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Abstract

Importing subsumes several asymmetric ways of combining logics, in-
cluding modalization and temporalization. A calculus is provided for im-
porting, inheriting the axioms and rules from the given logics and including
additional rules for lifting derivations from the imported logic. The cal-
culus is shown to be sound and concretely complete with respect to the
semantics of importing as proposed in [12].

Keywords: combined logics, importing logics, modalization, complete-
ness preservation.

1 Introduction

Having in mind different fields of application, several asymmetric ways of com-
bining logics have been reported in the literature, including temporalization [4],
modalization [3], globalization [10], probabilization [2] and quantization [9]. We
proposed in [12] importing as a general way of asymmetric combination of log-
ics and showed that it subsumes such asymmetric combination mechanisms.
Furthermore, in [11] we were able to recover fibring [6] as bidirectional import-
ing. However, so far, importing has been developed only at the semantic level.
Herein, we provide a calculus for importing, inheriting the axioms and rules
from the given logics and including additional rules for lifting derivations from
the imported logic, and prove its soundness and concrete completeness vis a vis
the semantics proposed in [12].

As in our previous papers on importing we adopt the graph-theoretic ac-
count of language and semantics. This approach has the advantage of being
applicable to a wider class of logics [13]. Herein, we present a novel graph-
theoretic account of deduction, requiring a mild generalization of the notion of
2-category.

In Section 2, following [12], we provide for the convenience of the reader a
short summary of the syntactic aspects of importing. In Section 3 we show how
to set up a Hilbert calculus for importing, using the rules and axioms from the



two given logics, and illustrate the construction for the cases of temporalization,
modalization and importing into intuitionistic logic. Some technical details are
left to the Appendix, concerning the generation of the generalized 2-category
of derivations from the calculus as a 2-graph. In Section 4, after a short sum-
mary of the graph-theoretic models of importing defined in [12], we propose
a local version of semantic entailment. Preservation of soundness, under the
mild assumption of totality of the semantics of the two given logics, is proved
in Section 5. Preservation of concrete completeness, under a mild assumption
of fullness of the semantics of the two original logics, is established in Section 6.

Finally, in Section 7 we assess what was achieved and speculate on what is still
ahead.

2 Language

The language resulting from the importing contains the languages of both logics
together with the formulas resulting from the instantiation of formulas of the
importing logic by formulas of the logic being imported (see [12]). The graph-
theoretic approach developed in [13] is followed and so signatures are presented
using multi-graphs: the vertexes are the language sorts and the multi-edges
are the language constructors. As an illustration, see Figure 1 for a graphical
representation of a signature for the linear-time temporal logic (LTL).
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Figure 1: Multi-graph of the LTL signature.
By a multi-graph, in short, an m-graph, we mean a tuple
G = (V, E,src, trg)

where V' is a set (of vertezes or nodes), E is a set (of m-edges), src : E — V*
and trg : F — V', with VT denoting the set of all finite non-empty sequences of
V. We may write e : s — v for stating that m-edge e has source s and target v.
By a propositional based signature or, simply, a signature, 3., we mean a tuple

(G, 10)

where G = (V, E, src, trg) is an m-graph, II is a non-empty set (of propositions
sorts) contained in V', ! (the concrete sort) is in V' \ II, no m-edge in E has ! as
target, and ! only appears in the source of unary edges. We now present some
examples of signatures for modal logic [1, 7], linear-time temporal logic [4, 15]
and intuitionistic logic [14], useful throughout the paper.



Example 2.1 Signature for linear-time temporal logic.

Let Q" be a set {qi1,, @1, --- } of propositional symbols. The signature for
linear-time temporal logic over Q™, denoted by Zglm, is an m-graph with the
propositions sort my, the concrete sort !, and the m-edges: Q) ! — myq for
each natural number j; -y, X, Y : my — m; and Dy, S, U @ mpmg — m. For
a graphical representation see Figure 1. \Y%

Example 2.2 Signature for modal logic.

Let Q™ be a set {gmg, ¢m,, - - - } of propositional symbols. The modal signature
over Q™, denoted by Egm, is an m-graph with the propositions sort my,, the
concrete sort !, and the m-edges: ¢m; : ! — my for each natural number j;
“m, Q0 Tm — Tm; and Dy Ty Tm — Tm. AV

Example 2.3 Signature for intuitionistic logic.

Let Q' be a countable set {gi,, g,, - .. } of propositional symbols. The signature
over Q' for intuitionistic logic, denoted by EiQi, is an m-graph with the propo-
sitions sort 7, the concrete sort ! and the m-edges: ¢;; : | — m; for each natural
number j; 7 : m — my; and Ay, Vi, Dj : mT — T Vv

As expected, formulas appear as m-paths over the signature m-graph ending
at some 7w € II. Actually, it is more convenient to work in the corresponding
graph enriched with tupling and projections. More concretely, let G be the
graph induced by G having as nodes the finite sequences of nodes of G and
as edges the m-edges of G together with edges p;'"*"
for projections, and edges (wi,...,wy,), from s to vy ...v,, for tuples, where
wy, ..., W, are paths with the same source s and target vy, ..., v, respectively
(for more details see [12]). Since many paths over GT may collapse onto the same
formula, for instance = pf™ (g1, ¢2) and —qi, it is convenient to work only with
“irreducible” paths. The set of irreducible paths of G is inductively defined as
follows:

, from vy...v, to vj,

® ¢, is an irreducible path;

. p}’l”'”” is an irreducible path;
e (wiq,...,wy) is an irreducible path whenever wy,...,w, are irreducible

paths and at least one w; is not pgl"'”";

e cw is an irreducible path whenever e is an m-edge of G and w is an
irreducible path.

The set of nodes of G together with its irreducible paths constitute a category,
henceforth denoted by G*, where composition of two irreducible paths is the
irreducible path resulting from reducing the path obtained by concatenating
them and identity at a given node is the empty path therein (for more details
see [12]). In the sequel, given a signature ¥ = (G, !,II), we may denote by X+
the category G*, by X the graph GT, and given a morphism w of ¥+ from s;
to so we may denote its source s; by src™(w) and its target so by trgt(w).

A generalized formula over a signature (G,!,II) is an irreducible path with
target 7y ... my,, for some 7y, ..., m, in II and natural number n, over the graph
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Figure 2: A temporal formula: g1, Dir (X(Y@ul,))-

G'. An expression over ¥ is an irreducible path over G and a proper formula
is a generalized formula ending at m € II. We denote the set of generalized
formulas over ¥ by L*(X) and the set of proper formulas of X, i.e. the language
of ¥, by L(X). We may refer to the elements of L*(X) simply as formulas. An
expression over Y is said to be concrete whenever its source is ! and is said to
be schematic if a sort different from ! occurs in its source. For instance, in the
context of the signature Zlcglm for linear temporal logic described in Example 2.1,
the formula Dy {qi,, XYqi1,) from ! to my, see Figure 2, is a concrete formula,
represented simply by

Qitl, D11 (X(Yaue,)),

(in order to simplify the presentation, when writing irreducible paths we may
write the language constructors in infix notation and so may not explicitly write
the associated tuples), and the formula

Dltl <p;l'lt17T1t1 , Xypgltlﬂ'ltl >

from mymyy to my is schematic. Traditionally this formula is written with
schema variables as follows:

&1 D (X(Y&2)).

From now on, we may use interchangeably the simpler traditional representation
and the more rigorous one.

Given expressions w and wg in X1, wg is compatible with w whenever
srct(w) = trgt(wp). The instantiation of w by wp, where wy is compatible
with w, is the morphism w o wy.

Importing a signature

Importing is an asymmetric combination technique in the sense that its lan-
guage contains the formulas resulting from the instantiation of formulas of the
importing logic by formulas of the logic being imported, but not formulas ob-
tained in the other way around. One of the key characteristics of importing
is that it makes explicit the bridge from the imported logic into the importing
one. So, the signature resulting from the importing contains the constructors
and sorts of both signatures and the added constructors 9,, that are the only
constructors that involve sorts of both components. As an illustration see in
Figure 3 the signature resulting from importing the signature for linear tempo-
ral logic introduced in Example 2.1 into the signature for modal logic introduced
in Example 2.2.
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Figure 3: Importing the linear temporal signature into the modal signature.

The importing constructors act in formulas as “bridges” that transform
formulas of the imported logic into formulas of the importing one (but not in
the other way around). For example the formula

(O (Mt (61U €2))) Dm (O(Trmm (XE2)))

where & and & are p7'™ and p5'™! respectively, is in the language induced

by the signature, depicted in Figure 3, resulting from importing El(gm into Xfm.
When there is no ambiguity we may represent the imported formulas inside the
host formula between quotes and omit the importing connective. For example,
we may represent the formula above by

(061U &) Dm (O'XE).

Importing is defined for a suitably disjoint pair of signatures, that is, signa-
tures (G1,!,1I;) and (Ga,!,II2) where V1 \ {!} and V5 \ {!} are disjoint, IT; and
Il are singletons, T, is not in £y U Fs for v and v in II; UIly, and E; and Es
are disjoint.

