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Abstract. In this paper we shall introduce the variety FWHA of frontal weak Heyting

algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in

[10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving

finite meets which also satisfies the equation τ(a) ≤ b ∨ (b → a), for all a, b ∈ A. These

operators were studied from an algebraic, logical and topological point of view by Leo

Esakia in [10]. We will study frontal operators in weak Heyting algebras and we will

consider two examples of them. We will give a Priestley duality for the category of frontal

weak Heyting algebras in terms of relational spaces ⟨X,≤, T,R⟩ where ⟨X,≤, T ⟩ is a WH -

space [6], and R is an additional binary relation used to interpret the modal operator.

We will also study the WH -algebras with successor and the WH -algebras with gamma.

For these varieties we will give two topological dualities. The first one is based on the

representation given for the frontal weak Heyting algebras. The second one is based on

certain particular classes of WH -spaces.
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1. Introduction

In [10] L. Esakia defines the modalized Heyting calculus mHC, which con-
sists of an augmentation of the Heyting propositional calculus by a modal
operator. The algebraic models of mHC are Heyting algebras with a unary
operator (called frontal operator) subject to additional identities. These
algebras are called frontal Heyting algebras. Frontal operators in Heyting
algebras were studied in [3], [10] and [16]. They are always compatible op-
erations, but not necessarily new or implicit in the sense of [2]. Classical
examples of new implicit frontal operators are the functions γ (Example 3.1
of [2]), and the successor (Example 5.2 of [2]).

On the other hand, the variety of weak Heyting algebras was introduced
in [6] (under the name of weakly Heyting algebras or WH -algebras), as the
algebraic counterpart of the least subintuitionistic logic wK considered in
[5]. A WH -algebra is a bounded distributive lattice with a binary opera-
tion → with the properties of the strict implication in the modal logic K.
Heyting algebras are examples of WH -algebras. Other examples of WH -
algebras that appear in the literature are the Basic algebras introduced by
M. Ardeshir and W. Ruitenburg in [1], and the subresiduated lattices of
G. Epstein and A. Horn in [9]. Each one of the varieties of WH -algebras
studied in [6] corresponds to two propositional logics wKσ and sKσ defined
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in [5]. The logics wKσ and sKσ are the strict implication fragments of the
local and global consequence relations defined by means of Kripke models
(see [5]), respectively. In this paper we introduce the frontal WH -algebras
as a generalization of the frontal Heyting algebras.

The paper is organized as follows. In Section 2, we recall the concepts
and basic results of the Priestley duality for WH -algebras and for the variety
of bounded distributive lattices with a modal operator. Also, we give defini-
tions and useful notations we need in the paper. In Section 3 we define the
variety of frontal WH -algebras which are a generalization of frontal Heyting
algebras. We give and study two examples of them, which will be calledWH -
algebras with successor, or SWH -algebras, and WH -algebras with gamma,
or γWH -algebras. In Section 4 we give a representation and a topological
duality for the category of frontal WH -algebras based on the duality for
the WH -algebras (see [6]) and the duality for modal lattices (see [13], [7],
or [8]). We define the frontal WH -spaces as structures ⟨X,≤, T,R⟩ where
⟨X,≤, T ⟩ is a WH -space, ⟨X,≤, R⟩ is a modal Priestley space and certain
conditions are satisfied that connect the relations T , R and ≤. From this
duality we obtain a duality similar to the one given in [3] for the category of
frontal Heyting algebras (see also [16]). In Section 5 we study two equivalent
representations for the WH -algebras with successor. These algebras are a
generalization of the KM -algebras studied by L. Esakia in [10]. The first
representation is based on the frontal WH -spaces previously studied, i.e.,
the operator is interpreted by means of the relation R in the standard way.
The other representation is based on a particular class of WH -spaces, and
in this case the modal operator is interpreted by means of the relations ≤
and T . We prove that these two representations are isomorphic. In Section
6 we study the representation for the variety of γWH -algebras. In this case
we also give two representations. In Section 7 we give some remarks about
the relation between frontal operators in WH -algebras and frontal operators
in Heyting algebras.

2. Preliminaries

If X is a set, then the power set of X will be denoted by P(X). If A is a
distributive lattice, then Fi(A) and Id(A) will respectively denote the family
of filters of A and the family of ideals of A. The filter (ideal) generated
by a subset X ⊆ A will be denoted by F(X) (I(X)). We will write ↑a (↓a)
to refer to the filter (ideal) generated by {a}. The family of the prime
filters of A is denoted by X(A). Given a bounded distributive lattice A, let
φ : A → P(X(A)) be the Stone map defined by φ(a) = {P ∈ X(A) : a ∈ P},
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for each a ∈ A. The family φ[A] = {φ(a) : a ∈ A} is closed under unions,
intersections, and contains ∅ and A; it is therefore a bounded distributive
lattice.

Given a poset ⟨X,≤⟩, a set Y ⊆ X is said to be upward closed (or upset)
if it is closed under ≤, that is if for every x ∈ Y and every y ∈ X, if x ≤ y
then y ∈ Y . The set of all upward closed sets of X will be denoted by
Pu(X). The set complement of a subset Y ⊆ X will be denoted by Y c

or X − Y. For each Y ⊆ X, the upset (downset) generated by Y is [Y ) =
{x ∈ X | ∃y ∈ Y (y ≤ x)} ((Y ] = {x ∈ X | ∃y ∈ Y (x ≤ y)}). If Y = {y},
then we will write [y) and (y] instead of [{y}) and ({y}], respectively. A
totally order-disconnected topological space is a triple ⟨X,≤⟩ = ⟨X,≤, T ⟩ ,
where ⟨X,≤⟩ is a poset, ⟨X, T ⟩ is a topological space and given x, y ∈ X
such that x � y there is a clopen upset U such that x ∈ U and y /∈ U. A
Priestley space is a compact totally order-disconnected topological space. A
morphism between Priestley spaces is a continuous and monotone function
between them. If ⟨X,≤⟩ is a Priestley space, the family of all clopen upsets
of ⟨X,≤⟩ is denoted by D(X), and it is well known that it is a bounded
distributive lattice.

The Priestley space of a bounded distributive lattice A is the triple
⟨X(A),⊆, TA⟩, where TA is the topology generated by taking as a subbase the
family {φ(a) : a ∈ A} ∪ {φ(a)c : a ∈ A}. It is well know that A ∼= D(X(A)).
For more details on Priestley spaces see [17].

A weak Heyting algebra, or WH-algebra, is an algebra ⟨A,∨,∧,→, 0, 1⟩ ,
where ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice and → : A× A → A is
a map such that for all a, b, c ∈ A,

1. (a → b) ∧ (a → c) = a → (b ∧ c),

2. (a → c) ∧ (b → c) = (a ∨ b) → c,

3. (a → b) ∧ (b → c) ≤ a → c,

4. a → a = 1.

From this definition it is immediate that the class of WH -algebras is a
variety. If A is a WH -algebra and a, b, c ∈ A, then by Proposition 3.2 of
[5] the following fact holds: if a ≤ b, then c → a ≤ c → b, b → c ≤ a → c
and a → b = 1. A weak Heyting homomorphism between two WH -algebras
A and B is a bounded lattice homomorphism h : A → B such that h(a →
b) = h(a) → h(b), for all a, b ∈ A. We denote by WH the category that
has weak Heyting algebras as objects and weak Heyting homomorphisms as
arrows.
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Recall that a Heyting algebra is an algebra ⟨A,∨,∧,→, 0, 1⟩, with an
additional binary operation → : A×A → A satisfying a∧ b ≤ c iff a ≤ b → c
for all a, b, c ∈ A. Heyting algebras are examples of WH -algebras. By the
results given in [5] a WH -algebra A is a Heyting algebra iff A satisfies the
additional inequalities (I) a ≤ 1 → a, and (R) a ∧ (a → b) ≤ b, for every
a, b ∈ A.

