
ExpTime Tableau Decision Procedures
for Regular Grammar Logics with Converse ?

Linh Anh Nguyen1 and Andrzej Sza las1,2

1 Institute of Informatics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland
{nguyen,andsz}@mimuw.edu.pl

2 Department of Computer and Information Science, Linköping University
SE-581 83 Linköping, Sweden

Abstract. Grammar logics were introduced by Fariñas del Cerro and Penttonen in [7]
and have been widely studied. In this paper we consider regular grammar logics with
converse (REGc logics) and present sound and complete tableau calculi for the general
satisfiability problem of REGc logics and the problem of checking consistency of an ABox
w.r.t. a TBox in a REGc logic. Using our calculi we develop ExpTime (optimal) tableau
decision procedures for the mentioned problems, to which various optimization techniques
can be applied. We also prove a new result that the data complexity of the instance checking
problem in REGc logics is coNP-complete.

1 Introduction

A grammar logic is a normal multimodal logic characterized by inclusion axioms of the
form [σ1] . . . [σh]ϕ → [%1] . . . [%k]ϕ, where [σi] and [%j] are universal modal operators
indexed by indices σi and %j from some set Σ. Inclusion axioms give rise to production
rules of the form σ1 . . . σh → %1 . . . %k. When the rules are restricted to have only one
symbol at the left hand side, the considered logic is called a context-free grammar logic. If,
for each σ ∈ Σ, the set of words derivable from σ using the production rules is a regular
language explicitly specified by a finite automaton then the considered logic is called
a regular grammar logic.

Assume now that there is a symmetric one-to-one map on Σ that associates each σ ∈
Σ with σ ∈ Σ, intuitively standing for the converse of σ. If the set S of production rules of
the considered regular grammar logic is symmetric in the sense that (σ → %1 . . . %k) ∈ S
iff (σ → %k . . . %1) ∈ S, then the logic is a regular grammar logic with converse.

Grammar logics have been introduced by Fariñas del Cerro and Penttonen in [7] and
have been studied widely, e.g., in [1,3,5,11,23]. In [1], Baldoni et al. gave a prefixed tableau
calculus for grammar logics and used it to show that the general (uniform) satisfiability
problem3 of right linear grammar logics is decidable and that the general satisfiability
problem of context-free grammar logics is undecidable. In [3], by using a transforma-
tion into the satisfiability problem of propositional dynamic logic (PDL), Demri proved
that the general satisfiability problem of regular grammar logics is ExpTime-complete.
In [5], Demri and de Nivelle gave a translation of the satisfiability problem of grammar
logics with converse into the two-variable guarded fragment of first-order logic and have
? This work is an extension of the conference paper [25]. It is supported by grants N N206 3982 33 and

N N206 399334 from the Polish Ministry of Science and Higher Education.
3 i.e., the satisfiability problem, where a specification of the logic is also given as an input of the problem

2 L.A. Nguyen and A. Sza las

shown that the general satisfiability problem of regular grammar logics with converse is
also ExpTime-complete. In [11], Goré and Nguyen gave an ExpTime tableau decision
procedure for the general satisfiability problem of regular grammar logics.

In this work we consider theorem proving in regular grammar logics with converse
(REGc logics). The class of these logics is large and contains many common and useful
modal logics. Here are some examples (see also [5]):

– All 15 basic monomodal logics obtained from K by adding an arbitrary combination
of axioms D, T , B, 4, 5 are REGc logics.4 The multimodal versions of these logics
are also REGc logics.

– The description logic SHI and its extension with complex role inclusion axioms
studied by Horrocks and Sattler in [18] are REGc logics. The whole class of regular
grammar logics has also been studied, e.g., by Nguyen [23], as a class of description
logics. Note that the notion of complex role inclusion axiom given in [18] is strictly
less general than the notion of inclusion axiom (of the form [σ]ϕ → [%1] . . . [%n]ϕ) of
REGc logics. REGc can be treated as an extension of the description logic SHI,
which together with numeric restrictions and other concept constructors would yield
very expressive description logics.

– Regular modal logics of agent beliefs studied by Goré and Nguyen in [13] are REGc

logics. Those logics use only a simple form of axiom 5 for expressing negative introspec-
tion of single agents. Axioms of REGc can be used to express negative introspection
of groups of agents.5 However, in contrast with the logics studied in [13], cuts seem
not eliminable for traditional (unlabeled) tableau calculi for the whole class REGc.

There are two main approaches for theorem proving in modal logics: the direct ap-
proach, where one develops a theorem prover directly for the logic under consideration,
and the translation-based approach, where one translates the logic into some other logic
with developed proof techniques. The translation method proposed by Demri and de
Nivelle [5] for REGc logics is interesting from the theoretical point of view. It allows
one to establish the complexity and sheds new light on translation approach for modal
logics. On the other hand, as stated in [5], the direct approach has the advantage that
a specialized algorithm can make use of specific properties of the logic under consider-
ation, enabling optimizations that would not work in general. From the experience on
optimizing tableau theorem prover TGC [24], sometimes even a minor modification may
significantly increase or decrease the performance of a prover. The direct approach is
therefore worth studying.

The direct approach based on tableaux has been widely applied for modal log-
ics [26,8,27,1,10,2], because it allows to employ many useful optimization techniques
(see, e.g., [17,6,24]), some of which are specific for tableaux.6

To our best knowledge, no tableau calculi have been developed for REGc logics. In [4],
Demri and de Nivelle gave a translation of REGc logics into CPDL (converse PDL). One

4 See [5] for 10 of them. For the 5 remaining logics, use 〈σ〉> as global assumptions.
5 The general form ¬[σ1]ϕ→ [σ2]¬[σ3]ϕ of axiom 5 can be expressed by [σ3]ψ → [σ1][σ2]ψ. Here, σ1, σ2

and σ3 may represent groups of agents.
6 Not all optimization techniques proposed in [17,6,24] are particularly useful. Also, they cannot be

combined all together. But each of [17,6,24] proposes a number of specific good ideas for optimizing
tableau decision procedures.

Tableaux for Regular Grammar Logics with Converse 3

can use that translation together with the tableau decision procedure for CPDL given by
De Giacomo and Massacci [2] for deciding REGc logics. This method uses the translation
approach and, additionally, has the disadvantage that the formal decision procedure
given in [2] for CPDL has non-optimal NExpTime complexity. Although De Giacomo
and Massacci [2] described also a transformation of their NExpTime algorithm into an
ExpTime decision procedure for CPDL, the description is informal and unclear. Namely,
the transformation is based on Pratt’s global caching method formulated for PDL [26],
but no global caching method has been formalized and proved sound for labeled tableaux
that allow modifying labels of ancestor nodes in order to deal with converse.7

In this work we develop a sound and complete tableau calculus for deciding the general
satisfiability problem of REGc logics. Our calculus is an extension of the tableau calculus
for regular grammar logics given by Goré and Nguyen in [11]. To deal with converse, we
use an analytic cut rule. Similarly to [21,12], our cut rule is a kind of “guessing the future”
for nodes in traditional (unlabeled) tableaux. Besides, there is a substantial difference
comparing to [11]. Namely, Goré and Nguyen introduced only universal automaton-modal
operators for regular grammar logics, while using cuts to deal with converse we have
to use also existential automaton-modal operators. As a consequence, our calculus for
REGc deals also with “eventualities” (like operators 〈α∗〉 of PDL). For that we adopt
the tableau method given by Pratt for PDL [26], but with a more direct formulation. Our
tableaux in REGc logics are “and-or” graphs constructed using traditional tableau rules
and global caching. The idea of global caching appeared in Pratt’s work [26] on PDL and
has been formalized and proved sound by Goré and Nguyen for traditional tableaux in
a number of other modal and description logics [11,12,13,14]. Similarly as for PDL [26]
but in contrast with [11,12,13,14], checking satisfiability in REGc logics deals not only
with the local consistency but also with a global consistency property of the constructed
“and-or” graph.

Using our tableau calculus, we give an ExpTime (optimal) tableau decision procedure
for the general satisfiability problem of REGc logics. We also briefly discuss optimizations
for the procedure.

REGc logics can also be used as description logics. Two basic components of descrip-
tion logic theories are ABoxes and TBoxes. An ABox (assertion box) consists of facts, and
a TBox (terminological box) consists of formulas expressing relationships between con-
cepts. In [9], by encoding the ABox by “nominals” and “internalizing” the TBox, De Gi-
acomo showed that the complexity of checking consistency of an ABox w.r.t. a TBox in
CPDL is ExpTime-complete. Using the translation of REGc logics into CPDL given by
Demri and de Nivelle [4], one can show that the problem of checking consistency of an
ABox w.r.t. a TBox in a REGc logic is ExpTime-complete.

Extending our method to deal with ABox assertions, we give the first ExpTime
tableau decision procedure not based on transformation for checking consistency of an
ABox w.r.t. a TBox in a REGc logic.

7 According to Donini and Massacci [6, page 89], the caching optimization technique “prunes heavily the
search space but its unrestricted usage may lead to unsoundness [37]. It is conjectured that ‘caching’
leads to EXPTIME-bounds but this has not been formally proved so far, nor the correctness of caching
has been shown.” Goré and Nguyen have recently formalized sound global caching [11,12,13,14] for
traditional (unlabeled) tableaux, which never look back at ancestor nodes.

4 L.A. Nguyen and A. Sza las

We also study data complexity of the instance checking problem in REGc logics. For
the well-known description logic SHIQ, Hustadt et al. [19] proved that data complexity
of that problem is coNP-complete. The lower bound for data complexity of that problem
in REGc is coNP-hard (shown for ALC by Schaerf in [28]). In this paper, by establishing
the upper bound, we prove a new result that the data complexity of the instance checking
problem in REGc logics is coNP-complete.

The rest of this paper is structured as follows. In Section 2 we give definitions for
REGc logics. Next, in Section 3, we present our tableau calculus for the general satisfiabil-
ity problem of REGc logics. Section 4 contains proofs of its soundness and completeness.
In Section 5 we present our decision procedure for the general satisfiability problem of
REGc logics. Section 6 is devoted to a study of REGc in the context of description logics.
In particular, we present there a tableau calculus and decision procedures for checking
consistency of an ABox w.r.t. a TBox in a REGc logic, and prove complexity results.
Finally, Section 7 concludes this work.

2 Preliminaries

2.1 Regular Semi-Thue Systems

Let Σ+ be a finite set of symbols. For σ ∈ Σ+, we use σ to denote a fresh symbol, called
the converse of σ. We use notation Σ− = {σ | σ ∈ Σ+} and assume that Σ−∩Σ+ = ∅. For
% = σ ∈ Σ−, we set % def= σ. By an alphabet with converse we understand Σ = Σ+ ∪Σ−.

Definition 2.1. A context-free semi-Thue system S over Σ is a finite set of context-
free production rules over alphabet Σ. We say that S is symmetric if, for every rule
σ → %1 . . . %k of S, the rule σ → %k . . . %1 is also in S. C

A context-free semi-Thue system is like a context-free grammar, but it has no desig-
nated start symbol and there is no distinction between terminal and non-terminal sym-
bols. We assume that for σ ∈ Σ, the word σ is derivable from σ using such a grammar.

Definition 2.2. A context-free semi-Thue system S over Σ is called a regular semi-Thue
system S over Σ if, for every σ ∈ Σ, the set of words derivable from σ using the system
is a regular language over Σ. C

Similarly as in [5], we assume that any considered regular semi-Thue system S is al-
ways given together with a mapping A that associates each σ ∈ Σ with a finite automaton
Aσ recognizing words derivable from σ using S. We call A the mapping specifying the fi-
nite automata of S. Note that it is undecidable to check whether a context-free semi-Thue
system is regular [20].

Recall that a finite automaton A over alphabet Σ is a tuple 〈Σ,Q, I, δ, F 〉, where Q
is a finite set of states, I ⊆ Q is the set of initial states, δ ⊆ Q×Σ ×Q is the transition
relation, and F ⊆ Q is the set of accepting states. A run of A on a word %1 . . . %k is
a finite sequence of states q0, q1, . . . , qk such that q0 ∈ I and δ(qi−1, %i, qi) holds for every
1 ≤ i ≤ k. It is an accepting run if qk ∈ F . We say that A accepts a word w if there exists
an accepting run of A on w.

