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Abstract. We study some operations that may be defined using the minimum operator

in the context of a Heyting algebra. Our motivation comes from the fact that 1) already

known compatible operations, such as the successor by Kuznetsov, the minimum dense

by Smetanich and the operation G by Gabbay may be defined in this way, though almost

never explicitly noted in the literature; 2) defining operations in this way is equivalent,

from a logical point of view, to two clauses, one corresponding to an introduction rule

and the other to an elimination rule, thus providing a manageable way to deal with these

operations. Our main result is negative: all operations that arise turn out to be Heyting

terms or the mentioned already known operations or operations interdefinable with them.

However, it should be noted that some of the operations that arise may exist even if the

known operations do not. We also study the extension of Priestley duality to Heyting

algebras enriched with the new operations.
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Introduction

In this paper we study certain operations on Heyting algebras that corre-
spond to new connectives in intuitionistic logic. For material on Heyting
algebras the reader may see [1]. The study of new connectives was started
by Novikov in the 1950s and a first example was found by Smetanich (see
e.g. [16]) in 1960. It was a unary connective but it is easily seen that it is es-
sentially a constant (see [17]). Later on, in 1977, Gabbay developed his own
approach and found a unary connective we will call G (see [11]). For a com-
parison between Novikov’s and Gabbay’s approach the reader may see [18].
In 1978, Kuznetsov (see [14]), interested in building an intuitionistic version
of the provability logic GL of Gödel and Löb, found a unary connective
S known later as the successor in [3], where it is noted that in Heyting
chains where the corresponding algebraic operation exists, it is the successor
with respect to the order. Kuznetsov provides axioms and also, from an
algebraic point of view, defines S using the minimum operator. In 2001,
Caicedo and Cignoli undertook a general approach considering compatible
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operations (see [3]). A function f : Hn → H (where H is a Heyting algebra)
is called compatible if and only if it is compatible with all the congruence re-
lations of H (such a function is compatible with a congruence relation θ of H
if and only if xiθyi, for i = 1, . . . , n implies that f(x1, . . . xn)θf(y1, . . . yn)).
It can easily be seen (see [3, Lemma 2.1]) that, in the unary case, f is a
compatible function of H iff x ↔ y ≤ f(x) ↔ f(y), for all x, y in H. The
algebraic concept of compatibility means that in the logic resulting from
intuitionistic logic by adding formulas in the usual way and axioms corre-
sponding to the new say unary connective k it is possible to derive what is
sometimes called the uniqueness axiom: (ϕ ↔ ψ) → (kϕ ↔ kψ). All the
extensions of intuitionistic logic resulting from the given examples of new
connectives satisfy this axiom, which appeared explicitly in the already cited
[16], [17] and [18] as a condition in Novikov’s approach.

We said that Kuznetsov defined the mentioned operation S using the
minimum operator. It may be seen that also both the Smetanich connective
and Gabbay’s connective G may be defined in this way (though not easily
seen in the case of G). In [3] it is also proved that both G and the unary
connective γ, a variant of the Smetanich constant introduced by Caicedo and
Cignoli, may be defined using S. One aim of this paper is to show that any
operation defined by means of certain minimization scheme may be defined
using the successor. A second aim is to extend Priestley duality between
bounded distributive lattices and topological spaces to Heyting algebras with
the new operations.

We study some unary operations f(x) defined as min{y : Rxy}. More
precisely, in Section 1 we consider all the operations that come from the
schema g(x) = min{y : (y → x) ◦ tx ≤ y}, where ◦ ∈ {∧,∨,→,←} (x ←
y := y → x) and t is a Heyting term, distinguishing the cases that are
not Heyting terms. In Section 2 we study whether the mentioned cases
are polynomials. In sections 3 and 4 we consider, respectively, logical and
topological aspects of the mentioned operations. In Section 5, we study the
interdefinability of the operations that appear in Section 1.

1. Operations given by the min Operator

We are interested in examining the operations that arise from the schema

g(x) = min{y : (y → x) ◦ tx ≤ y},

where ◦ ∈ {∧,∨,→,←} (x ← y := y → x) and t is a Heyting term. It will
be enough to consider the terms given by the Rieger-Nishimura lattice.
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This schema is motivated by the operation S, known as the successor
and introduced in [14] (see also [3],[4], [5] and [7]), that may be defined
as min{y : y → x ≤ y} and may also be obtained from the given schema
with ◦ = ∧ substituting either 1 or any term greater or equal to ¬x ∨ ¬¬x
for tx, also with ◦ = ∨ substituting ⊥ or x for tx, and also with ◦ =←
substituting any term greater or equal to ¬x∨¬¬x for tx. Note that S may
be characterized by equations, e.g. Sx → x ≤ Sx and Sx ≤ y ∨ (y → x).