Let A be a WH -algebra. We define the relation T→ on Fi(A) by:

(F,G) ∈ T→ iff (∀a, b ∈ A)(((a → b ∈ F & a ∈ G) =⇒ b ∈ G). (2.1)

Let F be a filter of A. We define the operator DF : P(A) → P(A) by

DF (X) =
{
b ∈ A : ∃Y ⊆ X finite such that (

∧
Y → b) ∈ F

}
,

where
∧
Y is the infimum of Y, so if Y is empty,

∧
Y = 1. In Proposition 3.4

of [5] it was proved that for every X ⊆ A the set DF (X) is a filter of A. The
following is a generalization of the Prime Filter Theorem on the existence of
prime filters for bounded distributive lattices (Lemma 3.7 of [5]).

Proposition 2.1. Let A be a WH-algebra, let F be a filter and I an ideal
of A and let X ⊆ A. If DF (X) ∩ I = ∅, then there is a prime filter P such
that DF (X) ⊆ P , (F, P ) ∈ T→ and P ∩ I = ∅.

If T is a binary relation on a set X and x ∈ X we define T (x) = {y ∈ X :
(x, y) ∈ T}. The duality between bounded distributive lattices and Priest-
ley spaces can be specialized to WH -algebras. A WH-space is a structure
⟨X,≤, T ⟩ such that ⟨X,≤⟩ is a Priestley space, T (x) is a closed subset of X
for all x ∈ X, and

U ⇒ V = {x ∈ X : T (x) ∩ U ⊆ V } ∈ D(X),

for every U, V ∈ D(X). It is easy to see that if ⟨X,≤, T ⟩ is a WH -space,
then (≤ ◦ T ) ⊆ T (i.e., for every x, y, z ∈ X, if x ≤ z and (z, y) ∈ T
then (x, y) ∈ T ). If ⟨X,≤, T ⟩ is a WH -space, then the bounded distributive
lattice D(X) with the additional operation ⇒ is a WH -algebra.

Let ⟨X1,≤1, T1⟩ and ⟨X2,≤2, T2⟩ beWH -spaces. A function f : X1 → X2

is aWH-morphism if it is a morphism of Priestley spaces (i.e., it is continuous
and monotone), and

1. If (x, y) ∈ T1 then (f(x), f(y)) ∈ T2.

2. If (f(x), z) ∈ T2 then there is y ∈ X1 such that (x, y) ∈ T1 and f(y) = z.
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We denote by WHS the category that has WH -spaces as objects and
WH -morphisms as arrows.

The next theorem is proved in [6]. We only give a sketch of the proof.
The missing details can be found in [6].

Theorem 2.2. The categories WH and WHS are dually equivalent.

Proof. Define a contravariant functor (−)∗ : WH → WHS as follows. If
A is a WH -algebra, then A∗ = ⟨X(A),⊆, T→, TA⟩, where ⟨X(A),⊆, TA⟩ is
the Priestley space of A, and T→ ⊆ X(A)×X(A) is the relation defined in
(2.1). If h : A1 → A2 is a homomorphism of WH -algebras, then the mapping
h∗ : X(A2) → X(A1) given by h∗(P ) = h−1(P ) is a WH -morphism.

Next define the contravariant functor (−)∗ : WHS → WH as follows.
For a WH -space ⟨X,≤, T ⟩, the structure ⟨X,≤, T ⟩∗ = ⟨D(X),∪,∩,⇒, ∅, X⟩
is a WH -algebra. If f : X1 → X2 is a WH -morphism, then the map
f∗ : D(X2) → D(X1) given by f∗(U) = f−1(U) is a homomorphism between
WH -algebras.

Consequently, (−)∗ and (−)∗ are well-defined contravariant functors.
Moreover, the function φ : A → D(X(A)) is a natural isomorphism between
the WH -algebras A and (A∗)

∗ = ⟨D(X(A)),∪,∩,⇒, ∅, X(A)⟩. Moreover,
the function ε : X → X(D(X)) given by ε(x) = {U ∈ D(X) : x ∈ U} is a
natural isomorphism between the WH -spaces ⟨X,≤, T ⟩ and (⟨X,≤, T ⟩∗)∗ =
⟨X(D(X)),⊆, T⇒⟩. This yields the desired dual equivalence between WH
and WHS.

The Priestley spaces dual to Heyting algebras were characterized by
Esakia in [11] (see also [12]). As Heyting algebras are special WH -algebras,
the Priestley spaces of Heyting algebras are WH -spaces with respect to the
order. A Priestley space ⟨X,≤⟩ is said to be an Esakia space if (U ] is clopen,
for every clopen U . In particular, a WH -space ⟨X,≤, T ⟩ is an Esakia space
iff T = ≤.

An algebra ⟨A, τ⟩ is a modal lattice, or a τ -lattice, if A is a bounded
distributive lattice and τ is a unary operator defined on A such that:

1. τ(1) = 1, and

2. τ (a ∧ b) = τ(a) ∧ τ(b) for all a, b ∈ A.

A morphism of bounded lattices which preserve the modal operator will
be called a morphism of modal lattices.

If X is a set and R ⊆ X ×X, for every U ⊆ X we define the set

τR(U) = {x ∈ X : R(x) ⊆ U}.
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Definition 2.3. A modal Priestley space ([13], [7], or [8]) is a relational
structure ⟨X,≤, R⟩ where ⟨X,≤⟩ is a Priestley space, and R is a binary
relation on X such that

1. R (x) is a closed upset, for each x ∈ X.

2. τR (U) ∈ D (X) , for each U ∈ D (X).

Let ⟨X1,≤1, R1⟩ and ⟨X2,≤2, R2⟩ be two modal Priestley spaces. A p-
morphism is a monotone and continuous mapping f : X1 → X2 satisfying
the following conditions:

1. If (x, y) ∈ R1 then (f(x), f(y)) ∈ R2.

2. If (f(x), z) ∈ R2 then there is y ∈ X1 such that (x, y) ∈ R1 and f(y) ≤2 z.

Let A be a modal lattice. We define a binary relation Rτ on X(A) in
the following way:

(P,Q) ∈ Rτ iff τ−1(P ) ⊆ Q, (2.2)

with P,Q ∈ X(A).
We denote by ML the category that has modal lattices as objects and

morphisms of modal lattices as arrows. We denote by MS the category
that has modal Priestley spaces as objects and p-morphisms as arrows. For
the next theorem we only give a sketch of the proof. The missing details can
be found in [13], [7], or [8].

Theorem 2.4. The categories ML and MS are dually equivalent.

Proof. Define a contravariant functor F : ML → MS as follows. If ⟨A, τ⟩
is a modal lattice, then F(⟨A, τ⟩) = ⟨X(A),⊆, Rτ ⟩ is a modal Priestley space.
If h : ⟨A1, τ1⟩ → ⟨A2, τ2⟩ is a morphism of modal lattices, then the mapping
F(h) : ⟨X(A2),⊆, Rτ2⟩ → ⟨X(A1),⊆, Rτ1⟩ given by F(h)(P ) = h−1(P ) is a
p-morphism.

Next define the contravariant functor G : MS → ML as follows. For a
modal Priestley space ⟨X,≤, R⟩, the structure G(⟨X,≤, R⟩) = ⟨D(X), τR⟩ is
a modal lattice. If f : ⟨X1,≤1, R1⟩ → ⟨X2,≤2, R2⟩ is a p-morphism, then
the map G(f) : ⟨D(X2), τR2⟩ → ⟨D(X1), τR1⟩ given by G(f)(U) = f−1(U) is
a morphism of modal lattices.