Importing a signature 31 into a signature o, denoted by

Xo[X4],
is, denoting the element of II; by m; and the element of Ils by ms, the signature
((V, E,src, trg), !, {m1,m2})
where
e V=V1UVy
o Fis E1UFEsU{9%mn b

e src and trg are such that src(r,x,) = 71, trg(Tryr, ) = 72, and src(e) =
srci(e) and trg(e) = trgg(e) if e is in Ey, for k =1, 2.

We now present some particular instances of importing. Each example is in
fact a collection of instances of importing all over the same importing signature.



Example 2.4 By adding a 9-constructivist dimension to a signature i suit-
ably disjoint with signature XL, for intuitionistic logic introduced in Exam-

ple 2.3, denoted by I[¥1], we mean the importing of ¥; into signature ZiQi.
\Y

Example 2.5 The 9-modalization of a signature X1 suitably disjoint with sig-
nature Xgm for modal logic introduced in Example 2.2, denoted by M[¥], is
the importing of 3 into signature Ym- See Figure 3 for a partial graphical

\Y

representation of the signature M[Eglm}.
Example 2.6 The 9-temporalization of a signature Y; suitably disjoint with
signature vt for LTL, introduced in Example 2.1, denoted by LTL[X,], is the

Qltl
importing of ¥; into signature X!} v

Qltl .

3 Deduction

In this section we investigate what is importing in terms of deduction. For that,
we need that the given deductive systems be described in a common way, and
so we assume that they are Hilbert-style systems presented according to the
graph-theoretic approach developed in [13].

Hence, a deductive system is described using a graph where the nodes are
formulas and the edges are rules, either axiomatic or not. For instance, the
rule depicted in Figure 4 and introduced in Example 3.3 for modal logic T, can
be seen as an edge, from the schema formula & Dy, & to the schema formula
(0&1) Dm (0&2), where &; is p™™ and & is p;™™™. In the same vein, axiomatic
rules are endo edges, that is, edges from a formula, the axiom, to itself. Multi-
source edges are not needed since we make use of tupling in X*.

gl Om 52
TmTm Tm
ﬂ POSt
TmTm Tm
(<>§1) Om (<>§2)

Figure 4: The possibility rule of modal logic T.

More rigorously, a deductive system is a pair (X, A) where ¥ is a signature
and A is a triple
(R, prem, conc)

where R is a set (of rules), and prem : R — L*(X) and conc : R — L(X) are
such that

+ +

Src’ o prem = src' o conc.

We may write r : ¢ = ¢ for stating that rule r has premise ¢ and conclusion
. An azxiom is the source or the target formula of an endo-edge in R (such an
endo-edge may be denoted by an aziomatic rule). When there is no ambiguity



we may confuse an axiomatic rule with its associated axiom, and so, when
presenting an axiomatic rule, we may simply present the target formula.

Example 3.1 Deductive system for intuitionistic propositional logic.
Consider the Hilbert axiomatization of intuitionistic logic proposed in [14].
That axiomatization can be represented as the deductive system (X1, Al), de-

) Ql?
noted by D', where:

o Xi o is the signature for intuitionistic logic described in Example 2.3;

e Al contains the following axioms and rules:

— axi; 1§ Di (€ D §);

— axi, 1 (§1 21 &2) Di ((&1 21 (&2 Di&3)) Di (61 21 63));
— axiz 1 § i (& Di (N E));

—axi, : (N E) D&

—ax;; : (ENE) Di s

— axig 1 § D (§ Vi &');

— axi; : &' Di (Vi)

— axig 1 (6101 83) Di (&2 21 &3) Di (€1 Vi &2) Di&3));
— axiy 1 (£2i &) Di (€21 (i) Di (i €));

— axi 1 £ D5 (i €) i &)

— MP;: (§, £ Di &) = &

Ty

where ¢ is p7'™, £ is p;

T Ty T Ty

) 51 is P s 52 is Pa and 53 is pmmm \V4

Example 3.2 Deductive system for linear temporal logic.
Consider the Hilbert axiomatization of LTL described in [15] using the fol-
lowing abbreviations: (®p) for =X (), (Be) for i (true U (), (Sp)

for =Y (—11¢), (Be) for —yq(trueS (—iup)), @1 D@ @2 for B(p1 D1 ¢2), and
©1 @ @2 for (p1 Dmw2) A (p2 Dm p1). This axiomatization can be represented

as the deductive system (Elgm, A1) denoted by D', such that:

o Yt ol is the LTL signature introduced in Example 2.1;

e A" contains the first two axioms presented in Example 3.1 with the
obvious adaptations to the LTL context, and

— axgl, ¢ ((M1e1€1) D1 (711 €2)) Dt (§2 D €1);
§1U&) <m (2 V (&1 AX(E1U&)));

S&) «m (&2V (& AY(&1SE)));

— axigy : (
(&

— axyy, © (£ Ufalse) D false;
(
(

— ame :

Ofalse);
B¢) D &;

— 3X1t14 :

— 3X1t15 :



— axyy, : (BE) D@ B(EE));

— axyg, + B(& D &2) Dm ((B&1) D (BE2));
— axyglg : B(61 D1 €2) Dm ((B1) D (BE2));
— axyy < £ Dm B(YE);

— axy, ¢ £ Om O(XE);

— axiy, : B(E D1 (8€)) D B(E D (BE));

— axily, : B(E D1 (8€)) D B(E D (B));
— axy, ¢ (BE) D1 B(SE);

— axiy, : (Y€) Dm (8¢€);

— axigy; | O(&1 D &2) @ ((661) D (682));
— Xty O(61 D &2) <@ ((BE1) D (B2));
— Ay, © (D) Dm (XE);

— aXitl,, ¢ (XE) D (BE);

— MP : (€1, &1 D &2) = &2

— GENg : £ = (H¢);

— GENg : £ = (B¢);

where & is p7™™, & is p3"™™ and & is idg,,. \Y

Example 3.3 Deductive system for modal logic T.
Consider the Hilbert axiomatization of modal logic T described in [1]. This
axiomatization can be represented as the deductive system (Egm, AT), denoted

by DT, where:
o Yim is the modal signature introduced in Example 2.2;

e AT contains the first two axioms presented in Example 3.1 with the ob-
vious adaptations to the modal context, and:

— ax7, : (("m &1) Dm ("m &2)) Dm (&2 Om &1);
— axp, : (Ofalse) < false;

axt, : 0(&1 V &) ¢ ((0&1) V (0€2));

axT : § Dm (<>§)a

— MP: (§1, &1 Dm §2) = &2

— POSr : (& Dm &) = ((0&1) Dm (0€2));

where & is pf™™, & is py™™ and £ is idy,. \Y

Observe that a deductive system can be seen as having a 2-category flavor:
rules are edges between formulas (which are morphisms in the language category
induced by the signature). More precisely, as having a generalized 2-category
flavor, since a generalized 2-category, see the Appendix, is a 2-category (see [8])
without the proviso that the source of the 2-cell source coincides with the source



of its target, and similarly, that the target of the 2-cell source coincides with
the target of its target. For example, MP; in Example 3.1 could not be a 2-cell,
since the target of its premise is mm and the target of its conclusion is 7.

In fact, as detailed in the Appendix, a deductive system (3, A) induces a
generalized 2-category, denoted by

EA

where the objects are the expressions over X, and the set of generalized 2-cells
is the quotient of the minimal set of paths of the graph containing the rules in
A, 2-projections
P<w1,...,wn)
J

)

and 2-tuples

{81, -+, 0n),

and closed under path vertical e, and horizontal e, compositions; with an equiv-
alence relation ~ for imposing that ©2 is a generalized 2-category and has
2-products of objects with the same source, see the Appendix. We denote by

src and trg

the maps that assign to each generalized 2-cell in X2 its source and its target,
respectively. Moreover given an expression w in X+, the identity on w in ¥4,
denoted by

IDy

is [ew]~, and given appropriate generalized 2-cells [d1]~ : w1 — wy and [d2]~ :
ws — wy, its vertical and horizontal composition in 2, denoted respectively
by

[52]% 6v [61]z and [52]&2 6h [51]z
is [02 e 01]~ and [z ey 0]~ respectively. The horizontal composition is defined

if and only if the source of ws coincides with the target of w; and the source of
wy coincides with the target of we (see Figure 5), in which case its horizontal

ﬂwz ﬂwz]z
w2 * Wy

Figure 5: Generalized 2-cells “appropriate” for horizontal composition.

composition is a generalized 2-cell from wsow; to wyowsy. Similarly, the vertical
composition is defined if and only if the target of [§1]~ coincides with the source
of [d2]~, that is, wy coincides with ws (see Figure 6) in which case its vertical
composition is a generalized 2-cell from wi to wy.