In some cases the resulting operations may be given by Heyting terms:

Lemma 1. The operations corresponding in the given schema to ◦ = ∧ and
tx = ⊥, x or ◦ = ∨ and ¬x ∨ ¬¬x ≤ tx or all cases of ◦ =→ or ◦ =← and
tx = ⊥, x may be given by the Heyting terms that appear in the corresponding
row and column of the table in the following page.

Proof. The proof in the case of ◦ =→ with tx = x ∨ ¬x may be seen
in [6]. We just consider the cases ◦ = ∨, → with ¬x ∨ ¬¬x ≤ tx. For
the first case, it is enough to see that a) (tx → x) ∨ tx ≤ tx and b) if
(y → x) ∨ tx ≤ y, then tx ≤ y. But b) is immediate. Let us see a): it
is enough to prove that tx → x ≤ ¬¬x, because ¬¬x ≤ ¬x ∨ ¬¬x ≤ tx.
But (tx → x) ∧ ¬x ≤ 0, because (tx → x) ∧ ¬x ≤ ¬x ∨ ¬¬x ≤ tx and
(tx → x) ∧ ¬x ≤ ¬tx. For the second case, it is enough to prove that c)
(1 → x) → tx ≤ 1 and d) if (y → x) → tx ≤ y, then 1 ≤ y. But c) is
immediate. Let us see d): suppose (y → x) → tx ≤ y. As ¬x ∨ ¬¬x ≤ tx,
it follows that (y → x) → (¬x ∨ ¬¬x) ≤ (y → x) → tx. Then, using
the supposition, we have that (F) (y → x) → (¬x ∨ ¬¬x) ≤ y. Then, as
¬x ≤ (y → x) → (¬x∨¬¬x), we have that ¬x ≤ y. Then (y → x)∧¬x ≤ y,
and as (y → x) ∧ ¬x ≤ y → x, it follows that (y → x) ∧ ¬x ≤ x. So,
y → x ≤ ¬x → x = ¬¬x ≤ ¬x∨¬¬x. But then 1 ≤ (y → x) → (¬x∨¬¬x).
Then, using (F), we have that 1 ≤ y.

It can be easily seen that the operations corresponding to the other cases,
i.e. the cases not mentioned in the previous lemma, are not Heyting terms,
because they do not exist e.g. in the real interval [0, 1]. We will be interested
in these operations that are not Heyting terms.

In what follows we consider the cases that are not equal to Heyting terms
nor equal to S.

The cases ◦ = ∧ with tx = x ∨ ¬x, ¬¬x → x both provide an operation
that already occurs in the literature with the name γ (see [3]).

The case ◦ = ∧ with tx = ¬¬x also provides an operation that already
occurs in the literature: it is an operation called G in [3] that appears for
the first time in [11], but from a logical point of view.
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The case ◦ = ∧ with tx = ¬x provides an operation we call h.
The case ◦ = ∨ with tx = ¬¬x and the cases ◦ =← with tx = ¬x,

x ∨ ¬x, ¬¬x → x provide an operation we call T .
The case ◦ = ∨ with tx = ¬x, x ∨ ¬x provides an operation we call Q.
The case ◦ = ∨ with tx = ¬¬x → x and the case ◦ =← with tx = ¬¬x

provide an operation we call Y .
All the cases considered are resumed in the following table:

tx ∧ ∨ → ←
⊥ ⊥ Sx ⊥ 1
x x Sx x 1
¬x hx Qx ¬x Tx

¬¬x Gx Tx ¬¬x Y x

x ∨ ¬x γx Qx ¬¬x → x Tx

¬¬x → x γx Y x ¬¬x → x Tx

¬x ∨ ¬¬x ≤ tx Sx tx 1 Sx

Note that in the given table the functions appearing in the last two
columns are either functions expressible by Heyting terms or functions that
already appear in one of the first two columns. So, in the following propo-
sition it is not necessary to consider the conditional.