Consequently, F and G are well-defined contravariant functors. If ⟨A, τ⟩
is a modal lattice, then the the mapping φ : ⟨A, τ⟩ → ⟨D (X(A)) , τRτ ⟩ is
an isomorphism of modal lattices, i.e., φ (τ(a)) = τRτ (φ (a)), for all a ∈ A.
Moreover, the function ε : ⟨X,≤, R⟩ → ⟨X(D(X)),⊆, RτR⟩ given by ε(x) =
{U ∈ D(X) : x ∈ U} is an isomorphism in the category of modal Priestley
spaces. This yields the desired dual equivalence between ML and MS.
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3. Frontal WH-algebras

In this section we define frontal WH -algebras as a generalization of frontal
Heyting algebras introduced by L. Esakia in [10]. We give two examples of
them: the WH -algebras with successor and the WH -algebras with gamma.

Definition 3.1. A frontal WH-algebra is a pair ⟨A, τ⟩ such that A is a
WH -algebra and τ is a unary operator satisfying the following equations:

(W1) τ(a ∧ b) = τ(a) ∧ τ(b),

(W2) a ≤ τ(a),

(W3) τ(a) ≤ b ∨ (b → a).

If ⟨A, τ⟩ is a frontal WH -algebra we say that τ is a frontal operator.
Let FWHA be the category whose objects are frontal WH -algebras and
whose morphisms are morphisms of WH -algebras which preserve the frontal
operator. Note that this category is a subcategory of the category of modal
algebras.

We will define some particular classes of frontal WH -algebras. First we
will define the class of SWH -algebras that are a generalization of the KM -
algebras (also called fronton) studied by L. Esakia in [10] (these algebras
were introduced in [14] by Kuznetsov. See also [15], [2] and [4]).

Definition 3.2. A WH-algebra with successor, or SWH-algebra, is a pair
⟨A,S⟩ such that S : A → A satisfies the equations (W2), (W3), and the
following equation:

S(a) → a ≤ a. (3.1)

If ⟨A,S⟩ is a SWH -algebra, the function S is called the successor func-
tion. Let FWHAS be the category whose objects are SWH -algebras and
whose morphisms are morphisms of WH -algebras which preserve the modal
operator.

Lemma 3.3. If ⟨A,S⟩ is a SWH-algebra, then ⟨A,S⟩ is a frontal WH-algebra
and

S(a) = min(Ea)→, (3.2)

for each a ∈ A, where (Ea)→ = {b ∈ A : b → a ≤ b}.

Proof. First we prove that S(a∧ b) = S(a)∧S(b), for all a, b ∈ A. Observe
that S is monotone. In fact, if c ≤ d then using (W3), (3.1) and (W2) we
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have that

S(c) = S(c ∧ d) ≤ S(d) ∨ (S(d) → (c ∧ d))
= S(d) ∨ ((S(d) → c) ∧ (S(d) → d))
≤ S(d) ∨ ((S(d) → c) ∧ S(d)) = S(d).

Thus S(a ∧ b) ≤ S(a) ∧ S(b). On the other hand we have S(a) ≤ S(a ∧ b) ∨
(S(a ∧ b) → a) and S(b) ≤ S(a ∧ b) ∨ (S(a ∧ b) → b). Taking meet of these
two inequalities we obtain

S(a) ∧ S(b) ≤ S(a ∧ b) ∨ ((S(a ∧ b) → a) ∧ (S(a ∧ b) → b))
= S(a ∧ b) ∨ (S(a ∧ b) → (a ∧ b))
≤ S(a ∧ b) ∨ (a ∧ b)
= S(a ∧ b).

Thus S(a) ∧ S(b) ≤ S(a ∧ b). Therefore S(a ∧ b) = S(a) ∧ S(b), for every
a, b ∈ A.

We now prove that S is given by S(a) = min(Ea)→, for each a ∈ A. By
equations (W2) and (3.1) we conclude that S(a) ∈ (Ea)→. Let b ∈ (Ea)→.
By equation (W3) we have that S(a) ≤ b. Thus, S(a) = min(Eb)→.

Definition 3.4. A WH-algebra with γ, or γWH-algebra, is a pair ⟨A, γ⟩
such that γ : A → A satisfies the following equations:

(g1) γ(0) → 0 = 0,

(g2) γ(a) ≤ b ∨ (b → a),

(g3) γ(a) = a ∨ γ(0).

Note that a gamma function on a WH -algebra can be characterized by
the equations that define a frontal operator, equation (g1) and the equation
γ(a) ≤ a ∨ γ(0). An easy computation proves that if this function exists
then it takes the form

γ(a) = min{b ∈ A : ¬b ∨ a ≤ b}, (3.3)

where ¬b = b → 0. Let FWHAγ be the category whose objects are γWH-
algebras and whose morphisms are morphisms of WH -algebras which pre-
serve the gamma operator.

In the following theorem we present another axiomatization of the γWH -
algebras.

Theorem 3.5. Let A be a WH-algebra. Then there exists a unary operator
γ : A → A such that ⟨A, γ⟩ is a γWH-algebra iff
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1. a ≤ b ∨ (b → a), for all a ∈ A,

2. There exists an element c ∈ A satisfying the following conditions:

(a) c is dense, i.e., c → 0 = 0,

(b) c ≤ a ∨ (a → 0), for all a ∈ A.

Proof. ⇒) If ⟨A, γ⟩ is a γWH -algebra, then a ≤ b∨ (b → a), for all a ∈ A,
and the element c = γ(0) satisfies the conditions (a) and (b).

⇐) Define a unary function γ : A → A as

γ(a) = a ∨ c,

for each a ∈ A. Then it is clear that a ≤ γ(a), for all a ∈ A, and γ(0) → 0 =
c → 0 = 0. We prove condition (g2) of Definition 3.4. As b → 0 ≤ b → a,
for all a, b ∈ A, we have that

γ(a) = a ∨ c ≤ b ∨ (b → a) ∨ c ≤ b ∨ (b → a) ∨ b ∨ (b → 0) = b ∨ (b → a),

for all a, b ∈ A. Therefore, ⟨A, γ⟩ is a γWH -algebra.

Remark 3.6. Taking into account the previous theorem and that the identity
a ≤ b ∨ (b → a) is satisfied in any frontal weak Heyting algebra, it is thus
natural to address the question of when the weak Heyting reducts of a sub-
variety of frontal weak Heyting algebras form a subvariety of weak Heyting
algebras.

For example, the Heyting reduct of the variety of frontal Heyting algebras
coincides with the variety of Heyting algebras because every Heyting algebra
H can be turned into a frontal one: we can just equip H with the trivial
operator τ putting τ(a) = a for all a ∈ H.

If V is the Heyting reduct of the variety of Heyting algebras with gamma
then it is not a variety of Heyting algebras. In order to prove it suppose that
V is a variety. By Theorem 3.1 of [2] we have that there is a unary Heyting
term t such that t = γ. On the other hand we have that γ is not expressible
by a Heyting term because in the three-element chain H3 = {0, a, 1} we have
that γ(0) = a, while t(0) ∈ {0, 1} for any Heyting term t. Therefore V is not
a variety.

We now consider two examples of WH -algebras with successor and WH -
algebras with gamma.

Example 3.7. Let A be a bounded distributive lattice and consider the
binary operation → given by a → b = 1, for every a, b ∈ A. Then ⟨A,→⟩
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is a WH -algebra. There exists the successor function iff A is trivial (it has
one element). In particular, if A is not trivial then S and γ are not given by
(3.2) and (3.3), respectively.

Example 3.8. Consider the chain of three elements H3 = {0, a, 1} with the
following operations:

→̂ 0 a 1

0 1 1 1
a 1 1 1
1 0 0 1

→̃ 0 a 1

0 1 1 1
a 0 1 1
1 0 a 1

It is easy to see that the structures ⟨H3, →̂⟩ and ⟨H3, →̃⟩ areWH -algebras (in
particular, ⟨H3, →̃⟩ is a Heyting algebra). The following operations defined
by the tables give examples of SWH -algebras and γWH-algebras:

x S→̂(x) γ→̂(x)

0 1 1
a 1 1
1 1 1

x S→̃(x) γ→̃(x)

0 a a
a 1 a
1 1 1

4. Representation and duality

Let ⟨X,≤, T ⟩ be a WH -space. We define an auxiliary relation T̄ ⊆ X ×X
in the following way:

(x, y) ∈ T̄ iff (x, y) ∈ T and y � x.

