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Abstract

Importing subsumes several asymmetric ways of combining logics, in-
cluding modalization and temporalization. A calculus is provided for im-
porting, inheriting the axioms and rules from the given logics and including
additional rules for lifting derivations from the imported logic. The cal-
culus is shown to be sound and concretely complete with respect to the
semantics of importing as proposed in [12].

Keywords: combined logics, importing logics, modalization, complete-
ness preservation.

1 Introduction

Having in mind different fields of application, several asymmetric ways of com-
bining logics have been reported in the literature, including temporalization [4],
modalization [3], globalization [10], probabilization [2] and quantization [9]. We
proposed in [12] importing as a general way of asymmetric combination of log-
ics and showed that it subsumes such asymmetric combination mechanisms.
Furthermore, in [11] we were able to recover fibring [6] as bidirectional import-
ing. However, so far, importing has been developed only at the semantic level.
Herein, we provide a calculus for importing, inheriting the axioms and rules
from the given logics and including additional rules for lifting derivations from
the imported logic, and prove its soundness and concrete completeness vis à vis
the semantics proposed in [12].

As in our previous papers on importing we adopt the graph-theoretic ac-
count of language and semantics. This approach has the advantage of being
applicable to a wider class of logics [13]. Herein, we present a novel graph-
theoretic account of deduction, requiring a mild generalization of the notion of
2-category.

In Section 2, following [12], we provide for the convenience of the reader a
short summary of the syntactic aspects of importing. In Section 3 we show how
to set up a Hilbert calculus for importing, using the rules and axioms from the
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two given logics, and illustrate the construction for the cases of temporalization,
modalization and importing into intuitionistic logic. Some technical details are
left to the Appendix, concerning the generation of the generalized 2-category
of derivations from the calculus as a 2-graph. In Section 4, after a short sum-
mary of the graph-theoretic models of importing defined in [12], we propose
a local version of semantic entailment. Preservation of soundness, under the
mild assumption of totality of the semantics of the two given logics, is proved
in Section 5. Preservation of concrete completeness, under a mild assumption
of fullness of the semantics of the two original logics, is established in Section 6.
Finally, in Section 7 we assess what was achieved and speculate on what is still
ahead.

2 Language

The language resulting from the importing contains the languages of both logics
together with the formulas resulting from the instantiation of formulas of the
importing logic by formulas of the logic being imported (see [12]). The graph-
theoretic approach developed in [13] is followed and so signatures are presented
using multi-graphs: the vertexes are the language sorts and the multi-edges
are the language constructors. As an illustration, see Figure 1 for a graphical
representation of a signature for the linear-time temporal logic (LTL).

!

πltlRR

qltl0 , qltl1 , . . .

��
⊃ltl S U

hh
¬ltl X Y

Figure 1: Multi-graph of the LTL signature.

By a multi-graph, in short, an m-graph, we mean a tuple

G = (V,E, src, trg)

where V is a set (of vertexes or nodes), E is a set (of m-edges), src : E → V +

and trg : E → V , with V + denoting the set of all finite non-empty sequences of
V . We may write e : s→ v for stating that m-edge e has source s and target v.
By a propositional based signature or, simply, a signature, Σ, we mean a tuple

(G, !,Π)

where G = (V,E, src, trg) is an m-graph, Π is a non-empty set (of propositions
sorts) contained in V , ! (the concrete sort) is in V \Π, no m-edge in E has ! as
target, and ! only appears in the source of unary edges. We now present some
examples of signatures for modal logic [1, 7], linear-time temporal logic [4, 15]
and intuitionistic logic [14], useful throughout the paper.
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Example 2.1 Signature for linear-time temporal logic.
Let Qltl be a set {qltl0 , qltl1 , . . . } of propositional symbols. The signature for
linear-time temporal logic over Qltl, denoted by Σltl

Qltl , is an m-graph with the
propositions sort πltl, the concrete sort !, and the m-edges: qltlj : ! → πltl for
each natural number j; ¬ltl,X,Y : πltl → πltl; and ⊃ltl,S,U : πltlπltl → πltl. For
a graphical representation see Figure 1. ∇

Example 2.2 Signature for modal logic.
Let Qm be a set {qm0 , qm1 , . . . } of propositional symbols. The modal signature
over Qm, denoted by Σm

Qm , is an m-graph with the propositions sort πm, the
concrete sort !, and the m-edges: qmj : ! → πm for each natural number j;
¬m,♦ : πm → πm; and ⊃m : πmπm → πm. ∇

Example 2.3 Signature for intuitionistic logic.
Let Qi be a countable set {qi0 , qi1 , . . . } of propositional symbols. The signature
over Qi for intuitionistic logic, denoted by Σi

Qi , is an m-graph with the propo-
sitions sort πi, the concrete sort ! and the m-edges: qij : !→ πi for each natural
number j; ¬i : πi → πi; and ∧i,∨i,⊃i : πiπi → πi. ∇

As expected, formulas appear as m-paths over the signature m-graph ending
at some π ∈ Π. Actually, it is more convenient to work in the corresponding
graph enriched with tupling and projections. More concretely, let G† be the
graph induced by G having as nodes the finite sequences of nodes of G and
as edges the m-edges of G together with edges pv1...vn

j , from v1 . . . vn to vj ,
for projections, and edges 〈w1, . . . , wn〉, from s to v1 . . . vn, for tuples, where
w1, . . . , wn are paths with the same source s and target v1, . . . , vn respectively
(for more details see [12]). Since many paths over G† may collapse onto the same
formula, for instance ¬ pππ1 〈q1, q2〉 and ¬ q1, it is convenient to work only with
“irreducible” paths. The set of irreducible paths of G† is inductively defined as
follows:

• εs is an irreducible path;

• pv1...vn
j is an irreducible path;

• 〈w1, . . . , wn〉 is an irreducible path whenever w1, . . . , wn are irreducible
paths and at least one wj is not pv1...vn

j ;

• ew is an irreducible path whenever e is an m-edge of G and w is an
irreducible path.

The set of nodes of G† together with its irreducible paths constitute a category,
henceforth denoted by G+, where composition of two irreducible paths is the
irreducible path resulting from reducing the path obtained by concatenating
them and identity at a given node is the empty path therein (for more details
see [12]). In the sequel, given a signature Σ = (G, !,Π), we may denote by Σ+

the category G+, by Σ† the graph G†, and given a morphism w of Σ+ from s1

to s2 we may denote its source s1 by src+(w) and its target s2 by trg+(w).
A generalized formula over a signature (G, !,Π) is an irreducible path with

target π1 . . . πn, for some π1, . . . , πn in Π and natural number n, over the graph
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πltlπltl πltl

! πltl

! πltl πltl πltl

//
qltl2

//
qltl2

//
Y

//
X

//〈·, ·〉 //⊃ltl

Figure 2: A temporal formula: qltl2 ⊃ltl (X(Yqltl2)).

G†. An expression over Σ is an irreducible path over G† and a proper formula
is a generalized formula ending at π ∈ Π. We denote the set of generalized
formulas over Σ by L•(Σ) and the set of proper formulas of Σ, i.e. the language
of Σ, by L(Σ). We may refer to the elements of L•(Σ) simply as formulas. An
expression over Σ is said to be concrete whenever its source is ! and is said to
be schematic if a sort different from ! occurs in its source. For instance, in the
context of the signature Σltl

Qltl for linear temporal logic described in Example 2.1,

the formula ⊃ltl〈qltl2 ,XYqltl2〉 from ! to πltl, see Figure 2, is a concrete formula,
represented simply by

qltl2 ⊃ltl (X(Yqltl2)),

(in order to simplify the presentation, when writing irreducible paths we may
write the language constructors in infix notation and so may not explicitly write
the associated tuples), and the formula

⊃ltl〈pπltlπltl
1 ,XYpπltlπltl

2 〉

from πltlπltl to πltl is schematic. Traditionally this formula is written with
schema variables as follows:

ξ1 ⊃ltl (X(Yξ2)).

From now on, we may use interchangeably the simpler traditional representation
and the more rigorous one.

Given expressions w and w0 in Σ+, w0 is compatible with w whenever
src+(w) = trg+(w0). The instantiation of w by w0, where w0 is compatible
with w, is the morphism w ◦ w0.

Importing a signature

Importing is an asymmetric combination technique in the sense that its lan-
guage contains the formulas resulting from the instantiation of formulas of the
importing logic by formulas of the logic being imported, but not formulas ob-
tained in the other way around. One of the key characteristics of importing
is that it makes explicit the bridge from the imported logic into the importing
one. So, the signature resulting from the importing contains the constructors
and sorts of both signatures and the added constructors �vu that are the only
constructors that involve sorts of both components. As an illustration see in
Figure 3 the signature resulting from importing the signature for linear tempo-
ral logic introduced in Example 2.1 into the signature for modal logic introduced
in Example 2.2.
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qm0 , qm1 , . . .

��
⊃m
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¬m ♦

!

πltlRR

qltl0 , qltl1 , . . .

��
⊃ltl S U

hh
¬ltl X Y

kk �πmπltl

Figure 3: Importing the linear temporal signature into the modal signature.

The importing constructors act in formulas as “bridges” that transform
formulas of the imported logic into formulas of the importing one (but not in
the other way around). For example the formula

(♦(�πmπltl
(ξ1 U ξ2)))⊃m (♦(�πmπltl

(Xξ2)))

where ξ1 and ξ2 are pπltlπltl
1 and pπltlπltl

2 respectively, is in the language induced
by the signature, depicted in Figure 3, resulting from importing Σltl

Qltl into Σm
Qm .

When there is no ambiguity we may represent the imported formulas inside the
host formula between quotes and omit the importing connective. For example,
we may represent the formula above by

(♦'ξ1 U ξ2')⊃m (♦'Xξ2').

Importing is defined for a suitably disjoint pair of signatures, that is, signa-
tures (G1, !,Π1) and (G2, !,Π2) where V1 \ {!} and V2 \ {!} are disjoint, Π1 and
Π2 are singletons, �vu is not in E1 ∪E2 for u and v in Π1 ∪Π2, and E1 and E2

are disjoint.
Importing a signature Σ1 into a signature Σ2, denoted by

Σ2[Σ1],

is, denoting the element of Π1 by π1 and the element of Π2 by π2, the signature

((V,E, src, trg), !, {π1, π2})

where

• V = V1 ∪ V2;

• E is E1 ∪ E2 ∪ {�π2π1};

• src and trg are such that src(�π2π1) = π1, trg(�π2π1) = π2, and src(e) =
srck(e) and trg(e) = trgk(e) if e is in Ek for k = 1, 2.