Proposition 1. Let g(x) = min{y : tx ◦ (y → x) ≤ y}, where ◦ ∈ {∧,∨}.
Then g may be characterized by equations, g is compatible and g exists if S
exists with g(x) = Sx ◦ tx.

Proof. 1) To see that g is characterized by equations consider

a) tx ◦ (g(x) → x) ≤ g(x),

b) g(x) ≤ z ∨ (tx ◦ (z → x)).

2) To see that g is compatible, using b) with z = g(y) we have that

(x ↔ y) ∧ g(x) ≤ (x ↔ y) ∧ (g(y) ∨ (tx ◦ (g(y) → x))). (I)

Now, using the fact that the unary function H(w) = g(y)∨(tw◦(g(y) → w))
is compatible and [3, Lemma 2.1], we have that

x ↔ y ≤ H(x) ↔ H(y).

So, in particular, and also using a) we have that

(x ↔ y) ∧ (g(y) ∨ (tx ◦ (g(y) → x))) ≤ g(y) ∨ (ty ◦ (g(y) → y)) = g(y). (II)
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Using (I) and (II) it follows that (x ↔ y)∧ g(x) ≤ g(y). Thus, we have that
x ↔ y ≤ g(x) ↔ g(y). Therefore, again by [3, Lemma 2.1], it follows that
the function g is compatible.

3) Let us suppose that S exists. Firstly, it is the case that Sx ◦ tx ∈
{y : tx ◦ (y → x) ≤ y} because having that Sx → x ≤ Sx it follows
that tx ◦ ((Sx ◦ tx) → x) ≤ Sx ◦ tx. Secondly, let us take an y such that
tx ◦ (y → x) ≤ y. Then, using that Sx ≤ y ∨ (y → x), it follows that
Sx ◦ tx ≤ y.

In the context of a Heyting algebra the new operations may be defined
with the help of the successor in the following way:

hx = Sx ∧ ¬x, Gx = Sx ∧ ¬¬x,
γx = Sx ∧ (x ∨ ¬x), Qx = Sx ∨ ¬x,
Tx = Sx ∨ ¬¬x = S(¬¬x), Y x = Sx ∨ (¬¬x → x) = S(¬¬x → x).

But the reciprocal is not true: there are Heyting algebras where the new
operations exist but the successor does not. Let Hω+1 be the totally-ordered
Heyting algebra resulting from the addition of a new element α to the set ω
of natural numbers in such a way that n < α, for each n ∈ ω, and let Hω+2

be the Heyting algebra resulting from the addition of a new element β to
Hω+1 in such a way that α < β. In the Heyting algebra (Hω+2)op (that is,
Hω+2 with the inverse order) the functions h, γ and T exist but the successor
does not, and in the Heyting algebra (Hω+1)op the functions G, Q and Y
exist but the successor does not.

2. Polynomiality

The notion of polynomial used here is simply that from universal algebra:
polynomials are functions arising from constant functions and the identity
function by means of the Heyting operations. The simplest examples of
compatible functions in a Heyting algebra H are the polynomial functions
of H, in particular, all constant functions.

Let us see that

Proposition 2. If H is a Heyting algebra where h exists, then h is polyno-
mial in H.

Proof. Let us see that hx = h0 ∧ ¬x. Firstly, our goal is to see that
((h0 ∧ ¬x) → x) ∧ ¬x ≤ h0 ∧ ¬x. But ((h0 ∧ ¬x) → x) ∧ (h0 ∧ ¬x) ≤ 0.
So, ((h0 ∧ ¬x) → x) ∧ ¬x ≤ ¬h0 = ¬0 ∧ ¬h0 ≤ h0. Secondly, suppose that
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(y → x) ∧ ¬x ≤ y. Let us see that h0 ∧ ¬x ≤ y. But h0 ≤ y ∨ (¬x ∧ ¬y),
y ≤ y and ¬x ∧ ¬y ≤ (y → x) ∧ ¬x ≤ y. So, h0 ≤ y.

It can similarly be seen that γ and T are polynomial in a Heyting algebra
where they exist, seeing respectively that γx = γ0 ∨ x and Tx = T0 ∨ ¬¬x.

In the remainder of this section we study the affine completeness of Heyt-
ing algebras enriched with S, G, Q and Y , respectively. Remember that an
algebra H is affine complete if any compatible function of H is given by
a polynomial of H. It is known that boolean algebras and finite Heyting
algebras are affine complete (see [12], [15] and Cor. 3.6.1 of [13]).

