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Abstract

In this paper we motivate and study the possibility of an intuitionistic quantum logic. An
explicit investigation of the application of the theory of Bruns and Lakser on distributive hulls
on traditional quantum logic (as suggested in [Coe]) leads us to a small modification of this
scheme. In this way we obtain a weak Heyting algebra (cf. [CJ]) for describing the language
of quantum mechanics.

1 An intuitionistic perspective on quantum logic

Physical theories are concerned with statements about possible outcomes of experiments. A pos-
sible experiment may be termed an observable. In quantum mechanics, observables are identified
with self-adjoint operators acting on a Hilbert space H whose domains are dense in H. For a
self-adjoint operator A, with spectrum o(A), we introduce the notation A € A for some Borel set
A C o(A) for the statement that a measurement of A will yield a result in A with probability
onell Quantum mechanics predicts that this is the case whenever the state of the system lies in the
set pa(A)H, where p4 is the projective measure associated with the operator A. Consequently,
statements of the form A € A can be associated with closed linear subspaces of a Hilbert space.
On the other hand, since there is a bijection between closed linear subspaces and projection oper-
ators, every closed linear subspace can be associated with a statement of the form A € A (since
projections are self-adjoint).

This observation moved Birkhoff and von Neumann [BvN] to introduce the quantum proposi-
tional lattice L(#H) which consists of the set of closed linear subspaces of the Hilbert space H with
partial order, meet and join defined in the following way:

° K1§K2 iﬁK1CK2.

* Nxex K = Ngex K, K C L(H).
¢ Viex K=MK € L(H); K<K'VK € K}, K C L(H).
A negation is also defined as
o K :=A\{K'e L(H); KVK =H}.
The resulting lattice is almost a Boolean algebra, accept for the fact that the laws of distribu-
tivity
K1V (KsNKs) = (K1 V Ka) A (K1 V K3) (1)

and
Ki AN (KaV Ks) = (K1 AKs)V (K1 AKs3) (2)

do not hold in general. As a consequence, it is hard to interpret the meet and join as the log-
ical connectives “and” and “or” (cf. [Dum]). Needless to say, quantum logic has struggled with
interpretation problems ever since it was conceived.

1We will make no distinction in notation between observables and operators.
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On the other hand, the fundamental problems of quantum mechanics have resulted in a con-
sensus that quantum mechanics is incompatible with the logical structure of a classical phase space
(cf. [Ish]). We, however, believe there may be a stronger discrepancy between quantum mechanics
and classical logic. As an example we consider the following derivation of a Bell-type inequality.

Lemma 1.1. Suppose P is a probability function on a collection of sentences S that satisfies the
following rules for all A,B € S:

(i) If A — B, then P(A) < P(B).
(ii) P(AV B) < P(A) + P(B).
Then, if S obeys classical logic, the following inequality holds for all Ay, As, B1 and Bs in S:
P(A1 A By) <P(A; A Bg) +P(As A By) + P(—A2 A —Bs). (3)

Proof. The result follows by writing out in the following way:

Al/\BQ
Al/\Bg
Al/\Bg

B1 A\ _|BQ AN (AQ \Y _|A2))
(B1 A—=Bg A A3) V (B A —Bs A —Az))
By A=By A Ay) + P(B1 A By A —A)

)+ B(
)+ IB(
)+ P(
)+ P(As A By) + P(=Ay A —Bs).

O

The inequality is however violated by quantum mechanics in the EPR-Bohm experiment [BA]|
of measurements on an entangled pair of spin—% particles. In this setting, A; and As are identified
with two (mutually incompatible) measurements one experimenter can perform on one of the
particles, and By and By with two (mutually incompatible) measurements an other experimenter
can perform on the other particle. Each measurement has two possible outcomes, one regarded as
a positive outcome (e.g. A1), and the other as a negative outcome (e.g. —A1).

The quantum logician may reject this inequality since its proof relies on an illegitimate use
of the law of distributivity, but this is of course not the only solution to the paradox. In fact,
quantum logic itself seems to hint towards an intuitionistic interpretation: the sentence A; A By is
both incompatible with By and —Bs and presents itself as an excluded middle. As Popper stated
it:

“It is of interest that the kind of change in classical logic which would fit what Birkhoff
and von Neumann suggest [...]| would be the rejection of the law of excluded middle
[...], as proposed by Brouwer, but rejected by Birkhoff and von Neumann.” [Pop]

This argument is perhaps a bit hand-waving, but it is of interest to note that the proof of Lemma
[T also relies on an unlawful use of the law of excluded middle (at least from the point of view of
the intuitionistic quantum logician).