In the sequel we represent a generalized 2-cell [6]~ in 2 simply by 6. A
source-homogeneous generalized 2-cell § : w1 — ws is a generalized 2-cell where



w1

[51] ~~
w2
w3
[62] =~
W4

Figure 6: Generalized 2-cells “appropriate” for vertical composition.

le Dm ng
TmTTm Tm
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TmTm Tm

(Ogm1) Dm (Ogm.,)

Figure 7: Instantiation of POSt in Figure 4 by ¢m, and gm,-

the source of its source and the source of its target coincide, that is, src*(w;) =
srct(ws). All generalized 2-cells in £2 are source-homogeneous.

Instantiation of rules are naturally expressed in ¥ using horizontal com-
position. For example, consider the instantiation of the rule POS, depicted in
Figure 4, where £; is instantiated by ¢m, and & by ¢m,, see Figure 7. It is not
difficult to see that

qm; Om qm, = (51 m 52) o <lean2>

since
Gmy 2m Gmy = Dm<qH11aqm2>
= Om{PI™™,p2"™"™)) © (g1, Gms)
= (§&1Dm&2) ° (qmy) Ima)
and
(qu1) Om (<>qm2) = ((051) m (052)) o <qm17qm2>
since

(Qle) Om (Osz) = Dm(OQmp <>Qm2>

= (Dm<<>p71rmﬂ—m’ <>p72rmﬂ'm>) © <qm1 9 qm2>

= ((0&1) Dm (0€2)) © (dmy s Gmy)
see Figure 8.

Henceforth, by the instantiation of a generalized source-homogeneous 2-cell
b in X2 from wy to we, by w in X+ with trgT(w) = srct(wy) = srct(wo),
denoted by
b*w,

10



we mean the generalized 2-cell boy, ID,, from w; o w to we o w. So Y2 contains
all the instantiations of rules in A as well as their compositions.

<Qm1 ) Qm2> . 51 Dm 52
ﬂlD@ml o) ﬁPOST
(Gomy i) *TT(06) om (082)

Figure 8: Another view of the generalized 2-cell POSt * (¢, , gm,) in Figure 7.

In the sequel we abbreviate the generalized 2-cell ZP@I""’W’“), e Pﬁ”l"”’w’“)S

J1
in ¥4 where 1 < j1,...,j < k by Pé?’lﬂww As expected, by a tupling (w) of
(w)

length one we mean w and by P,/ we mean ID,,.

Intuitively, a derivation is a tree labelled by formulas whose leaves are either
hypothesis or axiom instances and such that the formula labelling each node is
the conclusion of a rule instance from the formulas at its immediate predecessors
in the tree. As a simple example, consider the derivation depicted in Figure 9
for deducing formula ¢3 from formulas ¢1, ¢1 D 2 and @2 D @3, in the context
of a deductive system (X, A) with modus ponens. Observe that the first stage
of this derivation is composed by the basic derivation

(MP " <9017 ¢2>) 3y P§€7021»%013<P27<.023<P3>
denoted by (11, and by the basic derivation
(IDig, * (g2 D ©3)) By p§w17s013<p2,¢23¢3>

denoted by B2, that is, is the generalized 2-cell

(B11, B12)

from
(Y1, ¥1 D 2, Y2 D @3)

to
<§027 ©2 D SD3>7

and the second stage is the generalized 2-cell

MP x <Q02, (103>

from (@2, p2 D @3) to ps.
More rigorously, by a derivation over a calculus (X, A) we mean a generalized

2-cell § in 22 of the form:

<Bm17 .. -,anmSBV ... 0y <,811, cee 7B1n1>

11



©1 ©1 D P2 P2 D 3
\ /

MP (@1, 02) IDig, * (¢2 D ¢3)

¥3
Figure 9: Deduction of 3 from @1, @1 D 2 and s D 3.

for non-zero natural numbers m, nq, ..., N, withn,, = 1, whereforj =1,...,m
and k = 1,...,n; the B are basic derivations, that is, are generalized 2-cells
in ©2 of the following form:

(bjk * wjk) Ov P;zo,]_.l.’,j;:::m

where bj; is either a non-axiomatic rule or a generalized 2-cell identity (for
vertical composition) over idtrg+(wjk), ©j1,- .-, pje; are proper formulas and /;
is non-zero. The basic derivation 3, is said to be aziomaticif b, is a generalized
2-cell identity and wj;, is an axiom or an axiom instance. When bj; is a non-
axiomatic rule we may denote the basic derivation 3; by basic derivation over
rule bji. Observe that the conclusion of a derivation is a proper formula.

A derivation is said to be a proofif its premise is a tupling of axiom instances.
The conclusion of a proof is said to be a theorem or a concrete theorem if it is
a concrete formula. We write b a) ¢ or I ¢ for stating that ¢ is a theorem.
Furthermore, we write

by e

or I' - ¢ when T is a set of proper formulas, src™ (y) = src™ () for every y € T
and there is a derivation in ¥ with conclusion ¢ and premise given by a tupling
of elements of I" and of axiom instances. In this situation we say that there is
a derivation of ¢ from I'. A derivation is concrete whenever all the formulas
occurring in its steps are concrete.

In the sequel, by an inference we mean a generalized 2-cell in ©? with
generalized formulas as source and target. The source of an inference is said to
be its antecedent and its conclusion is said to be its consequent. Observe that
every inference is source-homogeneous, that is, all formulas in the antecedent
and in the consequent have the same sequence of sorts as source. An inference
8 in 22 is compatible with inference d9 in Y2 if the antecedent of &5 coincides
with the consequent of d7.

12



Importing a deductive system

We now define what is the importing of a deductive system into another. The
goal is that the reasoning mechanism of the imported logic is present in the logic
resulting from the combination but can only be applied to its expressions. In
contrast, the reasoning mechanism of the importing logic is present in the logic
resulting from the combination but is open to all expressions. This captures
and generalizes the characteristic properties of some asymmetric techniques
of combining logics like modalization and temporalization as developed in [4,
5, 3]. In fact, in [4, 5], the axioms of the deductive system resulting from the
temporalization are the theorems of the imported logic together with the axioms
of the importing one, and the rules are only the rules of the importing logic.

We assume that the deductive system being imported and the importing
deductive system, say (X1, A1) and (X9, Ag) respectively, are suitably disjoint,
i.e., X1 and X5 are suitably disjoint, and Ry and Ry are disjoint. Observe that
II; and II, are singletons since Y1 and Y, are suitably disjoint.

Importing a deductive system (X1,A1) into a deductive system (32, As),
denoted by

(X2, A2)[(E1, A1),

is the deductive system (X2[¥1], Aa[A1]) where
Ag[A]
is the tuple (R, prem, conc) with
e R=R;URyU{IMP}U{REF};
o prem(ry) = premy(rx) and conc(ry) = concg(ry) if 7 is in Ry, for k = 1, 2;
e prem(IMP) = id;, and conc(IMP) = Uy,
e prem(REF) = 9,~, and conc(REF) = id,.
We now describe some specific instances of importing.

Example 3.4 Recall deductive system DT introduced in Example 3.3. The -
modalization by modal logic T of a deductive system D; suitably disjoint with
DT, denoted by

Mr[D1],

is the deductive system resulting from importing D; into DT. See Figure 10 for
a graphical description of part of the deductive system M [Dm], where D' ig
the deductive system for linear temporal logic introduced in 3.2. Observe that

© Fap D) O'X(Ye)'

holds, for any formula ¢ over Elgm.

13



axT.

1
TmTTm ——> TTm

J

TmTTm ————> Tm axTr
X MTm ————> Tm

|

Tm ——— > TTm
axT

&1, 6 DOm &2 &1 DOm &2
TmTTm ———————————> TmTTm TmTm Tm
[MPr ﬂPOST
TmTm —————————————— > Tm TmTm Tm
& (0&1) Dm (0€2)
lfl
Tl ————> Ttl Tit] ——————> Tm
ﬂ IMP u REF
Tt] ————> TTm Tl ———> TNl
11 5
axigl;,
T1 Tt ——> Tt
Te1 el ———> Ttl aXitly 7y
aXitl Tt] ——————> Tl

11

l

Tt] ———> Ttl

aXitly 7y
&1, &1 D &2
Tl T ] ——————————> Tltl ] ———— Tl Tl ———— Ttl
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Figure 10: 9-modalization of linear temporal logic by modal logic T.

Example 3.5 Recall deductive system D" introduced in Example 3.2. The
9-temporalization of a deductive system D; suitably disjoint with D', denoted
by

LTLD)],

is the deductive system resulting from importing D; into D' \Y%

Example 3.6 By adding a 9-constructivist dimension to a deductive system
D, suitably disjoint with D' for intuitionistic logic introduced in Example 3.1,
denoted by

I[Dl]v

we mean the importing of D; into the deductive system D'. v
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Relationship with temporalization

Herein we relate 9-temporalization, in terms of deductive consequence, with the
well known temporalization combination mechanism introduced by Finger and
Gabbay in [4], when no connectives are shared. In [12] a weak form of this
result was proved for semantic entailment (in the global version). A similar
result holds also for modalization. We first present a graph-theoretic version of
temporalization when no connectives are shared.