We write F for any of the following four operations: S, G, Q or Y . Note
that in Hω+2, if x �= 0, then Fx = Sx. Then we have the following

Lemma 2. Let N0 = ω − {0}. If p is a polynomial of (Hω+2, F ), then there
exist n and x0 ∈ N0 such that p(x) = S(n)(x), for every x0 ≤ x ∈ N0

(where S(0)(x) = x) or there exists x0 ∈ N0 such that p(x) = a, for every
x0 ≤ x ∈ N0, where a ∈ Hω+2.

Proof. The proof is by induction on the complexity of the polynomials
of (Hω+2, F ). The basic step holds. Let p be a polynomial of complexity
m + 1 and suppose that the property holds for polynomials of complexity
less than m + 1. If x0, x1 and a ∈ ω, then we define x2 = max{x0, x1} and
x3 = max{x0, x1, a+1}. Let q and r be polynomials of complexity less than
m + 1. We have the following cases:

(i) Let p(x) = q(x) ∧ r(x). Let q(x) = S(n)(x), for every x0 ≤ x ∈ N0

and r(x) = S(p)(x), for every x1 ≤ x ∈ N0. Then p(x) = S(l)(x), for
every x2 ≤ x ∈ N0, with l = min {n, p}. Let q(x) = S(n)(x), for every
x0 ≤ x ∈ N0, and r(x) = a, for every x1 ≤ x ∈ N0. If a ∈ ω, then we have
that p(x) = a, for every x3 ≤ x ∈ N0. If a /∈ ω, then p(x) = S(n)(x), for
every x2 ≤ x ∈ N0. Let q(x) = a, for every x0 ≤ x ∈ N0, and r(x) = b, for
every x1 ≤ x ∈ N0. Then p(x) = c, for every x2 ≤ x ∈ N0, with c = a ∧ b.

(ii) Let p(x) = q(x) ∨ r(x). This is similar to (i).
(iii) Let p(x) = q(x) → r(x). Let q(x) = S(n)(x), for every x0 ≤ x ∈ N0,

and r(x) = S(p)(x), for every x1 ≤ x ∈ N0. If n ≤ p, then p(x) = β, for every
x2 ≤ x ∈ N0. If n > p, then p(x) = S(p)(x), for every x2 ≤ x ∈ N0. Let
q(x) = S(n)(x), for every x0 ≤ x ∈ N0, and r(x) = a, for every x1 ≤ x ∈ N0.
If a ∈ ω, then p(x) = a, for every x3 ≤ x ∈ N0. If a /∈ ω, then p(x) = β, for
every x2 ≤ x ∈ N0. Let q(x) = a, for every x0 ≤ x ∈ N0, and r(x) = S(n)(x),
for every x1 ≤ x ∈ N0. If a ∈ ω, then p(x) = β, for every x3 ≤ x ∈ N0. If
a /∈ ω, then p(x) = S(n)(x), for every x1 ≤ x ∈ ω. Let q(x) = a, for every
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x0 ≤ x ∈ N0, and r(x) = b, for every x0 ≤ x ∈ N0. If a ≤ b, then p(x) = β,
for every x2 ≤ x ∈ N0. If a > b, then p(x) = b, for every x2 ≤ x ∈ N0.

(iv) Let p(x) = S(q(x)). If q(x) = S(n)(x), for every x0 ≤ x ∈ N0, then
p(x) = S(n+1)(x), for every x0 ≤ x ∈ N0. If q(x) = a, for every x0 ≤ x ∈ N0,
then p(x) = a + 1, for every x0 ≤ x ∈ N0.

In the next proposition we use the compatible function f : Hω+2 → Hω+2

defined by:

f(x) =

{
α if x is even or x = α,

β if x is odd or x = β.

Proposition 3. The function f is not a polynomial of (Hω+2, F ). In par-
ticular, (Hω+2, F ) is not affine complete.

Proof. It follows from the definition of f and Lemma 2.