Definition 4.1. A frontal WH -space is a structure ⟨X,≤, T,R⟩ such that:

1. ⟨X,≤, T ⟩ is a WH -space and ⟨X,≤, R⟩ is a modal Priestley space.

2. T̄ ⊆ R ⊆ ≤.

Proposition 4.2. If ⟨X,≤, T,R⟩ is a frontal WH-space, then

⟨D(X),∪,∩,⇒, τR, ∅, X⟩

is a frontal WH-algebra.

Proof. Let U, V ∈ D(X). We prove that τR(U) ⊆ V ∪ (V ⇒ U). Let
x ∈ τR(U), i.e., R(x) ⊆ U . Suppose that x /∈ V ⇒ U . Then, T (x) ∩ V * U .
Thus there exists y ∈ X such that (x, y) ∈ T , y ∈ V and y /∈ U . If y ≤ x then
x ∈ V . If y � x, then (x, y) ∈ T̄ . By item 2. of Definition 4.1 we conclude
that (x, y) ∈ R, so y ∈ U , a contradiction. Therefore τR(U) ⊆ V ∪ (V ⇒ U).

By the condition R ⊆ ≤ we have the equation (W1). The equation
(W2) is easy to verify.
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Let ⟨A, τ⟩ be a frontal WH -algebra. Since τ is a modal operator, we can
consider the relation Rτ ⊆ X(A)×X(A) defined in (2.2).

Remark 4.3. If A is a WH -algebra and τ : A → A a function satisfying
the equations (W1) and (W2), then ⟨A, τ⟩ is a τ -lattice and the structure
⟨X(A),⊆, Rτ ⟩ is a modal Priestley space, where we recall that Rτ is defined
in (2.2). Moreover, an easy computation shows that in a modal lattice A,
we have a ≤ τ(a) for every a ∈ A iff Rτ ⊆ ≤.

In the next lemma we give a first-order characterization of the equation
(W3).

Lemma 4.4. Let A be a WH-algebra and τ : A → A a function satisfying the
equations (W1) and (W2). Then T̄→ ⊆ Rτ if and only if τ(a) ≤ b∨(b → a),
for every a, b ∈ A.

Proof. ⇒) Suppose that there exist a, b ∈ A such that τ(a) � b∨ (b → a).
Thus there exists P ∈ X(A) such that τ(a) ∈ P , b /∈ P and b → a /∈ P .
If a ∈ DP ({b}) then b → a ∈ P , a contradiction. Thus we have that a /∈
DP ({b}). Hence by Theorem 2.1 there is Q ∈ X(A) such that (P,Q) ∈ T→,
DP ({b}) ⊆ Q and a /∈ Q. Using that b ∈ DP ({b}) we have that b ∈ Q.
However b /∈ P , so Q * P and so (P,Q) ∈ T̄→. Thus by hypothesis we have
that (P,Q) ∈ Rτ . Then using that a ∈ τ−1(P ) we conclude that a ∈ Q, a
contradiction.

⇐) We will prove that T̄→ ⊆ Rτ . Let (P,Q) ∈ T̄→. Then (P,Q) ∈ T→
and Q * P . So there exists b ∈ A such that b ∈ Q and b /∈ P . Let
a ∈ τ−1(P ), so τ(a) ∈ P . Using (W3) we conclude that b → a ∈ P, and so
a ∈ Q (because b ∈ Q and (P,Q) ∈ T→). Therefore T̄→ ⊆ Rτ .

Corollary 4.5. ⟨A, τ⟩ is a frontal WH-algebra if and only if the structure
⟨X(A),⊆, T→,Rτ ⟩ is a frontal WH-space.

Let FWHS be the category whose objects are frontal WH -spaces and
whose morphisms are functions f : X1 → X2 such that f is a WH -morphism
and f is a p-morphism. Then by the results given in [6] for WH -algebras
and the results given in [13], [7] or [8] for bounded distributive lattices with
a modal operator we obtain the following result.

Theorem 4.6. The category FWHS is dually equivalent to the category
FWHA.
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5. Representation theory for the category of WH -algebras
with successor

Definition 5.1. A frontal S-space is a frontal WH -space ⟨X,≤, T,R⟩ such
that

(S) For every U ∈ D(X) and x ∈ X, if x ∈ U c then there exists y ∈ U c

such that (x, y) ∈ T and R(y) ⊆ U .

The category FWHSS consists of all frontal S-spaces and the same
morphisms as in FWHS.

Lemma 5.2. Let A be a WH-algebra. Let S : A → A be a function. Then the
pair ⟨A,S⟩ is a SWH-algebra if and only if ⟨X(A),⊆, T→,RS⟩ is a frontal
S-space.

Proof. ⇒) We will prove that if P ∈ X(A) and a /∈ P then there exists
Q ∈ X(A) such that a /∈ Q, (P,Q) ∈ T→ and RS(Q) ⊆ φ(a). Let a /∈ P ,
so S(a) → a /∈ P . Thus there is Q ∈ X(A) such that a /∈ Q, S(a) ∈ Q and
(P,Q) ∈ T→. As S(a) ∈ Q, we have RS(Q) ⊆ φ(a). Thus, ⟨X(A),⊆, T→,RS⟩
is a frontal S-space.

⇐) We will prove that S(a) → a ≤ a, for any a ∈ A. Suppose that there
exists a ∈ A such that S(a) → a � a. Then there exists P ∈ X(A) such that
S(a) → a ∈ P, and a /∈ P . By hypothesis there exists Q ∈ X(A) such that
(P,Q) ∈ T→, a /∈ Q, and S(a) ∈ Q. From (P,Q) ∈ T→ and S(a) → a ∈ P ,
we obtain a ∈ Q, which is a contradiction. Thus, S(a) → a ≤ a, for any
a ∈ A.

Then by Lemma 5.2 and Theorem 4.6 we have the following

Theorem 5.3. The category FWHSS is dually equivalent to the category
FWHAS.

In the following we will introduce a new type of WH -spaces that are dual
to the SWH -algebras.

If X is a set and T ⊆ X ×X, for each U ⊆ X we define the set

UT = {x ∈ U c : T (x) ∩ U c ⊆ (x]}.

Definition 5.4. A WH-space with successor, or SWH-space, is a WH -space
⟨X,≤, T ⟩ satisfying the following conditions for every U ∈ D(X):

(a) U ∪ UT ∈ D(X).

(b) If x ∈ U c, then T (x) ∩ UT ̸= ∅.



Frontal operators in weak Heyting algebras 13

(c) If (x, y) ∈ T̄ , and x ∈ U ∪ UT , then y ∈ U .

We will write SWHS for the category whose objects are SWH -spaces
and whose morphisms are WH -morphisms f : ⟨X1,≤1 T1⟩ → ⟨X2,≤2, T2⟩
such that

f−1(U ∪ UT2) = f−1(U) ∪ f−1(U)T1 ,

for each U ∈ D(X2). These morphisms will be called SWH-morphisms.

Proposition 5.5. If ⟨X,T ⟩ is a SWH-space, then ⟨D(X),∪,∩,⇒, S, ∅, X⟩
is a SWH-algebra where S(U) = U ∪ UT , for each U ∈ D(X).

Proof. It is clear that S is monotone, well defined (by condition (a) of
Definition 5.4) and that U ⊆ S(U), for every U ∈ D(X). Let U, V ∈ D(X).
We will prove that S(U ∩ V ) = S(U) ∩ S(V ). As S is monotone, we have
that S(U ∩V ) ⊆ S(U)∩S(V ). Let x ∈ S(U)∩S(V ). Then, x ∈ U ∪UT and
x ∈ V ∪ VT . Suppose that x /∈ U ∩ V . We will prove that

x ∈ (U ∩ V )T = {y ∈ (U ∩ V )c : T (y) ∩ (U ∩ V )c ⊆ (y]} .