The ‘discrepancy’ that arises may be explained (somewhat sloppy) by observing that the nega-
tion as defined in quantum logic is somewhat intuitionisticaly in nature. That is, the negation of
the statement A € A is identified with the statement A € A€, which is again a ‘positive’ state-
ment; it states that something will happen with probability 1. On the other hand, the definition
of disjunction in quantum logic is typically non-intuitionistic and lies closer to the classical un-
derstanding of disjunction. Indeed, the truth of a disjunction K7 V Ks does not imply the truth
of either K7 or K5 in quantum logic. So, from an intuitionistic point of view, the disjunction in
quantum logic is not a disjunction at all.

This is also roughly the viewpoint Coecke expresses in [Coel, and he argues that for an intu-
itionistic view on quantum mechanics



“we formally need to introduce those additional propositions that express disjunctions
of properties and that do not correspond to a property in the property lattice.”

These additional disjunctions are introduced by making use of Bruns and Lakser’s theory of
distributive hulls. Concretely, this means that the quantum lattice L(H) is replaced by the lattice
of distributive ideals of the quantum lattice:

DI(L(H)):={I C L(H); I is a distributive ideal}, (5)
where by a distributive ideal we mean a non-empty subset I such that
(i) if K € I and K’ < K, then K’ € I.
(i) if £ C I and for every K’ € L(H): (Ve K) ANK' =V e (K AK'), then \/ oo K € 1.
This new set is turned into a lattice by the following definitions:
o [ <Liff I CIs.
o Niez I :=jer I, T C DI(L(H))B
o Voo 1= NI’ € DI(L(H)) ; I < I'VI € T}, T C DI(L(H)).
With these definitions, DZ(L(H)) is a complete distributive lattice. The propositions of the
original lattice L(H) are identified with elements of DZ(L(#H)) by the injection
i:L(H)— DI(L(H)), K~ K:={K'e€eL(H); K'<K}. (6)

As such, the construct of DZ(L(H)) meets our desires; the new disjunction | K7V | Ks is
not of the form | K whenever K; # K5 and thus corresponds to a new element that does not
correspond to any element in the original lattice. Because the new lattice is complete and the
infinite laws of distributivity hold, it is also a complete Heyting algebra if one introduces the
relative pseudo-complements:

[ Il — 12 = \/{13 € DI(L(H)) ; 13 /\Il < 12}

2 A classical perspective on quantum logic

Complementary to the approach above, in stead of introducing a new disjunction that is more
intuitionisticaly in nature than the one in quantum logic, on may want to define a new negation
that is more classical in nature than the one in quantum logic. Recall that we took A € A to
stand for the statement that a measurement of A will yield a result in A with probability one.
In quantum logic, the negation of this proposition is the statement that a measurement of A will
yield a result in A¢ with probability one. However, classically, the negation may be identified with
the statement that a measurement of A will not yield a result in A with probability one; i.e. one
is not entirely certain that the measurement of A will yield a result in A. This statement is true
for all the states in the set (H \pa(A)H)U{0}.

In this setting, it is easier to identify states with rays in the Hilbert space. Therefore we
introduce the ray space

R(H) :==A{[¢]; v e H\{0}},  [] :={M; A e C}. (7)

Propositions may then be identified with elements of the power set P(R(#)). Indeed, the propo-
sition A € A is now identified with the set

{[¥] € R(H); ¢ € pa(A)H}

and its negation, (A € A), with the complement of this set. The set P(R(H)) is turned into a
lattice by introducing order, meet and join in the usual set-theoretic way:

20ne may show that this construction actually yields a distributive ideal.



e 51 < S iff S; C S,

* NsesS =Nses S

i VSESS = USes S

Although this approach differs strongly from the intuitionistic approach, it is remarkable that
both constructions are in fact identical:

Theorem 2.1. The lattices DI(L(H)) and P(R(H)) are isomorphic (as complete bounded lat-
tices). Consequently, the Heyting algebra DI(L(H)) is Boolean3

Proof. We define the following function f : P(R(H)) — P(L(H)):
f(S):={K e L(H); K\{0} C{¢ € H; [¢] € S}}

{KGL(H); U {[w]}cS}- ®

peK\{0}
Notice that it satisfies

f(R(H)) = L(H), [f(@)={0} and [({[¥]}) =[] V[¥]e R(H). (9)

Now, for every S € P(R(H)), f(S) is in fact a distributive ideal. To show this, we have to
show that f(S) satisfies the properties 1 and 2. Suppose K € f(S) and K’ < K. Then

U {wc U f{whcs (10)

peK\{0} YeK\{0}

and thus K’ € f(95).