3. Logical Approach

Let us now consider our new operations from a logical point of view. Let
I + k be the axiomatic system obtained extending 1) the usual language of
intuitionistic logic I with a new unary connective k and formulas kϕ, for
every formula ϕ and 2) any axiomatic system of I with the following axioms
(modus ponens (MP) remains the only rule):

kI: (Fϕ ◦ (kϕ → ϕ)) → kϕ,
kE: kϕ → (ψ ∨ (Fϕ ◦ (ψ → ϕ))),

where Fϕ is the formula corresponding to the term tx and ◦ is either ∧ or ∨.
The symbols “I” and “E” abbreviate the words “Introduction” and “Elim-
ination”, which seem appropriate here due to the similarity with the usual
Introduction and Elimination rules in Natural Deduction. For example, in
the case of G we get the axioms:

GI: (¬¬ϕ ∧ (Gϕ → ϕ)) → Gϕ,
GE: Gϕ → (ψ ∨ (¬¬ϕ ∧ (ψ → ϕ))).

Note that in this way we provide a two formula axiomatization instead
of the original five axioms given by Gabbay.

These extended systems will enjoy the Deduction Theorem, because MP
remains the only rule. Moreover, the connective k may be seen to be univocal
in the sense that �I+k+k′ kϕ ↔ k′ϕ, where I + k + k′ is the logic resulting
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from the extension of the language of I+k with the connective k′ of the same
arity as k providing formulas in the usual way and duplicating the axioms
for k in I + k with axioms for k′. To see that the connective k is univocal
just consider the following derivation (the other conditional is analogous):

1. kϕ → (k′ϕ ∨ (Fϕ ◦ (k′ϕ → ϕ))) kE

2. (Fϕ ◦ (k′ϕ → ϕ)) → k′ϕ k′I
3. kϕ → k′ϕ 1, 2, I.

Note that the first two properties of Proposition 1 also follow from the
just given fact and [3, Cor. 4.3].

It may be seen, using the customary algebraic consequence relation, that
I + k is sound and complete w.r.t. the variety of Heyting algebras enriched
with k. Soundness follows easily by induction. In order to prove strong
completeness either use the univocity of k and [3, Theorems 4.1 and 4.2] or
check routinely that �I+k (ϕ ↔ ψ) → (kϕ ↔ kψ) and use [3, Theorem 4.1].

Moreover, the following holds:

Proposition 4. The logics I +k are conservative, that is, if Γ �I+k ϕ, then
Γ �I ϕ, for ϕ in the language of I.

Proof. Due to the Deduction Theorem it is enough to prove for ϕ in the
language of I that if �I+k ϕ, then �I ϕ. Let us assume that �I+k ϕ. Let g
be the (algebraic) operation corresponding to the connective k. Then ϕ = 1
holds in every Heyting algebra where g exists. But g exists in all finite
Heyting algebras, because S exists in every finite Heyting algebra (see [7,
Proposition 4]) and we have seen in Proposition 1 that if S exists, then also
g exists. Now, using the finite model property of intuitionistic logic it follows
that �I ϕ.

Note that the properties of univocity and conservative extension are also
considered e.g. in [2].

4. Topological Approach

For a partially ordered set (X,≤) and Y ⊆ X, we recall that the downset of
Y is the set

(Y ] = {x ∈ X : x ≤ y, for some y ∈ Y }.
We also recall that an Esakia space is a Priestley space (X,≤) such

that if U is a clopen in X, then (U ] is clopen. Alternatively, the Priestley
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space (X,≤) is an Esakia space if for every open set U , then (U ] is open. Let
g : (X,≤) → (Y,≤) be a morphism of posets. We say that g is a p-morphism
if for every x ∈ X and z ∈ Y such that f(x) ≤ z, there is y ∈ X with x ≤ y
and g(y) = z. A morphism of Esakia spaces is a continuous p-morphism.
The category of Esakia spaces E has as objects Esakia spaces and as arrows
morphisms of Esakia spaces. We use H for the category of Heyting algebras.

It is known (see [8]) that the categories H and E are dually equivalent:

X : H � E : D.

This fact, known as Esakia duality, is an extremely useful tool in giving
dual descriptions of algebraic concepts important for the study of Heyting
algebras.