Consider the case that x /∈ U . If x /∈ V then x ∈ (U ∩ V )T . If x ∈ V we
will prove that T (x) ∩ V c ⊆ (x] which implies that x ∈ (U ∩ V )T . Suppose
that there is y ∈ X such that (x, y) ∈ T , y ∈ V c and y � x, so (x, y) ∈ T .
Thus by condition (c) of Definition 5.4 we conclude that y ∈ V , which is a
contradiction. Therefore x ∈ S(U ∩ V ).

We will prove that S(U) ⊆ V ∪ (V ⇒ U). Suppose that there exists
x ∈ X such that x ∈ S(U) and x /∈ V ⇒ U. Then there exists y ∈ X such
that (x, y) ∈ T, y ∈ V and y /∈ U . If y � x, then as (x, y) ∈ T we have that
(x, y) ∈ T̄ . As x ∈ S(U), we have by item (c) of Definition 5.4 that y ∈ U ,
which is impossible. Thus y ≤ x. As y ∈ V and S is monotone, x ∈ V .

Let U ∈ D(X). We will prove that S(U) ⇒ U ⊆ U . Suppose that there
exists x ∈ X such that x ∈ S(U) ⇒ U but x /∈ U . Then T (x)∩S(U) ⊆ U and
from condition (b) of Definition 5.4, there exists y ∈ X such that (x, y) ∈ T
and y ∈ UT ⊆ S(U). Then y ∈ T (x)∩ S(U), and consequently y ∈ U , which
is impossible because y ∈ UT .

Lemma 5.6. Let ⟨A,S⟩ be a SWH-algebra. For every a ∈ A we have that
φ(a) ∪ φ(a)T→ = φ(S(a)).

Proof. Let a ∈ A. We will prove that φ(a) ∪ φ(a)T→ = φ(S(a)), for each
a ∈ A. Let a ∈ A and let P ∈ X(A) be such that S(a) ∈ P and a /∈ P.
We will prove that P ∈ φ(a)T→ , i.e., T→(P ) ∩ φ(a)c ⊆ (P ] . If there exists
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Q ∈ T→(P )∩φ(a)c such that Q * P, then there exists b ∈ Q−P. As S(a) ≤
b ∨ (b → a) ∈ P, we have b → a ∈ P . As Q ∈ T→(P ) and b ∈ Q, we deduce
that a ∈ Q, which is an contradiction. Therefore φ(S(a)) ⊆ φ(a) ∪ φ(a)T→ .
We will prove the other inclusion. Let P ∈ φ(a) ∪ φ(a)T→ . If a ∈ P , then
S(a) ∈ P because a ≤ S(a). Assume that a /∈ P . Then P ∈ φ(a)T→ , i.e.,
T→(P )∩φ(a)c ⊆ (P ]. Suppose that S(a) /∈ P . As S(a) → a ≤ a ≤ S(a), we
have that S(a) → a /∈ P . Then by Proposition 2.1 there exists Q ∈ X(A)
such that S(a) ∈ Q, a /∈ Q and (P,Q) ∈ T→. So Q ∈ T→(P ) ∩ φ(a)c. This
implies that Q ⊆ P , and consequently a ∈ P , which is a contradiction.

Proposition 5.7. Let ⟨A,S⟩ be a SWH-algebra. Then ⟨X(A),⊆, T→⟩ is a
SWH-space.

Proof. We will prove conditions (a), (b) and (c) of Definition 5.4.

(a) It follows from Lemma 5.6.

(b) Let P ∈ X(A) and let a /∈ P . Then S(a) → a /∈ P . From Proposition
2.1 there exists Q ∈ T→(P ) ∩ φ(a)c such that S(a) ∈ Q. We will prove that
Q ∈ φ(a)T→ , i.e. T→(Q) ∩ φ(a)c ⊆ (Q]. Let D ∈ T→(Q) ∩ φ(a)c. If D * Q,
then there exists b ∈ D − Q. As S(a) ≤ b ∨ (b → a) ∈ Q, we deduce that
b → a ∈ Q, and as D ∈ T→(Q) and b ∈ D we obtain that a ∈ D, which is
impossible.

(c) Let a ∈ A and let P,Q ∈ X(A) such that (P,Q) ∈ T→, Q * P and
P ∈ φ(a)∪φ(a)T→ . From (a) we have that φ(a)∪φ(a)T→ = φ(S(a)). Then
S(a) ∈ P . As Q * P, there exists b ∈ Q−P . So from S(a) ≤ b∨(b → a) ∈ P ,
we deduce that b → a ∈ P , and as (P,Q) ∈ T→, we have that a ∈ Q.

Note that if f : ⟨X1,≤1 T1⟩ → ⟨X2,≤2, T2⟩ is a morphism of SWH -
spaces, then f∗ : D(X2) → D(X1) is a homomorphism of SWH -algebras,
because f−1(S2(U)) = f−1(U ∪ UT2) = f−1(U) ∪ f−1(U)T1 = S1(f

−1(U)),
for each U ∈ D(X2).

Proposition 5.8. Let ⟨A,SA⟩ and ⟨B,SB⟩ be SWH-algebras. Let h : A → B
be a homomorphism of SWH-algebras. Then h∗ : X(B) → X(A) is a SWH-
morphism.

Proof. Write ⟨X(A),⊆, TA⟩ and ⟨X(B),⊆, TB⟩ for the SWH -spaces of
⟨A,SA⟩ and ⟨B,SB⟩, respectively. It is clear that h∗ is a WH -morphism. We
note that in the proof of Proposition 5.7 we have proved that φ(SA(a)) =
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φ(a) ∪ φ(a)TA
, for all a ∈ A. Then

h−1
∗ (φ(a) ∪ φ(a)TA

) = h−1
∗ (φ(SA(a))

= φ(h(SA(a)))
= φ(SB(h(a)))
= φ(h(a)) ∪ φ(h(a))TB

= h−1
∗ (φ(a)) ∪ (h−1

∗ (φ(a))TB
.

Thus, h∗ : X(B) → X(A) is a SWH -morphism.

Proposition 5.9. Let ⟨A,SA⟩ be a SWH-algebra. Then φ : ⟨A,SA⟩ →⟨
D(X(A)), SD(X(A))

⟩
is an isomorphism of SWH-algebras.

Proof. It follows from Proposition 5.5, Lemma 5.6 and Proposition 5.7.

Proposition 5.10. Let ⟨X,T ⟩ be a SWH-space. Then ε : ⟨X,≤, T ⟩ →
⟨X(D(X)),⊆, T⇒⟩ is a SWH-isomorphism.

Proof. Here we use propositions 5.5, 5.7 and the fact that ε is an isomor-
phism of WH -spaces.

We only need to prove that for every clopen upset of X(D(X)) it holds
that ε−1(UT⇒) = ((ε−1(U))T . Let x ∈ ε−1(UT⇒), so ε(x) ∈ U c and T⇒(x) ∩
U c ⊆ (ε(x)]. In particular x ∈ (ε−1(U))c. Let y ∈ T (x) ∩ ε−1(U c). Thus
(x, y) ∈ T and ε(y) ∈ U c. Then (ε(x), ε(y)) ∈ T⇒, so ε(y) ∈ T⇒(ε(x)) ∩ U c.
Hence ε(y) ⊆ ε(x), so y ≤ x and consequently x ∈ ((ε−1(U))T . Conversely
let x ∈ ((ε−1(U))T , so x ∈ ε−1(U c) and T (x) ∩ ε−1(U c) ⊆ (x]. In particular
ε(x) ∈ U c. Let y ∈ T⇒(ε(x)) ∩ U c. Using that y = ε(z) for some z ∈ X we
have that (ε(x), ε(z)) ∈ T⇒, so (x, z) ∈ T . Thus z ∈ T (x) ∩ ε−1(U c) ⊆ (x],
so z ≤ x and hence y = ε(z) ⊆ ε(x). Therefore y ∈ ε−1(UT⇒).