The temporalization of a deductive system D; suitably disjoint with D!
(recall D! in Example 3.2 and ¥! in Example 2.1), produces a deductive
system (T[X;], T[A1]), denoted by

T[D]

where T[X;] is the signature Y enriched with m-edges @1 : | — my for each
concrete proper formula ¢; over X1, and T[A1] is the deductive system A"l
enriched with the axiom 7 : ! — my for each concrete proper theorem 7 over
the deductive system (3;,A1). Observe that the difference between LTL[A]
and T[A1], in terms of the deductive system, is that LTL[A], instead of having
an axiom for each concrete proper theorem @1 in the deductive system (31, A1),
has the rules and axioms of Ay together with the rules IMP and REF.

Consider the map - from L(T[%1]) to L(LTL[X;]) (recall LTL[X;] in Ex-
ample 2.6) inductively defined as follows:

° (gp)ﬁt is  if  is a concrete proper formula over ¥;
o (cp)" is c(yp)q, for cin {1, X, Y};

o (clpr,p2)" is e{(p1),, (92)5,) for ¢ in {=10,5,U};
where -4, is the map from L(T[X;]) to L(LTL[X;]) such that:
o (p)q, is '¢" if ¢ is a concrete proper formula over ¥i;

o (), is ()™, otherwise.

In the next proposition, a derivation of ¢™ from I'"* in LTL[D;] is obtained
from a derivation of ¢ from I' in T[D;], by renaming the formulas in the given
derivation according to -*, and by replacing the basic derivations where a the-
orem of (X1,A;) is used as an axiom, by its derivation. First we prove that
renaming according to - transforms a derivation over T[D;] to a derivation
over LTL[D;] modulo adding some additional hypothesis.

Proposition 3.7 Let (Bm1,---,Bmn,,) Ov --- v (B11,---, Bin,) be a concrete

<90i17"'790i]€i>
aijly--waijlij :

derivation for I' Fpip,) , denoted by &, where B;; is (b;j*w;) oy P
Then, - - B -
<(ﬁm1)ﬁta st (anm)ﬁw Oy ... 0y <(511)Wt’ B (ﬁlnl)ﬁw

where, (Bij)ﬁt, fori=1,...,mand j=1,...,nis

((9i1) " (0ik;) )
Qig1yens@ifi; )

(bij*(wij) ™) By P
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is a concrete derivation, denoted by (8)™, for (T')™ U {(¥))™ : ¢ is at step 1 of §
and is a concrete proper theorem over D1} Fyppp,) ().

Proof: The proof follows immediately by induction on the depth of the given
derivation. Tt is enough to see that for any rule b in A" (bxw)™ is bx(w)™
since neither the source of b nor its target has a concrete proper formula over
Y1 as sub-expression. The same happens if b is of the form IDjq, . QED

Proposition 3.8 Given a set T'U{p} of concrete proper formulas over L(T[X1]),
I'Frip,) ¢ implies ()™ FLTLD:] ()™

Proof: The proof follows immediately by Proposition 3.7 due to the transitivity
of the consequence relation by p,) since Frryp,) (4,0)(h for any concrete proper
theorem ¢ over (X1, Aq). QED

4 Semantics

Having in mind establishing the preservation of soundness and completeness by
importing, we now provide for the convenience of the reader a brief summary
of the graph-theoretic semantics of importing introduced in [12].

An interpretation, also called a model, over a signature, is an m-graph
where the nodes are semantic values and the m-edges are operations on the
values, together with functions to relate the semantic values with signature sorts
and operations with constructors, see Figure 11. Herein we assume that these
functions are total and consider a local version of the entailment introduced
in [12].

m
m @
N

Gmpsqmyy - - -

Figure 11: Part of an interpretation for modal logic T without the m-edges for
Dm and the propositional symbols.
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By an m-graph morphism « : G1 — G2 we mean a pair o' : V3 — V5 and
of : E1 — E5 of maps such that: srcaoa® = a¥osrcy and trgyoa® = aVotrg;. In
the sequel we need to refer to the functor at induced by an m-graph morphism
a. An interpretation for a signature (G,!,1I) is a tuple

(G',a, D,")

where G’ is an m-graph (the operations m-graph), o : G' — G is an m-graph
morphism (the abstraction morphism) such that (a¥)~1(!) is a set (of concrete
values) containing !, and D C (o) ~(II) is a set (of designated or distinguished
values). Observe that we use ! both for the concrete sort and for the concrete
value since the context where they are employed will tell which is being used.
We may use IT to refer to the category G'* of irreducible paths.

We say that a sequence s’ of truth values in I abstracts to the source of a
language expression w in L+ whenever a*(s’) = src*(w), and that a semantic
expression (i.e., an irreducible path) w’ in I abstracts to an expression w in ¥+
whenever a* (w') = w. We denote by (a*)~!(w)y the set of semantic irreducible
paths in (a*)~!(w) that start by s’. When (a*)~!(w)y is a singleton we may
confuse this set with its unique element.

An interpretation system T is a pair (X,J) where ¥ is a signature and J is a
class of interpretations for 3. An interpretation system (X3,7) is total whenever
all its interpretations are total, and an interpretation (X, 1) is total whenever
for any connective c in the signature ¥ and s’ in I+ that abstracts to the source
of ¢, there is an m-edge €’ in I starting at s’ that is abstracted to c.

Example 4.1 An interpretation system for modal logic T.

The interpretation system (Egm,ﬁT) for modal logic T is such that JT is the
set of all interpretations for X@. induced by the algebras for modal logic T
(see [1, 7]), as defined in [12] (see [1, 7] as references for modal logic). \Y

Example 4.2 An interpretation system for linear temporal logic.

The interpretation system (Elgm, Jm) for LTL is such that 3" is the set of all
1t1

interpretations for Ygu induced by strong linear Galois algebras (see [15]), as
defined in [12].

Example 4.3 An interpretation system for intuitionistic propositional logic.
The interpretation system (EiQi, J') for intuitionistic propositional logic is such
that J' is the class of all interpretations for ZlQi induced by a Heyting algebra
and a valuation v over the algebra (see [14]), as defined in [12]. \%

Satisfaction

An interpretation I is non-deterministic if it has distinct m-edges with the
same source, that are mapped by the abstraction map to the same connective.
Since choosing a unique denotation for all the non-deterministic connectives
is equivalent to choosing a maximal deterministic sub-interpretation J of that
interpretation, denoted by J < I, we define satisfaction not only with respect
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to I but also with respect to J. Observe that if I is already deterministic, its
only maximal deterministic sub-interpretation is I.

So, given an interpretation I for a signature X, a formula ¢ over 3, J < [
and a sequence of truth values s’ in I that abstracts to the source of ¢, we say
that I, J and s’ satisfy o, written

I,J, ks ¢

whenever all the irreducible paths in J* starting at s’ that abstract to ¢, end at
a distinguished truth value. Observe that there is at most one such irreducible
path in J. In the sequel we assume that the abstraction map of J is 3, and
write (8%) ()« for stating that there is such a path. In that case we denote
it by (8+)7!(p)s. When there is no path in J* for ¢ starting at s’ we write
(B7) " Hp)sT-

Entailment is defined on top of satisfaction as usual. We say that a set I
of formulas over ¥ locally entails within (3,7) a formula ¢ over ¥, all with the
same source, denoted by

1
PEsy e

whenever I,J,s" IFs T' implies I, J, s IFy o, forall I in J, J < I and s’ in I+
abstracted to the source of ¢. Moreover we denote () ':%273) © by IZI(ZJ) © and
say that the formula ¢ is locally valid with respect to (2,7).

When there is no ambiguity we may omit the reference to the signature and
to the interpretation system in the satisfaction IF and entailment E! symbols
respectively. We may also write E instead of E!, and omit the qualification local.

Importing an interpretation system

Semantically, importing is defined at the level of models as explained in [12].
That is, for any given pair of interpretations of the component logics there is
an interpretation in the importing, consisting of a faithful copy of each inter-
pretation together with the denotation of the 9 connective.

We assume that the interpretation being imported and the importing in-
terpretation, say (X1,1;) and (X9, I2) respectively, are suitably disjoint, i.e.,
are interpretations where 1 and ¥y are suitably disjoint, V{ \ (a$)~!(!) and
Vi \ (a§)71(!) are disjoint, Tuye 18 Ot in 7 U By for vj in V3 and v} in VY, and
E{ and E} are disjoint as well. Similarly for interpretation systems, i.e., that
all the pairs with an interpretation of each system is suitably disjoint.