By Esakia duality, each Heyting algebra H gives rise to the Esakia space
(X(H),⊆), where X(H) is the set of prime filters of H, and the topology on
X(H) is given by the following basis {ϕH(a) ∩ (ϕH(b))c : a, b ∈ H}, where

ϕH(a) = {P ∈ X(H) : a ∈ P}.
Given Heyting algebras H and K and a Heyting algebra homomorphism f :
H → K, we have that the map X(f) : X(K) → X(H) given by X(f)(P ) =
f−1(P ) is an Esakia morphism. Conversely, each Esakia space (X,≤) gives
rise to the Heyting algebra D(X) = (D(X),∩,∪,→, ∅, X), where D(X) is
the set of clopen upsets of X, and for every U, V clopen upsets of X, we have
that the implication is given by V → U = (V ∩ U c]c. If (X,≤) and (Y,≤)
are Esakia spaces and g : (X,≤) → (Y,≤) is an Esakia morphism, then the
map D(g) : D(Y ) → D(X) given by D(g)(U) = g−1(U) is a Heyting algebra
homomorphism.

Given a Heyting algebra H, the map ϕH : H → D(X(H)) establishes
the desired isomorphism of Heyting algebras. Given an Esakia space (X,≤),
the map εX : X → X(D(X)), given by

εX = {U ∈ D(X) : x ∈ U},
establishes the desired isomorphism of Esakia spaces.

Let (X ≤) be a poset. If A ⊆ X, we write AM for the set of maximal
elements of A.

In [4] there are equivalences for the categories of Heyting algebras with
S, γ and G; in particular, it was proved that in the clopen upsets of the
respective topological spaces we have that

S(U) = U ∪ (U c)M , γ(U) = U ∪ XM , G(U) = U ∪ [¬¬U ∩ (U c)M ]. (III)
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Here ¬U = U → ∅. In this section we give categorical equivalences for
the categories of Heyting algebras with Q, T and Y . For that we consider
Heyting algebras where the following unary function exists:

ft(x) = min{y ∈ H : (y → x) ∨ tx ≤ y},

where t is a Heyting term. The function ft can be characterized by the
following equations (see proof of Proposition 1):

(ft1) (ft(x) → x) ∨ tx ≤ ft(x),
(ft2) ft(x) ≤ y ∨ (y → x) ∨ tx.

Let tH be the category whose objects, to be called t-algebras, are algebras
(H, ft), with H ∈ H, and whose morphisms are morphisms of H that com-
mute with ft. An Esakia space (X,≤) is a t-space if, for every U ∈ D(X),
the set (U c)M ∪ (U c∩ tU) is clopen. Note that it is immediate that (X,≤) is
a t-space if and only if it is an Esakia space such that, for every U ∈ D(X),
the set U ∪ (U c)M ∪ tU is clopen (note that this set is also an upset). Let
(X,≤) and (Y,≤) be t-spaces and g : (X,≤) → (Y,≤) is a morphism in E .
We say that g is a t-morphism if, for every U ∈ D(Y ), it holds that

g−1(U) ∪ g−1[(U c)M ] ∪ g−1(tU) = g−1(U) ∪ [g−1(U c)]M ∪ g−1(tU).

We denote by tE the category whose objects are t-spaces and whose
morphisms are t-morphisms. In what follows we will see that there is a dual
categorical equivalence between tH and tE .

There are several well known results about Esakia duality (see [8], [9]
and [10]). We will frequently use the following: if (X,≤) is an Esakia space
and V is a closed subset of X, then, for every x ∈ V , there is a v ∈ VM such
that x ≤ v. In general, the set of maximal elements of a closed subset of an
Esakia space is closed, but it is not necessarily open.

Lemma 3. If (X,≤) ∈ tE, then there exists ft in D(X) and we have that

ft(U) = U ∪ (U c)M ∪ tU.

Proof. For every U ∈ D(X) define the set

EU = {V ∈ D(X) : (V → U) ∪ tU ⊆ V }.

Firstly, we prove that U ∪ (U c)M ∪ tU ∈ EU . It is equivalent to see that

((U c)M ∪ (tU ∩ U c)]c ∪ tU ⊆ U ∪ (U c)M ∪ tU.



On Some Compatible Operations on Heyting Algebras 341

Let x ∈ ((U c)M∪(tU∩U c)]c and suppose that x /∈ U . Using that U c is closed
we have that there is a y ∈ (U c)M such that x ≤ y, so x ∈ ((U c)M∪(tU∩U c)],
a contradiction. Then ((U c)M ∪(tU∩U c)]c∪tU ⊆ U∪(U c)M ∪tU . Secondly,
let V ∈ EU . Let us see that U ∪ (U c)M ∪ tU ⊆ V . Let x ∈ U ∪ (U c)M ∪ tU .
Suppose that x /∈ V . Then, x /∈ tU and x /∈ V → U . Thus, there is
y ∈ V ∩ U c such that x ≤ y. In particular, x ∈ U c (because U is an upset),
so x ∈ (U c)M . Thus, x = y, so y /∈ V , a contradiction.