Theorem 5.11. The category SWHS is dually equivalent to the category
FWHAS.

Proof. It follows from propositions 5.5, 5.7, 5.8, 5.9, 5.10 and the results
given in [6] for WH -algebras.

The next aim is to study the connection between frontal S-spaces and
SWH -spaces.

Lemma 5.12. Let ⟨X,≤, T ⟩ be a WH-space. Let R be a binary relation on
X that satisfies the following conditions for every U ∈ D(X) and x ∈ X:

(i) T̄ ⊆ R ⊆ ≤.
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(ii) If x ∈ U c then there exists y ∈ U c such that (x, y) ∈ T and R(y) ⊆ U .

(iii) ≤ ◦R ⊆ R.

Then for every U ∈ D(X) it holds that τR(U) = U ∪ UT .

Proof. Note that by item (iii) we obtain that the set τR(U) is an upset.
Let x ∈ U ∪ UT . If x ∈ U , then x ∈ τR(U). Let (x, y) ∈ R. By condition
(i) we have that x ≤ y, so y ∈ U . Hence U ⊆ τR(U). Suppose that x ∈ UT .
Then x ∈ U c and T (x) ∩ U c ⊆ (x]. By condition (ii) there exists y ∈ U c

with (x, y) ∈ T and R(y) ⊆ U . In particular y ≤ x. So, from y ∈ τR(U) and
y ≤ x, we obtain that x ∈ τR(U).

Conversely. Suppose that x ∈ τR(U) and x ∈ U c. By condition (ii) there
exists y ∈ U c such that (x, y) ∈ T . Note that (x, y) /∈ R, because y /∈ U .
So by condition (i) we have that (x, y) /∈ T̄ . Then by the definition of T̄ we
have y ≤ x. Thus, x ∈ UT .

Remark 5.13. If ⟨X,≤, T ⟩ is a WH-space such that T̄ ⊆ ≤, then

U ∪ UT = {x ∈ X : T̄ (x) ⊆ U},

for each U ∈ D(X). Let x ∈ U ∪ UT . If x ∈ U and y ∈ T̄ (x), then x ≤ y, so
y ∈ U . Let x ∈ U c, T (x) ∩ U c ⊆ (x] and y ∈ T̄ (x). If y ∈ U c then y ≤ x,
a contradiction. Therefore U ∪ UT ⊆ {x ∈ X : T̄ (x) ⊆ U}. Conversely let
x ∈ X with T̄ (x) ⊆ U . Suppose that x ∈ U c and take y ∈ T (x) ∩ U c. If
y � x, then y ∈ T̄ (x) ⊆ U, and thus y ∈ U , a contradiction. Therefore
{x ∈ X : T̄ (x) ⊆ U} ⊆ U ∪ UT .

Proposition 5.14. Let ⟨X,≤, T ⟩ be a SWH-space. Then there exists a
binary relation RT on X such that ⟨X,≤, T,RT ⟩ is a frontal S-space.

Proof. We define a binary relation RT on X in the following way:

(x, y) ∈ RT iff ∀U ∈ D(X) (if x ∈ U ∪ UT , then y ∈ U).

First we will prove that RT (x) is a closed upset of X, for each x ∈ X. Let
x, y, z ∈ X with y ≤ z and y ∈ RT (x). Let U ∈ D(X) such that x ∈ U ∪UT .
As y ∈ RT (x) we have that y ∈ U , and since y ≤ z, we obtain z ∈ U
because U is an upset. Hence z ∈ RT (x). Let y /∈ RT (x). Then there exists
U ∈ D(X) such that x ∈ U ∪ UT and y /∈ U . It is clear that RT (x) ⊆ U .
Thus RT (x) is closed.

In the following we will prove that RT satisfies conditions (i), (ii) and
(iii) of Lemma 5.12.
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(i) Let (x, y) ∈ T̄ , so (x, y) ∈ T and y � x. Let U ∈ D(X) such that
x ∈ U ∪ UT . By item (c) of Definition 5.4 we have that y ∈ U , so T̄ ⊆ RT .
Let (x, y) ∈ RT and suppose that x � y. Then there exists U ∈ D(X) such
that x ∈ U and y /∈ U . However (x, y) ∈ RT and x ∈ U ∪ UT , so y ∈ U , a
contradiction. Therefore RT ⊆ ≤.

(ii) Let U ∈ D(X) and x ∈ U c. Then by item (b) of Definition 5.4 there
exists y ∈ UT such that (x, y) ∈ T . We will prove that RT (y) ⊆ U . Let
(y, z) ∈ RT . Thus z ∈ U because y ∈ U ∪ UT . Therefore RT (y) ⊆ U .

(iii) First observe that for every U ∈ D(X) we have that U ∪ UT is an
upset. In order to prove it, let x, y ∈ X such that x ≤ y and x ∈ U ∪ UT .
If y ∈ U we are done. Suppose that y ∈ U c, so x ∈ UT . We will prove that
T (y)∩U c ⊆ (y]. Let z ∈ X such that (y, z) ∈ T and z ∈ U c. Using that x ≤ y
and that (y, z) ∈ T , we conclude that (x, z) ∈ T . Then z ∈ T (x)∩U c ⊆ (x],
so z ≤ x ≤ y. Thus z ≤ y, so y ∈ UT . Then for every U ∈ D(X) we
have that U ∪ UT is an upset. Suppose that there exist x, y ∈ X such that
(x, y) ∈ ≤ ◦RT . Then there exists z ∈ X such that x ≤ z and (z, y) ∈ RT .
Suppose that z ∈ U ∪ UT . We need to prove that y ∈ U . Since U ∪ UT

is an upset, z ∈ U ∪ UT and (z, y) ∈ RT , we obtain that y ∈ U . Thus,
≤ ◦RT ⊆ RT . From Lemma 5.12 we have that τRT

(U) ∈ D(X), for every
U ∈ D(X). Therefore ⟨X,≤, T,RT ⟩ is a frontal S-space.

The frontal S-space ⟨X,≤, T,RT ⟩ built in the previous proof will be
called the associated frontal S-space of the SWH -space ⟨X,≤, T ⟩. Note
that τRT

(U) = U ∪ UT , for each U ∈ D(X).

Proposition 5.15. Let ⟨X,≤, T,R⟩ be a frontal S-space. Then ⟨X,≤, T ⟩ is
a SWH-space such that R = RT .

Proof. We will prove the conditions of Definition 5.4.
(a) It follows from the fact that for the WH-space ⟨X,≤, T ⟩ the relation

R satisfies the conditions of Lemma 5.12.
(b) Let x ∈ U c. By Definition 5.1 there exists y ∈ U c such that (x, y) ∈ T

and R(y) ⊆ U . We will prove that y ∈ UT . Let z ∈ T (y)∩U c. In particular
z /∈ R(y), and as T̄ ⊆ R, we have (y, z) /∈ T . Thus z ≤ y, and consequently
y ∈ UT . Therefore y ∈ T (x) ∩ UT , i.e., T (x) ∩ UT ̸= ∅.

(c) Let (x, y) ∈ T̄ and x ∈ U ∪UT . Then (x, y) ∈ T and y � x. If x ∈ U
then y ∈ U because x ≤ y. Let x ∈ UT . Thus x ∈ U c and U c ∩ T (x) ⊆ (x].
If y ∈ U c then y ∈ U c ∩ T (x), so y ≤ x, a contradiction.