Tableaux for Regular Grammar Logics with Converse 5

2.2 Regular Grammar Logics with Converse

Our language is based on a set Σ of modal indices, which is an alphabet with converse,
and a set Φ0 of propositions.

Definition 2.3. Formulas of the base language are defined by the following BNF gram-
mar, where p ∈ Φ0 and σ ∈ Σ:

ϕ,ψ ::= > | ⊥ | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | [σ]ϕ | 〈σ〉ϕ C

A formula is in the negation normal form (NNF) if it does not contain → and uses ¬
only before propositions. Every formula of the base language can be transformed to an
equivalent in NNF. By ϕ we denote the NNF of ¬ϕ.

Definition 2.4. A Kripke model is a tuple M = 〈W,R, h〉, where

– W is a non-empty set of possible worlds,
– R is a function that maps each σ ∈ Σ to a binary relation Rσ ⊆ W ×W , called the

accessibility relation for σ,
– h is a function that maps each w ∈ W to a set h(w) ⊆ Φ0 of propositions that are

true at w.

The accessibility relations are required to satisfy the property that, for every σ ∈ Σ,
Rσ = R−σ

def= {(y, x) | (x, y) ∈ Rσ}. C

Definition 2.5. Given a Kripke model M = 〈W,R, h〉 and a world w ∈ W , the satis-
faction relation |= is defined as usual for the classical connectives with two extra clauses
for the modalities as below:

M,w |= [σ]ϕ iff ∀v ∈W Rσ(w, v) implies M, v |= ϕ,
M,w |= 〈σ〉ϕ iff ∃v ∈W Rσ(w, v) and M, v |= ϕ.

We say that: ϕ is satisfied at w in M (or M satisfies ϕ at w) if M,w |= ϕ; M satisfies
a set X of formulas at w, denoted by M,w |= X, if M,w |= ϕ for all ϕ ∈ X; and M
validates X, denoted by M |= X, if M,w |= X for every world w of M . C

Given two binary relations R1, R2 ⊆ W ×W , their relational composition is defined
by R1 ◦R2

def= {(x, y) | ∃z ∈W (R1(x, z) ∧R2(z, y))}.

Definition 2.6. Let S be a symmetric regular semi-Thue system over Σ. The regular
grammar logic with converse corresponding to S, denoted by L(S), is characterized by the
class of admissible Kripke models M = 〈W,R, h〉 such that, for every rule σ → %1 . . . %k
of S, R%1 ◦ · · · ◦ R%k ⊆ Rσ. Such a structure is called an L-model, where L abbreviates
L(S). C

The class of regular grammar logics with converse is denoted by REGc.

Definition 2.7. Let L be a REGc logic and X, Γ be finite sets of formulas. We say that
X is L-satisfiable w.r.t. the set Γ of global assumptions if there exists an L-model that
validates Γ and satisfies X at some possible world. C

6 L.A. Nguyen and A. Sza las

3 A Tableau Calculus for REGc

From now on, let S be a symmetric regular semi-Thue system over Σ, A be the mapping
specifying the finite automata of S, and L be the REGc logic corresponding to S. For
σ ∈ Σ, we write Aσ in the form 〈Σ,Qσ, Iσ, δσ, Fσ〉.

For the tableau calculus defined here we extend the base language with the auxiliary
modal operators 2σ, [Aσ, q] and 〈Aσ, q〉, where σ ∈ Σ and q is a state of Aσ. In the
extended language, if ϕ is a formula, then 2σϕ, [Aσ, q]ϕ and 〈Aσ, q〉ϕ are also formulas.
The semantics of such formulas is defined as follows.

Definition 3.1. Given a Kripke model M = 〈W,R, h〉 and a world w ∈W , the semantics
of auxiliary modalities is defined by:

– M,w |= 2σϕ if M,w |= [σ]ϕ,
– M,w |= [Aσ, q]ϕ (respectively M,w |= 〈Aσ, q〉ϕ) if M,wk |= ϕ for all (respectively

some) wk ∈ W such that there exist worlds w0 = w, w1, . . . , wk of M , with k ≥ 0,
states q0 = q, q1, . . . , qk of Aσ with qk ∈ Fσ, and a word %1 . . . %k over Σ such that
R%i(wi−1, wi) and δσ(qi−1, %i, qi) hold for all 1 ≤ i ≤ k. C

The operators 2σ and [Aσ, q] are universal modal operators, while 〈Aσ, q〉 is the
existential modal operator dual to [Aσ, q]. Although 2σϕ has the same semantics as
[σ]ϕ, the operator 2σ behaves differently than [σ] in our calculus. The intuition of these
auxiliary operators is as follows. Suppose that a word %1 . . . %n is derivable from σ by
applying a sequence of rules of S, which may be arbitrarily long. Then R%1◦· · ·◦R%n ⊆ Rσ
holds for every L-model 〈W,R, h〉. Hence [σ]ϕ → [%1] . . . [%n]ϕ is L-valid for any ϕ. So,
having [σ]ϕ we may need to derive [%1] . . . [%n]ϕ. But n is not bounded, as the sequence
of applied production rules may be arbitrarily long. The formula may then be too big.
A solution to this problem depends on using the finite automaton Aσ to control the
behavior of [σ]. We treat [σ]ϕ as the conjunction of {[Aσ, q]ϕ | q ∈ Iσ}. Having [Aσ, q]ϕ
at a possible world u, if R%(u, v) and δσ(q, %, q′) hold then we can add [Aσ, q′]ϕ to v. We
deal with this by deriving 2%[Aσ, q′]ϕ from [Aσ, q]ϕ when δσ(q, %, q′) holds. We use 2%

here instead of [%] because the modal operator is needed only for atomic %-transitions
and we do not need to automatize 2% as in the case of [%].8

Automaton-modal operators, especially universal ones, have previously been used, for
example, in [15,18,11,16,22].

Remark 3.2. We have tried to use universal modal operators indexed by a reversed finite
automaton instead of existential automaton-modal operators, but did not succeed with
that. In the presence of converse, the difficulty lies in that one can travel forward and
backward along the skeleton tree that unfolds the model under construction in an arbi-
trary way, making returns at different possible worlds and continuing the travel from the
current world many times before a final return to the current world. C

8 The operators 2σ are introduced to simplify the rule (cut) given in Table 1 and make it more intuitive.
The use of 2σ in the rules ([A]) and ([A]f) is just for convenience. The rules ([A]) and ([A]f) are
eliminable (by modifying the rule (trans) appropriately).

Tableaux for Regular Grammar Logics with Converse 7

Definition 3.3. For a set X of formulas, by psf(X) we denote the set of all formulas ϕ
and ϕ of the base language such that either ϕ ∈ X or ϕ is a subformula of some formula
of X.9 The closure clL(X) is defined as

clL(X) = psf(X) ∪ {[Aσ, q]ϕ,2%[Aσ, q]ϕ, 〈Aσ, q〉ϕ,2%〈Aσ, q〉ϕ, 〈%〉〈Aσ, q〉ϕ |
σ, % ∈ Σ, q ∈ Qσ, ϕ ∈ psf(X), and
([σ]ϕ ∈ psf(X) or [Aσ, q′]ϕ ∈ X for some q′)}. C

For σ ∈ Σ and q ∈ Qσ, we set δσ(q) def= {(%, q′) | (q, %, q′) ∈ δσ}.
Let X and Γ be finite sets of formulas in NNF of the base language. We define now

a tableau calculus CL for the problem of checking whether X is L-satisfiable w.r.t. the set
Γ of global assumptions. We incorporate global assumptions in order to make a direct
connection with description logic (DL). The set of global assumptions plays the role of
a TBox of DL. It is known that in some DLs the TBox can be “internalized”, but the
transformation approach is not practical.

Tableau rules are written downwards, with a set of formulas above the line as the
premise and a number of sets of formulas below the line as the (possible) conclusions.
A tableau rule is either an “or”-rule or an “and”-rule. Possible conclusions of an “or”-rule
are separated by ‘|’, while conclusions of an “and”-rule are separated/specified using ‘&’.
If a rule is a unary rule or an “and”-rule then its conclusions are “firm” and we ignore
the word “possible”. An “or”-rule has the meaning that, if the premise is L-satisfiable
w.r.t. Γ then some of the possible conclusions are also L-satisfiable w.r.t. Γ . On the other
hand, an “and”-rule has the meaning that, if the premise is L-satisfiable w.r.t. Γ then
all of the conclusions are also L-satisfiable w.r.t. Γ (possibly at different worlds of the
model under construction).

We use Y to denote a set of formulas, and Y, ϕ to denote the set Y ∪ {ϕ}.

Definition 3.4. The tableau calculus CL w.r.t. a set Γ of global assumptions for the
REGc logic L is the set of tableau rules given in Table 1. The rule (trans) is the only
“and”-rule and the only transitional rule. The other rules are “or”-rules, which are also
called static rules.10 We assume that the rules (∧), (∨), (aut), ([A]), ([A]f), (cut) are
applicable only when the premise is a proper subset of each of the possible conclusions.11

Such rules are said to be monotonic. C

Instantiating, for example, rule (trans) to Y = {〈σ〉p, 〈σ〉q,2σr} and Γ = {s}, we
get two conclusions: {p, r, s} and {q, r, s}.

The intuition behind distinguishing between static and transitional rules is that the
static rules keep us at the same possible world of the model under construction, while
each conclusion of the transitional rule takes us to a new possible world.

For any rule of CL except (cut) and (trans), the distinguished formulas of the premise
are called the principal formulas of the rule. The principal formulas of the rule (trans)
are the formulas of the form 〈σ〉ϕ of the premise. The rule (cut) does not have principal
formulas.
9 Recall that ϕ is the negation normal form of ϕ.

10 Unary static rules can be treated either as “and”-rules or as “or”-rules.
11 Notice that the premise of any rule among (∧), (∨), (aut), ([A]), ([A]f), (cut) is a subset of every

possible conclusion of the rule.

8 L.A. Nguyen and A. Sza las

(⊥0)
Y,⊥
⊥ (⊥)

Y, p,¬p
⊥

(∧)
Y, ϕ ∧ ψ

Y, ϕ ∧ ψ,ϕ, ψ (∨)
Y, ϕ ∨ ψ

Y, ϕ ∨ ψ,ϕ | Y, ϕ ∨ ψ,ψ

(aut)
Y, [σ]ϕ

Y, [σ]ϕ, [Aσ, q1]ϕ, . . . , [Aσ, qk]ϕ
if Iσ = {q1, . . . , qk}

if δσ(q) = {(%1, q1), . . . , (%k, qk)} and q /∈ Fσ :

([A])
Y, [Aσ, q]ϕ

Y, [Aσ, q]ϕ,2%1 [Aσ, q1]ϕ, . . . ,2%k [Aσ, qk]ϕ

(〈A〉) Y, 〈Aσ, q〉ϕ
Y, 〈%1〉〈Aσ, q1〉ϕ | . . . | Y, 〈%k〉〈Aσ, qk〉ϕ

if δσ(q) = {(%1, q1), . . . , (%k, qk)} and q ∈ Fσ :

([A]f)
Y, [Aσ, q]ϕ

Y, [Aσ, q]ϕ,2%1 [Aσ, q1]ϕ, . . . ,2%k [Aσ, qk]ϕ,ϕ

(〈A〉f)
Y, 〈Aσ, q〉ϕ

Y, 〈%1〉〈Aσ, q1〉ϕ | . . . | Y, 〈%k〉〈Aσ, qk〉ϕ | Y, ϕ

(cut)
Y

Y, [Aσ, q]ϕ | Y,2%〈Aσ, q′〉ϕ

if Y contains a formula 〈%〉ψ, [Aσ, q
′]ϕ belongs to clL(Y ∪ Γ), and (q′, %, q) ∈ δσ

(trans)
Y

&{ ({ϕ} ∪ {ψ s.t. 2σψ ∈ Y } ∪ Γ) s.t. 〈σ〉ϕ ∈ Y }

Table 1. Rules of the tableau calculus for REGc

Tableaux for Regular Grammar Logics with Converse 9

The purpose of the restriction on the applicability of the rules (∧), (∨), (aut), ([A]),
([A]f), (cut) is to guarantee that sequences of applications of static rules are always
finite. Note that none of the static rules creates a formula of the form 〈Aσ, q〉ϕ for the
possible conclusions (provided that the premise is a subset of clL(X ∪ Γ)). That is why
we do not make the rules (〈A〉) and (〈A〉f) monotonic. The second reason of this is that
a formula of the form 〈Aσ, q〉ϕ must be “reduced” as a principal formula of (〈A〉) or
(〈A〉f) because any one of the possible conclusions may play a key role in fulfilling the
eventuality expressed by the formula.