The importing of an interpretation system (X1,71) into an interpretation
system (X2,J2), denoted by

(32,32)[(31, 1)),

is the interpretation system (X2[31],J2[J1]) where J2[J1] is the class of inter-
pretations {Iz[l1] : 1 € J1, 12 € J2} over ¥9[%4] such that

L[]

is the tuple ((V', E’,src’, trg’), o, D,!) with
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o V'is V/UVY;
o B' = BUE U {yy vy € Do,v) € D1} U {Tyy : vy € oy H(ITg) \
Dy, oy () \ Di};

e src’ and trg’ are such that src/(fy,,) = vy, trg' () = v, src'(€f) =
srci.(€') and trg(¢’) = trg.(¢’) for € in E} and k = 1,2;

e « is such that a¥(v') = o (v') whenever ¢ is in V}/ for k = 1,2, af(¢/) =
ag(e’) whenever € is in Ej for k = 1,2 and a®(yu) = Tavwh)av(v));

e Dis DU Ds.

We recall some particular cases of importing described in [12], and introduce
a new example.

Example 4.4 We denote by
LTL[(X1,71)]

the 9-temporalization of an interpretation system (X1, J7) suitably disjoint with
(1,9, and by
Mr[(21,71)]
the T-modalization by modal logic T of (X1, J1) suitably disjoint with (X, I™),
as defined in [12]. By adding a 9-constructivist dimension to (X1,731), suitably
disjoint with (EiQi, 3Y), denoted by
I[(%1,31)],

we mean the importing of (X1,7J;) into the interpretation system (EiQi, J) for
intuitionistic logic introduced in Example 4.3. \Y%
5 Preservation of soundness

In this section we show that soundness is preserved, under some conditions, by
importing. First we need to introduce logic systems.

A logic system is a triple (X, A,J) where (2, A) is a deductive system and
(X,7) is an interpretation system. By a total logic system we mean a logic
system whose underlying interpretation system is total. A logic system (X, A, J)
is sound whenever

if T l_(Z,A) %) then T ':(273) %2
for any set I' U {¢} of proper formulas over ¥, and is complete whenever
if T ':(273) %) then T l_(E,A) %2

for any set 'U{¢} of proper formulas over ¥.. Moreover, it is concretely complete
whenever T' U {(} is any set of concrete proper formulas over X.
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Example 5.1 We denote by £T the logic system ( Om> AT 3T for modal logic

T, by £ the logic system (Eglm,

the logic system (EiQi, Al 7Y for intuitionistic logic. v

A 3 for linear temporal logic and by £}

Importing a logic system into another is defined in terms of their semantic
and deductive components, and so it is only applied to suitably disjoint logic
systems, i.e., logic systems with suitably disjoint signatures, suitably disjoint
deductive systems and suitably disjoint interpretation systems.

Hence, importing a logic system (X1, A1,T1) into a logic system (3o, Ag, Ja),
denoted by

(2, A2,32)[(31,A1,T1)],

is the logic system (X2[31], Ao[Aq], T2[T1]).

Example 5.2 The 9-temporalization of a logic system £ suitably disjoint with
£ denoted by
LTL[L]

is the logic system resulting from importing £; into £*!. Moreoever, the -
modalization by modal logic T of logic system £; suitably disjoint with £7T,
denoted by

Mr[L4]

is the logic system resulting from importing £; into £T. By adding a 9-
constructivist dimension to L1, suitably disjoint with £', denoted by

I[£1]7

we mean the importing of £ into the logic system £' for intuitionistic logic.V

Soundness

We now establish sufficient conditions for a logic system to be sound, and then
investigate whether these conditions are preserved by importing.

Given a logic system (X, A,7J) and an interpretation I in J, an inference &
in X2 from (¢1,...,%m) to (p1,...,0n) is sound for I whenever

I,J, 8"k {¢r,... .0} implies I,J,s I p;

for all J < I, ' in I that abstracts to the source of ¢;, and j in {1,...,n}.
The inference 0 is said to be sound in (¥,A,J) whenever it is sound for all
interpretations in J.

In order to prove that total logic systems with sound rules and valid ax-
ioms are sound, we show, under general conditions, that inference soundness
is preserved by all the constructions (that is, instantiation, 2-tupling and com-
position) used in a derivation. We consider total logic systems since they are
well behaved with respect to substitution, as we will see in the next technical
results.
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Proposition 5.3 Given a total interpretation I over a signature %, J < I with
abstraction map £, an irreducible path w in ¥*, and s’ in I* that abstracts by
3 to the source of w, then (8*)~1(w)y].

Proof: The proof follows by induction on w: (1) w is 5. Then (87) ' (w)y
is €5 and so is defined; (2) w is p;. Then (B) Hw)y is pjl and so is defined;
(3) w is ewp. Observe that (8+)~!(wp)s ) by induction hypothesis, and that the
target of (8%)~!(wp)s abstracts to the target of wg which coincides with the
source of e. So 571(e)trg”f((ﬁ*)*l(wg)sl)\l/ since I is total. Hence (8+)~!(ewq)y =
B_l(e)trg/+((5+)—1(wo)s,)(B+)_1(w0)8/¢ is defined; (4) w is (wy, ..., wy,). Observe
that (8%) !(w;)s is defined for i = 1,...,n by induction hypothesis. Hence
(BH) Y w)y = ((B) N wi)g, ..., (B7) " (wy)y) is also defined. QED

The following result states that the denotation of a composition is the com-
position of the denotations, and establishes its counterpart on satisfaction.

Proposition 5.4 Given a total interpretation I over a signature %, J < I with
abstraction map f3, irreducible paths w; and we in X* with srct (wy) = trg* (w1),
and s’ in I* that abstracts by 3 to the source of w, then

(/BjL)il(w? ° wl)s’ - (/8+)71(wQ)trg”r((B*)*l(wﬂsl) o (5+)71(w1)8"

Moreover,
I,J,s IFpow iff I,Jtrg*((BY) 1 (w)y)IF .

Proof: The proof of the first assertion is omitted since it follows by a straight-
forward induction on wi. We now concentrate on the proof of the second
assertion.

(=) Observe that, by the first assertion, trg"™((8)7 (©)rgr+ ((5+)-1(w).,)) 18

trg" ((B5) " (@ugrt (84) -1 (w),) © (BY) T (w)y) = trg™ (%) H(pow)y) € D
since I, J,s" Ik o o w;

(<) Observe that, by the first assertion, trg’*((8+) ! (pow)y) = trg (7)1 (p
Jerg+((8) 1 (w)) © (BY)Hw)s) = trg™((B7) 71 (@ )ugrt ((34) 1 (w),)) € D since
I, J,trg = ((B7) " H(w)g) IF . QED

We now prove that soundness is preserved by the constructions employed
in derivations.

Proposition 5.5 The instantiation of an inference preserves soundness in total
logic systems.

Proof: Let (X, A, J) be a total logic system and ¢ a sound inference in X2 with
antecedent (11, ...,1,) and consequent (p1,...,¢,). Moreover, let w be an
expression in X1 compatible with the formulas in the antecedent and consequent
of 6. We now show that ¢ * w is a sound inference. Let j be in {1,...,n}, I be
an interpretation in J, J < I, and s’ in I* that abstracts to the source of w such
that I, .J,s" IF {¢p1 ow, ...,y ow}. So I, J trg" ((B4) L (w)g) IF {1, ..., Ym}
by Proposition 5.4. Hence I, J,trg’* ((37) "L (w)y) IF ; by the soundness of 4.
So by Proposition 5.4, I, J,s" IF ¢; o w. QED
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Proposition 5.6 The 2-tupling of inferences with a proper formula as conse-
quent and with the same antecedent, preserves soundness.

Proof: Let (3, A,J) be a logic system and fi,. .., 3, sound inferences in 4

with a proper formula ¢; as consequent for j = 1,...,n respectively, and with
the same antecedent (¢1,...,%y,). We now show that (f1,...,03,) is a sound
inference. Let j in {1,...,n}, I be an interpretation in J, J < I, and s in

It abstracting to the common source of the formulas in the antecedent of the
inferences, such that I,J,s" 1= {¢1,...,9%m}. Then I,J,s" Ik ¢; since §; is
sound. QED

Proposition 5.7 The vertical composition of compatible inferences preserves
soundness.

Proof: Let (X,A,7) be a logic system and 61 : (¥1,...,%m) = (Y1,--+,%)
and 02 : (V1,...,%) = (¢1,.-.,¢n) sound inferences in Y2, We now show that
d9 oy 1 is a sound inference. Let I be an interpretation in J, J < I and s’ in
It abstracting to the source of any formula in the antecedent of §; such that
I,J,s" IF{¢1,...,¢¥m}. Then I, J,s" I {v1,...,7} by the soundness of ¢;, and
so I, J,s" IF{¢1,...,pn} by the soundness of ds. QED

Proposition 5.8 Every derivation is sound in a total logic system where the
rules are sound.

Proof: Let £ be a total logic system and assume that ¢ is a derivation of

the form (B1, - -, Bmng,) Ov - - - Oy (B11, - - -, Biny) With antecedent (11,...,1Un).
Let ((bzy * @uy) Ov éf'ﬁ) be the basic derivation 3;,. Observe that PP g
zy

Jzy
a sound inference as well as any 2-cell identity (for vertical composition) over

a proper formula. So, according to Proposition 5.5 and Proposition 5.7, each
basic derivation 3., is sound. Hence each step of the derivation is sound by
Proposition 5.6 and so § is sound by Proposition 5.7. QED

Theorem 5.9 (Soundness)
A total logic system is sound if and only if it has sound rules and valid axioms.