To show property 2, we may assume S # R(H) (for S = R(H) 2 is trivially satisfied). Suppose
K C f(S) such that for every K’ € L(H): (Ve K) ANK' =V gexe (K ANK'). We have to show
that in that case \/ ;oo K € f(S5).

Suppose this isn’t the case. Then there is a non-zero vector 1 € \/ ;. K such that [¢] & S.
Furthermore ¢ ¢ K for all K € K. But it then follows that

[¥] = ( V K) Al =\ (KA ) = {0} (11)

KeK KeKk
This proves that f : P(R(H)) — DI(L(H)).

Next, consider the map

9:DI(L(H)) = P(R(H), g:1— ) U (- (12)

Kelyer\{0}
We will show that it is the inverse of f. First note that for every set S € P(R(H)) one has
U U {cs (13)
Kef(S)peK\{0}

Now suppose [¢)] € S, then [¢] € f(S) and [¢] € g(f(S)). Thus g(f(S)) = S for all S € P(R(H)).

So we have shown that DZ(L(#)) and P(R(H)) are isomorphic as sets. However, since both
f and g respect the partial order structure, it follows that DZ(L(H)) and P(R(H)) are also
isomorphic as complete lattices. O

Corollary 2.2. There exists no probability function on DI(L(H)) that generalizes the Born rule,
for by Lemma L1, any probability function would satisfy ().

3This second statement is in fact a consequence of the more general example below Lemma 1 in [Cog].



3 A weakly intuitionistic perspective on quantum logic

That the application of Bruns and Lakser’s theory to the quantum lattice results in the construction
of a Boolean algebra may be explained in the following way. The introduction of a new disjunction
forces the introduction of a new negation. Indeed, the new negation in DZ(L(#)) is defined as
=[] := 1 —] 0 and it is much weaker than the negation in quantum logic because one has

| -K <-|K, VKe&LH) (14)

with equality iff K = 0 or K = H. From the perspective of P(R(H)) it is clear to see that the
negation in DZ(L(H)) behaves classical rather than intuitionistic.

It would seem more intuitionistic if one could generalize the negation of the quantum lattice to
a negation in the lattice DZ(L(#H)). That is, by introducing a function ~: DZ(L(H)) — DI(L(H))
such that ~| K =| =K for all K € L(H). In such a scheme, the negation of A € A would coincide
with A € A€ like in quantum logic, but the disjunction of A € A and A € A° would not be a
trivialityH This is in fact an idea explored in [Herl p 105-106]. Although in that text the emphasis
is more on the set P(R(H)), the analysis is the same as for DZ(L(H)) because one can use the
embedding r : L(H) — P(R(H)) given by r(K) := {[¢] € R(H); ¢ € K} for which the diagram

commutes.
The generalization is straight forward. First note that

r(~K) ={[¢]; (¢, ¢) =0V¢ € K}.

We therefore take

~ S :={[Y] € R(H); (¥, ¢) = 0V¢ with [¢] € S}. (15)
Indeed, this results in ~ r(K) = r(=K) for all K € L(H). The ‘pseudo-negation’ ~ also behaves
typically intuitionistic since we have

SV~ S =R(H)iff S =2 or § = R(H), (16)
~ SV~ S = R(H)iff S =@ or S = R(H). (17)

However, one does have that
~ro (SV ~ S) = R(H), VS e P(R(H)). (18)
One may also show that of the De Morgan laws only
~ SIN ~ Sy =~ (S81V S3), V51,5 € P(R(H)) (19)
holds, and the other only holds in one direction:
~ S1V ~ Sy <~ (S1 A S2), VS1,S2 € P(R(H)). (20)

The pseudo-negation also relates the ‘intuitionistic’ disjunction of P(R(H)) to the ‘classical’ dis-
junction of L(H) through the following equality:

o ( \/ r(K)) =r ( \/ K) , for every K C L(H). (21)

KeK KeK

41t is not unlikely that this scheme is also what Coecke envisaged in his paper.



So for any subset S of R(H), its double pseudo-negation coincides with the closed linear subspace
spanned by al the elements of S.