Therefore ⟨X,≤, T ⟩ is a SWH -space.
We will prove that R ⊆ RT . Let (x, y) ∈ R and x ∈ U ∪ UT . By Lemma

5.12, τR(U) = U ∪ UT , and as x ∈ τR(U), we have R(x) ⊆ U. Therefore
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y ∈ U .
We will prove that RT ⊆ R. From Lemma 5.12 we have that

τR(U) = U ∪ UT = τRT
(U)

for each U ∈ D(X). Let (x, y) ∈ RT and suppose that (x, y) /∈ R. As R(x)
is a closed upset, there exists U ∈ D(X) such that R(x) ⊆ U and y /∈ U .
So, x ∈ τR(U) = τRT

(U), i.e., RT (x) ⊆ U which is a contradiction.

In the next proposition we show that a morphism between two SWH -
spaces can be characterized as a WH -morphism that is a p-morphism with
respect to the associated frontal S-spaces.

Proposition 5.16. Let ⟨X1,≤1, T1⟩ and ⟨X2,≤2, T2⟩ be two SWH-spaces.
Let f : X1 → X2 be a WH-morphism. Then f is a SWH-morphism iff f is
a p-morphism between the associated frontal S-spaces ⟨X1,≤1, T1, RT1⟩ and
⟨X2,≤2, T2, RT2⟩.

Proof. Let ⟨X1,≤1, T1⟩ and ⟨X2,≤2, T2⟩ be two SWH -spaces. The rela-
tions RT1 and RT2 will be written as R1 and R2, respectively.

⇒) Assume that f : X1 → X2 is a SWH -morphism. Suppose that
(x, y) ∈ R1 but f(y) /∈ R2(f(x)). As R2(f(x)) is a closed upset, there
exists U ∈ D(X2) such that R2(f(x)) ⊆ U and y /∈ f−1(U). So, x ∈
f−1(SR2(U)) = SR1(f

−1(U)), and thus R1(x) ⊆ f−1(U )̇. But it implies
that y ∈ f−1(U), which is a contradiction.

Assume that (f(x), z) ∈ R2. Suppose that f(y) �2 z for each y ∈ R1(x).
Then for each y ∈ R1(x) there exists Uy ∈ D(X1) such that y ∈ f−1(Uy)

and z /∈ Uy. So, R1(x) ⊆
∪{

f−1(Uy) : y ∈ R1(x)
}
. As R1(x) is closed, it is

compact. Then there exists a finite sequence Uy1 , ..., Uyn ∈ D(X1) such that

R1(x) ⊆ f−1(Uy1) ∪ . . . ∪ f−1(Uyn) = f−1(U),

where U = Uy1 ∪ . . .∪Uyn . So, x ∈ SR1(f
−1(U)) = f−1(SR2(U)), and conse-

quently R2(f(x)) ⊆ U . But this implies that y ∈ U, which is a contradiction.
Thus, f is a p-morphism.

⇐) From Theorem 2.4 we conclude that if f is a p-morphism then
SR1(f

−1(U)) = f−1(SR2(U)), for each U ∈ D(X1). Therefore f is a SWH-
morphism.

Proposition 5.17. Let ⟨X1,≤1, R1, T1⟩ and ⟨X2,≤2, R2, T2⟩ be two frontal
S-spaces. Let f : X1 → X2 be a WH-morphism. Then f is a p-morphism iff
f is a SWH-morphism.
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Proof. The proof is similar to the previous proof.

Then we have the following

Theorem 5.18. The categories SWHS and FWHSS are isomorphic.

6. Representation theory for WH -algebras with gamma

Definition 6.1. A frontal WH -space ⟨X,≤, T,R⟩ is a frontal γ-space if the
following conditions are satisfied:

(γ1) For every x ∈ X there exists y ∈ X such that (x, y) ∈ T and R(y) = ∅.

(γ2) For every x ∈ X, R(x) = ∅ or x ∈ R(x).

The category FWHSγ is that whose objects are frontal γ-spaces and
whose morphisms are the same as in FWHS.

Lemma 6.2. Let A be a WH-algebra and let γ : A → A be a function. Then
the pair ⟨A, γ⟩ is a γWH-algebra iff ⟨X(A),⊆, T→,Rγ⟩ is a frontal γ-space.

Proof. ⇒) The proof of condition (γ1) of Definition 6.1 is similar to the
proof of Lemma 5.2 (taking a = 0). In order to prove condition (γ2) of
Definition 6.1, let P ∈ X(A) such that Rγ(P ) ̸= ∅. It implies that γ−1(P ) ̸=
A. As γ−1(P ) is a proper filter, 0 /∈ γ−1(P ). We will prove that γ−1(P ) ⊆ P.
Let γ(a) ∈ P . Then a ∨ γ(0) ∈ P , and as 0 /∈ γ−1(P ), we have a ∈ P . Thus
(P, P ) ∈ Rγ .

⇐) By Lemma 5.2 taking a = 0 we have that γ(0) → 0 = 0. We will
prove that γ(a) ≤ a ∨ γ(0), for any a ∈ A. Suppose that γ(a) � a ∨ γ(0),
then there exists P ∈ X(A) such that γ(a) ∈ P , a /∈ P and γ(0) /∈ P .
Hence γ−1(P ) is a proper filter, i.e., Rγ(P ) ̸= ∅. Then (P, P ) ∈ Rγ , and as
γ(a) ∈ P, we obtain a ∈ P , which is a contradiction. Therefore, ⟨A, γ⟩ is a
γWH -algebra.

By Lemma 6.2 and Theorem 4.6 we have the following

Theorem 6.3. The category FWHAγ is dually equivalent to the category
FWHSγ.

Recall that if X is a set and T ⊆ X×X, then ∅T = {x ∈ X : T (x) ⊆ (x]}.
In what follows we will provide an alternative duality for the category of
γWH -algebras.
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Definition 6.4. A WH-space with gamma, or γWH -space, is a WH -space
⟨X,≤, T ⟩ satisfying the following conditions:

(a) U ∪ ∅T ∈ D(X), for each U ∈ D(X).

(b) T (x) ∩ ∅T ̸= ∅, for every x ∈ X.

(c) If (x, y) ∈ T̄ and x ∈ U ∪ ∅T , then y ∈ U .

Let γWHS be the category whose objects are γWH -spaces ⟨X,≤, T ⟩
and whose morphisms are WH -morphisms f : ⟨X1,≤1 T1⟩ → ⟨X2,≤2, T2⟩
such that f−1(U ∪ ∅T2) = f−1(U) ∪ f−1(∅)T1 , for each U ∈ D(X2). These
morphisms will be called γWH-morphisms.

Proposition 6.5. If ⟨X,T ⟩ is a γWH-space, then ⟨D(X),∪,∩,⇒, γ, ∅, X⟩
is a γWH-algebra, where γ is defined as γ(U) = U ∪∅T , for each U ∈ D(X).

Proof. The proof is similar to the proof of Proposition 5.5.

Lemma 6.6. Let ⟨A, γ⟩ be a γWH-algebra. For every a ∈ A we have that
φ(a) ∪ φ(0)T→ = φ(γ(a)).

Proof. The proof is similar to the proof of Lemma 5.6.

Proposition 6.7. If ⟨A, γ⟩ is a γWH-algebra, then ⟨X(A),⊆, T→⟩ is a
γWH-space.

Proof. The proof is similar to the proof of Proposition 5.7. Condition (a)
follows from Lemma 6.6. To prove condition (b) of Definition 6.4 we take a
prime filter P in A. Since γ(0) → 0 = 0 /∈ P , there exists Q ∈ X(A) such
that (P,Q) ∈ T→ and γ(0) ∈ Q. We will prove that T→(Q) ⊆ (Q]. Suppose
that there exists D ∈ T→(Q) but D * Q. Then there exists b ∈ D − Q.
As γ(0) ≤ b ∨ (b → 0) ∈ Q, we have that b → 0 ∈ Q. As D ∈ T→(Q)
and b ∈ D, we get 0 ∈ D, which is impossible. Thus, T→(P ) ∩ ∅T→ ̸= ∅.
It is condition (b) of Definition 6.4. Finally we will prove condition (c)
of Definition 6.4. Let P,Q ∈ X(A), and a ∈ A such that (P,Q) ∈ T→,
Q * P , and P ∈ φ(a) ∪ φ(0)T→ = φ(γ(a)). Then γ(a) ∈ P , and there exists
b ∈ Q−P . From γ(a) ≤ b∨ (b → a) ∈ P and (P,Q) ∈ T→, we obtain a ∈ Q,
i.e., Q ∈ φ(a).