Proof: Let £ be a total logic system. () Assume that ¢ is a derivation
for I' - ¢. Denote the antecedent of 0 by (¢1,...,¢n) where 1); is either in
I" or is an axiom. Observe that ¢ is sound by Proposition 5.8. Let I be an
interpretation in J, J < I and s’ in I'" abstracted to the source of ¢ such that
I,J,s"IFT. So I,J,s" IF {¢n,...,...¢y} taking into account that 1; is either
in T or is an axiom instance, and that axioms are valid. Hence I, J,s" I ¢ by
the soundness of 6. (—) Let r be a rule in £ from (¢1,...,%y) to ¢, I an
interpretation in J, J < I and s’ in I+ abstracted to the source of ¢. Consider

two cases: (i) r is a non-axiomatic rule. Assume that I,J,s" IF {¢1,... ¢}
Then I, J, s IF ¢ since {¢1,...,%mn} F ¢ and since £ is sound; (ii) 7 is an axiom.
Then + ¢ and so I, .J, s’ IF ¢ since £ is sound. QED
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Soundness preservation

The idea to show that soundness is preserved by importing, is to prove that the
sufficient conditions for a logic to be sound (established in Theorem 5.9) are
preserved by importing. It is immediate to prove that being total is preserved,
so we concentrate now on preservation, by importing, of soundness of rules and
validity of axioms.

In the sequel, given a suitably disjoint pair of total interpretations I; and
I, over ¥; and X, respectively, k in {1,2}, and J < (29,12)[(X1, [1)] with
abstraction map 3, we denote by (%), the restriction of 5% to X} . Moreover
we denote by J|, the maximal sub-interpretation of J with J;, < Iy, and denote
its abstraction map by 3|, .

Proposition 5.10 Let w be an expression in X} and s’ in I} abstracted by
oy, to the source of w. Then (8%) ! (w)y = ((8),)") ' (w)y. Moreover,

LI, J,s' k¢ if and only if I, J,, s I ¢.

Proof: The proof of the first assertions follows by induction on w:

) w is €5. Then (6)~ (w)sl =€y = ((/8¢k)+)_1(w)5/-
) w is p;. The proof of this case is similar to the proof of (1) so we omit it;

(1

(2

(3) w is ewp. Therefore (B+)~(w)y = B~ (e €)trg+ ((8+)~ (wo) (ﬁ+) Ywg)y =
(BL) ™MD (31,01 o) (B ) ) (o) whichis ((8y,)7 ) Hw)y;

(4) wis (wy, ..., wy). Hence (B7) Hw)y =

which by induction hypothesis is (((8,)%)~
(B )N~ Hw)s

We now prove the second assertion. In fact I»[[1],J,s" IF ¢ if and only if
trg* ((67) "' (¢)s) € D if and only if trg™* (((8},)*)  (¢)s) € D (by the first
assertion) if and only if Iy, J|,,s" IF . QED

<()()s’7'()( m)s')
Hw)ss s (B ) ) wm)w) =

Proposition 5.11 Soundness of inferences is preserved by importing when the
given logic systems are total and suitably disjoint.

Proof: Let (X1,A1,71) and (X9, A9,J2) be a suitably disjoint pair of total
logic systems, k in {1,2}, 0 be a sound inference in EkAk from (Y1,...,%n) to
(p1,...,¢n), I1 and Iy interpretations in J; and Jg respectively, J < Io[I;] and
s in Io[I;]* abstracted to the common source of the formulas in the antecedent
of §. Observe that ¢1,...,%¥m,¢1,. .., ¢, are formulas of ¥}, and s’ is in I} and
abstracts to the common source of the formulas in the antecedent of §. Suppose
that Ir[I1],J,s" IF {¢1,...,¢n,} and let j be in {1,...,n}. Then I, J|,,s" IF
{t1,...,¥m} by Proposition 5.10 and so Ij,J|, ,s" IF ¢; since § is a sound
inference in ZkAk. Hence I3[11], J, s’ I ¢; by Proposition 5.10. QED

Proposition 5.12 Validity is preserved by importing when the given logic sys-
tems are total and suitably disjoint.
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Proof: Let (X1,A1,71) and (X2, A2,J2) be a suitably disjoint pair of total
logic systems, & in {1,2}, ¢ a valid formula in ¥}, I and I interpretations in
J1 and J9 respectively, J < I3[I1] and ¢’ in I3[I;]" abstracted to the source of .
Observe that s’ is in I, and is also abstracted by a; to the source of . Then
I, Jy,, 8 |- ¢ since ¢ is valid in (Sg, Ag, Jg). Hence trgi (((8,)) " Hp)s) €
Dy, and so the thesis follows since ((8,)%) @)y = (87)"'()s by Proposi-
tion 5.10 and since Dy, C Dy, py)- QED

Proposition 5.13 Rules IMP and REF are sound in the logic system resulting
from importing when the given logic systems are total and suitably disjoint.

Proof: Let (X1,A1,71) and (X2, A9, J2) be a suitably disjoint pair of total logic
systems, I1 and I» interpretations in J; and Jg respectively, J < I»[I1] and v}
a truth value of I;. (1) IMP is sound. Suppose that I3[I1], J,v] IF idy,. Then
trg’*((ﬁ*)_l(idm)vi) € Dy,py), that is, vj € Dy. Hence trg’*((ﬁ*)_l(ﬁ)vxl) €
Dy, 1,1 by definition of Iz[I1], and so I3[I1], J, v} IF ; (2) REF is sound. Suppose
that Io[I1], J,v] |- 9. Then trg’*((ﬁ*)_l(ﬁ)vi) € Dpypy) and so vy € Dy by
definition of I»[I;]. Hence trg’*((ﬁ*)_l(idm)v/l) € Dy, and so Ip[I1], J, vy I
idyr, . QED

So we can now establish a sufficient condition for the preservation of sound-
ness by importing.

Theorem 5.14 (Soundness preservation)
The logic system resulting from an importing is sound whenever the given logic
systems are sound, total, and suitably disjoint.

Proof: Let £; and L2 be a suitably disjoint pair of sound and total logic
systems. Then their rules and axioms are sound and valid, by Theorem 5.9.
Then by Proposition 5.11 and Proposition 5.13 all the rules of £9[£;] are sound,
and by Proposition 5.12 all the axioms of L£[£;] are valid. Moreover as can be
seen immediately by definition of importing, £2[L;] is total. Hence L2[L;] is
sound by Proposition 5.9. QED

Corollary 5.15 The 9-modalization by modal logic T of a sound and total logic
system suitably disjoint with £T, is sound. Similarly for “-temporalization and
for adding a 9-constructivist dimension to a logic system.

6 Preservation of concrete completeness

In order to show that concrete completeness is preserved by importing we as-
sume that the given logic systems have certain canonical interpretations. These
canonical interpretations are such that, when combined, produce interpretations
that guarantee that the logic system resulting from the importing is concretely
complete.

In order to simplify the presentation, we assume fixed a suitably disjoint
pair (X1,A1,731) and (22, Ag, J2) of concretely complete logic systems, denoted
by £1 and Ly respectively, and assume fixed k in {1, 2}.
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The canonical interpretation for Xy induced by Lo[L1] and by a set T' of
concrete formulas in the language of L2[L1], denoted by

]Il“k )
is the interpretation (G’, a, D, id;) defined as follows:
e V' is {w is a concrete expression over Yo[¥1] : trg™(w) € Vi };

® ey wy, €E(wr...wp,e(wi, ..., wy)) if and only if wy, ..., wy,, is in V',
e is in Ej and the source of e coincides with the target of (w1, ..., wp);

e D={pisaformulain V': T'Fz,i0 ¢}
e a'(w) is the target of w and a®(ey, w,,) is e.

We now show that the rules of £ are sound with respect to these canon-
ical interpretations. That would mean that the given (concretely complete)
logic systems can be enriched with these interpretations without affecting their
entailments. We prove first some auxiliary results.

Proposition 6.1 The canonical interpretation I, is total and deterministic.

Proof: It is enough to observe that for any elements wi,...,w, of V' and
e in Ej with the source of e coinciding with the target of (wi,...,wy), the
set {¢/ € E' : a®(¢/) = e and the source of €’ is wy ... wy,} is, by definition of
canonical interpretation, a singleton. QED

Observe that the unique maximal deterministic sub-interpretation of the
canonical interpretation I, coincides with it, since I, is deterministic. So its
abstraction map is a.

Proposition 6.2 Let wy,...,w,, be expressions in V' and w an expression in
¥ with source coinciding with the target of (w1, ..., wy). Denote the target
of (@)™ (wW)uw,. aw,, in Ir, by w}...w!,, then

(wh,...,wh) =wo (wy,..., wy).