We now present some particular instances of importing. Each example is in
fact a collection of instances of importing all over the same importing signature.
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Example 2.4 By adding a �-constructivist dimension to a signature Σ1 suit-
ably disjoint with signature Σi

Qi for intuitionistic logic introduced in Exam-

ple 2.3, denoted by I[Σ1], we mean the importing of Σ1 into signature Σi
Qi .

∇

Example 2.5 The �-modalization of a signature Σ1 suitably disjoint with sig-
nature Σm

Qm for modal logic introduced in Example 2.2, denoted by M[Σ1], is
the importing of Σ1 into signature Σm

Qm . See Figure 3 for a partial graphical

representation of the signature M[Σltl
Qltl ]. ∇

Example 2.6 The �-temporalization of a signature Σ1 suitably disjoint with
signature Σltl

Qltl for LTL, introduced in Example 2.1, denoted by LTL[Σ1], is the

importing of Σ1 into signature Σltl
Qltl . ∇

3 Deduction

In this section we investigate what is importing in terms of deduction. For that,
we need that the given deductive systems be described in a common way, and
so we assume that they are Hilbert-style systems presented according to the
graph-theoretic approach developed in [13].

Hence, a deductive system is described using a graph where the nodes are
formulas and the edges are rules, either axiomatic or not. For instance, the
rule depicted in Figure 4 and introduced in Example 3.3 for modal logic T, can
be seen as an edge, from the schema formula ξ1 ⊃m ξ2 to the schema formula
(♦ξ1)⊃m (♦ξ2), where ξ1 is pπmπm

1 and ξ2 is pπmπm
2 . In the same vein, axiomatic

rules are endo edges, that is, edges from a formula, the axiom, to itself. Multi-
source edges are not needed since we make use of tupling in Σ+.

πmπm πm//
ξ1 ⊃m ξ2

πmπm πm//
(♦ξ1)⊃m (♦ξ2)

��
POST

Figure 4: The possibility rule of modal logic T.

More rigorously, a deductive system is a pair (Σ,∆) where Σ is a signature
and ∆ is a triple

(R, prem, conc)

where R is a set (of rules), and prem : R → L•(Σ) and conc : R → L(Σ) are
such that

src+ ◦ prem = src+ ◦ conc.

We may write r : ψ ⇒ ϕ for stating that rule r has premise ψ and conclusion
ϕ. An axiom is the source or the target formula of an endo-edge in R (such an
endo-edge may be denoted by an axiomatic rule). When there is no ambiguity
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we may confuse an axiomatic rule with its associated axiom, and so, when
presenting an axiomatic rule, we may simply present the target formula.

Example 3.1 Deductive system for intuitionistic propositional logic.
Consider the Hilbert axiomatization of intuitionistic logic proposed in [14].
That axiomatization can be represented as the deductive system (Σi

Qi ,∆
i), de-

noted by Di, where:

• Σi
Qi is the signature for intuitionistic logic described in Example 2.3;

• ∆i contains the following axioms and rules:

– axi1 : ξ ⊃i (ξ′ ⊃i ξ);

– axi2 : (ξ1 ⊃i ξ2)⊃i ((ξ1 ⊃i (ξ2 ⊃i ξ3))⊃i (ξ1 ⊃i ξ3));

– axi3 : ξ ⊃i (ξ′ ⊃i (ξ ∧i ξ
′));

– axi4 : (ξ ∧i ξ
′)⊃i ξ;

– axi5 : (ξ ∧i ξ
′)⊃i ξ

′;

– axi6 : ξ ⊃i (ξ ∨i ξ
′);

– axi7 : ξ′ ⊃i (ξ ∨i ξ
′);

– axi8 : (ξ1 ⊃i ξ3)⊃i ((ξ2 ⊃i ξ3)⊃i ((ξ1 ∨i ξ2)⊃i ξ3));

– axi9 : (ξ ⊃i ξ
′)⊃i ((ξ ⊃i (¬i ξ

′))⊃i (¬i ξ));

– axi10 : ξ ⊃i ((¬i ξ)⊃i ξ
′);

– MPi : 〈ξ, ξ ⊃i ξ
′〉 ⇒ ξ′;

where ξ is pπiπi
1 , ξ′ is pπiπi

2 , ξ1 is pπiπiπi
1 , ξ2 is pπiπiπi

2 and ξ3 is pπiπiπi
3 . ∇

Example 3.2 Deductive system for linear temporal logic.
Consider the Hilbert axiomatization of LTL described in [15] using the fol-
lowing abbreviations: (⊕̃ϕ) for ¬ltlX(¬ltlϕ), (�ϕ) for ¬ltl(trueU (¬ltlϕ)), (	̃ϕ)
for ¬ltlY (¬ltlϕ), (�ϕ) for ¬ltl(true S (¬ltlϕ)), ϕ1 ⊃� ϕ2 for �(ϕ1 ⊃ltl ϕ2), and
ϕ1 ↔� ϕ2 for (ϕ1⊃� ϕ2)∧ (ϕ2⊃� ϕ1). This axiomatization can be represented
as the deductive system (Σltl

Qltl ,∆
ltl), denoted by Dltl, such that:

• Σltl
Qltl is the LTL signature introduced in Example 2.1;

• ∆ltl contains the first two axioms presented in Example 3.1 with the
obvious adaptations to the LTL context, and

– axltlc : ((¬ltl ξ1)⊃ltl (¬ltl ξ2))⊃ltl (ξ2 ⊃ltl ξ1);

– axltl1 : (ξ1 U ξ2)↔� (ξ2 ∨ (ξ1 ∧ X(ξ1 U ξ2)));

– axltl2 : (ξ1 S ξ2)↔� (ξ2 ∨ (ξ1 ∧ Y(ξ1 S ξ2)));

– axltl3 : (ξ U false)⊃� false;

– axltl4 : (	̃false);
– axltl5 : (�ξ)⊃ltl ξ;

7



– axltl6 : (�ξ)⊃� �(⊕̃ξ));
– axltl7 : �(ξ1 ⊃ltl ξ2)⊃� ((�ξ1)⊃ltl (�ξ2));

– axltl8 : �(ξ1 ⊃ltl ξ2)⊃� ((�ξ1)⊃ltl (�ξ2));

– axltl9 : ξ ⊃� ⊕̃(Y ξ);

– axltl10 : ξ ⊃� 	̃(Xξ);

– axltl11 : �(ξ ⊃ltl (⊕̃ξ))⊃� �(ξ ⊃ltl (�ξ));

– axltl12 : �(ξ ⊃ltl (	̃ξ))⊃ltl �(ξ ⊃ltl (�ξ));

– axltl13 : (�ξ)⊃ltl �(	̃ξ);
– axltl14 : (Y ξ)⊃� (	̃ξ);
– axltl15 : 	̃(ξ1 ⊃ltl ξ2)↔� ((	̃ξ1)⊃ltl (	̃ξ2));

– axltl16 : ⊕̃(ξ1 ⊃ltl ξ2)↔� ((⊕̃ξ1)⊃ltl (⊕̃ξ2));

– axltl17a : (⊕̃ξ)⊃� (Xξ);

– axltl17b
: (Xξ)⊃� (⊕̃ξ);

– MPltl : 〈ξ1, ξ1 ⊃ltl ξ2〉 ⇒ ξ2;

– GEN� : ξ ⇒ (�ξ);

– GEN� : ξ ⇒ (�ξ);

where ξ1 is pπltlπltl
1 , ξ2 is pπltlπltl

2 and ξ is idπltl
. ∇

Example 3.3 Deductive system for modal logic T.
Consider the Hilbert axiomatization of modal logic T described in [1]. This
axiomatization can be represented as the deductive system (Σm

Qm ,∆T), denoted

by DT, where:

• Σm
Qm is the modal signature introduced in Example 2.2;

• ∆T contains the first two axioms presented in Example 3.1 with the ob-
vious adaptations to the modal context, and:

– axTc : ((¬m ξ1)⊃m (¬m ξ2))⊃m (ξ2 ⊃m ξ1);

– axT1 : (♦false)↔ false;

– axT2 : ♦(ξ1 ∨ ξ2)↔ ((♦ξ1) ∨ (♦ξ2));

– axT : ξ ⊃m (♦ξ);

– MPT : 〈ξ1, ξ1 ⊃m ξ2〉 ⇒ ξ2;

– POST : (ξ1 ⊃m ξ2)⇒ ((♦ξ1)⊃m (♦ξ2));

where ξ1 is pπmπm
1 , ξ2 is pπmπm

2 and ξ is idπm . ∇

Observe that a deductive system can be seen as having a 2-category flavor:
rules are edges between formulas (which are morphisms in the language category
induced by the signature). More precisely, as having a generalized 2-category
flavor, since a generalized 2-category, see the Appendix, is a 2-category (see [8])
without the proviso that the source of the 2-cell source coincides with the source
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of its target, and similarly, that the target of the 2-cell source coincides with
the target of its target. For example, MPi in Example 3.1 could not be a 2-cell,
since the target of its premise is πiπi and the target of its conclusion is πi.

In fact, as detailed in the Appendix, a deductive system (Σ,∆) induces a
generalized 2-category, denoted by

Σ∆,

where the objects are the expressions over Σ, and the set of generalized 2-cells
is the quotient of the minimal set of paths of the graph containing the rules in
∆, 2-projections

P
〈w1,...,wn〉
j ,

and 2-tuples
〈δ1, . . . , δn〉,

and closed under path vertical •v and horizontal •h compositions; with an equiv-
alence relation ≈ for imposing that Σ∆ is a generalized 2-category and has
2-products of objects with the same source, see the Appendix. We denote by

src and trg

the maps that assign to each generalized 2-cell in Σ∆ its source and its target,
respectively. Moreover given an expression w in Σ+, the identity on w in Σ∆,
denoted by

IDw

is [εw]≈, and given appropriate generalized 2-cells [δ1]≈ : w1 → w2 and [δ2]≈ :
w3 → w4, its vertical and horizontal composition in Σ∆, denoted respectively
by

[δ2]≈ ◦v [δ1]≈ and [δ2]≈ ◦h [δ1]≈

is [δ2 •v δ1]≈ and [δ2 •h δ1]≈ respectively. The horizontal composition is defined
if and only if the source of w3 coincides with the target of w1 and the source of
w4 coincides with the target of w2 (see Figure 5), in which case its horizontal

•//
w1

//
w3

•//
w2

//
w4

��
[δ1]≈

��
[δ2]≈

Figure 5: Generalized 2-cells “appropriate” for horizontal composition.

composition is a generalized 2-cell from w3◦w1 to w4◦w2. Similarly, the vertical
composition is defined if and only if the target of [δ1]≈ coincides with the source
of [δ2]≈, that is, w2 coincides with w3 (see Figure 6) in which case its vertical
composition is a generalized 2-cell from w1 to w4.

