that introduces the program
operator ∗ on the right side of the sequent has infinitely many premises.

Given this situation, the first future task should be to find a sequent
calculus that enjoys the properties of CSPDL whilst being finitary. This
task is far from trivial, as attested by the existing literature on this problem
and similar problems. On the one hand, there is Nishimura’s attempt to find

Sequent Calculus for PDL 93

a finitary calculus for PDL: his calculus is not cut-free [8]. On the other
hand, there is the growing literature on sequent calculi for common knowl-
edge, which is informative insofar as the common knowledge operator is quite
similar to the iteration operator of propositional dynamic logic, both seman-
tically and axiomatically. There the results are very mitigated. The best
calculus which has been achieved with a finitary rule mimicking the finitary
Hilbert axiomatisation (the common knowledge equivalent of HPDL) has
a partial cut-elimination theorem, which can only be proved using seman-
tic methods, but no full, syntactically proven cut-elimination theorem [6].
Moreover, the only finitary calculus with cut-elimination employs a variant
of our infinitary rule ∗K, with the set of premises limited to those with n
less than some finite bound which depends on the conclusion of the rule [1];
once again the proof of cut-elimination is based on semantic completeness.
It therefore would not be surprising if similar types of limitation also held
for the program operator ∗ of dynamic logic.

These reflections just serve to emphasise the depth of a possible and
important direction of research.

Acknowledgements Both authors acknowledge the support of the ANR
project HYPOTHESES. The work of Francesca Poggiolesi has been finan-
cially supported by the Flemish Found for Scientific Research with grant
G. 0152.08.

References

[1] Alberucci, Luca, and Gerhard Jäger, ‘About cut elimination for logics of com-

mon knowledge’, Annals of Pure and Applied Logic, 133 (2005), 1–3, 73–99.

[2] Blackburn, Patrick, Maarten de Rijke, and Yde Venema, Modal Logic, Cam-

bridge University Press, Cambridge, 2001.

[3] Engeler, Erwin, ‘Algorithmic properties of structures’, Mathematical Systems The-

ory, 1 (1967), 183–195.

[4] Harel, David, Dexter Kozen, and Jerzy Tiuryn, Dynamic Logic, MIT Press,

Cambridge, 2000.

[5] Hoare, Charles Anthony Richard, ‘An axiomatic basis for computer program-

ming’, Communications of the ACM, 12 (1969), 576–580.

[6] Jäger, Gerhard, Mathis Kretz, and Thomas Studer, ‘Cut-free common knowl-

edge’, Journal of Applied Logic, 5 (2007), 4, 681–689.

[7] Knijnenburg, Peter M. W., and Jan van Leeuwen, ‘On models for propositional

dynamic logic’, Theoretical Computer Science, 91 (1991), 181–203.

[8] Nishimura, Hirokazu, ‘Sequential method in propositional dynamic logic’, Acta

Informatica, 12 (1979), 377–400.

94 B. Hill and F. Poggiolesi

[9] Poggiolesi, Francesca, Sequent Calculi for Modal Logic, Ph.D Thesis, Florence,

2008.

[10] Poggiolesi, Francesca, ‘The method of tree-hypersequent for modal propositional

logic’, in D. Makinson, J. Malinowski, and H. Wansing, (eds.), Trends in logic: To-

wards mathematical philosophy, Springer, 2009, pp. 31–51.

[11] Poggiolesi, Francesca, Reflecting the semantic features of S5 at the syntactic level,

SILFS conference proceedings, Forthcoming, 2010.

[12] Troelstra, Anne Sjerp, and Helmut Schwichtenberg, Basic Proof Theory,

Cambridge University Press, Cambridge, 1996.

[13] Wansing, Heinrich, Displaying Modal Logic, Kluwer Academic Publisher, Dor-

drecht/Boston/London, 1998.

[14] Yanov, Joseph, ‘On equivalence of operator schemes’, Problems of Cybernetic, 1

(1959), 1–100.

Francesca Poggiolesi

Center of Logic and Philosophy of Science (CLFW),
Vrije Universiteit Brussel, Pleinaan 2,
1050, Brussels, Belgium
poggiolesi@gmail.com

Brian Hill

HEC Paris and IHPST (CNRS / Paris 1 / ENS)
1 rue de la Libération
78351 Jouy-en-Josas, France
brian@brian-hill.org