Proof: The proof is carried out by induction on w:

(1) wis €y,..v,. Hence (a®) "1 (wW)w, .0, 1S €w;..w,, and so its target is wy . . . w,.
The thesis follows since (wy, ..., Wy) 18 wo (Wi, ..., Wy);

(2) w is pj. The proof of this case is similar to the proof of (1) so we omit it;
(3) wis (wo1, . .., won). Therefore (a*) ™1 (w)w, . 1, i (@) "H(W01)wy..awms - - - »
(o) H(won)wy...wy, )+ Since, for j = 1,...,m, the target of (a*)_l(woj)wl,,_wm is
a sequence with only one element, by induction hypothesis it is wojo(wn, . .., wp).
Hence the target of (at) ™ (W) w; .10, 18 Wo10 (W1, ..., W) ... Wono{wy, ..., Wp).
The thesis follows since (w1 0 (w1, ..., W), ..., Won 0 (W1,...,wy)) is equal to
<w017 cee ,w0n> o <w17 cee 7wm>a

(4) w is ewp. Denote the target of (a*)™1(wo)w,. w, in Ir, by wpy ... wp,.

25



Hence the target of (o)™ (w)w,. w,, is the target of (ae)*l(e)wélmwén which is

e(wy, - - -, Wp,)- By induction hypothesis (wp, ..., wg,) is wo o (w1, ..., W),
and so the target of (@)™ (wW)w,..10, is €0 (wo o (w1, ..., wy)) which is w o
(Wi, ..., Wy). QED

As an illustration, let ¢ be a constructor of Xy with source mome and target
72, and o1 and @9 concrete formulas in 3o[X;]" with target mo. Then

(@) (PP, Dprees

7192, Cp1p,) by definition of canonical interpretation, and its target is the

is (py
sequence @1 c{p1, @2). Moreover (o1, c(p1,p2)) = (PT*"*, €) © (p1, p2).-
The following result establishes the expected interconnection between deriva-

tion and satisfaction in a canonical interpretation.

Proposition 6.3 Given expressions wi, ..., w,, in V/ and an expression w in
¥ with source coinciding with the target of (wy,..., wn),
r |_£2[£1] @ o <wla e ,’U)m>

if and only if
Hrk,ﬂrk,’wl W I @.

Proof:

(=) Assume that T' Fz,1z,) @ o (w1, ..., wp). Then po (wi,...,wy) is in D,
Observe that the target of (at) ™1 (), . w,, i a sequence with a unique element
equal to ¢ o (wy, ..., wy) by Proposition 6.2. So Ir,,Ir, ,w; ... wn IF ¢;

(<) Assume that I, , I, , wy ... wp |- ¢. So the target of (at) ™1 (0)w, . w,, is in
D. Observe that the target of (@)™ () w, .., 1S & sequence with a unique ele-
ment equal to po (w1, ..., wm) by Proposition 6.2. So ' bz, (2, wo(wi, ..., wm)
by definition of D. QED

We say that an interpretation is a structure for a logic system if all the rules
and axioms in the logic system are respectively sound for and satisfied by that
interpretation. Recall the notion of a rule be sound for an interpretation in the
beginning of Section 5.

Proposition 6.4 The interpretation I, is a structure for Lj.

Proof: (1) Let r be a non-axiomatic rule in £y with (¢1,...,%,,) as premise
~ as conclusion, and wi,...,w, in V' such that the source of ~ coincides
with the target of (w1,..., wy). Assume that Ir,,wi...wp IF {1,...,¢¥n}.
Then, by Proposition 6.3, T' F-,(z,) ¥j 0 (w1, ..., wpy) for j =1,...,m. Hence
Throeyve (w1, ..., wpy) using rule r. Therefore, again by Proposition 6.3, we
conclude I, , I, , w1 ... wp, IF 7.

(2) Let ¢ be an axiom of L and wq, ..., w, in V' such that the source of ¢
coincides with the target of (w1, ..., wy,). Note that I' 7,21 @ o (wi, ..., wn)
and so ¢ o (wy,...,wy) is in D, and that ¢ o (wy,...,w,) is the target of
(at)"Y(®)wy..w,, by Proposition 6.2. Hence Ir,,Ir,, w1 ... wp IF ¢ by Proposi-
tion 6.1. QED
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We now study the properties of the interpretation Ip,[Ir, |, which is in the
importing of £; into L2 whenever they contain Ir, and Ir, respectively. The
following result establishes that Ir,[Ir,] is deterministic for all constructors
except the importing constructor, and is total.

Proposition 6.5 Given wy,...,w, in VH’F2 r,| and a constructor ¢ in Ey,x,] \

{9} with source coinciding with the target of (wi,..., wy,), the set {e’ €

Eﬁr Ik the source of €’ is wy ... w, and €’ abstracts to e} is a singleton. Mo-
2 1

reover I, [Ir,] is total.

We omit the proof of this proposition since it follows immediately by definition
of total interpretation, of importing and by Proposition 6.1.

We denote by
J]IFQ [Hrl}
the maximal deterministic sub-interpretation of Ip,[Ip,] with abstraction map
/B]IFQ [Ir, ] such that (prz [le])_l(ﬁ)ﬂ" = T4, for every concrete proper formula ¢
in 7. This sub-interpretation is well defined taking into account that I" -/, 1]

@ ff T' Fr,(z,) T¢ for any concrete proper formula ¢ in Y7, due to IMP and
REF.

!
HFZ [Hrl]
Yo[X1]T with source coinciding with the target of (wi,..., wy). Denote the

target of (ﬁfF2 [HFI])_l(w)wl,,_wm by w} ... w), then

Proposition 6.6 Let wq,...,w,, be in and w an irreducible path in

(Wi, ..., wh) =wo (w,..., W)

We omit the proof of the previous proposition since it is identical to the proof
of Proposition 6.2.

Proposition 6.7 Given expressions wy, ..., Wy, in VH’F I ] and a formula ¢ in
2 1
Y9[¥1]* with source coinciding with the target of (wq,..., wy,),
I l_LQ[El] ¥ o <’UJ1, R wm>

if and only if
I, [Ir, ], JHFz[HFl]’wl cwp IF e
Proof:
(=) Assume that T' Fr,z2,) ¢ © (w1, ..., wp,). Observe that ¢ o (w1, ..., wy)
is a concrete formula in 32[¥;]" whose target is either in Vj or in Vo. Then
. . . _1 .
¢o(wi,...,wn) is in Dy, ). Since the target of (BH*FQ [Hrll) (@)wy..wn, 1 @
sequence with a unique element equal, by Proposition 6.6, to ¢ o (w, ..., wy),
we have that Ir, [Ir,], Jﬂr2 [Ip,]> W1 - - - W Ik ;
(<) Assume that Ir,[Ir,], Jip, I, ]» W1 - - - Wm |- . Then the target of the path
(B )" H@)wy.w, 18I0 Dy prp. 1. Since it is a sequence with a unique element
HFQ [HFI] 1 m Tyl
equal, by Proposition 6.6, to ¢ o (w1,...,wy), we have that T’ Fraicy) ®©°

(w1, ..., wpy) since Dy, iy, I8 the union of the sets of distinguished truth values
of Ir, and of Ir,. QED
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Concrete completeness preservation

A logic system Ly, for k = 1,2, is full for importing with respect to logic system
L2[L1] whenever it contains the canonical interpretations induced by La[L4]
and by any set I' of concrete formulas in the language of La[L1].

It is immediate to show that concrete completeness is preserved by the
importing of full logic systems.

Theorem 6.8 (Concrete completeness preservation)

The logic system resulting from importing logic system £; into logic system Lo
is concretely complete whenever £ and Lo are concretely complete and full for
importing with respect to La[L4].

Proof: Let £1 = (¥1,A1,71) and Lo = (32,A9,J2) be a suitably disjoint
pair of concretely complete logic systems, full for importing with respect to
Lo[L4], and let I' U {¢} be a set of concrete formulas over ¥3[¥;]. Suppose
that ' I7£,(z,] . Then Ir, [HF1]>JHFQ[Hr1]vid! I¥ o by Proposition 6.7. On the
other hand I' z,z,; 7 for every v in I' and so, by the same proposition,
Ir, [Ir,], Ji, Ir, > idy I v for every v in I'. Since Ir, is an interpretation for
Ly, by Proposition 6.4 and Ly is full for importing with respect to L£3[L£1], for
k = 1,2, then the interpretation Ir,[Ir,] is in logic system resulting from the
importing, and so I' 7z, £,] ¢. QED

Observe that the enrichment of a complete logic system with the canonical
interpretations that make it full for importing, does not change the entailment
of the logic system. Hence, we enrich first the given logic systems with those
interpretations, and only after that we do the importing.

