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Samson Abramsky Relational Hidden Variables

And Non-Locality

Abstract. We use a simple relational framework to develop the key notions and re-

sults on hidden variables and non-locality. The extensive literature on these topics in the

foundations of quantum mechanics is couched in terms of probabilistic models, and prop-

erties such as locality and no-signalling are formulated probabilistically. We show that to

a remarkable extent, the main structure of the theory, through the major No-Go theorems

and beyond, survives intact under the replacement of probability distributions by mere

relations.

Keywords: Quantum mechanics, non-locality, hidden variables, possibilistic models, prob-

abilistic models

1. Introduction

In this paper, we consider a simple relational setting, in which the key no-
tions and results concerning hidden variables and non-locality can be stud-
ied. The extensive literature on these topics in the foundations of quantum
mechanics is couched in terms of probabilistic models, and properties such
as locality and no-signalling are formulated probabilistically. We show that
to a remarkable extent, the main structure of the theory, through the ma-
jor No-Go theorems and beyond, survives intact under the replacement of
probability distributions by mere relations.

The main contents of the paper can be summarized as follows:

• In the first part of the paper, sections 2–6, we define purely relational
analogues of all the key notions around locality and Bell’s theorem which
have been formulated in terms of probabilistic models, including Weak
and Strong Determinism, No-Signalling, λ-Independence [10], Parameter
Independence and Outcome Independence [19, 32], and Locality [4]. We
show that these relational notions have the same logical relationships
as their probabilistic counterparts. We give clean proofs, from explicit
assumptions, of No-Go theorems based on the EPR [12], GHZ [17], Hardy
[18], and Kochen-Specker [23] constructions.
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This part of the paper can in large part be seen as a recasting of a
recent paper by Brandenburger and Yanofsky [6] in relational form. Their
paper, which is couched entirely in terms of probabilistic models, gives
a careful, unified treatment of the major properties of hidden-variable
models, and a classification in terms of these. We show that their results
can be replicated in the purely relational setting. We also prove relational
analogues of some additional results obtained in a subsequent paper by
Brandenburger and Keisler [5].

• Our proof of the GHZ result is based on Mermin’s well-known proof
[25], but by making the assumptions explicit, we find a lacuna in his
argument. His ‘instructions’ are deterministic; but determinism is not
being assumed a priori. We show how determinism can be derived from
apparently weaker assumptions, by virtue of a general result on hidden-
variable models.

• Our proof of the Hardy result shows that, despite the need for proba-
bilities in the quantum realization of the construction, the No-Go result
itself can be proved in purely logical terms. It also shows that such
results apply in the relational setting even in the bipartite case.

• Our analysis of the Kochen-Specker result explains a surprising formal
connection between No-Signalling and Contextuality, clarifying an ap-
parent anomaly in [6].

• We also define an explicit mapping from a class of quantum systems to
relational models, and show that the constructions used in the relational
no-go theorems are in the image of this mapping, thus obtaining the usual
applications of the No-Go theorems to quantum mechanics. This clean
separation of the usual arguments into ‘logical’ and ‘physical’ components
is in our opinion an attractive feature of this approach.

• We then go on to consider the connections between probabilistic and re-
lational models. Probabilistic models can be reduced to relational ones
by the ‘possibilistic collapse’, in which non-zero probabilities are con-
flated to (possible) truth. We show that all the independence properties
we have been studying are preserved by the possibilistic collapse, in the
sense that if the property in its probabilistic form is satisfied by the
probabilistic model, then the relational version of the property will be
satisfied by its possibilistic collapse. More surprisingly, we also show a
lifting property : if a relational model can be realized by local hidden vari-
ables, then there is a probabilistic model whose possibilistic collapse gives
rise to the relational model, and which can be realized by a probabilistic
local hidden-variable model.
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• We characterize this construction of probabilistic models from relational
ones by a maximal entropy property, expressed in terms of a factoriza-
tion of the joint distribution on measurements and outcomes into a mea-
surement prior, together with a family of probability distributions on
outcomes conditioned on measurements. The measurement prior is also
significant in allowing a fully general description of how quantum systems
give rise to relational models.

• We also give an example to show how results can be lifted from the
relational setting to apply to probabilistic models. In particular, our
relational versions of the GHZ and Hardy theorems lift directly to show
that there are quantum systems which cannot be realized by any proba-
bilistic local hidden-variable model.