In the sequel we represent a generalized 2-cell [δ]≈ in Σ∆ simply by δ. A
source-homogeneous generalized 2-cell δ : w1 → w2 is a generalized 2-cell where
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//
w1

//
w3

w2

//
w4

��

[δ1]≈

��

[δ2]≈

Figure 6: Generalized 2-cells “appropriate” for vertical composition.

πmπm πm//
qm1 ⊃m qm2

πmπm πm//
(♦qm1)⊃m (♦qm2)

��

Figure 7: Instantiation of POST in Figure 4 by qm1 and qm2 .

the source of its source and the source of its target coincide, that is, src+(w1) =
src+(w2). All generalized 2-cells in Σ∆ are source-homogeneous.

Instantiation of rules are naturally expressed in Σ∆ using horizontal com-
position. For example, consider the instantiation of the rule POST, depicted in
Figure 4, where ξ1 is instantiated by qm1 and ξ2 by qm2 , see Figure 7. It is not
difficult to see that

qm1 ⊃m qm2 = (ξ1 ⊃m ξ2) ◦ 〈qm1 , qm2〉

since
qm1 ⊃m qm2 = ⊃m〈qm1 , qm2〉

= (⊃m〈pπmπm
1 , pπmπm

2 〉) ◦ 〈qm1 , qm2〉
= (ξ1 ⊃m ξ2) ◦ 〈qm1 , qm2〉

and
(♦qm1)⊃m (♦qm2) = ((♦ξ1)⊃m (♦ξ2)) ◦ 〈qm1 , qm2〉

since

(♦qm1)⊃m (♦qm2) = ⊃m〈♦qm1 ,♦qm2〉
= (⊃m〈♦pπmπm

1 ,♦pπmπm
2 〉) ◦ 〈qm1 , qm2〉

= ((♦ξ1)⊃m (♦ξ2)) ◦ 〈qm1 , qm2〉

see Figure 8.
Henceforth, by the instantiation of a generalized source-homogeneous 2-cell

b in Σ∆ from w1 to w2, by w in Σ+ with trg+(w) = src+(w1) = src+(w2),
denoted by

b ∗ w,

10



we mean the generalized 2-cell b ◦h IDw from w1 ◦w to w2 ◦w. So Σ∆ contains
all the instantiations of rules in ∆ as well as their compositions.

•//
〈qm1 , qm2〉 //

ξ1 ⊃m ξ2

•//
〈qm1 , qm2〉

//
(♦ξ1)⊃m (♦ξ2)

��
ID〈qm1 ,qm2 〉

��
POST

Figure 8: Another view of the generalized 2-cell POST ∗ 〈qm1 , qm2〉 in Figure 7.

In the sequel we abbreviate the generalized 2-cell 〈P〈w1,...,wk〉
j1

, · · · ,P〈w1,...,wk〉
j`

〉
in Σ∆ where 1 ≤ j1, . . . , j` ≤ k by P

〈w1,...,wk〉
j1,...,j`

. As expected, by a tupling 〈w〉 of

length one we mean w and by P
〈w〉
1 we mean IDw.

Intuitively, a derivation is a tree labelled by formulas whose leaves are either
hypothesis or axiom instances and such that the formula labelling each node is
the conclusion of a rule instance from the formulas at its immediate predecessors
in the tree. As a simple example, consider the derivation depicted in Figure 9
for deducing formula ϕ3 from formulas ϕ1, ϕ1⊃ϕ2 and ϕ2⊃ϕ3, in the context
of a deductive system (Σ,∆) with modus ponens. Observe that the first stage
of this derivation is composed by the basic derivation

(MP ∗ 〈ϕ1, ϕ2〉) ◦v P〈ϕ1,ϕ1⊃ϕ2,ϕ2⊃ϕ3〉
1,2

denoted by β11, and by the basic derivation

(IDidπ ∗ (ϕ2 ⊃ ϕ3)) ◦v P〈ϕ1,ϕ1⊃ϕ2,ϕ2⊃ϕ3〉
3

denoted by β12, that is, is the generalized 2-cell

〈β11, β12〉

from
〈ϕ1, ϕ1 ⊃ ϕ2, ϕ2 ⊃ ϕ3〉

to
〈ϕ2, ϕ2 ⊃ ϕ3〉,

and the second stage is the generalized 2-cell

MP ∗ 〈ϕ2, ϕ3〉

from 〈ϕ2, ϕ2 ⊃ ϕ3〉 to ϕ3.
More rigorously, by a derivation over a calculus (Σ,∆) we mean a generalized

2-cell δ in Σ∆ of the form:

〈βm1, . . . , βmnm〉 ◦v . . . ◦v 〈β11, . . . , β1n1〉
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ϕ1 ϕ1 ⊃ ϕ2 ϕ2 ⊃ ϕ3

ϕ2 ϕ2 ⊃ ϕ3

ϕ3

��

MP ∗ 〈ϕ1, ϕ2〉

��

IDidπ ∗ (ϕ2 ⊃ ϕ3)

��

MP ∗ 〈ϕ2, ϕ3〉

Figure 9: Deduction of ϕ3 from ϕ1, ϕ1 ⊃ ϕ2 and ϕ2 ⊃ ϕ3.

for non-zero natural numbersm,n1, . . . , nm with nm = 1, where for j = 1, . . . ,m
and k = 1, . . . , nj the βjk are basic derivations, that is, are generalized 2-cells
in Σ∆ of the following form:

(bjk ∗ wjk) ◦v P
〈ϕj1,...,ϕj`j 〉
j′1,...,j

′
`′jk

where bjk is either a non-axiomatic rule or a generalized 2-cell identity (for
vertical composition) over idtrg+(wjk), ϕj1, . . . , ϕj`j are proper formulas and `j
is non-zero. The basic derivation βjk is said to be axiomatic if bjk is a generalized
2-cell identity and wjk is an axiom or an axiom instance. When bjk is a non-
axiomatic rule we may denote the basic derivation βjk by basic derivation over
rule bjk. Observe that the conclusion of a derivation is a proper formula.

A derivation is said to be a proof if its premise is a tupling of axiom instances.
The conclusion of a proof is said to be a theorem or a concrete theorem if it is
a concrete formula. We write `(Σ,∆) ϕ or ` ϕ for stating that ϕ is a theorem.
Furthermore, we write

Γ `(Σ,∆) ϕ

or Γ ` ϕ when Γ is a set of proper formulas, src+(γ) = src+(ϕ) for every γ ∈ Γ
and there is a derivation in Σ∆ with conclusion ϕ and premise given by a tupling
of elements of Γ and of axiom instances. In this situation we say that there is
a derivation of ϕ from Γ. A derivation is concrete whenever all the formulas
occurring in its steps are concrete.

In the sequel, by an inference we mean a generalized 2-cell in Σ∆ with
generalized formulas as source and target. The source of an inference is said to
be its antecedent and its conclusion is said to be its consequent. Observe that
every inference is source-homogeneous, that is, all formulas in the antecedent
and in the consequent have the same sequence of sorts as source. An inference
δ1 in Σ∆ is compatible with inference δ2 in Σ∆ if the antecedent of δ2 coincides
with the consequent of δ1.

12



Importing a deductive system

We now define what is the importing of a deductive system into another. The
goal is that the reasoning mechanism of the imported logic is present in the logic
resulting from the combination but can only be applied to its expressions. In
contrast, the reasoning mechanism of the importing logic is present in the logic
resulting from the combination but is open to all expressions. This captures
and generalizes the characteristic properties of some asymmetric techniques
of combining logics like modalization and temporalization as developed in [4,
5, 3]. In fact, in [4, 5], the axioms of the deductive system resulting from the
temporalization are the theorems of the imported logic together with the axioms
of the importing one, and the rules are only the rules of the importing logic.

We assume that the deductive system being imported and the importing
deductive system, say (Σ1,∆1) and (Σ2,∆2) respectively, are suitably disjoint,
i.e., Σ1 and Σ2 are suitably disjoint, and R1 and R2 are disjoint. Observe that
Π1 and Π2 are singletons since Σ1 and Σ2 are suitably disjoint.

Importing a deductive system (Σ1,∆1) into a deductive system (Σ2,∆2),
denoted by

(Σ2,∆2)[(Σ1,∆1)],

is the deductive system (Σ2[Σ1],∆2[∆1]) where

∆2[∆1]

is the tuple (R, prem, conc) with

• R = R1 ∪R2 ∪ {IMP} ∪ {REF};

• prem(rk) = premk(rk) and conc(rk) = conck(rk) if rk is in Rk for k = 1, 2;

• prem(IMP) = idπ1 and conc(IMP) = �π2π1 ;

• prem(REF) = �π2π1 and conc(REF) = idπ1 .

We now describe some specific instances of importing.

Example 3.4 Recall deductive system DT introduced in Example 3.3. The �-
modalization by modal logic T of a deductive system D1 suitably disjoint with
DT, denoted by

MT[D1],

is the deductive system resulting from importing D1 into DT. See Figure 10 for
a graphical description of part of the deductive system MT[Dltl], where Dltl is
the deductive system for linear temporal logic introduced in 3.2. Observe that

ϕ `MT[Dltl] ♦'X(Yϕ)'

holds, for any formula ϕ over Σltl
Qltl . ∇
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πmπm πm

axTi1 //

πmπm πm
axTi1

//
��

. . .

. . .

πm πm
axT //

πm πm
axT

//
��

πmπm πmπm
ξ1, ξ1 ⊃m ξ2 //

πmπm πm
ξ2

//
��
MPT

πmπm πm
ξ1 ⊃m ξ2 //

πmπm πm
(♦ξ1)⊃m (♦ξ2)

//
��
POST

πltl πltl
ξ //

πltl πm
'ξ'

//
��
IMP

πltl πm
'ξ' //

πltl πltl
ξ

//
��
REF

πltlπltl πltl

axltli1 //

πltlπltl πltlaxltli1

//
��

πltl πltl

axltl17b //

πltl πltlaxltl17b

//
��

. . .

. . .

πltlπltl πltl
ξ1, ξ1 ⊃ltl ξ2 //

πltlπltl πltl
ξ2

//
��
MPltl

πltl πltl
ξ //

πltl πltl
�ξ

//
��
GEN�

πltl πltl
ξ //

πltl πltl
�ξ

//
��
GEN�

Figure 10: �-modalization of linear temporal logic by modal logic T.