Note that if f : ⟨X1,≤1 T1⟩ → ⟨X2,≤2, T2⟩ is a morphism of γWH -
spaces, then f∗ : D(X2) → D(X1) is a homomorphism of γWH -algebras,
because f−1(γ(U)) = f−1(U ∪ ∅T2) = f−1(U) ∪ f−1(∅)T1 = γ(f−1(U)), for
each U ∈ D(X2).
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Proposition 6.8. Let ⟨A, γA⟩ and ⟨B, γB⟩ be γWH- algebras. Let h : A → B
be a homomorphism of γWH-algebras. Then h∗ : X(B) → X(A) is a γWH-
morphism.

Proof. The proof is similar to the proof of Proposition 5.8.

Proposition 6.9. Let ⟨A, γA⟩ be a γWH-algebra. Then φ : ⟨A, γA⟩ →⟨
D(X(A)), γD(X(A))

⟩
is an isomorphism of γWH-algebras.

Proof. It follows from Proposition 6.5, Lemma 6.6 and Proposition 6.7.

Proposition 6.10. Let ⟨X,T ⟩ be a γWH-space. Then ε : ⟨X,≤, T ⟩ →
⟨X(D(X)),⊆, T⇒⟩ is a γWH-isomorphism.

Proof. The proof is similar to the proof of Proposition 5.10.

Then we have the following

Theorem 6.11. The category γWHS is dually equivalent to the category
FWHAγ.

In the following we will study the connection between frontal γ-spaces
and γWH -spaces.

Lemma 6.12. Let ⟨X,≤, T ⟩ be a WH-space and R a binary relation on X
such that the following conditions are satisfied:

(i) T̄ ⊆ R ⊆ ≤.

(ii) For every x ∈ X there exists y ∈ X such that (x, y) ∈ T and R(y) = ∅.
(iii) ≤ ◦R ⊆ R.

(iv) For every x ∈ X, R(x) = ∅ or x ∈ R(x).

Then for every U ∈ D(X) it holds that τR(U) = U ∪ ∅T .

Proof. Let U ∈ D(X). The inclusion U ∪∅T ⊆ τR(U) can be proved using
the same idea as in the proof of Lemma 5.12. Conversely let x ∈ τR(U) and
suppose that x /∈ ∅T , so there is y ∈ X such that y ∈ T (x) and y � x. As
T̄ ⊆ R, we have y ∈ R(x). By condition (iv) we have x ∈ R(x), and as
x ∈ τR(U), we obtain that x ∈ U .

Proposition 6.13. Let ⟨X,≤, T ⟩ be a γWH-space. Then there exists a
binary relation RT in X such that ⟨X,≤, T,RT ⟩ is a frontal γ-space.
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Proof. We define a binary relation on X in the following way:

(x, y) ∈ RT iff ∀U ∈ D(X)(if x ∈ U ∪ ∅T , then y ∈ U).

Note that RT (x) is a closed upset of X, for every x ∈ X.
We will prove that RT satisfies conditions (i)-(iv) of Lemma 6.12.
(i) The fact that T̄ ⊆ RT is consequence of (c) of Definition 6.4, and

RT ⊆ ≤ is proved like in Lemma 5.12. The proof of the items (ii) and (iii)
is similar to the proof of Lemma 5.12.
(iv) Let x ∈ X. Suppose that x /∈ RT (x). Hence there exists V ∈ D(X)
such that x ∈ V ∪ ∅T and x /∈ V . So x ∈ ∅T , i.e., T (x) ⊆ (x]. By condition
(ii) of Lemma 6.12 we have that there is y ∈ T (x) with R(y) = ∅. Thus
y ≤ x, so RT (x) ⊆ RT (y) = ∅. Hence, RT (x) = ∅.

It follows from Lemma 6.12 that τRT
(U) ∈ D(X) for every U ∈ D(X).

Therefore ⟨X,≤, T,RT ⟩ is a frontal γ-space.

The frontal γ-space ⟨X,≤, T,RT ⟩ built in the previous proof will be
called the associated frontal γ-space of the γWH -space ⟨X,≤, T ⟩. Note
that τRT

(U) = U ∪ ∅T , for each U ∈ D(X).

Proposition 6.14. If ⟨X,≤, T,R⟩ is a frontal γ-space, then ⟨X,≤, T ⟩ is a
γWH-space such that R = RT .

Proof. (a) It follows from Lemma 6.12.
(b) Let x ∈ X. Then by condition (γ1) there exists y ∈ X such that

(x, y) ∈ T and R(y) = ∅. We will prove that y ∈ T (x)∩∅T . Let z ∈ T (y), so
(y, z) ∈ T . In particular z /∈ R(y), so z ≤ y (because if z � y then we have
that (y, z) ∈ R, a contradiction). Thus y ∈ ∅T .

(c) Let U ∈ D(X), (x, y) ∈ T̄ and x ∈ U ∪ ∅T . If x ∈ ∅T then y ≤ x, a
contradiction. Thus x ∈ U . Besides x ≤ y, so y ∈ U .

The proof that R = RT is similar to the proof of Proposition 5.15.

The proofs of the following two propositions are similar to the proofs of
propositions 5.16 and 5.17, respectively.

Proposition 6.15. Let ⟨X1,≤, T1⟩ and ⟨X2,≤, T2⟩ be two γWH-spaces.
Let f : X1 → X2 be a WH-morphism. Then f is a γWH-morphism iff f
is a p-morphism between the associated frontal γ-spaces ⟨X1, T1, RT1⟩ and
⟨X2, T2, RT2⟩.

Proposition 6.16. Let ⟨X1,≤1, R1, T1⟩ and ⟨X2,≤2, R2, T2⟩ be two frontal
γ-spaces. Let f : X1 → X2 be a WH-morphism. Then f is a p-morphism iff
f is a γWH-morphism.
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Then we have the following

Theorem 6.17. The categories γWHS and FWHSγ are isomorphic.

7. Final remarks

A WH -algebra is a Heyting algebra if and only if the relation on its dual
space is the inclusion relation (Theorem 4.24 of [6]). In particular, we have
that if ⟨X,≤, T ⟩ is a WH -space, then ⟨X,≤⟩ is an Esakia space if and only
if T = ≤. By this fact, and using the results of the previous sections,
we can obtain a similar result to that given in Theorem 3.10 of [3]. In the
aforementioned article the categories SHA (Heyting algebras with successor)
and SHS (a particular subcategory of the category of Esakia spaces) were
defined, and the existence of a categorical dual equivalence between them
was proved. Moreover, if ⟨X,≤⟩ ∈ SHS , then inD(X) the successor function
takes the form

S(U) = U ∪ (U c)M ,

where (U c)M is the set of maximal elements of U c. This result can be seen
as a particular case of Theorem 5.11 since if ⟨X,≤, T ⟩ is a WH -space with
T = ≤, then for every U ∈ D(X), we have that (U c)M = UT .

Note that if ⟨X,≤, T ⟩ is a WH -space, then (U c)M ⊆ UT . This fact
implies that if ⟨A,→1, S1⟩ is a WH -algebra with successor and ⟨A,→2, S2⟩
is a Heyting algebra with successor, then S2(x) ≤ S1(x) for every x ∈ A.
For instance, if we consider Example 3.8 with →1 = →̂ then S2(0) < S1(0).

There are similar results for the case of WH -algebras with gamma.
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