• We give precise definitions of a number of classes of models. This sets
the stage for developing a structure theory of these classes, which looks
promising as a means for gaining insight into quantum mechanics, and
both sub- and super-quantum theories. We prove a strict hierarchy re-
sult: local hidden-variable models are properly included in models arising
from quantum systems, which are properly included in models satisfying
No-Signalling. The latter result makes use of a relational analogue of a
Popescu-Rohrlich box [30, 22].

• We also consider the computational aspects of these classes of finite struc-
tures. We show that membership of the class of local hidden-variable
models is in NP. We also show that membership of the class of mod-
els arising from quantum systems of a given dimension is in PSPACE, by
reduction to the existential theory of real-closed fields. These results sug-
gest a number of interesting questions concerning the exact complexity
of these classes.

2. Preliminaries

We begin by formulating the relational setting we will work in.

The systems we will consider will each have an arity n, a positive integer.
The arity expresses the number of parts, which may be thought of variously
as agents, sites, or subsystems, of the system under consideration. Thus
a system of arity 2 is usually referred to as bipartite, and the parts are
conventionally labelled as Alice and Bob.

For each part i, two sets are specified: a set Mi of kinds of measurement
which can be performed at i; and a set Oi of possible outcomes of these
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measurements. Thus for a system of arity n, we can form the sets

M =
n
∏

i=1

Mi, O =
n
∏

i=1

Oi.

An element m = (m1, . . . ,mn) ∈ M specifies a choice of measurement for
each part; and similarly o = (o1, . . . , on) ∈ O specifies an outcome at each
part.

A system type is given by a pair (M,O) of this form. A relational empiri-
cal model of type (M,O) is specified by a relation e ⊆M×O. As usual, such
a relation can either be viewed as a set of tuples (m, o), or as a characteristic
function

e :M ×O → {0, 1}.
We write e(m, o) to indicate that (m, o) ∈ e, or equivalently that e(m, o) = 1.

Our reading of e(m, o) is that, if the measurements in m are performed,
the outcomes in o are possible (may be observed). Of course, we do not pre-
clude that given measurements may have more than one possible outcome.

Thus this representation of systems behaviour might be called ‘possi-
bilistic’ (as opposed to a probabilistic representation which would assign
probabilities to the various outcomes, conditioned on the measurements).1

However, it is important to note that we are using the standard logic of
relations, while ‘Possibilistic Logic’ has an established usage in Artificial
Intelligence [11] which is quite different.

These systems are called empirical because they specify relationships
between quantities2 all of which are directly observable.

Now we turn to hidden variables. A hidden-variable model of type (M,O)
has an additional set Λ which gives the possible values of some ‘hidden’
(unobservable) variable. The model is specified by a relation

h ⊆M ×O × Λ.

We say that a hidden-variable model h realizes an empirical model e of the
same type if

∀m, o. [e(m, o) ↔ ∃λ ∈ Λ. h(m, o, λ)].

Two hidden-variable models are equivalent if they realize the same empirical
model in this fashion.

1See the interesting essay [14] on Possibilistic Physics, which was kindly brought to my
attention by Tobias Fritz after a previous version of the present paper was made available
on the arxiv.

2E.g. settings of knobs or switches for the measurements and pointer readings for the
outcomes.
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Notation

Some notations will be helpful in allowing properties of models to be ex-
pressed succinctly. We write n = {1, . . . , n}. For each i ∈ n, we define

M−
i =M1 × · · · ×Mi−1 ×Mi+1 × · · · ×Mn

and similarly for O−
i . Given m ∈Mi and

m = (m1, . . . ,mi−1,mi+1, . . . ,mn) ∈M−
i ,

we write m,m for the tuple

(m1, . . . ,mi−1,m,mi+1, . . . ,mn)

and similarly for tuples of outcomes.
In the remainder of the paper, we shall use the notation mi to mean mi

where m = (m1, . . . ,mn); and similarly for oi.
Given m ∈M , we define

e(m)↓ ≡ ∃o. e(m, o).
More generally, if s̄ is any subsequence of arguments, we define

e(s̄)↓ ≡ ∃t̄. e(s̄, t̄)
where s̄, t̄ is an expansion of s̄ to a full list of arguments for e. Similar
notation will be used for hidden-variable models.

Note that, if s̄ is a subsequence of s̄′, then e(s̄′)↓ implies e(s̄)↓.

Example As an example of the notation, consider the expression

e(m,m, o)↓,
where m ∈Mi, m ∈M−

i , o ∈ Oi. This expression expands to the following:

∃o ∈ O−
i . e(m,m, o, o).