We assume the following preferences for the rules of CL: the rules (⊥0) and (⊥) have
the highest priority; unary static rules have a higher priority than non-unary static rules;
the rule (cut) has the lowest priority among static rules; all the static rules have a higher
priority than the transitional rule (trans).

Definition 3.5. An “and-or” graph for (X,Γ) w.r.t. CL, also called a CL-tableau for
(X,Γ), is a rooted graph constructed as follows:

– the root of the graph has contents (i.e., is labeled by) X ∪ Γ ,
– for every node v of the graph, if a tableau rule of CL is applicable to the contents of
v in the sense that an instance of the rule has the contents of v as the premise and
Z1, . . . , Zk as the possible conclusions, then choose such a rule accordingly to the
preferences12 and apply it to v to create k successors w1, . . . , wk of v respectively
with contents Z1, . . . , Zk, maintaining the following constraints:
• if the graph already contains a node w′i with the same contents as wi then instead

of creating a new node wi as a successor of v we just connect v to w′i and assume
wi = w′i,
• if the applied rule is (trans) then we label the edge (v, wi) by the principal formula

corresponding to the successor wi.

If the rule expanding v is an “or”-rule then v is an “or”-node, else v is an “and”-node. If
no rule is applicable to v then v is an end node. C

Note that each node of the graph is “expanded” only once (using one rule), and that
the graph is constructed using global caching [26,12,14] and each of its nodes has unique
contents.

Apart from monotonicity, notice also the other restrictions on the applicability
of (cut). Observe that, if L is essentially a regular grammar logic without converse
(in the sense that for every rule σ → %1 . . . %k of S either {σ, %1, . . . , %k} ⊆ Σ+ or
{σ, %1, . . . , %k} ⊆ Σ−) and the formulas of X ∪ Γ do not use modal indices from Σ−,
then the rule (cut) will never be used.

Example 3.6. Consider the regular grammar logic with converse L that corresponds to
the following semi-Thue system over alphabet {σ, %, σ, %}:

{%→ σ%, %→ σ, %→ %σ, %→ σ}.

The set of words derivable from % is characterized by (σ)∗(σ + %). Let

A% = 〈{σ, %, σ, %}, {0, 1}, {0}, {(0, σ, 0), (0, σ, 1), (0, %, 1)}, {1}〉.
12 If there are several applicable rules with the same priority, choose any one of them.

10 L.A. Nguyen and A. Sza las

In Figures 1 and 2 we give an “and-or” graph for ({〈σ〉(ϕ ∨ ψ)}, ∅) w.r.t. CL, where
ϕ = p ∧ q ∧ [%]¬p and ψ = p ∧ r ∧ [%]¬p. The nodes are numbered when created and
are expanded using DFS.13 In each node, we display the formulas of the contents of
the node, the name of rule expanding the node, and the information about whether the
node is an “or”-node (when necessary). We do not display labels of edges outgoing from
“and”-nodes.

Notice that:

– The rule (cut) is applied only once. This is due to the restrictions on the applicability
of (cut) and the preferences of rules.

– The cache of nodes (22) and (27) is useful, as they appear on a number of different
incoming paths.

– There is a cycle (22), (23), (24), (22). C

Definition 3.7. A marking of an “and-or” graph G is a subgraph G′ of G such that:

– the root of G is the root of G′,
– if v is a node of G′ and is an “or”-node of G then there exists at least one edge (v, w)

of G that is an edge of G′,
– if v is a node of G′ and is an “and”-node of G then every edge (v, w) of G is an edge

of G′,
– if (v, w) is an edge of G′ then v and w are nodes of G′. C

Definition 3.8. Let G be an “and-or” graph for (X,Γ) w.r.t. CL, G′ be a marking of
G, v be a node of G′, and 〈Aσ, q〉ϕ be a formula of the contents of v. A trace of 〈Aσ, q〉ϕ
in G′ starting from v is a sequence (v0, ϕ0), . . . , (vk, ϕk) such that:

– v0 = v and ϕ0 = 〈Aσ, q〉ϕ,
– for every 1 ≤ i ≤ k, (vi−1, vi) is an edge of G′,
– for every 1 ≤ i ≤ k, ϕi is a formula of the contents of vi such that:
• if ϕi−1 is not a principal formula of the tableau rule expanding vi−1 then the rule

must be a static rule and ϕi = ϕi−1,
• else if the rule is (〈A〉) or (〈A〉f) then ϕi−1 is of the form 〈Aσ, q′〉ϕ and ϕi is the

formula obtained from ϕi−1,
• else the rule is (trans), ϕi−1 is of the form 〈σ〉〈Aσ, q′〉ϕ and is the label of the

edge (vi−1, vi) and ϕi = 〈Aσ, q′〉ϕ.

A trace (v0, ϕ0), . . . , (vk, ϕk) of 〈Aσ, q〉ϕ in G′ is called a 3-realization in G′ for
〈Aσ, q〉ϕ at v0 if ϕk = ϕ. C

Definition 3.9. A marking G′ of an “and-or” graph G is consistent if:

– local consistency: G′ does not contain any node with contents {⊥},
– global consistency: for every node v of G′, every formula of the form 〈Aσ, q〉ϕ of the

contents of v has a 3-realization (starting from v) in G′. C

13 DFS stands for the standard depth-first search algorithm for traversing graphs.

Tableaux for Regular Grammar Logics with Converse 11

(1): (cut), or

〈σ〉(ϕ ∨ ψ)

�� $$JJJJJJJJJJ

(2): ([A])

〈σ〉(ϕ ∨ ψ),
[A%, 0]¬p

��

(3): (trans)

〈σ〉(ϕ ∨ ψ),
2σ〈A%, 0〉p

��
(4): (trans)

〈σ〉(ϕ ∨ ψ),
[A%, 0]¬p,

2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

��

(12): (∨), or

ϕ ∨ ψ, 〈A%, 0〉p

�� !!CCCCCCCCCCCCCC

(5): ([A]f)

ϕ ∨ ψ, [A%, 1]¬p

��

(13): (∧)

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ q ∧ [%]¬p

��

(14): (∧)

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ r ∧ [%]¬p

��

(6): (∨), or

ϕ ∨ ψ,
[A%, 1]¬p,¬p

}}|||||||||||

��

(15): (∧)

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ q ∧ [%]¬p,
p, q ∧ [%]¬p

��

(30): (∧)

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ r ∧ [%]¬p,
p, r ∧ [%]¬p

��

(7): (∧)

ϕ ∨ ψ,
[A%, 1]¬p,¬p,
p ∧ q ∧ [%]¬p

��

(8): (∧)

ϕ ∨ ψ,
[A%, 1]¬p,¬p,
p ∧ r ∧ [%]¬p

��

(16): (aut)

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ q ∧ [%]¬p,
q ∧ [%]¬p,
p, q, [%]¬p

��

(31): (aut)

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ r ∧ [%]¬p,
r ∧ [%]¬p,
p, r, [%]¬p

��

(9): (⊥)

ϕ ∨ ψ,
[A%, 1]¬p,¬p,
p ∧ q ∧ [%]¬p,
p, q ∧ [%]¬p

!!DDDDDDDDDDDD

(11): (⊥)

ϕ ∨ ψ,
[A%, 1]¬p,¬p,
p ∧ r ∧ [%]¬p,
p, r ∧ [%]¬p

��

(17): ([A])

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ q ∧ [%]¬p,
q ∧ [%]¬p,
p, q, [%]¬p,
[A%, 0]¬p

��

(32): ([A])

ϕ ∨ ψ, 〈A%, 0〉p,
p ∧ r ∧ [%]¬p,
r ∧ [%]¬p,
p, r, [%]¬p,
[A%, 0]¬p

��
(10)

⊥

_ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _

(18)

(see Figure 2)

_ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _

(33)

(see Figure 2)

Fig. 1. An example of “and-or” graph: part I

12 L.A. Nguyen and A. Sza las

(18): (〈A〉), or

ϕ ∨ ψ,
〈A%, 0〉p,

p ∧ q ∧ [%]¬p,
q ∧ [%]¬p, p, q,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

�� ��77777777

//

(21): (trans)

ϕ ∨ ψ,
〈%〉〈A%, 1〉p,
p ∧ q ∧ [%]¬p,
q ∧ [%]¬p, p, q,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

ED

@A
//

(36): (trans)

ϕ ∨ ψ,
〈%〉〈A%, 1〉p,
p ∧ r ∧ [%]¬p,
r ∧ [%]¬p, p, r,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

GF

@A

(33): (〈A〉), or

ϕ ∨ ψ,
〈A%, 0〉p,

p ∧ r ∧ [%]¬p,
r ∧ [%]¬p, p, r,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

������������

oo

(19): (trans)

ϕ ∨ ψ,
〈σ〉〈A%, 0〉p,
p ∧ q ∧ [%]¬p,
q ∧ [%]¬p, p, q,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

��

(20): (trans)

ϕ ∨ ψ,
〈σ〉〈A%, 1〉p,
p ∧ q ∧ [%]¬p,
q ∧ [%]¬p, p, q,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

ED

@A
//

(35): (trans)

ϕ ∨ ψ,
〈σ〉〈A%, 1〉p,
p ∧ r ∧ [%]¬p,
r ∧ [%]¬p, p, r,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

GF

@A

(34): (trans)

ϕ ∨ ψ,
〈σ〉〈A%, 0〉p,
p ∧ r ∧ [%]¬p,
r ∧ [%]¬p, p, r,

[%]¬p, [A%, 0]¬p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬pBC

GF
��

(22): ([A])

[A%, 0]¬p,
〈A%, 0〉p

//

(23): (〈A〉), or

[A%, 0]¬p,
〈A%, 0〉p,

2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

��
��??????????

//

(26): (trans)

[A%, 0]¬p,
〈%〉〈A%, 1〉p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

ED

BC
oo

_ _�
�
�

�
�
�

_ _

(10)

⊥

(24): (trans)

[A%, 0]¬p,
〈σ〉〈A%, 0〉p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

__?????????????
(25): (trans)

[A%, 0]¬p,
〈σ〉〈A%, 1〉p,
2σ [A%, 0]¬p,
2σ [A%, 1]¬p,
2%[A%, 1]¬p

ED

BC
oo

(29): (⊥)

[A%, 1]¬p,¬p,
p

OO

(27): ([A]f)

[A%, 1]¬p,
〈A%, 1〉p@A BCOO

(28): (〈A〉f)

[A%, 1]¬p,¬p,
〈A%, 1〉p

OO

Fig. 2. An example of “and-or” graph: part II

Tableaux for Regular Grammar Logics with Converse 13

Theorem 3.10 (Soundness and Completeness of CL). Let S be a symmetric regular
semi-Thue system over Σ, A be the mapping specifying the finite automata of S, and L be
the REGc logic corresponding to S. Let X and Γ be finite sets of formulas in NNF of the
base language, and G be an “and-or” graph for (X,Γ) w.r.t. CL. Then X is L-satisfiable
w.r.t. the set Γ of global assumptions iff G has a consistent marking. C

The “only if” direction means soundness of CL, while the “if” direction means com-
pleteness of CL. This theorem follows from Lemmas 4.1 and 4.11, which are given and
proved in the next section.

Reconsider Example 3.6. The “and-or” graph given in Figures 1 and 2 does not have
any consistent marking. The graph contains some markings (e.g., the one consisting of
nodes (1), (3), (12), (13), (15)-(19), (22)-(24)) that satisfy the local consistency property,
but these markings do not satisfy the global consistency property because the formula
〈A%, 0〉p of (22) does not have any 3-realization in the mentioned markings. By Theo-
rem 3.10, the formula 〈σ〉((p∧ q∧ [%]¬p)∨ (p∧ r∧ [%]¬p)) is unsatisfiable (w.r.t. ∅) in the
REGc logic specified in the example.

Observe that if we generalize the rule (⊥) to “derive ⊥ from ϕ and ϕ ”, which is
supported by Lemma 4.8 and the proof of Lemma 4.11, then the nodes in Figure 2 of
the mentioned example can be discarded by connecting the nodes (17) and (32) to (10).
Furthermore, if unary static rules are implicitly applied by “normalizing” formulas then
the graph can significantly be further simplified.