Example 3.5 Recall deductive system Dltl introduced in Example 3.2. The
�-temporalization of a deductive system D1 suitably disjoint with Dltl, denoted
by

LTL[D1],

is the deductive system resulting from importing D1 into Dltl. ∇

Example 3.6 By adding a �-constructivist dimension to a deductive system
D1 suitably disjoint with Di for intuitionistic logic introduced in Example 3.1,
denoted by

I[D1],

we mean the importing of D1 into the deductive system Di. ∇
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Relationship with temporalization

Herein we relate �-temporalization, in terms of deductive consequence, with the
well known temporalization combination mechanism introduced by Finger and
Gabbay in [4], when no connectives are shared. In [12] a weak form of this
result was proved for semantic entailment (in the global version). A similar
result holds also for modalization. We first present a graph-theoretic version of
temporalization when no connectives are shared.

The temporalization of a deductive system D1 suitably disjoint with Dltl

(recall Dltl in Example 3.2 and Σltl in Example 2.1), produces a deductive
system (T[Σ1],T[∆1]), denoted by

T[D1]

where T[Σ1] is the signature Σltl enriched with m-edges ϕ1 : ! → πltl for each
concrete proper formula ϕ1 over Σ1, and T[∆1] is the deductive system ∆ltl

enriched with the axiom ϕ1 : !→ πltl for each concrete proper theorem ϕ1 over
the deductive system (Σ1,∆1). Observe that the difference between LTL[∆1]
and T[∆1], in terms of the deductive system, is that LTL[∆1], instead of having
an axiom for each concrete proper theorem ϕ1 in the deductive system (Σ1,∆1),
has the rules and axioms of ∆1 together with the rules IMP and REF.

Consider the map ·�t from L(T[Σ1]) to L(LTL[Σ1]) (recall LTL[Σ1] in Ex-
ample 2.6) inductively defined as follows:

• (ϕ)�t is ϕ if ϕ is a concrete proper formula over Σ1;

• (cϕ)�t is c(ϕ)�t for c in {¬ltl,X,Y};

• (c〈ϕ1, ϕ2〉)�t is c〈(ϕ1)�t , (ϕ2)�t〉 for c in {⇒ltl,S, U};

where ·�t is the map from L(T[Σ1]) to L(LTL[Σ1]) such that:

• (ϕ)�t is 'ϕ' if ϕ is a concrete proper formula over Σ1;

• (ϕ)�t is (ϕ)�t , otherwise.

In the next proposition, a derivation of ϕ�t from Γ�t in LTL[D1] is obtained
from a derivation of ϕ from Γ in T[D1], by renaming the formulas in the given
derivation according to ·�t , and by replacing the basic derivations where a the-
orem of (Σ1,∆1) is used as an axiom, by its derivation. First we prove that
renaming according to ·�t transforms a derivation over T[D1] to a derivation
over LTL[D1] modulo adding some additional hypothesis.

Proposition 3.7 Let 〈βm1, . . . , βmnm〉 ◦v . . . ◦v 〈β11, . . . , β1n1〉 be a concrete

derivation for Γ `T[D1] ϕ, denoted by δ, where βij is (bij∗wij) ◦v P
〈ϕi1,...,ϕiki 〉
aij1,...,aij`ij

.
Then,

〈(βm1)�t , . . . , (βmnm)�t〉 ◦v . . . ◦v 〈(β11)�t , . . . , (β1n1)�t〉

where, (βij)
�t , for i = 1, . . . ,m and j = 1, . . . , ni, is

(bij∗(wij)�t) ◦v P
〈(ϕi1)�t ,...,(ϕiki )

�t 〉
aij1,...,aij`ij

,
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is a concrete derivation, denoted by (δ)�t , for (Γ)�t ∪ {(ψ)�t : ψ is at step 1 of δ
and is a concrete proper theorem over D1} `LTL[D1] (ϕ)�t .

Proof: The proof follows immediately by induction on the depth of the given
derivation. It is enough to see that for any rule b in ∆ltl, (b∗w)�t is b∗(w)�t

since neither the source of b nor its target has a concrete proper formula over
Σ1 as sub-expression. The same happens if b is of the form IDidv . QED

Proposition 3.8 Given a set Γ∪{ϕ} of concrete proper formulas over L(T[Σ1]),

Γ `T[D1] ϕ implies (Γ)�t `LTL[D1] (ϕ)�t .

Proof: The proof follows immediately by Proposition 3.7 due to the transitivity
of the consequence relation `LTL[D1] since `LTL[D1] (ϕ)�t for any concrete proper
theorem ϕ over (Σ1,∆1). QED

4 Semantics

Having in mind establishing the preservation of soundness and completeness by
importing, we now provide for the convenience of the reader a brief summary
of the graph-theoretic semantics of importing introduced in [12].

An interpretation, also called a model, over a signature, is an m-graph
where the nodes are semantic values and the m-edges are operations on the
values, together with functions to relate the semantic values with signature sorts
and operations with constructors, see Figure 11. Herein we assume that these
functions are total and consider a local version of the entailment introduced
in [12].

!

πmLL

qm0 , qm1 , . . .

��
⊃m

66¬m

♦

0

b1 b2

b3

ZZ
♦0

XX
♦b2

88♦b1

��♦b3
GG

¬0 �� ¬b3

++
¬b1

kk
¬b2

KS

α

Figure 11: Part of an interpretation for modal logic T without the m-edges for
⊃m and the propositional symbols.
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By an m-graph morphism α : G1 → G2 we mean a pair αv : V1 → V2 and
αe : E1 → E2 of maps such that: src2◦αe = αv◦src1 and trg2◦αe = αv◦trg1. In
the sequel we need to refer to the functor α+ induced by an m-graph morphism
α. An interpretation for a signature (G, !,Π) is a tuple

(G′, α,D, !)

where G′ is an m-graph (the operations m-graph), α : G′ → G is an m-graph
morphism (the abstraction morphism) such that (αv)−1(!) is a set (of concrete
values) containing !, and D ⊆ (αv)−1(Π) is a set (of designated or distinguished
values). Observe that we use ! both for the concrete sort and for the concrete
value since the context where they are employed will tell which is being used.
We may use I+ to refer to the category G′+ of irreducible paths.

We say that a sequence s′ of truth values in I+ abstracts to the source of a
language expression w in Σ+ whenever α+(s′) = src+(w), and that a semantic
expression (i.e., an irreducible path) w′ in I+ abstracts to an expression w in Σ+

whenever α+(w′) = w. We denote by (α+)−1(w)s′ the set of semantic irreducible
paths in (α+)−1(w) that start by s′. When (α+)−1(w)s′ is a singleton we may
confuse this set with its unique element.

An interpretation system I is a pair (Σ, I) where Σ is a signature and I is a
class of interpretations for Σ. An interpretation system (Σ, I) is total whenever
all its interpretations are total, and an interpretation (Σ, I) is total whenever
for any connective c in the signature Σ and s′ in I+ that abstracts to the source
of c, there is an m-edge e′ in I starting at s′ that is abstracted to c.

Example 4.1 An interpretation system for modal logic T.
The interpretation system (Σm

Qm , IT) for modal logic T is such that IT is the
set of all interpretations for Σm

Qm induced by the algebras for modal logic T
(see [1, 7]), as defined in [12] (see [1, 7] as references for modal logic). ∇

Example 4.2 An interpretation system for linear temporal logic.
The interpretation system (Σltl

Qltl , I
ltl) for LTL is such that Iltl is the set of all

interpretations for Σltl
Qltl induced by strong linear Galois algebras (see [15]), as

defined in [12].

Example 4.3 An interpretation system for intuitionistic propositional logic.
The interpretation system (Σi

Qi , I
i) for intuitionistic propositional logic is such

that Ii is the class of all interpretations for Σi
Qi induced by a Heyting algebra

and a valuation v over the algebra (see [14]), as defined in [12]. ∇

Satisfaction

An interpretation I is non-deterministic if it has distinct m-edges with the
same source, that are mapped by the abstraction map to the same connective.
Since choosing a unique denotation for all the non-deterministic connectives
is equivalent to choosing a maximal deterministic sub-interpretation J of that
interpretation, denoted by J ≤ I, we define satisfaction not only with respect
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to I but also with respect to J . Observe that if I is already deterministic, its
only maximal deterministic sub-interpretation is I.

So, given an interpretation I for a signature Σ, a formula ϕ over Σ, J ≤ I
and a sequence of truth values s′ in I that abstracts to the source of ϕ, we say
that I, J and s′ satisfy ϕ, written

I, J, s′ 
Σ ϕ

whenever all the irreducible paths in J+ starting at s′ that abstract to ϕ, end at
a distinguished truth value. Observe that there is at most one such irreducible
path in J . In the sequel we assume that the abstraction map of J is β, and
write (β+)−1(ϕ)s′↓ for stating that there is such a path. In that case we denote
it by (β+)−1(ϕ)s′ . When there is no path in J+ for ϕ starting at s′ we write
(β+)−1(ϕ)s′↑.

Entailment is defined on top of satisfaction as usual. We say that a set Γ
of formulas over Σ locally entails within (Σ, I) a formula ϕ over Σ, all with the
same source, denoted by

Γ �l
(Σ,I) ϕ

whenever I, J, s′ 
Σ Γ implies I, J, s′ 
Σ ϕ, for all I in I, J ≤ I and s′ in I+

abstracted to the source of ϕ. Moreover we denote ∅ �l
(Σ,I) ϕ by �l

(Σ,I) ϕ and

say that the formula ϕ is locally valid with respect to (Σ, I).
When there is no ambiguity we may omit the reference to the signature and

to the interpretation system in the satisfaction 
 and entailment �l symbols
respectively. We may also write � instead of �l, and omit the qualification local.

Importing an interpretation system

Semantically, importing is defined at the level of models as explained in [12].
That is, for any given pair of interpretations of the component logics there is
an interpretation in the importing, consisting of a faithful copy of each inter-
pretation together with the denotation of the � connective.

We assume that the interpretation being imported and the importing in-
terpretation, say (Σ1, I1) and (Σ2, I2) respectively, are suitably disjoint, i.e.,
are interpretations where Σ1 and Σ2 are suitably disjoint, V ′1 \ (αe

1)−1(!) and
V ′2 \ (αe

2)−1(!) are disjoint, �v′2v′1 is not in E′1 ∪E′2 for v′2 in V ′2 and v′1 in V ′1 , and
E′1 and E′2 are disjoint as well. Similarly for interpretation systems, i.e., that
all the pairs with an interpretation of each system is suitably disjoint.