3. Properties of Models

We now formulate a number of properties of models. These properties are,
for the most part, relational versions of properties which have been dis-
cussed in the extensive literature analyzing the No-Go theorems of Quan-
tum Mechanics, especially the Bell and Kochen-Specker theorems. Our own
treatment is based to a large extent on the careful discussion, in a unified for-
malism of probabilistic models, in [6]. However, we shall give more emphasis
to properties of empirical models.
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3.1. Properties of Empirical Models

We shall assume a given system type (M,O) of arity n, and formulate prop-
erties as conditions on empirical models e of this type.

3.1.1. Weak Determinism (WD)

This says that for given measurements m, the outcomes o are uniquely de-
termined:

∀m, o, o′.[e(m, o) ∧ e(m, o′) → o = o′].

In more familiar terms, it says that the relation e is a partial function from
measurements to outcomes.

3.1.2. Strong Determinism (SD)

Strong Determinism requires that, for each i ∈ n, the outcome at i is
uniquely determined by the measurement at i:

∀i ∈ n,m,m′, o, o′.[e(m, o) ∧ e(m′, o′) ∧ mi = m′
i → oi = o′i].

3.1.3. No-Signalling (NS)

The no-signalling condition is that the choice of measurement by one party
cannot be signalled to the other parties. If we interpret the arity of a system
type as implying some distributed structure, so that the different parts may
be space-like separated, it can be seen as an important residue of causality,
which is needed to ensure consistency with special relativity.3

This condition is usually defined in a probabilistic context by saying that
the marginal probability of an outcome at i for a given measurement at i
is independent of the other measurements. We can define No-Signalling for
relational models as follows.

For all i ∈ n, m ∈Mi, o ∈ Oi, m,m
′ ∈M−

i :

e(m,m, o)↓ ∧ e(m,m′)↓ → e(m,m′, o)↓.

This says precisely that whether the outcome o is possible at i for a given
measurement m at i is independent of the other measurements.

Note that there is a stronger version of this principle, which says that
joint outcomes for any subset of the parts is independent of the measure-
ments made in the remaining parts. We shall not use this version in the

3However, as we shall see later (cf. the discussion in Section 6.4), this is not the only
possible reading, and there are some surprising connections to Contextuality.
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present paper. We refer to the treatment in [1] which gives a more general
account including the stronger form of no-signalling.

3.2. Properties of Hidden-Variable Models

We begin by reformulating the definitions of two of the properties we have
specified for empirical models to apply to hidden variable models h ⊆ M ×
O × Λ:

Weak Determinism (WD)

∀m, o, o′, λ.[h(m, o, λ) ∧ h(m, o′, λ) → o = o′].

Strong Determinism (SD)

∀i ∈ n,m,m′, o, o′, λ.[h(m, o, λ) ∧ h(m′, o′, λ) ∧ mi = m′
i → oi = o′i].

We shall now discuss some properties which have been considered specifically
for hidden-variable models.

3.2.1. Single-Valuedness (SV)

This simply says that Λ is a singleton. This is a rather artificial property,
but it is occasionally useful.

3.2.2. λ-Independence (λI)

For all m,m′ ∈M , λ ∈ Λ:

h(m′)↓ ∧ h(m,λ)↓ → h(m′, λ)↓.

We can read this condition as saying that the value of the hidden variable
is independent of the choice of measurements.

3.2.3. Outcome-Independence (OI)

For all m ∈M , i ∈ n, o, o′ ∈ Oi, o, o
′ ∈ O−

i , λ ∈ Λ:

h(m, o, o, λ) ∧ h(m, o′, o′, λ) → h(m, o, o′, λ).

This says that, for given measurements and value of the hidden variable, the
possibility of an outcome at i is independent of which other outcomes occur.

This is easily seen to be logically equivalent to the following condition:

∀m, o, λ. [h(m, o, λ) ↔
n
∧

i=1

h(m, oi, λ)↓]. (1)
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3.2.4. Parameter-Independence (PI)

This is essentially the reformulation of No-Signalling for hidden-variable
models.

For all i ∈ n, m ∈Mi, o ∈ Oi, m,m
′ ∈M−

i , λ ∈ Λ:

h(m,m, o, λ)↓ ∧ h(m,m′, λ)↓ → h(m,m′, o, λ)↓.
It says that, conditional on the value of the hidden variable, the possible
outcomes of a measurement at i are independent of the other measurements.

3.2.5. Locality (L)

The assumption of locality is that the possible outcomes of a measurement,
for a given value of the hidden variable, are locally determined, in the sense
that the outcome at i depends only on the measurement performed at i.
This is expressed as follows:

∀m, o, λ. [h(m,λ)↓ ∧
n
∧

i=1

h(mi, oi, λ)↓ → h(m, o, λ)].