4 Proofs of Soundness and Completeness

4.1 Soundness

Lemma 4.1. Let S, A, L, X, Γ , G be as described in Theorem 3.10. Suppose that X is
L-satisfiable w.r.t. the set Γ of global assumptions. Then G has a consistent marking.

Proof. We construct a consistent marking G′ of G as follows. At the beginning, G′ con-
tains only the root of G. Then, for every node v of G′ and for every successor w of v in
G, if the contents of w are L-satisfiable w.r.t. Γ , then add the node w and the edge (v, w)
to G′.

To prove that G′ is a marking of G we need to show that:

1. for every “or”-rule of CL, if the premise is L-satisfiable w.r.t. Γ then one of the possible
conclusions of the rule is also L-satisfiable w.r.t. Γ ,

2. for every “and”-rule of CL, if the premise is L-satisfiable w.r.t. Γ then so is each
conclusion of the rule.

We consider here only the rule (cut) and leave the others to the reader. Suppose that
Y is L-satisfiable w.r.t. Γ and let M = 〈W,R, h〉 be an L-model that validates Γ and
satisfies Y at a possible world u. Suppose that δσ(q′, %, q) holds and M,u 2 2%〈Aσ, q′〉ϕ.
We show that M,u |= [Aσ, q]ϕ. We have that M,u |= 〈%〉[Aσ, q′]ϕ. Hence there exists u′

such that R%(u, u′) holds and M,u′ |= [Aσ, q′]ϕ. Since R%(u′, u) and δσ(q′, %, q) hold, it
follows that M,u |= [Aσ, q]ϕ.

Clearly, G′ satisfies the local consistency property.

14 L.A. Nguyen and A. Sza las

We now check the global consistency property of G′. Let v0 be a node of G′, Y be
the contents of v0, and 〈Aσ, q〉ϕ be a formula of Y . We show that the formula has a 3-
realization in G′. As Y is L-satisfiable w.r.t. Γ , there exists an L-model M that validates
Γ and satisfies Y at a world u. Since M,u |= 〈Aσ, q〉ϕ,

there exist worlds u0 = u, u1, . . . , uk of M , with k ≥ 0, states
q0 = q, q1, . . . , qk of Aσ with qk ∈ Fσ, and a word %1 . . . %k over Σ
such that M,uk |= ϕ, R%i(ui−1, ui) and δσ(qi−1, %i, qi) hold for all
1 ≤ i ≤ k.

(1)

We construct a 3-realization (v0, ϕ0), . . . , (vh, ϕh) in G′ for 〈Aσ, q〉ϕ at v0 and a map
f : {v0, . . . , vh} → {u0, . . . , uk} such that f(v0) = u0, f(vh) = uk, and for every 0 ≤ i < h,
if f(vi) = uj then f(vi+1) is either uj or uj+1. We maintain the following invariants for
0 ≤ i ≤ h :

– the chain (v0, ϕ0), . . . , (vi, ϕi) is a trace of 〈Aσ, q〉ϕ in G′ (2)
– the contents of vi are satisfied at the world f(vi) of M (3)
– if f(vi) = uj and j < k then either ϕi = 〈Aσ, qj〉ϕ or ϕi = 〈%j+1〉〈Aσ, qj+1〉ϕ (4)
– if f(vi) = uk then either ϕi = 〈Aσ, qk〉ϕ or ϕi = ϕ. (5)

With ϕ0 = 〈Aσ, q0〉ϕ and f(v0) = u0, the invariants clearly hold for i = 0.

Set i := 0. While ϕi 6= ϕ do:

– Case vi is expanded using a static rule but ϕi is not the principal formula:
Let vi+1 be the successor of vi such that (vi, vi+1) is an edge of G′ and the contents
of vi+1 are satisfied at the world f(vi) of M . Such a node vi+1 exists because the
contents of vi are satisfied at the world f(vi) of M . Let ϕi+1 = ϕi, f(vi+1) = f(vi),
and set i := i+ 1. Clearly, the invariants still hold.

– Case vi is expanded using a static rule and ϕi is the principal formula:
Let f(vi) = uj . We now have two cases:
• Case j < k : Since the applied rule is a static rule, by the invariant (4), we

must have ϕi = 〈Aσ, qj〉ϕ, and the applied rule is either (〈A〉) or (〈A〉f). Let
ϕi+1 = 〈%j+1〉〈Aσ, qj+1〉ϕ and let vi+1 be the successor of vi with ϕi+1 replacing
ϕi. By (1), ϕi+1 is satisfied at uj in M , and hence, by the invariant (3), the
contents of vi+1 are satisfied at uj in M . Let f(vi+1) = uj and set i := i + 1.
Clearly, the invariants still hold.
• Case j = k : Since the applied rule is a static rule and ϕi 6= ϕ, by the invariant (5),

we have that ϕi = 〈Aσ, qk〉ϕ, and the applied rule is (〈A〉f). Let ϕi+1 = ϕ and let
vi+1 be the successor of vi with ϕi+1 replacing ϕi. By (1), ϕi+1 is satisfied at uk
in M . Let f(vi+1) = uk and set i := i+ 1. Clearly, the invariants still hold.

– Case vi is expanded using the transitional rule:
Let f(vi) = uj . Since the applied rule is the transitional rule and ϕi 6= ϕ, by the
invariants (4) and (5), ϕi = 〈%j+1〉〈Aσ, qj+1〉ϕ. Let (vi, vi+1) be the edge of G with
the label ϕi. Let ϕi+1 = 〈Aσ, qj+1〉ϕ and f(vi+1) = uj+1. Clearly, the invariant (2)
holds for i+ 1. By (1), ϕi+1 is satisfied at the world uj+1 of M . By the invariant (3),
the other formulas of the contents of vi+1 are also satisfied at the world uj+1 of M .
That is, the invariant (3) holds for i + 1. Clearly, the invariants (4) and (5) remain

Tableaux for Regular Grammar Logics with Converse 15

true after increasing i by 1. So, by setting i := i + 1, all the invariants (2)- (5) still
hold.

It remains to show that the loop terminates. Observe that the length of any sequence
of applications of static rules that contribute to the trace (v0, ϕ0), . . . , (vi, ϕi) of 〈Aσ, q〉ϕ
in G′ is finitely bounded. That is, sooner or later either ϕi = ϕ or vi is a node that is
expanded by the transitional rule. In the second case, if f(vi) = uj then f(vi+1) = uj+1.
As the image of f is {u0, . . . , uk}, the construction of the trace must end at some step
(with ϕi = ϕ) and we obtain a 3-realization in G′ for 〈Aσ, q〉ϕ at v0. This completes the
proof. C

4.2 Model Graphs

We will prove completeness of CL via model graphs. The technique has been used
in [27,10,21] for logics without induction rules (like the one of PDL).

Definition 4.2. A model graph is a tuple 〈W,R,H〉, where W is a set of nodes, R is
a mapping that maps each σ ∈ Σ to a binary relation Rσ on W , and H is a function
that maps each node of W to a set of formulas. C

We use model graphs merely as data structures, but we are interested in “consistent”
and “saturated” model graphs defined below. Model graphs differ from “and-or” graphs
in that a model graph contains only “and”-nodes and its edges are labeled by accessibility
relations. Roughly speaking, given an “and-or” graph G with a consistent marking G′,
to construct a model graph one can stick together the nodes in a “saturation path” of
a node of G′ to create a node for the model graph. Details will be given later.

A trace of a formula 〈Aσ, q〉ϕ at a node in a model graph is defined analogously as
for the case of “and-or” graphs:

Definition 4.3. Given a model graph M = 〈W,R,H〉 and a node v ∈ W , a trace of
a formula 〈Aσ, q〉ϕ ∈ H(v) (starting from v) is a chain (v0, ϕ0), . . . , (vk, ϕk) such that:

– v0 = v and ϕ0 = 〈Aσ, q〉ϕ,
– for every 1 ≤ i ≤ k, ϕi ∈ H(vi),
– for every 1 ≤ i ≤ k, if vi = vi−1 then:
• ϕi−1 is of the form 〈Aσ, q′〉ϕ, and
• either ϕi = 〈%〉〈Aσ, q′′〉ϕ for some % and q′′ such that δσ(q′, %, q′′)
• or ϕi = ϕ and q′ ∈ Fσ and i = k,

– for every 1 ≤ i ≤ k, if vi 6= vi−1 then:
• ϕi−1 is of the form 〈%〉〈Aσ, q′〉ϕ and ϕi = 〈Aσ, q′〉ϕ and (vi−1, vi) ∈ R%. C

Definition 4.4. A trace (v0, ϕ0), . . . , (vk, ϕk) of 〈Aσ, q〉ϕ in a model graph M is called
a 3-realization for 〈Aσ, q〉ϕ at v0 if ϕk = ϕ. C

Similarly as for markings of “and-or” graphs, we define that:

Definition 4.5. A model graph M = 〈W,R,H〉 is consistent if:

– local consistency: for every v ∈W , H(v) contains neither ⊥ nor a clashing pair of the
form p, ¬p;

16 L.A. Nguyen and A. Sza las

– global consistency: for every v ∈W , every formula 〈Aσ, q〉ϕ ofH(v) has a 3-realization
(at v). C

Definition 4.6. A model graph M = 〈W,R,H〉 is said to be CL-saturated if the following
conditions hold for every v ∈W :

– for every ϕ ∈ H(v):
• if ϕ = ψ ∧ ξ then {ψ, ξ} ⊂ H(v),
• if ϕ = ψ ∨ ξ then ψ ∈ H(v) or ξ ∈ H(v),
• if ϕ = 〈σ〉ψ then there exists w such that Rσ(v, w) and ψ ∈ H(w),
• if ϕ = [σ]ψ and Iσ = {q1, . . . , qk} then {[Aσ, q1]ψ, . . . , [Aσ, qk]ψ} ⊂ H(v),
• if ϕ = [Aσ, q]ψ and δσ(q) = {(%1, q1), . . . , (%k, qk)} then

{2%1 [Aσ, q1]ψ, . . . , 2%k [Aσ, qk]ψ} ⊂ H(v),
• if ϕ = [Aσ, q]ψ and q ∈ Fσ then ψ ∈ H(v),
• if ϕ = 2σψ and Rσ(v, w) holds then ψ ∈ H(w),

– if R%(v, w) holds and [Aσ, q′]ϕ ∈ H(w) and (q′, %, q) ∈ δσ then [Aσ, q]ϕ ∈ H(v) or
2%〈Aσ, q′〉ϕ ∈ H(v). C

The last condition of the above definition corresponds to the rule (cut). As shown in
the proof of Lemma 4.9, it can be strengthened to

“if R%(v, w) holds and [Aσ, q′]ϕ ∈ H(w) and (q′, %, q) ∈ δσ then [Aσ, q]ϕ ∈ H(v)”.

Definition 4.7. Given a model graph M = 〈W,R,H〉, the L-model corresponding to M
is the Kripke model M ′ = 〈W,R′, h〉 such that:

– h(w) = {p ∈ Φ0 | p ∈ H(w)} for w ∈W , and
– R′σ for σ ∈ Σ are the smallest binary relations on W such that:
• Rσ ⊆ R′σ and R′σ = (R′σ)− for every σ ∈ Σ, and
• if σ → %1 . . . %k ∈ S, where S is the symmetric regular semi-Thue system of L,

then R′%1 ◦ · · · ◦R
′
%k
⊆ R′σ.

C

Define the NNF of ¬2σϕ to be 〈σ〉ϕ. Recall that the NNF of ¬[σ]ϕ, ¬〈σ〉ϕ, ¬[Aσ, q]ϕ,
¬〈Aσ, q〉ϕ are 〈σ〉ϕ, [σ]ϕ, 〈Aσ, q〉ϕ, [Aσ, q]ϕ, respectively.

Lemma 4.8. Let Γ be a finite set of formulas in NNF of the base language and M =
〈W,R,H〉 be a consistent and CL-saturated model graph. Then, for any w ∈ W , H(w)
does not contain both ϕ and ϕ.