The importing of an interpretation system (Σ1, I1) into an interpretation
system (Σ2, I2), denoted by

(Σ2, I2)[(Σ1, I1)],

is the interpretation system (Σ2[Σ1], I2[I1]) where I2[I1] is the class of inter-
pretations {I2[I1] : I1 ∈ I1, I2 ∈ I2} over Σ2[Σ1] such that

I2[I1]

is the tuple ((V ′, E′, src′, trg′), α,D, !) with
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• V ′ is V ′1 ∪ V ′2 ;

• E′ = E′1 ∪ E′2 ∪ {�v′2v′1 : v′2 ∈ D2, v
′
1 ∈ D1} ∪ {�v′2v′1 : v′2 ∈ α−1

2 (Π2) \
D2, α

−1
1 (Π1) \D1};

• src′ and trg′ are such that src′(�v′2v′1) = v′1, trg′(�v′2v′1) = v′2, src′(e′) =
src′k(e

′) and trg′(e′) = trg′k(e
′) for e′ in E′k and k = 1, 2;

• α is such that αv(v′) = αv
k(v
′) whenever v′ is in V ′k for k = 1, 2, αe(e′) =

αe
k(e
′) whenever e′ is in E′k for k = 1, 2 and αe(�v′2v′1) = �αv(v′2)αv(v′1);

• D is D1 ∪D2.

We recall some particular cases of importing described in [12], and introduce
a new example.

Example 4.4 We denote by

LTL[(Σ1, I1)]

the �-temporalization of an interpretation system (Σ1, I1) suitably disjoint with
(Σltl

Qltl , I
ltl), and by

MT[(Σ1, I1)]

the �-modalization by modal logic T of (Σ1, I1) suitably disjoint with (Σm
Qm , Im),

as defined in [12]. By adding a �-constructivist dimension to (Σ1, I1), suitably
disjoint with (Σi

Qi , I
i), denoted by

I[(Σ1, I1)],

we mean the importing of (Σ1, I1) into the interpretation system (Σi
Qi , I

i) for
intuitionistic logic introduced in Example 4.3. ∇

5 Preservation of soundness

In this section we show that soundness is preserved, under some conditions, by
importing. First we need to introduce logic systems.

A logic system is a triple (Σ,∆, I) where (Σ,∆) is a deductive system and
(Σ, I) is an interpretation system. By a total logic system we mean a logic
system whose underlying interpretation system is total. A logic system (Σ,∆, I)
is sound whenever

if Γ `(Σ,∆) ϕ then Γ �(Σ,I) ϕ

for any set Γ ∪ {ϕ} of proper formulas over Σ, and is complete whenever

if Γ �(Σ,I) ϕ then Γ `(Σ,∆) ϕ

for any set Γ∪{ϕ} of proper formulas over Σ. Moreover, it is concretely complete
whenever Γ ∪ {ϕ} is any set of concrete proper formulas over Σ.
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Example 5.1 We denote by LT the logic system (Σm
Qm ,∆T, IT) for modal logic

T, by Lltl the logic system (Σltl
Qltl ,∆

ltl, Iltl) for linear temporal logic and by Li

the logic system (Σi
Qi ,∆

i, Ii) for intuitionistic logic. ∇

Importing a logic system into another is defined in terms of their semantic
and deductive components, and so it is only applied to suitably disjoint logic
systems, i.e., logic systems with suitably disjoint signatures, suitably disjoint
deductive systems and suitably disjoint interpretation systems.

Hence, importing a logic system (Σ1,∆1, I1) into a logic system (Σ2,∆2, I2),
denoted by

(Σ2,∆2, I2)[(Σ1,∆1, I1)],

is the logic system (Σ2[Σ1],∆2[∆1], I2[I1]).

Example 5.2 The �-temporalization of a logic system L1 suitably disjoint with
Lltl, denoted by

LTL[L1]

is the logic system resulting from importing L1 into Lltl. Moreoever, the �-
modalization by modal logic T of logic system L1 suitably disjoint with LT,
denoted by

MT[L1]

is the logic system resulting from importing L1 into LT. By adding a �-
constructivist dimension to L1, suitably disjoint with Li, denoted by

I[L1],

we mean the importing of L1 into the logic system Li for intuitionistic logic.∇

Soundness

We now establish sufficient conditions for a logic system to be sound, and then
investigate whether these conditions are preserved by importing.

Given a logic system (Σ,∆, I) and an interpretation I in I, an inference δ
in Σ∆ from 〈ψ1, . . . , ψm〉 to 〈ϕ1, . . . , ϕn〉 is sound for I whenever

I, J, s′ 
 {ψ1, . . . , ψm} implies I, J, s′ 
 ϕj

for all J ≤ I, s′ in I+ that abstracts to the source of ϕj , and j in {1, . . . , n}.
The inference δ is said to be sound in (Σ,∆, I) whenever it is sound for all
interpretations in I.

In order to prove that total logic systems with sound rules and valid ax-
ioms are sound, we show, under general conditions, that inference soundness
is preserved by all the constructions (that is, instantiation, 2-tupling and com-
position) used in a derivation. We consider total logic systems since they are
well behaved with respect to substitution, as we will see in the next technical
results.
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Proposition 5.3 Given a total interpretation I over a signature Σ, J ≤ I with
abstraction map β, an irreducible path w in Σ+, and s′ in I+ that abstracts by
β to the source of w, then (β+)−1(w)s′↓.

Proof: The proof follows by induction on w: (1) w is εs. Then (β+)−1(w)s′

is εs′ and so is defined; (2) w is psj . Then (β+)−1(w)s′ is ps
′
j and so is defined;

(3) w is ew0. Observe that (β+)−1(w0)s′↓ by induction hypothesis, and that the
target of (β+)−1(w0)s′ abstracts to the target of w0 which coincides with the
source of e. So β−1(e)trg′+((β+)−1(w0)s′ )

↓ since I is total. Hence (β+)−1(ew0)s′ =

β−1(e)trg′+((β+)−1(w0)s′ )
(β+)−1(w0)s′↓ is defined; (4) w is 〈w1, . . . , wn〉. Observe

that (β+)−1(wi)s′ is defined for i = 1, . . . , n by induction hypothesis. Hence
(β+)−1(w)s′ = 〈(β+)−1(w1)s′ , . . . , (β

+)−1(wn)s′〉 is also defined. QED

The following result states that the denotation of a composition is the com-
position of the denotations, and establishes its counterpart on satisfaction.

Proposition 5.4 Given a total interpretation I over a signature Σ, J ≤ I with
abstraction map β, irreducible paths w1 and w2 in Σ+ with src+(w2) = trg+(w1),
and s′ in I+ that abstracts by β to the source of w1, then

(β+)−1(w2 ◦ w1)s′ = (β+)−1(w2)trg′+((β+)−1(w1)s′ )
◦ (β+)−1(w1)s′ .

Moreover,
I, J, s′ 
 ϕ ◦ w iff I, J, trg′+((β+)−1(w)s′) 
 ϕ.

Proof: The proof of the first assertion is omitted since it follows by a straight-
forward induction on w1. We now concentrate on the proof of the second
assertion.
(⇒) Observe that, by the first assertion, trg′+((β+)−1(ϕ)trg′+((β+)−1(w)s′ )

) is

trg′+((β+)−1(ϕ)trg′+((β+)−1(w)s′ )
◦ (β+)−1(w)s′) = trg′+((β+)−1(ϕ ◦ w)s′) ∈ D

since I, J, s′ 
 ϕ ◦ w;
(⇐) Observe that, by the first assertion, trg′+((β+)−1(ϕ◦w)s′) = trg′+((β+)−1(ϕ
)trg′+((β+)−1(w)s′ )

◦ (β+)−1(w)s′) = trg′+((β+)−1(ϕ)trg′+((β+)−1(w)s′ )
) ∈ D since

I, J, trg′+((β+)−1(w)s′) 
 ϕ. QED

We now prove that soundness is preserved by the constructions employed
in derivations.

Proposition 5.5 The instantiation of an inference preserves soundness in total
logic systems.

Proof: Let (Σ,∆, I) be a total logic system and δ a sound inference in Σ∆ with
antecedent 〈ψ1, . . . , ψm〉 and consequent 〈ϕ1, . . . , ϕn〉. Moreover, let w be an
expression in Σ+ compatible with the formulas in the antecedent and consequent
of δ. We now show that δ ∗w is a sound inference. Let j be in {1, . . . , n}, I be
an interpretation in I, J ≤ I, and s′ in I+ that abstracts to the source of w such
that I, J, s′ 
 {ψ1 ◦ w, . . . , ψm ◦ w}. So I, J, trg′+((β+)−1(w)s′) 
 {ψ1, . . . , ψm}
by Proposition 5.4. Hence I, J, trg′+((β+)−1(w)s′) 
 ϕj by the soundness of δ.
So by Proposition 5.4, I, J, s′ 
 ϕj ◦ w. QED
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Proposition 5.6 The 2-tupling of inferences with a proper formula as conse-
quent and with the same antecedent, preserves soundness.

Proof: Let (Σ,∆, I) be a logic system and β1, . . . , βn sound inferences in Σ∆

with a proper formula ϕj as consequent for j = 1, . . . , n respectively, and with

the same antecedent 〈ψ1, . . . , ψm〉. We now show that 〈β1, . . . , βn〉 is a sound
inference. Let j in {1, . . . , n}, I be an interpretation in I, J ≤ I, and s′ in
I+ abstracting to the common source of the formulas in the antecedent of the
inferences, such that I, J, s′ 
 {ψ1, . . . , ψm}. Then I, J, s′ 
 ϕj since βj is
sound. QED

Proposition 5.7 The vertical composition of compatible inferences preserves
soundness.

Proof: Let (Σ,∆, I) be a logic system and δ1 : 〈ψ1, . . . , ψm〉 ⇒ 〈γ1, . . . , γo〉
and δ2 : 〈γ1, . . . , γo〉 ⇒ 〈ϕ1, . . . , ϕn〉 sound inferences in Σ∆. We now show that
δ2 ◦v δ1 is a sound inference. Let I be an interpretation in I, J ≤ I and s′ in
I+ abstracting to the source of any formula in the antecedent of δ1 such that
I, J, s′ 
 {ψ1, . . . , ψm}. Then I, J, s′ 
 {γ1, . . . , γo} by the soundness of δ1, and
so I, J, s′ 
 {ϕ1, . . . , ϕn} by the soundness of δ2. QED

Proposition 5.8 Every derivation is sound in a total logic system where the
rules are sound.