4. Implications

We shall now consider which implications hold between these conditions.

Theorem 4.1. The following implications hold between properties of hidden-
variable models:

1. Weak Determinism implies Outcome Independence.

2. Strong Determinism is equivalent to the conjunction of Weak Determin-
ism and Parameter Independence.

3. Locality is equivalent to the conjunction of Parameter Independence and
Outcome Independence.

Proof. 1. We assume Weak Determinism and prove Outcome Indepen-
dence in the equivalent form (1). Assume that for all i ∈ n, h(m, oi, λ)↓.
This means that for all i, there is o(i) ∈ O−

i such that h(m, oi, o
(i), λ). By

WD, we conclude that o1, o
(1) = o2, o

(2) = · · · = on, o
(n), and so h(m, o, λ),

as required.
2. Assume Strong Determinism. That this implies Weak Determinism

is immediate from the definitions. To prove PI, suppose that h(m,m, o, λ)↓
and h(m,m′, λ)↓, so for some o′, h(m,m′, o′, λ)↓. By SD, o = o′, so

h(m,m′, o, λ)↓,
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as required.
Now assumeWD and PI. Suppose that h(m,m, o, λ) and h(m,m′, o′, λ),

where m ∈ Mi and m,m′ ∈ M−
i . Let o = oi. Then h(m,m, o, λ)↓ and

h(m,m′, λ)↓, so by PI, h(m,m′, o, λ)↓, so that h(m,m′, o, o′′, λ) for some
o′′ ∈ O−

i . By WD, oi = o = o′i.
3. Assume L. To prove OI, suppose that h(m, oi, λ)↓ for all i. This

implies that h(mi, oi, λ)↓ for all i, and also that h(m,λ)↓, and hence by L
that h(m, o, λ), as required.
To prove PI, suppose that h(m,m, o, λ)↓ and h(m,m′, λ)↓. This implies
that h(m, o, λ)↓, and for all j 6= i, for some oj, h(m

′
j, oj , λ)↓. Hence by L,

h(m,m′, o, λ)↓.
Now assume OI and PI. Suppose that h(mi, oi, λ)↓, i ∈ n, and h(m,λ)↓.

This implies that for each i, for some m(i) ∈M−
i , h(mi,m

(i), oi, λ)↓. Apply-
ing PI n times, we obtain that h(mi,m−i, oi, λ)↓ for each i, wheremi,m−i =
m. Hence for all i ∈ n, h(m, oi, λ)↓, and applying OI, we obtain h(m, o, λ),
which proves that L holds.

Corollary 4.2. Strong Determinism implies Locality.

We now show a relationship between properties of a hidden-variable
model and the induced empirical model. Let h ⊆ M × O × Λ be a hidden-
variable model; we define the induced empirical model e to be the (unique)
model realized by h:

e(m, o) ≡ ∃λ ∈ Λ. h(m, o, λ).

Proposition 4.3. If h satisfies λ-Independence and Parameter Indepen-
dence, then e satisfies No-Signalling.

Proof. Suppose that e(m,m, o)↓ and e(m,m′)↓. Then for some λ,

h(m,m, o, λ)↓,
and so h(m,m, λ)↓, and also h(m,m′)↓. By λI, h(m,m′, λ)↓. Hence by PI,
h(m,m′, o, λ)↓, and so e(m,m′, o)↓.

We can strengthen this as follows.

Proposition 4.4. An empirical model satisfies No-Signalling if and only if
it can be realized by a hidden-variable model satisfying λ-Independence and
Parameter Independence.

Proof. One direction is Proposition 4.3. For the converse, if e satisfies
NS, then the unique hidden-variable model satisfying SV which induces it
trivially satisfies λI and PI.
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5. Existence

In this section, we show some positive results of the form that every em-
pirical model can be realized by a hidden-variable model satisfying certain
properties. Of course, not every combination of properties is possible; this
will be the content of the No-Go theorems to follow.

Proposition 5.1. Every empirical model is realized by a hidden-variable
model satisfying Single-Valuedness.

Proof. Immediate.

Proposition 5.2. Every empirical model is realized by a hidden-variable
model satisfying Strong Determinism.

Proof. Given e ⊆M ×O, we define

Λ = {Φ ⊆ e | Φ = φ1 × · · · × φn, φi :Mi ⇀ Oi, i ∈ n}.

The hidden-variable model is defined as follows:

h(m, o,Φ) ≡ (Φ(m) = o).