Proof. By induction on the structure of ϕ, using the global consistency. C

Lemma 4.9. Let X and Γ be finite sets of formulas in NNF of the base language, and
let M = 〈W,R,H〉 be a consistent and CL-saturated model graph such that Γ ⊆ H(w)
for all w ∈ W and X ⊆ H(τ) for some τ ∈ W . Then the L-model M ′ corresponding to
M validates Γ and satisfies X at τ .

Tableaux for Regular Grammar Logics with Converse 17

Proof. We first show the following two assertions:

– if [Aσ, q]ψ ∈ H(w) and R%(w,w′) and δσ(q, %, q′) then [Aσ, q′]ψ ∈ H(w′) (6)
– if [Aσ, q]ψ ∈ H(w) and R%(w′, w) and δσ(q, %, q′) then [Aσ, q′]ψ ∈ H(w′). (7)

Assertion (6) holds because [Aσ, q]ψ ∈ H(w) and δσ(q, %, q′) imply 2%[Aσ, q′]ψ ∈
H(w), which together with R%(w,w′) implies [Aσ, q′]ψ ∈ H(w′).

For assertion (7), suppose that [Aσ, q]ψ ∈ H(w) and R%(w′, w) and δσ(q, %, q′)
hold. Since M is CL-saturated, either [Aσ, q′]ψ ∈ H(w′) or 2%〈Aσ, q〉ψ ∈ H(w′).
If 2%〈Aσ, q〉ψ ∈ H(w′), then 〈Aσ, q〉ψ ∈ H(w) (since R%(w′, w) holds), which, by
Lemma 4.8, contradicts the fact that [Aσ, q]ψ ∈ H(w). Therefore [Aσ, q′]ψ ∈ H(w′).

Let M ′ = 〈W,R′, h〉. We now prove our lemma by induction on the construction of ϕ
that if ϕ ∈ H(u) for an arbitrary u ∈W and ϕ is not of the form 2σψ nor [Aσ, q]ψ then
M ′, u |= ϕ. It suffices to consider only the non-trivial case when ϕ is of the form [σ]ψ.
Suppose that ϕ = [σ]ψ and ϕ ∈ H(u). Let v ∈ W be a world of M ′ such that R′σ(u, v)
holds. We show that M ′, v |= ψ.

Since R′σ(u, v) holds, by the definition of M ′, there exist elements w0, . . . , wk of W
and a word %1 . . . %k accepted by Aσ such that w0 = u, wk = v, and for every 1 ≤ i ≤ k,
either R%i(wi−1, wi) or R%i(wi, wi−1) holds. Let q0, . . . , qk be an accepting run of Aσ
on the word %1 . . . %k. We have that q0 ∈ Iσ and qk ∈ Fσ. Since [σ]ψ ∈ H(w0), we
also have that [Aσ, q0]ψ ∈ H(w0). For 1 ≤ i ≤ k, since [Aσ, qi−1]ψ ∈ H(wi−1) and
R%i(wi−1, wi) ∨R%i(wi, wi−1) and δσ(qi−1, %i, qi) hold, by assertions (6) and (7), we have
that [Aσ, qi]ψ ∈ H(wi). Thus [Aσ, qk]ψ ∈ H(wk). Since qk ∈ Fσ and wk = v, it follows
that ψ ∈ H(v). By the inductive assumption, it follows that M ′, v |= ψ, which completes
the proof. C

4.3 Completeness

Definition 4.10. Let G′ be a consistent marking of an “and-or” graph and let v be
a node of G′. A saturation path of v w.r.t. G′ is a finite sequence v0 = v, v1, . . . , vk of
nodes of G′, with k ≥ 0, such that, for every 0 ≤ i < k, vi is an “or”-node and (vi, vi+1)
is an edge of G′, and vk is an “and”-node. C

Observe that there always exists a saturation path of v w.r.t. G′.

Lemma 4.11. Let X and Γ be finite sets of formulas in NNF of the base language, and
G be an “and-or” graph for (X,Γ) w.r.t. CL. Suppose that G has a consistent marking
G′. Then X is L-satisfiable w.r.t. the set Γ of global assumptions.

Proof. We construct a model graph M = 〈W,R,H〉 as follows:

1. Let v0 be the root of G′ and v0, . . . , vk be a saturation path of v0 w.r.t. G′. Set Rσ = ∅
for all σ ∈ Σ and set W = {τ}, where τ is a new node. Set H(τ) to the sum of the
contents of all v0, . . . , vk. Mark τ as unresolved and set f(τ) = vk. (Each node of M
will be marked either as unresolved or as resolved, and f will map each node of M
to an “and”-node of G′.)

2. While W contains unresolved nodes, take one unresolved node w0 and do:
(a) For every formula 〈%〉ϕ ∈ H(w0) do:

18 L.A. Nguyen and A. Sza las

i. Let ϕ0 = 〈%〉ϕ and ϕ1 = ϕ.
ii. Let u0 = f(w0) and let u1 be the node of G′ such that the edge (u0, u1) is

labeled by ϕ0. (As a maintained property of f , ϕ0 belongs to the contents of
u0, and hence ϕ1 belongs to the contents of u1.)

iii. If ϕ is of the form 〈Aσ, q〉ψ then:
A. Let (u1, ϕ1), . . . , (ul, ϕl) be a 3-realization in G′ for ϕ1 at u1.
B. Let ul, . . . , um be a saturation path of ul w.r.t. G′.

iv. Else let u1, . . . , um be a saturation path of u1 w.r.t. G′.
v. Let j0 = 0 < j1 < . . . < jn−1 < jn = m be all the indices such that, for

0 ≤ j ≤ m, uj is an “and”-node of G iff j ∈ {j0, . . . , jn}. For 0 ≤ s ≤ n−1, let
〈%s〉ϕjs+1 be the label of the edge (ujs , ujs+1) of G′. (We have that %0 = %.)

vi. For 1 ≤ s ≤ n do:
A. Let Zs be the sum of the contents of the nodes ujs−1+1, . . . , ujs .
B. If there does not exist ws ∈W such that H(ws) = Zs then: add a new node

ws to W , set H(ws) = Zs, mark ws as unresolved, and set f(ws) = ujs .
C. Add the pair (ws−1, ws) to R%s−1 .

(b) Mark w0 as resolved.

As H is a one-to-one function and H(w) of each w ∈ W is a subset of the closure
clL(X ∪ Γ), the above construction terminates and results in a finite model graph.

Observe that, in the above construction we transform the chain u0, . . . , um of nodes
of G′ to a chain w0, . . . , wn of nodes of M by sticking together nodes in every maximal
saturation path. Hence, M is CL-saturated and satisfies the local consistency property.
For w′0 ∈W and 〈Aσ, q′〉ψ ∈ H(w′0), the formula has a trace of length 2, whose second pair
is either (w′0, ψ) or (w0, 〈%〉〈Aσ, q〉ψ) for some w0, %, q. This together with Step 2(a)iiiA
implies that M satisfies the global consistency property. Hence, M is a consistent and
CL-saturated model graph.

Consider Step 1 of the construction. As the contents of v0 are X ∪ Γ , we have that
X ⊆ H(τ) and Γ ⊆ H(τ). Consider Step 2(a)vi of the construction, as ujs−1 is an
“and”-node and ujs−1+1 is a successor of ujs−1 that is created by the transitional rule,
the contents of ujs−1+1 contain Γ . Hence Γ ⊆ H(ws) for every ws ∈ W . By Lemma 4.9,
the Kripke model corresponding to M validates Γ and satisfies X at τ . Hence, X is
L-satisfiable w.r.t. Γ . C

5 An ExpTime Tableau Decision Procedure for REGc

In this section, we present a simple ExpTime tableau algorithm for checking L-
satisfiability of a given set X of formulas w.r.t. a given set Γ of global assumptions.
We also briefly discuss optimizations for the algorithm.

Define the length of a formula ϕ to be the number of symbols occurring in ϕ. For
example, the length of 〈Aσ, q〉ψ is the length of ψ plus 5, treating Aσ as a symbol. Define
the size of a finite set of formulas to be the length of the conjunction of its formulas.
Define the size of a finite automaton 〈Σ,Q, I, δ, F 〉 to be |Q|+ |I|+ |δ|+ |F |, where | · |
denotes the cardinality of the set.

Tableaux for Regular Grammar Logics with Converse 19

5.1 The Basic Algorithm

Let X and Γ be finite sets of formulas in NNF of the base language, G be an “and-or”
graph for (X,Γ) w.r.t. CL, and G′ be a marking of G.

Definition 5.1. The graph Gt of traces of G′ in G is defined as follows:

– nodes of Gt are pairs (v, ϕ), where v is a node of G and ϕ is a formula of the contents
of v,

– a pair ((v, ϕ), (w,ψ)) is an edge of Gt if v is a node of G′, ϕ is of the form 〈Aσ, q〉ξ or
〈%〉〈Aσ, q〉ξ, and the sequence (v, ϕ), (w,ψ) is a fragment of a trace in G′.

A node (v, ϕ) of Gt is an end node if ϕ is a formula of the base language. A node of Gt
is productive if there is a path connecting it to an end node. C

In Figure 3 we present Algorithm 1 for checking L-satisfiability of X w.r.t. Γ . The
algorithm starts by constructing an “and-or” graph G, with root v0, for (X,Γ) w.r.t. CL.
After that it collects the nodes of G whose contents are L-unsatisfiable w.r.t. Γ . Such
nodes are said to be unsat and kept in the set UnsatNodes. Initially, if G contains a node
with contents {⊥} then the node is unsat. When a node or a number of nodes become
unsat, the algorithm propagates the status unsat backwards through the “and-or” graph
using the procedure updateUnsatNodes presented in Figure 3. This procedure has the
property that, after its execution, if the root v0 of G does not belong to UnsatNodes
then the maximal subgraph of G without nodes from UnsatNodes, denoted by G′, is
a marking of G. After each calling of updateUnsatNodes, the algorithm finds the nodes
of G′ that make the marking not satisfying the global consistency property. Such a task is
done by creating the graph Gt of traces of G′ in G and finding nodes v of G′ such that the
contents of v contain a formula of the form 〈Aσ, q〉ϕ but (v, 〈Aσ, q〉ϕ) is not a productive
node of Gt. If the set V of such nodes is empty then G′ is a consistent marking (provided
that v0 /∈ UnsatNodes) and the algorithm stops with a positive answer. Otherwise, V
is used to update UnsatNodes by calling updateUnsatNodes(G,UnsatNodes, V). After
that call, if v0 ∈ UnsatNodes then the algorithm stops with a negative answer, else the
algorithm repeats the loop of collecting unsat nodes. Note that we can construct Gt only
the first time and update it appropriately each time when UnsatNodes is changed.

Lemma 5.2. Let

– S be a symmetric regular semi-Thue system over Σ,
– A be the mapping specifying the finite automata of S,
– L be the REGc logic corresponding to S,
– X and Γ be finite sets of formulas in NNF of the base language,
– G be an “and-or” graph for (X,Γ) w.r.t. CL,
– l = |Σ|,
– m be the sum of the sizes of the automata Aσ for σ ∈ Σ,
– n be the size of X ∪ Γ .

Then G has 2O(l×m×n) nodes and the contents of each node of G has O(l×m×n) formulas
and is of size O(l ×m× n2).

20 L.A. Nguyen and A. Sza las

Algorithm 1
Input: finite sets X and Γ of formulas in NNF of the base language,

the mapping A specifying the finite automata of the symmetric
regular semi-Thue system of the considered REGc logic L.

Output: true if X is L-satisfiable w.r.t. Γ , and false otherwise.

1. construct an “and-or” graph G, with root v0, for (X,Γ) w.r.t. CL
2. UnsatNodes := ∅
3. if G contains a node v with contents {⊥} then

updateUnsatNodes(G,UnsatNodes, {v})
4. if v0 ∈ UnsatNodes then return false
5. let G′ be the maximal subgraph of G without nodes from UnsatNodes

(we have that G′ is a marking of G)
6. construct the graph Gt of traces of G′ in G
7. while v0 /∈ UnsatNodes do:

(a) let V be the set of all nodes v of G′ such that the contents of v contain a formula
of the form 〈Aσ, q〉ϕ but (v, 〈Aσ, q〉ϕ) is not a productive node of Gt

(b) if V = ∅ then return true
(c) updateUnsatNodes(G,UnsatNodes, V)
(d) if v0 ∈ UnsatNodes then return false
(e) let G′ be the maximal subgraph of G without nodes from UnsatNodes

(we have that G′ is a marking of G)
(f) update Gt to the graph of traces of G′ in G

Procedure updateUnsatNodes(G,UnsatNodes, V)
Input: an “and-or” graph G and sets UnsatNodes, V of nodes of G,

where V contains new unsat nodes.
Output: a new set UnsatNodes.