Proof: Let L be a total logic system and assume that δ is a derivation of
the form 〈βm1, . . . , βmnm〉 ◦v . . . ◦v 〈β11, . . . , β1n1〉 with antecedent 〈ψ1, . . . , ψm〉.
Let ((bxy ∗ ϕxy) ◦v P〈~ϕx〉~jxy

) be the basic derivation βxy. Observe that P
〈~ϕx〉
~jxy

is

a sound inference as well as any 2-cell identity (for vertical composition) over
a proper formula. So, according to Proposition 5.5 and Proposition 5.7, each
basic derivation βxy is sound. Hence each step of the derivation is sound by
Proposition 5.6 and so δ is sound by Proposition 5.7. QED

Theorem 5.9 (Soundness)
A total logic system is sound if and only if it has sound rules and valid axioms.

Proof: Let L be a total logic system. (←) Assume that δ is a derivation
for Γ ` ϕ. Denote the antecedent of δ by 〈ψ1, . . . , ψm〉 where ψj is either in
Γ or is an axiom. Observe that δ is sound by Proposition 5.8. Let I be an
interpretation in I, J ≤ I and s′ in I+ abstracted to the source of ϕ such that
I, J, s′ 
 Γ. So I, J, s′ 
 {ψ1, . . . , . . . ψm} taking into account that ψj is either
in Γ or is an axiom instance, and that axioms are valid. Hence I, J, s′ 
 ϕ by
the soundness of δ. (→) Let r be a rule in L from 〈ψ1, . . . , ψm〉 to ϕ, I an
interpretation in I, J ≤ I and s′ in I+ abstracted to the source of ϕ. Consider
two cases: (i) r is a non-axiomatic rule. Assume that I, J, s′ 
 {ψ1, . . . , ψm}.
Then I, J, s′ 
 ϕ since {ψ1, . . . , ψm} ` ϕ and since L is sound; (ii) r is an axiom.
Then ` ϕ and so I, J, s′ 
 ϕ since L is sound. QED
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Soundness preservation

The idea to show that soundness is preserved by importing, is to prove that the
sufficient conditions for a logic to be sound (established in Theorem 5.9) are
preserved by importing. It is immediate to prove that being total is preserved,
so we concentrate now on preservation, by importing, of soundness of rules and
validity of axioms.

In the sequel, given a suitably disjoint pair of total interpretations I1 and
I2 over Σ1 and Σ2 respectively, k in {1, 2}, and J ≤ (Σ2, I2)[(Σ1, I1)] with
abstraction map β, we denote by (β+)↓k the restriction of β+ to Σ+

k . Moreover
we denote by J↓k the maximal sub-interpretation of J with J↓k ≤ Ik, and denote
its abstraction map by β↓k .

Proposition 5.10 Let w be an expression in Σ+

k and s′ in I+

k abstracted by
αk to the source of w. Then (β+)−1(w)s′ = ((β↓k)+)−1(w)s′ . Moreover,

I2[I1], J, s′ 
 ϕ if and only if Ik, J↓k , s
′ 
 ϕ.

Proof: The proof of the first assertions follows by induction on w:

(1) w is εs. Then (β+)−1(w)s′ = εs′ = ((β↓k)+)−1(w)s′ ;

(2) w is psj . The proof of this case is similar to the proof of (1) so we omit it;

(3) w is ew0. Therefore (β+)−1(w)s′ = β−1(e)trg′+((β+)−1(w0)s′ )
(β+)−1(w0)s′ =

(β↓k)−1(e)trg′+(((β↓k )+)−1(w0)s′ )
((β↓k)+)−1(w0)s′ which is ((β↓k)+)−1(w)s′ ;

(4) w is 〈w1, . . . , wm〉. Hence (β+)−1(w)s′ = 〈(β+)−1(w1)s′ , . . . , (β
+)−1(wm)s′〉

which by induction hypothesis is 〈((β↓k)+)−1(w1)s′ , . . . , ((β↓k)+)−1(wm)s′〉 =
((β↓k)+)−1(w)s′ .

We now prove the second assertion. In fact I2[I1], J, s′ 
 ϕ if and only if
trg′+((β+)−1(ϕ)s′) ∈ D if and only if trg′+(((β↓k)+)−1(ϕ)s′) ∈ D (by the first
assertion) if and only if Ik, J↓k , s

′ 
 ϕ. QED

Proposition 5.11 Soundness of inferences is preserved by importing when the
given logic systems are total and suitably disjoint.

Proof: Let (Σ1,∆1, I1) and (Σ2,∆2, I2) be a suitably disjoint pair of total
logic systems, k in {1, 2}, δ be a sound inference in Σ∆k

k from 〈ψ1, . . . , ψm〉 to
〈ϕ1, . . . , ϕn〉, I1 and I2 interpretations in I1 and I2 respectively, J ≤ I2[I1] and
s′ in I2[I1]+ abstracted to the common source of the formulas in the antecedent
of δ. Observe that ψ1, . . . , ψm, ϕ1, . . . , ϕn are formulas of Σ+

k , and s′ is in I+

k and
abstracts to the common source of the formulas in the antecedent of δ. Suppose
that I2[I1], J, s′ 
 {ψ1, . . . , ψm} and let j be in {1, . . . , n}. Then Ik, J↓k , s

′ 

{ψ1, . . . , ψm} by Proposition 5.10 and so Ik, J↓k , s

′ 
 ϕj since δ is a sound

inference in Σ∆k
k . Hence I2[I1], J, s′ 
 ϕj by Proposition 5.10. QED

Proposition 5.12 Validity is preserved by importing when the given logic sys-
tems are total and suitably disjoint.

23



Proof: Let (Σ1,∆1, I1) and (Σ2,∆2, I2) be a suitably disjoint pair of total
logic systems, k in {1, 2}, ϕ a valid formula in Σ+

k , I1 and I2 interpretations in
I1 and I2 respectively, J ≤ I2[I1] and s′ in I2[I1]+ abstracted to the source of ϕ.
Observe that s′ is in I+

k and is also abstracted by α+

k to the source of ϕ. Then
Ik, J↓k , s

′ 
 ϕ since ϕ is valid in (Σk,∆k, Ik). Hence trg′+k (((β↓k)+)−1(ϕ)s′) ∈
Dk and so the thesis follows since ((β↓k)+)−1(ϕ)s′ = (β+)−1(ϕ)s′ by Proposi-
tion 5.10 and since Dk ⊆ DI2[I1]. QED

Proposition 5.13 Rules IMP and REF are sound in the logic system resulting
from importing when the given logic systems are total and suitably disjoint.

Proof: Let (Σ1,∆1, I1) and (Σ2,∆2, I2) be a suitably disjoint pair of total logic
systems, I1 and I2 interpretations in I1 and I2 respectively, J ≤ I2[I1] and v′1
a truth value of I1. (1) IMP is sound. Suppose that I2[I1], J, v′1 
 idπ1 . Then
trg′+((β+)−1(idπ1)v′1) ∈ DI2[I1], that is, v′1 ∈ D1. Hence trg′+((β+)−1(�)v′1) ∈
DI2[I1] by definition of I2[I1], and so I2[I1], J, v′1 
 �; (2) REF is sound. Suppose
that I2[I1], J, v′1 
 �. Then trg′+((β+)−1(�)v′1) ∈ DI2[I1] and so v′1 ∈ D1 by

definition of I2[I1]. Hence trg′+((β+)−1(idπ1)v′1) ∈ DI2[I1] and so I2[I1], J, v′1 

idπ1 . QED

So we can now establish a sufficient condition for the preservation of sound-
ness by importing.

Theorem 5.14 (Soundness preservation)
The logic system resulting from an importing is sound whenever the given logic
systems are sound, total, and suitably disjoint.

Proof: Let L1 and L2 be a suitably disjoint pair of sound and total logic
systems. Then their rules and axioms are sound and valid, by Theorem 5.9.
Then by Proposition 5.11 and Proposition 5.13 all the rules of L2[L1] are sound,
and by Proposition 5.12 all the axioms of L2[L1] are valid. Moreover as can be
seen immediately by definition of importing, L2[L1] is total. Hence L2[L1] is
sound by Proposition 5.9. QED

Corollary 5.15 The �-modalization by modal logic T of a sound and total logic
system suitably disjoint with LT, is sound. Similarly for �-temporalization and
for adding a �-constructivist dimension to a logic system.

6 Preservation of concrete completeness

In order to show that concrete completeness is preserved by importing we as-
sume that the given logic systems have certain canonical interpretations. These
canonical interpretations are such that, when combined, produce interpretations
that guarantee that the logic system resulting from the importing is concretely
complete.

In order to simplify the presentation, we assume fixed a suitably disjoint
pair (Σ1,∆1, I1) and (Σ2,∆2, I2) of concretely complete logic systems, denoted
by L1 and L2 respectively, and assume fixed k in {1, 2}.
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The canonical interpretation for Σk induced by L2[L1] and by a set Γ of
concrete formulas in the language of L2[L1], denoted by

IΓk ,

is the interpretation (G′, α,D, id!) defined as follows:

• V′ is {w is a concrete expression over Σ2[Σ1] : trg+(w) ∈ Vk};

• ew1...wm ∈ E′(w1 . . . wm, e〈w1, . . . , wm〉) if and only if w1, . . . , wm is in V′,
e is in Ek and the source of e coincides with the target of 〈w1, . . . , wm〉;

• D = {ϕ is a formula in V′ : Γ `L2[L1] ϕ};

• αv(w) is the target of w and αe(ew1...wm) is e.

We now show that the rules of Lk are sound with respect to these canon-
ical interpretations. That would mean that the given (concretely complete)
logic systems can be enriched with these interpretations without affecting their
entailments. We prove first some auxiliary results.

Proposition 6.1 The canonical interpretation IΓk is total and deterministic.

Proof: It is enough to observe that for any elements w1, . . . , wn of V′ and
e in Ek with the source of e coinciding with the target of 〈w1, . . . , wn〉, the
set {e′ ∈ E′ : αe(e′) = e and the source of e′ is w1 . . . wn} is, by definition of
canonical interpretation, a singleton. QED

Observe that the unique maximal deterministic sub-interpretation of the
canonical interpretation IΓk coincides with it, since IΓk is deterministic. So its
abstraction map is α.

Proposition 6.2 Let w1, . . . , wm be expressions in V′ and w an expression in
Σ+

k with source coinciding with the target of 〈w1, . . . , wm〉. Denote the target
of (α+)−1(w)w1...wm in IΓk by w′1 . . . w

′
n, then

〈w′1, . . . , w′n〉 = w ◦ 〈w1, . . . , wm〉.