We must show that the empirical model induced by h is e. Suppose that
e(m, o). Then we can define φi = {(mi, oi)}, i ∈ n, and Φ = φ1 × · · · × φn.
Then h(m, o,Φ), so (m, o) is in the induced relation. For the converse,
suppose that h(m, o,Φ). Then Φ(m) = o, and since Φ ⊆ e, e(m, o).

Now we show that h satisfies SD. Suppose that h(m, o,Φ), h(m′, o′,Φ),
and mi = m′

i. Then oi = φi(mi) = φi(m
′
i) = o′i.

Proposition 5.3. Every empirical model is realized by a hidden-variable
model satisfying Weak Determinism and λ-Independence.

Proof. Given e ⊆M ×O, we define dom(e) = {m | e(m)↓}, and

Λ = {Φ ⊆ e | Φ : dom(e) → O}.

Thus the values of the hidden variable are choice functions, which select
outcomes for each choice of measurements which has a non-empty set of
outcomes. The hidden-variable model is defined by:

h(m, o,Φ) ≡ (Φ(m) = o).

We must show that the empirical model induced by h is e. Suppose that
e(m, o). Then there is some choice function Φ such that Φ(m) = o, and
h(m, o,Φ). The converse is proved as for the previous Proposition.
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To show that h is Weakly Deterministic, suppose that h(m, o,Φ) and
h(m, o′,Φ). Then o = Φ(m) = o′.

Finally, suppose that h(m,Φ) and h(m′)↓. Then m′ ∈ dom(e), and so
h(m′,Φ)↓. This shows that h satisfies λI.

We now show that if an empirical model can be realized by a hidden-
variable model satisfying λI and L, then it can be realized by one satisfying
λI and SD. Note that in general, SD is strictly stronger than L if these
properties are considered in isolation.

This is a relational analogue of a result proved for probabilistic models
in [13, 5].

Proposition 5.4. Let h be a hidden-variable model satisfying λI and L.
There is an equivalent model h′ satisfying λI and SD.

Proof. We are given h ⊆M ×O × Λ satisfying λI and L. We define

Λ+ = {λ ∈ Λ | h(λ)↓}, M+ = {m ∈M | h(m)↓},

and for m ∈M , λ ∈ Λ:

Om,λ = {o ∈ O | h(m, o, λ)}.

Since h satisfies λI, for any m ∈M+ and λ ∈ Λ+, Om,λ 6= ∅.
We also define local versions of these notions, for each i ∈ n:

M+
i = {m ∈Mi | h(m)↓},

and for λ ∈ Λ+ and m ∈M+
i ,

Oi
m,λ = {o ∈ Oi | h(m, o, λ)↓}.

Since h satisfies λI, for any m ∈ M+
i and λ ∈ Λ+, Oi

m,λ 6= ∅. Moreover,
since h satisfies L, we have

Om,λ =
∏

i∈n
Oi

mi,λ
. (2)

Indeed,

o ∈ Om,λ ≡ h(m, o, λ) ↔
∧

i∈n
h(mi, oi, λ)↓ ≡

∧

i∈n
oi ∈ Oi

mi,λ
↔ o ∈

∏

i∈n
Oi

mi,λ
.

Note that M+ ⊆ ∏n
i=1M

+
i , but in general we need not have equality. We

will return to this point in section 8.
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Now we define a new value space for hidden variables. This is most elegantly
expressed as a dependent type [2]:

Λ′ = (
∑

λ ∈ Λ+)(
∏

i ∈ n)(
∏

m ∈M+
i )Oi

m,λ.

Explicitly, Λ′ consists of pairs (λ,Φ), where λ ∈ Λ+ and Φ = (Φ1, . . . ,Φn),
where Φi :M

+
i → Oi, such that Φi(m) ∈ Oi

m,λ.
We define a new hidden variable model h′ ⊆M ×O × Λ′ by:

h′(m, o, (λ,Φ)) ≡ (m ∈M+ ∧
∧

i∈n
Φi(mi) = oi).

If h′(m, o, (λ,Φ)), then m ∈ M+ and λ ∈ Λ+. By construction, oi ∈ Oi
mi,λ

,

so by (2), o ∈ Om,λ, and h(m, o, λ). Conversely, if h(m, o, λ), then m ∈ M+

and λ ∈ Λ+. For each i ∈ n, mi ∈ M+
i , and oi ∈ Oi

mi,λ
. Since Oi

m,λ is non-

empty for each m ∈M+
i and λ ∈ Λ+, we can define Φi ∈ (

∏

m ∈M+
i )Oi

m,λ

with Φi(mi) = oi. Hence there is Φ = (Φ1, . . . ,Φn) such that h′(m, o, (λ,Φ)).
Thus h′ is equivalent to h.