Corollary 6.9 Let £; be a concretely complete logic system (X1, A1, J1) suit-
ably disjoint with the logic system L for linear temporal logic introduced
in Example 4.2. Then (31,A1,7; U {Ir,: ' € L(Z"[S4])}) and (S, A,
Sy {Ip, : T € L(Z"[24])}) are equivalents in terms of entailment with £;
and £ respectively. Moreover the importing of the first into the latter is

concretely complete.

Analogous corollaries can be established for importing involving the modal
logic system and the intuitionistic logic system.

7 Outlook

We provided importing with a calculus canonically built from the calculi of the
two given logics and proved, under mild conditions, that it is sound and con-
cretely complete with respect to the semantics of importing proposed in [12].
To this end, we adopted the graph-theoretic account of syntax and semantics of
logics first proposed in [13]. However, we presented herein for the first time how
to define local entailment within the setting of the graph-theoretic semantics
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and developed a novel graph-theoretic account of Hilbert-style calculi. For illus-
trating purposes we analyzed temporalization [4], modalization [3] and adding
a intuitionistic dimension to any given logic.

The graph-theoretic approach can be applied to a wide class of logics, even
substructural ones and logics with partial semantics. However, our soundness
preservation result assumes that our models are total. Note that all algebraic
logics have total graph-theoretic models and, so, the totality assumption is not
too restrictive. Furthermore, the assumption (presence of canonical models)
needed for the completeness preservation result is quite mild.

Along this line of work on importing, one should look at extending the
soundness preservation result to more exotic logics with partial models. In
another direction, one should also check if importing is a conservative extension
of both given logics. In fact, in [12] the result was obtained only for the imported
logic and only for global entailment.

Appendix

For dealing with inference rules and derivations we need to work with morphisms
between formulas. In fact, these morphisms live in a generalized 2-category (for
more information on 2-categories see [8]), that we introduce now.

A generalized 2-category is a tuple

C = (Cp, C1,Caq,sre, trg,id, o, 5rC, trg, ID, 5, 0y )
such that:

(i) (Cp,Ch,src,trg,id, o) is a category (the base category).

(C1,Cy,5r¢, trg, ID, 3,) is a category (the vertical meta category).

)
(ii) Cs is a class (of the generalized 2-cells).
(iii)

)

(iv) oy (the horizontal composition) is a partial function from Cy x Co to Cy
such that whenever the horizontal compositions at hand are defined the
following equalities hold:

— Src(d2 Oh 61) = Src(d2) o src(d1) and trg(dz on 01) = trg(d2) o trg(dr)
(compatibility of horizontal and base compositions);

— 00 IDig, = 6 and IDig, ©h 0 = 0 (unit of horizontal composition);

— (030h02)0h01 = 030K (d20K01) (associativity of horizontal composition);

— (04 0p 03) Oy (02 0K 01) = (04 Oy d2) O (03 Oy 01) (interchange law).
In order to simplify the presentation, when src(d) = f and trg(d) = g we write
d:f=gordeCy(f,g). A generalized 2-category is horizontally full whenever
trg(src(d1)) = src(5rc(d2)) and trg(trg(d1)) = src(trg(d2)) implies that do op 7 is
defined.

Similarly to the canonical generation of the language category Gt from
a m-graph G, described in [12], a generalized 2-category can be canonically
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generated from a generalized 2-graph, as we describe now. First we define what
is a generalized 2-graph and define the set of 2-paths of such a generalized
2-graph.

A generalized 2-graph H over a graph G is a graph with G (-, ) as the set

of vertexes. The set
2Pt(H)

of 2-paths of a 2-graph H and respective source srcopy(pr) and target trgopy H)
are inductively defined as follows:

e ¢, € 2Pt(H) where ¢, is the empty 2-path on w with

{SrC2Pt(H) (ew) =w
trgope(ar) (Ew) = W;

e ¢ € 2Pt(H) with
SrCopt(H) (e) =sr
trgopy(a (€) = trg(e)

whenever e is an edge of H;
e jre, 0 € 2Pt(H) with
srcopy(r) (02 @y 01) = Srcopy(ar)(61)
trgopy ) (2 v 61) = trgopy(s)(d2)
whenever 01 and d; are in 2Pt(H) and trgopy(s)(01) = srcape(r) (62);

e Jyep 1 € 2Pt(H) with

srCopi(1) (02 ®h 01) = SrCope(sr)(02) © SrCope(r)(01)
trgopy ) (02 ®h 01) = trgopy(rr) (02) © trgopy(s)(d1)

whenever 01,0y € 2Pt(H), trgt (srcopygry(01)) = srct (srcopy(p)(02)) and
trg " (trgape(r) (01)) = src™ (trgaperr) (92))-

Observe that 2Pt(H) induces the following 2-graph
Hte

over (G, defined as U H ,12 where:
keN

. ng is the 2-graph over G with all the edges of H taken as edges, plus
additional edges of the form

P<'w1,..‘,wn)

; S(wr, .., wp) = wj

(to be used later on as 2-projections) with n > 1.
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e H ,ii_l is the 2-graph over G obtained from H ,12 by adding edges of the
form ~ ~
(61, oy Om) tw = (Wh, ... wh)

(to be used later on for tupling) for any 2-paths
05w = w;-

ofHII2 forj=1,...,m with m > 1.

So, the envisaged horizontally full generalized 2-category with 2-products of
objects with the same source, induced by a given 2-graph H, is the tuple:

" = (|G+|7 G+('a ')7 2Pt(HT2)|%a src+,trg+, Ida Oama ﬁa ID76V76h)

where 2Pt(H'2)|y is the quotient set of 2Pt(H'2) by ~ defined as the least

equivalence relation containing the following pairs:

ZP§w1,...,wn) : Pﬁlwl,...,wn>5

° ~ E(wi,ewn)

o cy0, 0~ 0 and § e, gy ~

e ciq, e, 0~ d and &' e gy, & s

o 010, (020, 03) = (61 @, 02) e I3;

o 01 e (32 o d3) ~ (01 e d2) e 03;

o (04 0,03) 0, (020n01)~ (040, 02) e (I3 @, 01);

<trg2P J2ap) ((51),...,trg2p J2ap) (6’"«)) - v
Pj H ) B ) o, <(51,...,5n>%5j;

o (01,...,0n) ~ (8),...,0,) if G = &) for k =1,...,n and srcypy iy (61) =
= SrCQPt(HT2)(5n)3

® 0y e, 01 = 0y e, &) whenever o ~ &), for k = 1,2 and trgypy(pt2)(01) =
SrCopy(prt2)(02);

o 0 oy 01 & 05 e, 07 whenever 0, =~ 0 for k = 1,2, trg+(src2pt(H72)(51)) =

ST (SrCopy(gr12)(02)) and trg™ (trgypy(pria) (01)) = src™ (trggpy(priz) (02));

L 5N<(51,

n; w1, W >.v5 ~d,fork=1,...,nand srC2Pt(HT2)(6) =
SICopt(Ht2) ( 1) =

= Srcth(Hfz)(5n> and trg2Pt(HT2)(5) = (w1,...,wn);

and

o src([d]) = Srcth(HT2)(5) and trg([d]) = trgth(HTz)(5)§
e IDy = [ew;

o [d2] By [61] = [02 ey 1] if trgopy(prta)(01) = SrCopy(pria)(d2);
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o [02] O [01] = [02 en 1] if trgT(srcopy(prizy(01)) = SrcT(srcopy(gyia)(d2)),
trg " (trgopy(pri2) (01)) = Src (trgopy(prta) (92))-

It is straightforward to verify that the tuple G is indeed a horizontally full
generalized 2-category. Moreover, products in a generalized 2-category resulting
from this construction are such that each finite tupling of morphisms in the
base category, with the same source, is the vertex of a 2-product, as established
without loss of generality for pairings as follows. Let w; and wy be morphisms
in G such that srct(w;) = src™ (wg). Then the triple

(w1, wo), [P12)], [P 2)))

is a product in the vertical meta category of G. Indeed, assume that [6;] :

w — wi and [d2] : w — wy are 2-cells. Consider the 2-cell [(d1,d2)]. Then

PR )5, [(01,62] = [P o, (61, 52)]
64

Furthermore, assume that [§] : w — (w1, ws) is a 2-cell such that
PE 15, (8] = [64]

for k = 1,2. Then P{"""*) o, § ~ &, since [P{"*"?)5, [5] = [P{"""** o, 5. Thus,
O~ (51, 52>
Since there is no risk of ambiguity, we avoid to use the equivalence class nota-
tion when referring to 2-cells in G¥. Moreover, we avoid using the qualification
generalized when referring to generalized 2-cells or generalized 2-categories.
Observe that the set A in a deductive system (3, A) induces in an obvious
way a 2-graph over Y. From that 2-graph we generate, as described above, a

horizontally full generalized 2-category
EA

with 2-products for objects (morphisms of %) with the same source, where
rules, instantiated rules, proofs and their compositions live as 2-cells. Fur-
thermore, since every rule in A is source-homogeneous, it is straightforward
to verify that every 2-cell § : 1); = 1 of 2 is source-homogeneous, that is,

srct(11) = srct (o).
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