Proof: The proof is carried out by induction on w:

(1) w is εv1...vm . Hence (α+)−1(w)w1...wm is εw1...wm and so its target is w1 . . . wm.
The thesis follows since 〈w1, . . . , wm〉 is w ◦ 〈w1, . . . , wm〉;
(2) w is psj . The proof of this case is similar to the proof of (1) so we omit it;

(3) w is 〈w01, . . . , w0n〉. Therefore (α+)−1(w)w1...wm is 〈(α+)−1(w01)w1...wm , . . . ,
(α+)−1(w0n)w1...wm〉. Since, for j = 1, . . . ,m, the target of (α+)−1(w0j)w1...wm is
a sequence with only one element, by induction hypothesis it is w0j◦〈w1, . . . , wm〉.
Hence the target of (α+)−1(w)w1...wm is w01◦〈w1, . . . , wm〉 . . . w0n◦〈w1, . . . , wm〉.
The thesis follows since 〈w01 ◦ 〈w1, . . . , wm〉, . . . , w0n ◦ 〈w1, . . . , wm〉〉 is equal to
〈w01, . . . , w0n〉 ◦ 〈w1, . . . , wm〉;
(4) w is ew0. Denote the target of (α+)−1(w0)w1...wm in IΓk by w′01 . . . w

′
0n.
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Hence the target of (α+)−1(w)w1...wm is the target of (αe)−1(e)w′01...w
′
0n

which is
e〈w′01, . . . , w

′
0n〉. By induction hypothesis 〈w′01, . . . , w

′
0n〉 is w0 ◦ 〈w1, . . . , wm〉,

and so the target of (α+)−1(w)w1...wm is e ◦ (w0 ◦ 〈w1, . . . , wm〉) which is w ◦
〈w1, . . . , wm〉. QED

As an illustration, let c be a constructor of Σ2 with source π2π2 and target
π2, and ϕ1 and ϕ2 concrete formulas in Σ2[Σ1]+ with target π2. Then

(α+)−1(〈pπ2π2
1 , c〉)ϕ1ϕ2

is 〈pϕ1ϕ2
1 , cϕ1ϕ2〉 by definition of canonical interpretation, and its target is the

sequence ϕ1 c〈ϕ1, ϕ2〉. Moreover 〈ϕ1, c〈ϕ1, ϕ2〉〉 = 〈pπ2π2
1 , c〉 ◦ 〈ϕ1, ϕ2〉.

The following result establishes the expected interconnection between deriva-
tion and satisfaction in a canonical interpretation.

Proposition 6.3 Given expressions w1, . . . , wm in V′ and an expression w in
Σ+

k with source coinciding with the target of 〈w1, . . . , wm〉,

Γ `L2[L1] ϕ ◦ 〈w1, . . . , wm〉

if and only if
IΓk , IΓk , w1 . . . wm 
 ϕ.

Proof:
(⇒) Assume that Γ `L2[L1] ϕ ◦ 〈w1, . . . , wm〉. Then ϕ ◦ 〈w1, . . . , wm〉 is in D.
Observe that the target of (α+)−1(ϕ)w1...wm is a sequence with a unique element
equal to ϕ ◦ 〈w1, . . . , wm〉 by Proposition 6.2. So IΓk , IΓk , w1 . . . wm 
 ϕ;

(⇐) Assume that IΓk , IΓk , w1 . . . wm 
 ϕ. So the target of (α+)−1(ϕ)w1...wm is in
D. Observe that the target of (α+)−1(ϕ)w1...wm is a sequence with a unique ele-
ment equal to ϕ◦〈w1, . . . , wm〉 by Proposition 6.2. So Γ `L2[L1] ϕ◦〈w1, . . . , wm〉
by definition of D. QED

We say that an interpretation is a structure for a logic system if all the rules
and axioms in the logic system are respectively sound for and satisfied by that
interpretation. Recall the notion of a rule be sound for an interpretation in the
beginning of Section 5.

Proposition 6.4 The interpretation IΓk is a structure for Lk.

Proof: (1) Let r be a non-axiomatic rule in Lk with 〈ψ1, . . . , ψm〉 as premise
γ as conclusion, and w1, . . . , wm in V′ such that the source of γ coincides
with the target of 〈w1, . . . , wm〉. Assume that IΓk , w1 . . . wm 
 {ψ1, . . . , ψm}.
Then, by Proposition 6.3, Γ `L2[L1] ψj ◦ 〈w1, . . . , wm〉 for j = 1, . . . ,m. Hence
Γ `L2[L1] γ ◦ 〈w1, . . . , wm〉 using rule r. Therefore, again by Proposition 6.3, we
conclude IΓk , IΓk , w1 . . . wm 
 γ.

(2) Let ϕ be an axiom of Lk and w1, . . . , wm in V′ such that the source of ϕ
coincides with the target of 〈w1, . . . , wm〉. Note that Γ `L2[L1] ϕ ◦ 〈w1, . . . , wm〉
and so ϕ ◦ 〈w1, . . . , wm〉 is in D, and that ϕ ◦ 〈w1, . . . , wm〉 is the target of
(α+)−1(ϕ)w1...wm by Proposition 6.2. Hence IΓk , IΓk , w1 . . . wm 
 ϕ by Proposi-
tion 6.1. QED
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We now study the properties of the interpretation IΓ2 [IΓ1 ], which is in the
importing of L1 into L2 whenever they contain IΓ1 and IΓ2 respectively. The
following result establishes that IΓ2 [IΓ1 ] is deterministic for all constructors
except the importing constructor, and is total.

Proposition 6.5 Given w1, . . . , wn in V ′IΓ2
[IΓ1

] and a constructor c in EΣ2[Σ1] \
{�} with source coinciding with the target of 〈w1, . . . , wn〉, the set {e′ ∈
E′IΓ2

[IΓ1
] : the source of e′ is w1 . . . wn and e′ abstracts to e} is a singleton. Mo-

reover IΓ2 [IΓ1 ] is total.

We omit the proof of this proposition since it follows immediately by definition
of total interpretation, of importing and by Proposition 6.1.

We denote by
JIΓ2

[IΓ1
]

the maximal deterministic sub-interpretation of IΓ2 [IΓ1 ] with abstraction map
βIΓ2

[IΓ1
] such that (βeIΓ2

[IΓ1
])
−1(�)ϕ = ��ϕ ϕ for every concrete proper formula ϕ

in Σ+

1 . This sub-interpretation is well defined taking into account that Γ `L2[L1]

ϕ iff Γ `L2[L1] �ϕ for any concrete proper formula ϕ in Σ+

1 , due to IMP and
REF.

Proposition 6.6 Let w1, . . . , wm be in V ′IΓ2
[IΓ1

] and w an irreducible path in

Σ2[Σ1]+ with source coinciding with the target of 〈w1, . . . , wn〉. Denote the
target of (β+

IΓ2
[IΓ1

])
−1(w)w1...wm by w′1 . . . w

′
n, then

〈w′1, . . . , w′n〉 = w ◦ 〈w1, . . . , wm〉.

We omit the proof of the previous proposition since it is identical to the proof
of Proposition 6.2.

Proposition 6.7 Given expressions w1, . . . , wm in V ′IΓ2
[IΓ1

] and a formula ϕ in

Σ2[Σ1]+ with source coinciding with the target of 〈w1, . . . , wn〉,

Γ `L2[L1] ϕ ◦ 〈w1, . . . , wm〉

if and only if
IΓ2 [IΓ1 ], JIΓ2

[IΓ1
], w1 . . . wm 
 ϕ.

Proof:
(⇒) Assume that Γ `L2[L1] ϕ ◦ 〈w1, . . . , wm〉. Observe that ϕ ◦ 〈w1, . . . , wm〉
is a concrete formula in Σ2[Σ1]+ whose target is either in V1 or in V2. Then
ϕ ◦ 〈w1, . . . , wm〉 is in DIΓ2

[IΓ1
]. Since the target of (β+

IΓ2
[IΓ1

])
−1(ϕ)w1...wm is a

sequence with a unique element equal, by Proposition 6.6, to ϕ ◦ 〈w1, . . . , wm〉,
we have that IΓ2 [IΓ1 ], JIΓ2

[IΓ1
], w1 . . . wm 
 ϕ;

(⇐) Assume that IΓ2 [IΓ1 ], JIΓ2
[IΓ1

], w1 . . . wm 
 ϕ. Then the target of the path

(β+

IΓ2
[IΓ1

])
−1(ϕ)w1...wm is in DIΓ2

[IΓ1
]. Since it is a sequence with a unique element

equal, by Proposition 6.6, to ϕ ◦ 〈w1, . . . , wm〉, we have that Γ `L2[L1] ϕ ◦
〈w1, . . . , wm〉 since DIΓ2

[IΓ1
] is the union of the sets of distinguished truth values

of IΓ1 and of IΓ2 . QED
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Concrete completeness preservation

A logic system Lk, for k = 1, 2, is full for importing with respect to logic system
L2[L1] whenever it contains the canonical interpretations induced by L2[L1]
and by any set Γ of concrete formulas in the language of L2[L1].

It is immediate to show that concrete completeness is preserved by the
importing of full logic systems.

Theorem 6.8 (Concrete completeness preservation)
The logic system resulting from importing logic system L1 into logic system L2

is concretely complete whenever L1 and L2 are concretely complete and full for
importing with respect to L2[L1].

Proof: Let L1 = (Σ1,∆1, I1) and L2 = (Σ2,∆2, I2) be a suitably disjoint
pair of concretely complete logic systems, full for importing with respect to
L2[L1], and let Γ ∪ {ϕ} be a set of concrete formulas over Σ2[Σ1]. Suppose
that Γ 6`L2[L1] ϕ. Then IΓ2 [IΓ1 ], JIΓ2

[IΓ1
], id! 6
 ϕ by Proposition 6.7. On the

other hand Γ `L2[L1] γ for every γ in Γ and so, by the same proposition,
IΓ2 [IΓ1 ], JIΓ2

[IΓ1
], id! 
 γ for every γ in Γ. Since IΓk is an interpretation for

Lk by Proposition 6.4 and Lk is full for importing with respect to L2[L1], for
k = 1, 2, then the interpretation IΓ2 [IΓ1 ] is in logic system resulting from the
importing, and so Γ 6�L2[L1] ϕ. QED

Observe that the enrichment of a complete logic system with the canonical
interpretations that make it full for importing, does not change the entailment
of the logic system. Hence, we enrich first the given logic systems with those
interpretations, and only after that we do the importing.

Corollary 6.9 Let L1 be a concretely complete logic system (Σ1,∆1, I1) suit-
ably disjoint with the logic system Lltl for linear temporal logic introduced
in Example 4.2. Then (Σ1,∆1, I1 ∪ {IΓ1 : Γ ⊆ L(Σltl[Σ1])}) and (Σltl

Qltl ,∆
ltl,

Iltl ∪ {IΓ2 : Γ ⊆ L(Σltl[Σ1])}) are equivalents in terms of entailment with L1

and Lltl respectively. Moreover the importing of the first into the latter is
concretely complete.