If h′(m, o, (λ,Φ)) and h′(m′, o′, (λ,Φ)) and mi = m′
i, then oi = Φi(mi) =

Φi(m
′
i) = o′i, so h

′ satisfies SD.
Now suppose that h′(m′)↓ and h′(m, (λ,Φ))↓. Then m′ ∈ M+ and λ ∈

Λ+, and since h satisfies λI, h(m′, λ)↓. Since m′ ∈M+, Φ is defined on m′,
and so h′(m′, (λ,Φ))↓. Thus h′ satisfies λI.

6. No-Go Results

We shall now prove a number of results showing that there are empirical
models which cannot be realized by any hidden-variable model with certain
prescribed properties. These results are based directly on four classic con-
structions in the foundations of quantum mechanics: EPR [12], GHZ [17],
Hardy [18], and Kochen-Specker [23]. However, our treatment is carried out
entirely in our simple relational framework. Our versions of these construc-
tions involve only finite sets and relations.

6.1. EPR

Our first result is by nature of a warm-up, following [6].

Proposition 6.1. There is an empirical model which is not realized by any
hidden-variable model satisfying SV and OI.
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Proof. We let M1 = {X}, M2 = {Y }, O1 = O2 = {a, b}. We define e by

e (a, a) (a, b) (b, a) (b, b)

(X,Y ) 0 1 1 0

Assume that h satisfies SV and OI, with Λ = {λ}. Suppose for a contra-
diction that h realizes e. Then h(X,Y, a, b, λ) and h(X,Y, b, a, λ), so by OI,
h(X,Y, a, a, λ). This implies e(X,Y, a, a), yielding the required contradic-
tion.

Note that we can always find a hidden-variable model realizing e which
satisfies SV, by Proposition 5.1, and also one satisfying OI, by Proposi-
tions 5.3 and 4.1(1). In fact, because M is a singleton, the Weakly De-
terministic model constructed for e by Proposition 5.3 is actually Strongly
Deterministic. Applying Proposition 4.1 again, we see that it satisfies L.
Trivially, it satisfies λI. Thus the ‘relational EPR model’ does have a local
hidden-variable model.

6.2. GHZ

We define a system type of arity 3 by:

Mi = {1, 2}, Oi = {R,G}, i = 1, 2, 3.

To lighten the notation, we shall write 122 rather than (1, 2, 2), and similarly
for other tuples. Let P = {122, 212, 221} ⊆ M . We consider any empirical
relation e such that:

∀p ∈ P. e(p) = {RRR,RGG,GRG,GGR}

e(111) = {RRG,RGR,GRR,GGG}.

Here we treat the relation e in its equivalent form as a set-valued function
e :M → P(O), so that e(m) = {o | e(m, o)}..

Thus e is completely specified on P ∪ {111}. It can have arbitrary be-
haviour on other measurements. We call any such e a GHZ model.

Proposition 6.2. No GHZ model e can be realized by a hidden-variable
model satisfying λI and L.

Proof. Assume for a contradiction that there is a hidden-variable model
which satisfies λI and L, and realizes e. Applying Proposition 5.4, this
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implies that there is a hidden-variable model h which satisfies λI and SD
and realizes e.

The assumption that h realizes e implies that for some λ, h(111, λ)↓, and
also h(p)↓ for p ∈ P . By λI, this implies that h(p, λ)↓ for each p ∈ P .

We now analyze the set of outcomes o such that h(122, o, λ). Since h
realizes e, this must be a non-empty subset S of {RRR,RGG,GRG,GGR}.
Since h satisfies SD, it must be a singleton. Similar reasoning applies to
T = {o | h(221, o, λ)}.

Since 122 and 221 have the same middle measurement, and h satisfies
SD, if h(122, o, λ) and h(221, o′, λ), we must have o2 = o′2. Hence if S =
{RRR} or S = {GRG}, then T = {RRR} or T = {GRG}, and if S =
{RGG} or S = {GGR}, then T = {RGG} or T = {GGR}. Thus we have 8
possible joint assignments under λ to 122 and 221. We can now check that
any of these completely determines the assignment to 212.

Suppose for example that 122 7→ RRR, 221 7→ GRG. Then by SD,
212 7→ G−R, and the only consistent possibility for the middle outcome is
that 212 7→ GGR. We can represent this joint assignment to the measure-
ments in P as the ‘instruction’

RGG

GRR

The rubric is that the i’th row gives the outcomes under λ when the mea-
surements are set to i, i = 1, 2. A similar analysis applies to the other seven
cases.