Note that if g : (X,≤) → (Y,≤) is a function between posets and U ⊆ Y ,
then

g−1(U) ∪ g−1[(U c)M ] ∪ g−1(tU) = g−1(U ∪ (U c)M ∪ tU). (IV)

Thus, the previous lemma allows us to obtain the following

Lemma 4. If g ∈ tE, then D(g) ∈ tH.

From the two previous lemmas it follows that D is a functor from tE to
tH.

If H ∈ H and A ⊆ H, we write F (A) for the filter generated by A.

Lemma 5. Let H ∈ H. If the function ft exists, then for every x ∈ H it
holds that

ϕH(ft(x)) = ϕH(x) ∪ (ϕc
H(x))M ∪ ϕH(tx).

In particular, (X(H),⊆) ∈ tE.

Proof. Let P ∈ ϕH(ft(x)). Suppose that x /∈ P , t(x) /∈ P and let Q ∈
X(H) such that P ⊆ Q and x /∈ Q. In what follows we prove that P = Q.
Let y ∈ Q and suppose that y /∈ P , so by equation (ft2) we have that
y → x ∈ P . Thus y → x ∈ Q, so x ∈ Q (because y ∈ Q), a contradiction.
Thus P = Q, so ϕH(ft(x)) ⊆ ϕH(x) ∪ (ϕc

H(x))M ∪ ϕH(tx).
Conversely, let P ∈ ϕH(x) ∪ (ϕc

H(x))M ∪ ϕH(tx). If x ∈ P or tx ∈ P ,
then by equation (ft1) we have that ft(x) ∈ P , so let us consider the case
that P ∈ (ϕc

H(x))M . Suppose that ft(x) /∈ P . Now consider the filter
F = F (P ∪{ft(x)}). By equation (ft1) and the fact that ft(x) /∈ P we have
that x /∈ F , so by the Prime Filter Theorem there is a Q ∈ X(H) such that
P ⊆ F ⊆ Q and x /∈ Q; in particular, we have that P = F = Q, so ft(x) ∈ P ,
a contradiction. Therefore, ϕH(x) ∪ (ϕc

H(x))M ∪ ϕH(tx) ⊆ ϕH(ft(x)).

Remark 1. If (H, ft) ∈ tH, then ϕH is an isomorphism in tH. This holds
because the function ft is characterized by equations.

Lemma 6. If h : (H, ft) → (K, ft) ∈ tH, then X(h) ∈ tE.
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Proof. It follows that D(X(h)) = ϕGhϕ−1
H because H and E are dually

equivalent. Also, we have that for every U ∈ D(X(H)) there is an x ∈ H
such that U = ϕH(x). Then by Remark 1 it follows that

X(h)−1(ft(U)) = ϕGhft(x) = ftϕGh(x), (V)

ft(X(h)−1(U)) = ft(ϕGhϕ−1
H (U)) = ftϕGh(x). (VI)

From (V) and (VI) it follows that X(h)−1(ft(U)) = ft(X(h)−1(U)).
Then by equation (IV) we conclude that X(h) ∈ tE .

From the two previous lemmas it follows that X is a functor from tE
to tH.

Lemma 7. If (X,≤) ∈ tE, then εX ∈ tE. In particular, εX is an isomorphism
in tE.

Proof. It is enough to see that for every V ∈ X(D(X)) it holds that

[ε−1
X (V c)]M = ε−1

X [(V c)M ].

Let x ∈ [ε−1
X (V c)]M , so εX(x) ∈ V c. Let εX(x) ≤ z with z ∈ V c. Using

that εX is an isomorphism of lattices it follows that there is a y such that
εX(y) = z with x ≤ y. In particular, εX(y) ∈ V c and x ≤ y. Thus x = y,
so εX(x) = εX(y) = z, so x ∈ ε−1

X [(V c)M ]. Conversely, let x ∈ ε−1
X [(V c)M ],

so εX(x) ∈ (V c)M . Let z be such that x ≤ z with z ∈ ε−1
X (V c). Therefore,

εX(z) ∈ V c. The function εX preserves order, so εX(x) ≤ εX(z). As εX(z) ∈
V c, we have that εX(x) = εX(z). However, εX is an injective function. Thus
x = z and then x ∈ [ε−1

X (V c)]M .