Analogous corollaries can be established for importing involving the modal
logic system and the intuitionistic logic system.

7 Outlook

We provided importing with a calculus canonically built from the calculi of the
two given logics and proved, under mild conditions, that it is sound and con-
cretely complete with respect to the semantics of importing proposed in [12].
To this end, we adopted the graph-theoretic account of syntax and semantics of
logics first proposed in [13]. However, we presented herein for the first time how
to define local entailment within the setting of the graph-theoretic semantics
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and developed a novel graph-theoretic account of Hilbert-style calculi. For illus-
trating purposes we analyzed temporalization [4], modalization [3] and adding
a intuitionistic dimension to any given logic.

The graph-theoretic approach can be applied to a wide class of logics, even
substructural ones and logics with partial semantics. However, our soundness
preservation result assumes that our models are total. Note that all algebraic
logics have total graph-theoretic models and, so, the totality assumption is not
too restrictive. Furthermore, the assumption (presence of canonical models)
needed for the completeness preservation result is quite mild.

Along this line of work on importing, one should look at extending the
soundness preservation result to more exotic logics with partial models. In
another direction, one should also check if importing is a conservative extension
of both given logics. In fact, in [12] the result was obtained only for the imported
logic and only for global entailment.

Appendix

For dealing with inference rules and derivations we need to work with morphisms
between formulas. In fact, these morphisms live in a generalized 2-category (for
more information on 2-categories see [8]), that we introduce now.

A generalized 2-category is a tuple

C = (C0, C1, C2, src, trg, id, ◦, src, trg, ID, ◦v, ◦h)

such that:

(i) (C0, C1, src, trg, id, ◦) is a category (the base category).

(ii) C2 is a class (of the generalized 2-cells).

(iii) (C1, C2, src, trg, ID, ◦v) is a category (the vertical meta category).

(iv) ◦h (the horizontal composition) is a partial function from C2 × C2 to C2

such that whenever the horizontal compositions at hand are defined the
following equalities hold:

– src(δ2 ◦h δ1) = src(δ2) ◦ src(δ1) and trg(δ2 ◦h δ1) = trg(δ2) ◦ trg(δ1)
(compatibility of horizontal and base compositions);

– δ ◦h IDidA = δ and IDidA ◦h δ = δ (unit of horizontal composition);

– (δ3◦hδ2)◦hδ1 = δ3◦h(δ2◦hδ1) (associativity of horizontal composition);

– (δ4 ◦h δ3) ◦v (δ2 ◦h δ1) = (δ4 ◦v δ2) ◦h (δ3 ◦v δ1) (interchange law).

In order to simplify the presentation, when src(δ) = f and trg(δ) = g we write
δ : f ⇒ g or δ ∈ C2(f, g). A generalized 2-category is horizontally full whenever
trg(src(δ1)) = src(src(δ2)) and trg(trg(δ1)) = src(trg(δ2)) implies that δ2 ◦h δ1 is
defined.

Similarly to the canonical generation of the language category G+ from
a m-graph G, described in [12], a generalized 2-category can be canonically
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generated from a generalized 2-graph, as we describe now. First we define what
is a generalized 2-graph and define the set of 2-paths of such a generalized
2-graph.

A generalized 2-graph H over a graph G is a graph with G+(·, ·) as the set
of vertexes. The set

2Pt(H)

of 2-paths of a 2-graph H and respective source src2Pt(H) and target trg2Pt(H)

are inductively defined as follows:

• εw ∈ 2Pt(H) where εw is the empty 2-path on w with{
src2Pt(H)(εw) = w

trg2Pt(H)(εw) = w;

• e ∈ 2Pt(H) with {
src2Pt(H)(e) = src(e)

trg2Pt(H)(e) = trg(e)

whenever e is an edge of H;

• δ2 •v δ1 ∈ 2Pt(H) with{
src2Pt(H)(δ2 •v δ1) = src2Pt(H)(δ1)

trg2Pt(H)(δ2 •v δ1) = trg2Pt(H)(δ2)

whenever δ1 and δ2 are in 2Pt(H) and trg2Pt(H)(δ1) = src2Pt(H)(δ2);

• δ2 •h δ1 ∈ 2Pt(H) with{
src2Pt(H)(δ2 •h δ1) = src2Pt(H)(δ2) ◦ src2Pt(H)(δ1)

trg2Pt(H)(δ2 •h δ1) = trg2Pt(H)(δ2) ◦ trg2Pt(H)(δ1)

whenever δ1, δ2 ∈ 2Pt(H), trg+(src2Pt(H)(δ1)) = src+(src2Pt(H)(δ2)) and
trg+(trg2Pt(H)(δ1)) = src+(trg2Pt(H)(δ2)).

Observe that 2Pt(H) induces the following 2-graph

H†2

over G, defined as
⋃
k∈N

H
†2
k where:

• H
†2
0 is the 2-graph over G with all the edges of H taken as edges, plus

additional edges of the form

P
〈w1,...,wn〉
j : 〈w1, . . . , wn〉 ⇒ wj

(to be used later on as 2-projections) with n > 1.
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• H
†2
k+1 is the 2-graph over G obtained from H

†2
k by adding edges of the

form
〈δ1, . . . , δm〉 : w ⇒ 〈w′1, . . . , w′m〉

(to be used later on for tupling) for any 2-paths

δj : w ⇒ w′j

of H
†2
k for j = 1, . . . ,m with m > 1.

So, the envisaged horizontally full generalized 2-category with 2-products of
objects with the same source, induced by a given 2-graph H, is the tuple:

GH = (|G+|, G+(·, ·), 2Pt(H†2)|≈, src+, trg+, id, ◦, src, trg, ID, ◦v, ◦h)

where 2Pt(H†2)|≈ is the quotient set of 2Pt(H†2) by ≈ defined as the least
equivalence relation containing the following pairs:

• 〈P〈w1,...,wn〉
1 , . . . ,P

〈w1,...,wn〉
n 〉 ≈ ε〈w1,...,wn〉;

• εw •v δ ≈ δ and δ′ •v εw ≈ δ′;

• εids •h δ ≈ δ and δ′ •h εids ≈ δ′;

• δ1 •v (δ2 •v δ3) ≈ (δ1 •v δ2) •v δ3;

• δ1 •h (δ2 •h δ3) ≈ (δ1 •h δ2) •h δ3;

• (δ4 •h δ3) •v (δ2 •h δ1) ≈ (δ4 •v δ2) •h (δ3 •v δ1);

• P
〈trg

2Pt(H†2 )
(δ1),...,trg

2Pt(H†2 )
(δn)〉

j •v 〈δ1, . . . , δn〉 ≈ δj ;

• 〈δ1, . . . , δn〉 ≈ 〈δ′1, . . . , δ′n〉 if δk ≈ δ′k for k = 1, . . . , n and src2Pt(H†2 )(δ1) =
· · · = src2Pt(H†2 )(δn);

• δ2 •v δ1 ≈ δ′2 •v δ′1 whenever δk ≈ δ′k for k = 1, 2 and trg2Pt(H†2 )(δ1) =
src2Pt(H†2 )(δ2);

• δ2 •h δ1 ≈ δ′2 •h δ′1 whenever δk ≈ δ′k for k = 1, 2, trg+(src2Pt(H†2 )(δ1)) =

src+(src2Pt(H†2 )(δ2)) and trg+(trg2Pt(H†2 )(δ1)) = src+(trg2Pt(H†2 )(δ2));

• δ ≈ 〈δ1, . . . , δn〉 if P
〈w1,...,wn〉
k •v δ ≈ δk for k = 1, . . . , n and src2Pt(H†2 )(δ) =

src2Pt(H†2 )(δ1) = · · · = src2Pt(H†2 )(δn) and trg2Pt(H†2 )(δ) = 〈w1, . . . , wn〉;

and

• src([δ]) = src2Pt(H†2 )(δ) and trg([δ]) = trg2Pt(H†2 )(δ);

• IDw = [εw];

• [δ2] ◦v [δ1] = [δ2 •v δ1] if trg2Pt(H†2 )(δ1) = src2Pt(H†2 )(δ2);
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• [δ2] ◦h [δ1] = [δ2 •h δ1] if trg+(src2Pt(H†2 )(δ1)) = src+(src2Pt(H†2 )(δ2)),

trg+(trg2Pt(H†2 )(δ1)) = src+(trg2Pt(H†2 )(δ2)).

It is straightforward to verify that the tuple GH is indeed a horizontally full
generalized 2-category. Moreover, products in a generalized 2-category resulting
from this construction are such that each finite tupling of morphisms in the
base category, with the same source, is the vertex of a 2-product, as established
without loss of generality for pairings as follows. Let w1 and w2 be morphisms
in G+ such that src+(w1) = src+(w2). Then the triple

(〈w1, w2〉, [P〈w1,w2〉
1 ], [P

〈w1,w2〉
2 ])

is a product in the vertical meta category of GH . Indeed, assume that [δ1] :
w → w1 and [δ2] : w → w2 are 2-cells. Consider the 2-cell [〈δ1, δ2〉]. Then

[P
〈w1,w2〉
k ] ◦v [〈δ1, δ2〉] = [P

〈w1,w2〉
k •v 〈δ1, δ2〉]

= [δk].

Furthermore, assume that [δ] : w → 〈w1, w2〉 is a 2-cell such that

[P
〈w1,w2〉
k ] ◦v [δ] = [δk]

for k = 1, 2. Then P
〈w1,w2〉
k •v δ ≈ δk since [P

〈w1,w2〉
k ]◦v [δ] = [P

〈w1,w2〉
k •v δ]. Thus,

δ ≈ 〈δ1, δ2〉.
Since there is no risk of ambiguity, we avoid to use the equivalence class nota-

tion when referring to 2-cells in GH . Moreover, we avoid using the qualification
generalized when referring to generalized 2-cells or generalized 2-categories.

Observe that the set ∆ in a deductive system (Σ,∆) induces in an obvious
way a 2-graph over Σ. From that 2-graph we generate, as described above, a
horizontally full generalized 2-category

Σ∆

with 2-products for objects (morphisms of Σ+) with the same source, where
rules, instantiated rules, proofs and their compositions live as 2-cells. Fur-
thermore, since every rule in ∆ is source-homogeneous, it is straightforward
to verify that every 2-cell δ : ψ1 ⇒ ψ2 of Σ∆ is source-homogeneous, that is,
src+(ψ1) = src+(ψ2).
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