We can tabulate this well-known ‘Mermin instruction set’ [25] as follows:

RRR

RRR

RGG

RGG

GRG

GRG

GGR

GGR

RGG

GRR

RRR

GGG

GGR

RRG

GRG

RGR

For any of these cases, let o be the top row of the instruction, and let
m = 111. We have h(mi, oi, λ)↓, i = 1, . . . , 3, and hence by L, we have
h(111, o, λ). Since each top row contains an odd number of R’s, and the
possible outcomes for 111 under e all contain an even number of R’s, we
obtain the desired contradiction to the assumption that h realizes e.
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Discussion

We have followed Mermin’s classic presentation of the GHZ argument [25]
closely. However, compelling and polished as his account is, it does not fully
specify the precise assumptions which are being used. In particular, his
use of ‘instructions’ tacitly assumes determinism, which is made plausible
on physical grounds. We replace this tacit assumption by Proposition 5.4,
which shows that if a local hidden-variable realization exists, there must be
one satisfying Strong Determinism.

The mathematical content of the ‘instructions’ which appear in the proof
will be explained in generality in Proposition 12.1.

6.3. Hardy

We shall now give a relational formulation of the ‘Hardy paradox’ [18]. The
result is similar to the one based on the GHZ construction, but is of addi-
tional interest for several reasons:

• It applies to bipartite systems, whereas GHZ is essentially (at least)
tripartite.

• The Hardy construction avoids inequalities, but is probabilistic in char-
acter. However, the argument can be carried out in purely relational or
possibilistic terms.

• The construction leads to a family of ‘axioms’ which must be satisfied by
all models which can be realized by local hidden variables. This has some
flavour of a logical version of the CHSH inequalities [9], as suggested in
[14].

Our formulation follows the lines of [27, 15], although in our opinion the
present treatment is clearer and more explicit as to exactly which assump-
tions are being used.

We shall be concerned with bipartite systems of the following type:

M1 = {X1,X2}, M2 = {Y1, Y2}, O1 = O2 = {R,G}.

We consider relational models e satisfying the following condition:
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(R,R) (R,G) (G,R) (G,G)

(X1, Y1) 1

(X1, Y2) 0

(X2, Y1) 0

(X2, Y2) 0

What this means is that e must take the specified values; no condition is
being imposed on the remaining entries. We shall also assume that e is total,
meaning that every measurement combination has some possible outcome.
We shall call models satisfying these two conditions Hardy models.

Proposition 6.3. No Hardy model can be realized by a hidden-variable
model satisfying λI and L.

Proof. Assume for a contradiction that there is a hidden-variable model
which satisfies λI and L, and realizes e. Applying Proposition 5.4, this
implies that there is a hidden-variable model h which satisfies λI and SD
and realizes e. By Proposition 4.1(3) and Corollary 4.2, h also satisfies PI.

Since h realizes e, for some λ, h(X1Y1, RR, λ). Since e is total, h(X1Y2)↓,
and by λI, h(X1Y2, λ)↓. By PI, for some o we must have h(X1Y2, Ro, λ).
Since e(X1Y2, RR) is excluded by one of the Hardy conditions, and h real-
izes e by assumption, we must have h(X1Y2, RG, λ). Similar reasoning now
shows that we must have h(X2Y2, RG, λ), and h(X2Y1, RG, λ). However, h
is strongly deterministic, and from h(X2Y1, RG, λ) and h(X1Y1, RR, λ) this
implies R = G, yielding the required contradiction.

Discussion

Mermin’s discussion of this result in [27] makes some play of the fact that,
unlike his presentation of the GHZ argument, Einsteinian ‘elements of real-
ity’ and Merminian ‘instructions’ do not appear. However, we can see that
in fact exactly the same assumptions are required for a rigorous proof. The
elegance of the Hardy result is that it applies to the bipartite case, and to
a class of models satisfying simple general conditions. The quantum realiza-
tion of these models does involve probabilities strictly between 0 and 1, as
we shall see in the next Section; however, the relational formulation allows
us to see clearly that the No-Go result itself is purely logical in character.4

4Indeed, the quantum realization of the GHZ construction also necessarily involves
probabilities strictly between 0 and 1, as must any probability distribution whose possi-
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An immediate corollary of Proposition 6.3 is that a necessary condition
for (total) relational models to have local hidden-variable realizations is that
they satisfy the implication

a → b ∨ c ∨ d

where a, b, c, d are boolean variables placed at the indicated points of the
table:

(R,R) (R,G) (G,R) (G,G)

(X1, Y1) a

(X1, Y2) b

(X2, Y1) c

(X2, Y2) d

Since 1 corresponds to logical truth, the fact that this implication holds can
be written as the boolean inequality

1 ≤ ¬a ∨ b ∨ c ∨ d.