1. UnsatNodes := UnsatNodes ∪ V
2. while V is not empty do:

(a) remove a node v from V
(b) for every father node u of v, if u /∈ UnsatNodes and either u is an “and”-node or u

is an “or”-node and all the successor nodes of u belong to UnsatNodes then add u
to both UnsatNodes and V

Fig. 3. An algorithm for checking L-satisfiability of X w.r.t. Γ

Proof. Note that psf(X∪Γ) has O(n) formulas and clL(X∪Γ) has O(l×m×n) formulas.
Since the contents of each node of G are a subset of clL(X ∪ Γ), it has O(l × m × n)
formulas and is of size O(l ×m × n2). Since the contents of the nodes of G are unique,
G has 2O(l×m×n) nodes. C

Lemma 5.3. Let S, A, L, X, Γ , l, m, n be as in Lemma 5.2. Then the execution of
Algorithm 1 for X, Γ , A runs in 2O(l×m×n) steps.

Proof. By Lemma 5.2, the graph G can be constructed in 2O(l×m×n) steps and has
2O(l×m×n) nodes. As the contents of each node of G contain O(l × m × n) formulas,
each time when UnsatNodes is extended Gt can be constructed or updated in 2O(l×m×n)

steps. Computing the set V can be done in polynomial time in the size of Gt, and hence
also in 2O(l×m×n) steps. An execution of updateUnsatNodes is done in polynomial time

Tableaux for Regular Grammar Logics with Converse 21

in the size of G, and hence also in 2O(l×m×n) steps. As the set UnsatNodes is extended
at most 2O(l×m×n) times, the total time for executing Algorithm 1 is 2O(l×m×n). C

Theorem 5.4. Let S be a symmetric regular semi-Thue system over Σ, A be the map-
ping specifying the finite automata of S, and L be the REGc logic corresponding to S.
Let X and Γ be finite sets of formulas in NNF of the base language. Then Algorithm 1
is an ExpTime decision procedure for checking whether X is L-satisfiable w.r.t. the set
Γ of global assumptions.

Proof. It is easy to show that the algorithm has the invariant that a consistent marking
of G cannot contain any node of UnsatNodes. The algorithm returns false only when the
root v0 belongs to UnsatNodes, i.e., only when G does not have any consistent marking.
At Step 7b, G′ is a marking of G that satisfies the local consistency property. If at that
step V = ∅ then it satisfies also the global consistency property and is thus a consistent
marking of G. That is, the algorithm returns true only when G has a consistent marking.
Therefore, by Theorem 3.10, Algorithm 1 is a decision procedure for the considered
problem. The complexity was established by Lemma 5.3. C

As the problem of checking satisfiability in REGc logics is ExpTime-complete [5],
our algorithm is complexity-optimal for the considered problem.

5.2 Optimizations

Observe that Algorithm 1 first constructs an “and-or” graph and then checks whether
the graph contains a consistent marking. To speed up the performance these two tasks
can be done concurrently. For this we update the structures UnsatNodes, G′, Gt of the
algorithm “on-the-fly” during the construction of G. The main changes are:

– During the construction of the “and-or” graph G, each node of G has status unex-
panded, expanded, unsat or sat. The initial status of a new node is unexpanded. When
a node is expanded, we change its status to expanded. The status of a node changes
to unsat (respectively sat) when there is an evidence that the contents of the node
are unsatisfiable (respectively satisfiable) w.r.t. Γ . When a node becomes unsat, we
insert it into the set UnsatNodes.

– When a node of G is expanded or G′ is modified, we update Gt appropriately.
– When a new node is created, if its contents contain ⊥ or a clashing pair ϕ, ϕ then

we change the status of the node to unsat. This is the implicit application of the
rule (⊥0) and a generalized form of the rule (⊥). Thus, we can drop the explicit
rules (⊥0) and (⊥). When a non-empty set V of nodes of G becomes unsat, we call
updateUnsatNodes(G,UnsatNodes, V) to update the set UnsatNodes.

– When UnsatNodes is modified, we update G′ appropriately.
– Since Gt is not completed during the construction, when computing the set V of nodes

of G′ that cause G′ not satisfying the global consistency property as in Step 7a of
Algorithm 1 we treat a node (v, ϕ) of Gt also as an end-node if v has status unexpanded
or sat.14 We compute such a set V occasionally, accordingly to some criteria, and when

14 If v has status unexpanded (respectively sat) then (v, ϕ) may (respectively must) be a productive node
of Gt.

22 L.A. Nguyen and A. Sza las

Gt has been completed. The computation is done by propagating “productiveness”
backward through the graph Gt. The nodes of the resulting V become unsat .

During the construction of the “and-or” graph G, if a subgraph of G has been fully
expanded in the sense that none of its nodes has status unexpanded or has a descendant
node with status unexpanded then each node of the subgraph can be determined to be
unsat or sat regardlessly of the rest of G. That is, if a node of the subgraph cannot be
determined to be unsat by the operations described in the above list then we can set its
status to sat . This technique was proposed in [24].

Recently, the first author has implemented a tableau prover called TGC (Tableau
with Global Caching) [24] for checking consistency of a concept w.r.t. a TBox in the
description logic ALC. He has developed and implemented for TGC a special set of
optimizations that co-operates very well with global caching and various search strategies
on search spaces of the form “and-or” graph. Apart from search strategies and global
caching for nodes of the constructed “and-or” graph, TGC also uses other optimizations
like normalizing formulas, caching formulas using an efficient catalogue, simplification,
semantic branching, propagation of unsat in a local scale using unsat-cores and subset-
checking for parent nodes and brother nodes, as well as cutoffs. The test results of TGC
on the sets T98-sat and T98-kb of DL’98 Systems Comparison are comparable with the
test results of the best systems DLP-98 and FaCT-98 that took part in that comparison
(see [24]). One can say that the mentioned test sets are not representative for practical
applications, but the comparison at least shows that various optimization techniques
can be applied together with global caching to significantly increase efficiency of tableau
decision procedures for modal and description logics.

Most of the optimization techniques of TGC can be applied for our decision procedure
for REGc logics. There remains, however, the problem of cuts (not only of our calculus),
as they can make the search space very large. Despite that the applicability of our rule
(cut) is quite restricted, the rule is inflexible. It is possible that one can work out a more
sophisticated condition for the applicability of the rule (cut). On the implementation level,
we hope that depth-first search together with propagation of unsat for parent/brother
nodes and cutoffs significantly reduces the negative side effects of cuts. If this is not the
case, one can try to delay cuts in an appropriate way (preserving completeness).

6 Dealing with ABoxes

Using REGc logics as description logics, possible worlds in a Kripke model, formulas and
accessibility relations are regarded respectively as objects, concepts and roles. A set Γ of
global assumptions is treated as a TBox. As for description logics, we introduce ABoxes
and consider the problem of checking whether a given ABox is consistent with a given
TBox, which is related to the instance checking problem.

We use the term world variable as an equivalent for the term “individual” used in
description logic, and denote world variables by letters like a, b, c. We extend the notion
of Kripke model so that the interpretation function h of a Kripke model M maps each
world variable a to a world of M .

Tableaux for Regular Grammar Logics with Converse 23

Definition 6.1.

– An ABox is a finite set of assertions of the form a :ϕ or σ(a, b), where ϕ is a formula
in NNF of the base language. An ABox is extensionally reduced if it contains only
assertions of the form σ(a, b) or a :p, where p ∈ Φ0 is a proposition.

– A TBox is a finite set of formulas in NNF of the base language.
– A Kripke model M = 〈W,R, h〉 satisfies an ABox A if M,h(a) |= ϕ for all (a :ϕ) ∈ A

and Rσ(h(a), h(b)) holds for all σ(a, b) ∈ A. An ABox A is L-satisfiable w.r.t. a TBox
Γ iff there exists an L-model M that satisfies A and validates Γ . C

We will refer to ABox assertions also as formulas. When necessary, we refer to formulas
that are not ABox assertions as formulas without world variables.

6.1 A Tableau Calculus for the Satisfiability Checking Problem

In this subsection, we extend the calculus CL to calculus CLABox for checking L-
satisfiability of an ABox w.r.t. a TBox.

Definition 6.2. For a set X of formulas (possibly with world variables), the definition
of psf(X) remains unchanged, while clL(X) is defined as follows:

clL(X) = psf(X) ∪ {[Aσ, q]ϕ,2%[Aσ, q]ϕ, 〈Aσ, q〉ϕ,2%〈Aσ, q〉ϕ, 〈%〉〈Aσ, q〉ϕ |
σ, % ∈ Σ, q ∈ Qσ, ϕ ∈ psf(X), and
([σ]ϕ ∈ psf(X) or [Aσ, q′]ϕ ∈ X or a : [Aσ, q′]ϕ ∈ X for some q′, a)} C

Notice that formulas of psf(X) and clL(X) do not contain world variables.

Definition 6.3. The calculus CLABox w.r.t. a TBox Γ for the REGc logic L extends the
calculus CL with the following additional rules:

– a rule (ρ′) obtained from each rule (ρ) ∈ {(∧), (∨), (aut), ([A]), (〈A〉), ([A]f), (〈A〉f)}
by labeling the principal formula and the formulas obtained as its conclusions by
prefix “a : ”, for example:

(∨′) Y, a :ϕ ∨ ψ
Y, a :ϕ ∨ ψ, a :ϕ | Y, a :ϕ ∨ ψ, a :ψ

– rules:

(⊥′0)
Y, a :⊥
⊥

(⊥′) Y, a :p, a :¬p
⊥

([A]′)
Y, a :2σϕ, σ(a, b)

Y, a :2σϕ, σ(a, b), b :ϕ

(cut′)
Y

Y, a : [Aσ, q]ϕ | Y, a :2%〈Aσ, q′〉ϕ
if (*)

(*) : if Y contains some formula a :〈%〉ψ or %(a, b), and
[Aσ, q′]ϕ belongs to clL(Y ∪ Γ), and (q′, %, q) ∈ δσ

(trans′)
Y

&{ ({ϕ} ∪ {ψ s.t. (a :2σψ) ∈ Y } ∪ Γ) s.t. (a :〈σ〉ϕ) ∈ Y }

24 L.A. Nguyen and A. Sza las

The rule (trans′) is an “and”-rule and a transitional rule. The other additional rules of
CLABox are “or”-rules and static rules. A rule among the additional static rules of CLABox

except (⊥′0), (⊥′), (〈A〉′), (〈A〉′f) is applicable only when all of its possible conclusions
are proper supersets of its premise.15 C

The additional rules of CLABox work on sets of ABox assertions, except that the
conclusions of (trans′) are sets of formulas without world variables. That is, in those
rules, Y denotes a set of ABox assertions.

Similarly as for CL, we assume the following preferences for the rules of CLABox: the
rules (⊥0), (⊥), (⊥′0), (⊥′) have the highest priority; unary static rules have a higher
priority than non-unary static rules; the rules (cut) and (cut′) have the lowest priority
among static rules; all the static rules have a higher priority than the transitional rules.

Definition 6.4. Let A be an ABox and Γ be a TBox. An “and-or” graph for (A, Γ)
w.r.t. CLABox is constructed according to the following principles:

– The graph contains nodes of two kinds: complex nodes and simple nodes.
– The contents of a complex node consist of ABox assertions, while the contents of

a simple node consist of formulas without world variables.
– The graph never contains edges from a simple node to a complex node.
– The root of the graph is a complex node with contents A ∪ {(a :ϕ) | ϕ ∈ Γ and a is

a world variable occurring in A}.
– Complex nodes are expanded using the additional rules of CLABox (the primed rules),

while simple nodes are expanded using the rules of CL.
– The “and-or” graph is expanded in the same way as described in the previous section

for checking L-satisfiability of a set X of formulas w.r.t. Γ . The only exception is
that, instead of (trans) we may use (trans′), depending on whether the expanded
node is a complex node or a simple node. C

Example 6.5. In Figure 4 we present an “and-or” graph for ({a : [σ]p, b :¬p, σ(b, a)}, ∅)
w.r.t. CLABox, where L is the REGc logic corresponding to the empty semi-Thue system
and Aσ = 〈{σ, σ}, {0, 1}, {0}, {(0, σ, 1)}, {1}〉. The nodes are numbered when created
and are expanded using DFS. In each node, we display the formulas of the contents of
the node and the name of the rule expanding the node. The edge ((9), (10)) is labeled by
a :〈σ〉〈Aσ, 1〉¬p. The example demonstrates the usage of (cut′). C

The notion of marking remains unchanged. The notions of trace and 3-realization
also remain unchanged but are defined only for formulas without world variables (of the
form 〈Aσ, q〉ϕ) of the simple nodes.