The following theorem follows from the previous results.

Theorem 1. There is a dual categorical equivalence between tH and tE.

The following lemma is well known and will be used in the next section.

Lemma 8. Let (X,≤) be an Esakia space. Then, for every U ∈ D(X), it
holds that

(U c)M ⊆ ¬U ∪ ¬¬U.
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5. Interdefinability

In this section we show how to interdefine the operations introduced in
Section 1. Firstly, we consider the polynomial operations and show that they
are interdefinable. Secondly, we consider the non-polynomial operations G,
Q and Y and prove algebraically the particular case that if G exists, then
Q also exists with Qx = Gx ∨ ¬x. Thirdly, we use results of Section 4 to
simplify the just mentioned algebraic proof for similar cases. Finally, we
show that S, though impossible to be defined using just one of the other
operators, may be defined taking two of them, one polynomial and the other
not so.

Regarding the polynomial operations the following holds: if either h, γ
or T exist, then also the other exist respectively with

γx = h0 ∨ x, hx = γ0 ∧ ¬x, hx = T0 ∧ ¬x,
Tx = h0 ∨ ¬¬x, Tx = γ0 ∨ ¬¬x, γx = T0 ∨ x.

The proof of this fact is similar to the proof of Proposition 2. Note that
γ = h0 = γ0 = T0.

Let us now consider the cases of the non-polynomial operations G, Q
and Y . They are all interdefinable. The following is one case which we
prove algebraically.

Proposition 5. If G exists, then also Q exists with Qx = Gx ∨ ¬x.

Proof. Firstly, let us see that Gx ∨ ¬x ∈ {y : (y → x) ∨ ¬x ≤ y}, i.e.
that ((Gx ∨ ¬x) → x) ∨ ¬x ≤ Gx ∨ ¬x. But ¬x ≤ Gx ∨ ¬x. Now we
have to see that (Gx ∨ ¬x) → x ≤ Gx ∨ ¬x. In fact, we can prove that
(Gx ∨ ¬x) → x ≤ Gx. Having that (Gx → x) ∧ ¬¬x ≤ Gx, it is enough to
get a) (Gx ∨ ¬x) → x ≤ Gx → x and b) (Gx ∨ ¬x) → x ≤ ¬¬x. For a) just
consider that Gx ≤ Gx ∨ ¬x. For b), it is the case that (Gx ∨ ¬x) → x ≤
¬x → ¬(Gx ∨ ¬x) = ¬x → (¬Gx ∧ ¬¬x) ≤ ¬x → ¬¬x = ¬¬x.

Secondly, let us see that if (y → x)∨¬x ≤ y, then Gx∨¬x ≤ y. Using the
hypothesis (y → x)∨¬x ≤ y, it is enough to see that a) Gx ≤ y and b) ¬x ≤
y. Part b) is immediate because ¬x ≤ (y → x) ∨ ¬x ≤ y. For a), consider
that from the definition of G it follows that Gx ≤ y ∨ ((y → x)∧¬¬x). It is
obvious that y ≤ y. Then, it is enough to see that (y → x) ∧ ¬¬x ≤ y. But
(y → x) ∧ ¬¬x ≤ y → x ≤ (y → x) ∨ ¬x ≤ y.

The previous proposition appears as the first line in the second column
of the following cases. In general, if either G, Q or Y exist, then also the
others exist, respectively with
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Gx = Qx ∧ ¬¬x, Qx = Gx ∨ ¬x, Y x = Gx ∨ (¬¬x → x),
Gx = Y x ∧ ¬¬x, Qx = (Y x ∧ ¬¬x) ∨ ¬x, Y x = Qx ∨ (¬¬x → x).

In order to prove these equations use Theorem 1 and the third equation
of (III). The two cases of the first column and the last case of the third
column are consequences of an easy computation and the other cases follow
from Lemma 8.

However, taking one polynomial and one non-polynomial operation, S
may be defined. The following precise fact may be seen algebraically: if
either h and G, γ and G, or T and Q exist, then also S exists, respectively
with

Sx = hx ∨ Gx,
Sx = γx ∨ Gx,
Sx = Tx ∧ Qx.

The second equation already appears in [3]. The third also follows from
Theorem 1 and Lemma 8.
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