Although the pseudo-negation appears to behave intuitionisticaly, there is no trivial way to
incorporate the lattice (P(R(H)),V,A,~) in a Heyting algebra. This is because the relative
pseudo-complement for the lattice (P(R(H)), V, A) is uniquely defined. There may however still be
the possibility that a satisfactory implication relation — (that is not a relative pseudo-complement)
may be defined on this lattice such that S — L =~ S for all S € P(R(H)). Indeed, we have the
following result:

Theorem 3.1. There exists an implication relation such that (P(R(H)),V,A,—) is a weakly
Heyting algebrdd, i.e. a bounded distributive lattice in which for all Sy, Se, S5 € P(R(H)) one has

(i) S1—=>51=T,
(ii) S1 — (S2 A S3) = (S1 — S2) A (S1 — S3),
(iii) (S1V S2) = S = (S1 — S3) A (S2 — S3),
(iv) (S1 — S2) A (S2 — S3) < 51 — S5,
in such a way that for all S € P(R(H))
S— L =~&. (22)

Proof. Let Py denote the set of all atoms in P(R(H)) (note that there is a bijection between atoms
and one-dimensional subspaces of H). We now define

T it S = 1,
Nisepy s s<siy ~~ (~ sV (sASz)), otherwise.

)

Sl — SQ = { (23)

We will show that this implication relation satisfies the desired properties.
(i) Let S € P(R(H)). If S= 1,5 — S =T follows directly from the definition, so suppose
S # 1. In that case we have

S—8= N\ ~~(~sV(sAS))= N ~~(vsvs)= N\ T=T  (24)
{2y = &y

Note that the same argument shows that if S; < Sy then S; — Sy = T. (ii) If S; = L, the
assertion is trivial. Suppose S; is an atom. We can distinct four scenarios: (1) S; < S3 A Ss, (2)
S1 < S2, 81 £ Ss, (3) S1 £ S, 81 <S5 and (4) S; £ S2 and S; £ S3. In each of the cases it is
easy to see that (ii) is satisfied. For all other S; we have
Slﬁ(SQ/\Sg): /\ S‘)(SQ/\Sg): /\ (S‘)SQ)/\(S*)Sg)
(2} (%) )
= (Sl — SQ) A (Sl — Sg)

(iii) If S7 or Sy equals L the relation is again trivial, so suppose S1 # L and Sy # L. We have

(S1V S5) = S5 = €/> §— S5 = 5!;1.3%53 A /> s — S, 26)
{S§51VA,5'2} {Sﬁsly} {:/egslé}

= (Sl — S3) A (SQ — S3)

5The notion of weakly Heyting algebras was first introduced in [CJ].



(iv) If S; = L the inequality follows immediately because then the right-hand side equals T.
The same also goes if S7 < S3 so we suppose S; jé S3. If S7 is an atom and S; < Sy we have
S1 — So =T (see proof of (i)) and

(Sl *)SQ)/\(SQ*)Sg): (SQ‘)SQ,): /\ 84)53 SSl *)Sg. (27)
sEP1;
{SSS2}
If Sl ﬁ SQ, then
Sl 4)5’2 =rvrv (N Sl\/(Sl/\SQ)) =~y Sl =nrv Sl. (28)
Similarly S; — S3 =~ S and thus
(Sl —>Sg)/\(52—>53) =~ 51 NSy — 53 <~ S5 =5 — 53. (29)

From this, the case where S isn’t an atom also follows:

(Sl *)SQ)/\(SQ*)Sg) = /\ S*)SQ /\(SQ*)Sg) = /\ ((S*)SQ)/\(SQ *)Sg))
({57} {\<5]}
< /\ (S—)Sg):Sl—>S3.

{328}

(30)
Finally, we have to show that ([22) holds:
S—o1l= N s=>1= A\ ~s=~5 (31)
{Sepl; {56771;
s<S s<S
O

However, it remains a difficult philosophical question what counts as a satisfactory implication
relation for quantum logic, and it is not clear if (23) meets the requirements. It is also not
clear if (23] is the unique implication relation that turns (P(R(H)),V,A) into a weakly Heyting
algebra such that (22)) holds. And there is of course also still the question if a probability function
can be defined on this lattice that generalizes the Born rule and explains the violation of the
inequality ([B]). Either way, we do believe that the weakly intuitionistic quantum logic defined here
is philosophically at least a bit more satisfying than the logic of Birkhoff and von Neumann and
perhaps even a step in the right direction for a comprehensible quantum logic.
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