Definition 6.6. A marking G′ of an “and-or” graph G is consistent if:

– local consistency: G′ does not contain any node with contents {⊥},
– global consistency: for every simple node v of G′, every formula of the form 〈Aσ, q〉ϕ

of the contents of v has a 3-realization (starting from v) in G′. C

Notice that the only change for the above definition is that global consistency refers
to “simple” nodes only.
15 Those rules are thus monotonic.

Tableaux for Regular Grammar Logics with Converse 25

(1): (aut′)

a : [σ]p, b :¬p,
σ(b, a)

//

(2): ([A]′)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p

//

(3): (cut′)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p,
a :2σ [Aσ , 1]p

//

�����������

(4): ([A]′f)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p,
a :2σ [Aσ , 1]p,
b : [Aσ , 1]p

��
(8): (〈A〉′)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p,
a :2σ [Aσ , 1]p,
b :2σ〈Aσ , 0〉¬p,
a :〈Aσ , 0〉¬p

��

(5): (2′)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p,
a :2σ [Aσ , 1]p,
b :2σ〈Aσ , 0〉¬p

oo
(7)

⊥

(6): (⊥′)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p,
a :2σ [Aσ , 1]p,
b : [Aσ , 1]p, b :p

oo

(9): (trans′)

a : [σ]p, b :¬p,
σ(b, a),

a : [Aσ , 0]p,
a :2σ [Aσ , 1]p,
b :2σ〈Aσ , 0〉¬p,
a :〈Aσ , 0〉¬p,
a :〈σ〉〈Aσ , 1〉¬p

//
(10): ([A])

[Aσ , 1]p,
〈Aσ , 1〉¬p

//

(11): (〈A〉)

[Aσ , 1]p,
〈Aσ , 1〉¬p,

p

//

(12): (⊥)

[Aσ , 1]p,
〈Aσ , 1〉¬p,
p, ¬p

\\888888888888888888

Fig. 4. An “and-or” graph considered in Example 6.5.

Example 6.7. In description logic, the symbols u, t, v are used instead of ∧, ∨, →.
Furthermore, formulas [σ]ϕ and 〈σ〉ϕ are written as ∀σ.ϕ and ∃σ.ϕ, respectively. This
example is about web pages. It is formulated in the description logic ALC, a notational
variant of the REGc logic that corresponds to the empty semi-Thue system. Let

Γ = {perfect v interesting u ∀link .perfect}
A = {a :perfect , link(a, b)}.

It can be shown that b is an instance of the concept ∀link .interesting w.r.t. the knowledge
base (Γ,A) in ALC. That is, for every Kripke model M = 〈W,R, h〉 that satisfies A and
validates Γ , we have that M,h(b) |= ∀link .interesting . To prove this one can show that
A ∪ {b :∃link .¬interesting} is ALC-unsatisfiable w.r.t. Γ .

As abbreviations, let p = perfect , q = interesting , σ = link , and let ϕ denotes the
only formula of Γ . In Figure 5 we present an “and-or” graph for ({a :p, σ(a, b), b :〈σ〉¬q},
{ϕ}), where ϕ = ¬p∨ (q∧ [σ]p) and Aσ = 〈{σ, σ}, {0, 1}, {0}, {(0, σ, 1)}, {1}〉. The nodes
are numbered when created and are expanded using DFS. In each node, we display the
formulas of the contents of the node and the name of the rule expanding the node. The
edge ((14), (15)) is labeled by b :〈σ〉¬q.

As the graph has no consistent marking, by Theorem 6.8 given below, {a :p, σ(a, b),
b :〈σ〉¬q} is ALC-unsatisfiable w.r.t. {ϕ}. C

26 L.A. Nguyen and A. Sza las

(1): (∨′), or

a :p, σ(a, b),
b :〈σ〉¬q,
a :ϕ, b :ϕ

//

��

(2): (⊥′)

a :p, a :¬p,
. . .

//
(4)

⊥

(10): (⊥′)

b :¬p, b :p,
. . .

oo

(3): (∧′)

a :p, σ(a, b),
b :〈σ〉¬q,
a :ϕ, b :ϕ,
a :q ∧ [σ]p

��

(6): ([A]′)

. . .
σ(a, b),

b :〈σ〉¬q, b :ϕ,
a : [Aσ , 0]p

//

(7): (2′)

. . .
σ(a, b),

b :〈σ〉¬q, b :ϕ,
a :2σ [Aσ , 1]p

//

(8): ([A]′f)

. . .
b :〈σ〉¬q, b :ϕ,
b : [Aσ , 1]p

��(5): (aut′)

a :p, σ(a, b),
b :〈σ〉¬q,
a :ϕ, b :ϕ,
a :q ∧ [σ]p,
a :q, a : [σ]p

??����������
(12): (aut′)

. . .
b :〈σ〉¬q,
b : [σ]p

~~}}}}}}}}}}}

(11): (∧′)

. . .
b :〈σ〉¬q,
b :q ∧ [σ]p

oo

(9): (∨′)

. . .
b :〈σ〉¬q, b :ϕ,

b :p

oo
BC

EDoo

(13): ([A]′)

. . .
b :〈σ〉¬q,
b : [Aσ , 0]p

//

(14): (trans′)

. . .
b :〈σ〉¬q,

b :2σ [Aσ , 1]p

||zzzzzzzzzzz

(17): (⊥)

¬q, [Aσ , 1]p, ϕ,
p, ¬p

//

_ _�
�
�

�
�
�

_ _

(4)

⊥

(15): ([A]f)

¬q, [Aσ , 1]p, ϕ
//

(16): (∨)

¬q, [Aσ , 1]p, ϕ,
p

//

<<yyyyyyyyyyy
(18): (∧)

¬q, [Aσ , 1]p, ϕ,
p, q ∧ [σ]p

//

(19): (⊥)

¬q, [Aσ , 1]p, ϕ,
p, q ∧ [σ]p,
q, [σ]p

OO

Fig. 5. An “and-or” graph considered in Example 6.7

Theorem 6.8 (Soundness and Completeness of CLABox). Let S be a symmetric
regular semi-Thue system over Σ, A be the mapping specifying the finite automata of
S, and L be the REGc logic corresponding to S. Let A be an ABox, Γ a TBox, and G
an “and-or” graph for (A, Γ) w.r.t. CLABox. Then A is L-satisfiable w.r.t. Γ iff G has
a consistent marking. C

The “only if” direction means soundness of CLABox, while the “if” direction means
completeness of CLABox. This theorem follows from Lemmas 6.9 and 6.10 given below.

Lemma 6.9. Let S, A, L, A, Γ , G be as described in Theorem 6.8. Suppose that A is
L-satisfiable w.r.t. Γ . Then G has a consistent marking.

Proof. We construct a consistent marking G′ of G as follows. At the beginning, G′ con-
tains only the root of G. Then, for every node v of G′ and for every successor w of v in G,

Tableaux for Regular Grammar Logics with Converse 27

if either w is a complex node and the contents of w are an ABox L-satisfiable w.r.t. Γ , or
w is a simple node and the contents of w are a set of formulas that is L-satisfiable w.r.t.
Γ , then add the node w and the edge (v, w) to G′. The proof of that G′ is a consistent
marking of G is similar to the proof of Lemma 4.1. C

Lemma 6.10. Let S, A, L, A, Γ , G be as described in Theorem 6.8. Suppose that G
has a consistent marking G′. Then A is L-satisfiable w.r.t. Γ .

Proof. We construct a model graph M = 〈W,R,H〉 as follows:

1. Let v0 be the root of G′ and v0, . . . , vk be a saturation path of v0 w.r.t. G′. Let W0 to
the set of all world variables occurring in A and set W = W0. For each a ∈ W0, set
H(a) to the set of all ϕ such that a :ϕ belongs to the contents of some vi (0 ≤ i ≤ k),
and mark a as unresolved. (Each node of M will be marked either as unresolved or
as resolved.) For each σ ∈ Σ, set Rσ = {(a, b) | σ(a, b) ∈ A}.

2. While W contains unresolved nodes, take one unresolved node w0 and do:
(a) For every formula 〈%〉ϕ ∈ H(w0) do:

i. Let ϕ0 = 〈%〉ϕ and ϕ1 = ϕ.
ii. A. If w0 ∈W0 then:

– Let u0 = vk.
– Let u1 be the node of G′ such that the edge (u0, u1) is labeled by (w0 :ϕ0).

(Recall that w0 is a world variable and note that ϕ1 belongs to the
contents of u1.)

B. Else:
– Let u0 = f(w0). (f is a constructed mapping that maps each node of M

not belonging to W0 to an “and”-node of G′. As a maintained property
of f , ϕ0 belongs to the contents of u0.)

– Let u1 be the node of G′ such that the edge (u0, u1) is labeled by ϕ0.
(Note that ϕ1 belongs to the contents of u1.)

iii. If ϕ is of the form 〈Aσ, q〉ψ then:
A. Let (u1, ϕ1), . . . , (ul, ϕl) be a 3-realization in G′ for ϕ1 at u1.
B. Let ul, . . . , um be a saturation path of ul w.r.t. G′.

iv. Else let u1, . . . , um be a saturation path of u1 w.r.t. G′.
v. Let j0 = 0 < j1 < . . . < jn−1 < jn = m be all the indices such that, for

0 ≤ j ≤ m, uj is an “and”-node of G iff j ∈ {j0, . . . , jn}. Let %0 = %. For
1 ≤ s ≤ n− 1, let 〈%s〉ϕjs+1 be the label of the edge (ujs , ujs+1) of G′.

vi. For 1 ≤ s ≤ n do:
A. Let Zs be the sum of the contents of the nodes ujs−1+1, . . . , ujs .
B. If there does not exist ws ∈W such that H(ws) = Zs then: add a new node

ws to W , set H(ws) = Zs, mark ws as unresolved, and set f(ws) = ujs .
C. Add the pair (ws−1, ws) to R%s−1 .

(b) Mark w0 as resolved.

Note that the above construction differs from the construction given in the proof of
Lemma 4.11 mainly by Steps 1 and 2(a)iiA.

The above construction terminates and results in a finite model graph since for every
w,w′ ∈W \W0, w 6= w′ implies H(w) 6= H(w′), and for every w ∈W , H(w) is a subset
of clL(A ∪ Γ).

28 L.A. Nguyen and A. Sza las

Similarly as for the construction given in the proof of Lemma 4.11, it can be seen
that M is a consistent and CL-saturated model graph.

It can be seen that: if (a :ϕ) ∈ A then ϕ ∈ H(a); if σ(a, b) ∈ A then (a, b) ∈ Rσ; and
Γ ⊆ H(w) for all w ∈ W . Hence, by Lemma 4.9, the Kripke model corresponding to M
validates Γ and satisfies A. Thus A is L-satisfiable w.r.t. Γ . C

6.2 Checking L-Satisfiability of an ABox w.r.t. a TBox

Let A be an ABox, Γ a TBox, G an “and-or” graph for (A, Γ) w.r.t. CLABox, and G′

a marking of G. The graph Gt of traces of G′ in G is defined as in Section 5.1 with
the exception that nodes of Gt are pairs (v, ϕ), where v is a simple node of G and ϕ is
a formula of the contents of v.

By Algorithm 1′ we understand the algorithm obtained from Algorithm 1 by chang-
ing X to A. Algorithm 1′ receives an ABox A, a TBox Γ and the mapping A specifying
the finite automata of a REGc logic L as input and checks whether A is L-satisfiable
w.r.t. Γ .

Here is a counterpart of Lemma 5.2:

Lemma 6.11. Let

– S be a symmetric regular semi-Thue system over Σ,
– A be the mapping specifying the finite automata of S,
– L be the REGc logic corresponding to S,
– A be an ABox and Γ be a TBox,
– G be an “and-or” graph for (A, Γ) w.r.t. CLABox,
– l = |Σ|,
– m be the sum of the sizes of the automata Aσ for σ ∈ Σ,
– n be the size of A ∪ Γ .

Then

– G has 2O(l×m×n2) nodes,
– the contents of each simple node of G have O(l × m × n) formulas and are of size
O(l ×m× n2),

– the contents of each complex node of G have O(l ×m× n2) formulas and are of size
O(l ×m× n3).

Proof. Let V be the set of all world variables occurring in A and let

X = Γ ∪ {ϕ | (a :ϕ) ∈ A for some a ∈ V }.

The set clL(X) has O(l×m× n) formulas. For the second assertion, just notice that the
contents of each simple node of G are a subset of clL(X). Since the contents of simple
nodes are unique, G has 2O(l×m×n) simple nodes. For each complex node v of G and for
each a ∈ V , the set {ϕ | (a :ϕ) belongs to the contents of v} is also a subset of clL(X).
Hence the contents of each complex node of G contain O(l ×m× n2) formulas and is of
size O(l ×m × n3). Observe that each path of complex nodes in G has length of rank
O(l ×m× n2). Hence G has 2O(l×m×n2) complex nodes. C

Tableaux for Regular Grammar Logics with Converse 29

Theorem 6.12. Algorithm 1′ is an ExpTime decision procedure for checking whether
a given ABox A is satisfiable w.r.t. a given TBox Γ in a REGc logic.

Proof. Use the proofs of Lemma 5.3 and Theorem 5.4 with appropriate changes. C

Corollary 6.13. The problem of checking satisfiability of an ABox w.r.t. a TBox in
a REGc logic is ExpTime-complete. C

Algorithm 1′ uses global caching for both complex nodes and simple nodes. The rest
of this subsection deals with the following questions:

– what happens if we use global caching only for simple nodes and backtracking on
branchings at complex “or”-nodes?

– is the complexity still ExpTime?

Lemma 6.14. Let A be an ABox, Γ a TBox, and G an “and-or” graph for (A, Γ) w.r.t.
CLABox. Then G has a consistent marking iff there exists a complex “and”-node v of G
such that the subgraph generated by v of G (which uses v as the root) has a consistent
marking.

Proof. Just notice that the root ofG is a complex node and every father node of a complex
node must be a complex “or”-node. C

By Algorithm 1′′ we understand the algorithm that checks whether a given ABox
A is L-satisfiable w.r.t. a given TBox Γ as follows. The algorithm simulates the tasks of
constructing an “and-or” graph for (A, Γ) w.r.t. CLABox and checking whether the graph
has a consistent marking but does it as follows:

1. nondeterministically expand a path from the root until reaching a complex “and”-
node v,

2. construct the full subgraph rooted at v,
3. check whether the subgraph has a consistent marking (as done in the steps 2–7 of

Algorithm 1), and return true if it does,
4. if none of the possible executions returns true then return false.

In practice, the first step of the above algorithm is executed by backtracking on
the branchings of the applications of “or”-rules. The algorithm does not keep all complex
nodes but only the ones on the current path of complex nodes. On the other hand, simple
nodes can be globally cached. That is, simple nodes can be left through backtracking for
use in the next possible executions.

Theorem 6.15. Using backtracking to deal with nondeterminism, Algorithm 1′′ is an
ExpTime decision procedure for checking whether a given ABox A is satisfiable w.r.t.
a given TBox Γ in a REGc logic.

Proof. By Theorem 6.8 and Lemma 6.14, Algorithm 1′′ is a decision procedure for the
considered problem. It remains to show that the algorithm runs in exponential time. Let
l = |Σ|, m be the sum of the sizes of the finite automata of the considered REGc logic,
and n be the size of A ∪ Γ .

30 L.A. Nguyen and A. Sza las

As stated in the proof of Lemma 6.11, each path of complex nodes constructed by
Step 1 of Algorithm 1′′ has length of rank O(l ×m × n2). Analogously to the proofs of
Lemmas 5.3 and 6.11, it can be shown that Steps 2 and 3 of Algorithm 1′′ are executed in
2O(l×m×n) steps. Hence the complexity of Algorithm 1′′ is of rank 2O(l×m×n2)×2O(l×m×n),
which is 2O(l×m×n2). C

6.3 On the Instance Checking Problem

Consider the use of a REGc logic L as a description logic. A pair (A, Γ) of an ABox A and
a TBox Γ is treated as a knowledge base. An L-model that satisfies A and validates Γ is
called an L-model of (A, Γ). Given a formula ϕ without world variables, which is treated
as a “concept”, and a world variable a, which is treated as an “individual”, the problem
of checking whether M,h(a) |= ϕ in every L-model M = 〈W,R, h〉 of (A, Γ) is called the
instance checking problem in L. Denote the condition to check by (A, Γ) |=L ϕ(a).

Observe that (A, Γ) |=L ϕ(a) iff the ABox A ∪ {a :ϕ} is L-unsatisfiable w.r.t. Γ . So,
the instance checking problem is reduced to the problem of checking L-unsatisfiability
of an ABox w.r.t. a TBox. What we are interested in is the data complexity of the
instance checking problem, which is measured in the size of A when assuming that A is
extensionally reduced and L, Γ , ϕ, a are fixed. Here, L, Γ , ϕ and a form a fixed query,
while A varies as input data.

Theorem 6.16. The data complexity of the instance checking problem in REGc is coNP-
complete.

Proof. Let A be an extensionally reduced ABox, Γ a TBox, ϕ a formula in NNF of
the base language, and a a world variable. Consider the problem of checking whether
(A, Γ) |=L ϕ(a).

Let p be a fresh proposition (not occurring in A, Γ , ϕ) and let

Γ ′ = Γ ∪ {¬p ∨ ϕ, p ∨ ϕ}
A′ = A ∪ {a :¬p}.

Observe that Γ ′ extends Γ with the formulas stating that p is equivalent to ϕ, and
that (A, Γ) |=L ϕ(a) iff the ABox A′ is L-unsatisfiable w.r.t. the TBox Γ ′.

Let n be the size of A. The size of A′ ∪ Γ ′ is thus of rank O(n).
Consider an execution of Algorithm 1′′ for the pair A′ and Γ ′. As stated in the proof

of Lemma 6.11, each path of complex nodes constructed by Step 1 of Algorithm 1′′

has length of rank O(n2) (as l and m mentioned there are constants). Each complex
node has contents of size O(n3). Since A′ is extensionally reduced, the contents of each
created simple node depend only on Γ ′. Since Γ ′ is fixed, Steps 2 and 3 of Algorithm 1′′

are executed in time of rank O(n2). Hence a nondeterministic execution of Step 1 of
Algorithm 1′′ runs in time O(n2) × O(n3) + O(n2). It follows that the execution of
Algorithm 1′′ for A′ and Γ ′ runs nondeterministically in polynomial time the size of A.
Therefore the instance checking problem (A, Γ) |=L ϕ(a) is in coNP.

The coNP-hardness follows from the fact that the instance checking problem in the
description logic ALC is coNP-hard [28]. C

Tableaux for Regular Grammar Logics with Converse 31

7 Conclusions

In this paper we have provided sound and complete tableau calculi for the general sat-
isfiability problem of REGc logics and the problem of checking consistency of an ABox
w.r.t. a TBox in a REGc logic. The results are novel, since up to now no tableau cal-
culi have been fully developed for REGc logics. Using the calculi we have developed the
first complexity-optimal tableau decision procedures not based on transformation for the
mentioned problems, to which a number of useful optimization techniques can be applied.
We have also proved the new result that the data complexity of the instance checking
problem in REGc logics is coNP-complete.

References

1. M. Baldoni, L. Giordano, and A. Martelli. A tableau for multimodal logics and some (un)decidability
results. In Proceedings of TABLEAUX’1998, LNCS 1397:44-59, 1998.

2. G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and
algorithms for Converse-PDL. Information and Computation, 117-137:87–138, 2000.

3. S. Demri. The complexity of regularity in grammar logics and related modal logics. Journal of Logic
and Computation, 11(6):933–960, 2001.

4. S. Demri and H. de Nivelle. Deciding regular grammar logics with converse through first-order logic.
arXiv:cs.LO/0306117, 2004.

5. S. Demri and H. de Nivelle. Deciding regular grammar logics with converse through first-order logic.
Journal of Logic, Language and Information, 14(3):289–329, 2005.

6. F. Donini and F. Massacci. ExpTime tableaux for ALC. Artificial Intelligence, 124:87–138, 2000.
7. L. Fariñas del Cerro and M. Penttonen. Grammar logics. Logique et Analyse, 121-122:123–134, 1988.
8. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. volume 169 of Synthese Library.

D. Reidel, Dordrecht, Holland, 1983.
9. G. De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis,

Universita’ di Roma “La Sapienza”, 1995.
10. R. Goré. Tableau methods for modal and temporal logics. In D’Agostino et al, editor, Handbook of

Tableau Methods, pages 297–396. Kluwer, 1999.
11. R. Goré and L.A. Nguyen. A tableau system with automaton-labelled formulae for regular grammar

logics. In B. Beckert, editor, Proceedings of TABLEAUX 2005, LNAI 3702, pages 138–152. Springer-
Verlag, 2005.

12. R. Goré and L.A. Nguyen. ExpTime tableaux with global caching for description logics with transitive
roles, inverse roles and role hierarchies. In N. Olivetti, editor, Proc. of TABLEAUX 2007, LNAI 4548,
pages 133–148. Springer-Verlag, 2007.

13. R. Goré and L.A. Nguyen. Analytic cut-free tableaux for regular modal logics of agent beliefs. In
F. Sadri and K. Satoh, editors, Proceedings of CLIMA VIII, LNAI 5056, pages 268–287. Springer-
Verlag, 2008.

14. R. Goré and L.A. Nguyen. Sound global caching for abstract modal tableaux. In H.-D. Burkhard
et al, editor, Proceedings of CS&P’2008, pages 157–167, 2008.

15. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
16. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In P. Doherty, J. Mylopoulos,

and C.A. Welty, editors, Proceedings of KR’2006, pages 57–67. AAAI Press, 2006.
17. I. Horrocks and P.F. Patel-Schneider. Optimizing description logic subsumption. Journal of Logic

and Computation, 9(3):267–293, 1999.
18. I. Horrocks and U. Sattler. Decidability of SHIQ with complex role inclusion axioms. Artificial

Intelligence, 160(1-2):79–104, 2004.
19. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive description log-

ics. In L.P. Kaelbling and A. Saffiotti, editors, Proceedings of IJCAI-05, pages 466–471. Professional
Book Center, 2005.

20. A. Mateescu and A. Salomaa. Formal languages: an introduction and a synopsis. In Handbook of
Formal Languages - Volume 1, pages 1–40. Springer, 1997.

32 L.A. Nguyen and A. Sza las

21. L.A. Nguyen. Analytic tableau systems and interpolation for the modal logics KB, KDB, K5, KD5.
Studia Logica, 69(1):41–57, 2001.

22. L.A. Nguyen. On the deterministic Horn fragment of test-free PDL. In I. Hodkinson and Y. Venema,
editors, Advances in Modal Logic - Volume 6, pages 373–392. King’s College Publications, 2006.

23. L.A. Nguyen. Weakening Horn knowledge bases in regular description logics to have PTIME data
complexity. In Ghilardi et al, editor, Proceedings of ADDCT’07 (see also the extension at http:

//www.mimuw.edu.pl/~nguyen/papers.html), pages 32–47, 2007.
24. L.A. Nguyen. An efficient tableau prover using global caching for the description logic ALC. Funda-

menta Informaticae, 93(1-3):273–288, 2009.
25. L.A. Nguyen and A. Sza las. A tableau calculus for regular grammar logics with converse. In R.A.

Schmidt, editor, Proceedings of CADE-22, LNAI 5663, pages 421–436. Springer-Verlag, 2009.
26. V.R. Pratt. A near-optimal method for reasoning about action. J. Comput. Syst. Sci., 20(2):231–254,

1980.
27. W. Rautenberg. Modal tableau calculi and interpolation. JPL, 12:403–423, 1983.
28. A. Schaerf. Reasoning with individuals in concept languages. Data Knowl. Eng., 13(2):141–176,

1994.