Note also that there are 8 variants of this constraint, arising from the sym-
metries

X1 ↔ X2, Y1 ↔ Y2, R↔ G.

Whether a useful theory of logical conditions characterizing local hidden-
variable and other classes of models can be developed in the relational set-
ting, paralleling the use of inequalities on probabilistic models to define
correlation polytopes [29], remains to be seen. Some work in this direction
is reported in [14].

6.4. KS

We now turn to a result based on the Kochen-Specker theorem [23]. We fol-
low [6], and give a proof based on the 18-vector construction in 4 dimensions
of [7], although of course our account is purely in terms of discrete sets and
relations.

bilistic collapse is a many-valued relation. In either case, an experimental verification that
a physical system does have the specified behaviour of a GHZ or Hardy model — and
hence has no realization by hidden variables — will require many runs of the system.
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We begin with some preliminary notions. Given a system of arity n
and type (M,O), the symmetry group Sn acts on M and O in the evident
fashion:

π · (m1, . . . ,mn) = (mπ−1(1), . . . ,mπ−1(n)),

π · (o1, . . . , on) = (oπ−1(1), . . . , oπ−1(n)).

We say that an empirical relation e ⊆ M × O is equivariant (or ‘satisfies
Exchangability’, to use probabilistic terminology as in [6]) if, for all π ∈ Sn:

e(m, o) ↔ e(π ·m,π · o).

Proposition 6.4. There is an empirical model which cannot be realized by
any hidden-variable model satisfying λI and PI.

Proof. We shall use a system of arity 4, with the following type:

Mi = {m1, . . . ,m18}, Oi = {0, 1}, i = 1, . . . , 4.

Consider the table (from [6, 7]):

m1 m1 m8 m8 m2 m9 m16 m16 m17

m2 m5 m9 m11 m5 m11 m17 m18 m18

m3 m6 m3 m7 m13 m14 m4 m6 m13

m4 m7 m10 m12 m14 m15 m10 m12 m15

Let P ⊆ M be the set of quadruples of measurements corresponding to the
columns of this table. Let Q ⊆ O be the set

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

The specification of the empirical model e ⊆M ×O is as follows:

1. For some function f : P → Q, for all m ∈ P :

e(m, o) ↔ f(m) = o.

2. e is equivariant.

Note that this specification can always be met, since we can take an arbitrary
function f as in (1), and then expand its definition to fulfill equivariance. In
particular, no element of P is a permutation of any other element, so there
is no conflict between (1) and (2).
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Now assume for a contradiction that e is realized by a hidden-variable
model h satisfying λI and PI. By Proposition 4.3, this implies that e satisfies
No-Signalling. Consider the assignment e makes to the first column. Let
the (unique) element in this column assigned 1 by e be mi. Note that every
element appears in exactly 2 columns in the table. By equivariance, the
assignment e makes to the other column j in which mi appears is unchanged
if we permute the elements in that column so that mi appears in the same
row as it does in column 1. But then by NS, it must be the case that
mi is also the unique element assigned 1 in column j. The same argument
can be applied to every column, and we conclude that the function f must
be non-contextual ; that is, it assigns the same value, 0 or 1, to each m ∈
{m1, . . . ,m18} regardless of where it appears as a component in P . However,
no such f can exist, since each of the nine columns is assigned exactly one
1, so an odd number of 1’s appears among the outcomes assigned to the
elements of P ; while each m appears twice in P , so the number of 1’s arising
from any non-contextual assignment must be even. This yields the required
contradiction.

Discussion

While formally the above argument is clear-cut (and of course follows [7]
and [6]), conceptually there are some surprises. In particular:

• The fact that No-Signalling gives rise to non-contextuality is unexpected.

• The Kochen-Specker theorem is of course meant to show the contextu-
ality of quantum mechanics. Thus the empirical system we used in the
proof of Proposition 6.4 should arise from quantum mechanics — and
indeed it does, as we shall recall in the next section. However, quantum
systems are supposed to satisfy No-Signalling! So what is going on?

The answer to the second point is that in this case, arities are not being
interpreted as standing in for spatially distributed structure, so issues of
causality do not arise. Rather, as we shall see in more detail in the next sec-
tion, the arities in this case really correspond to different observables, which
may be applied to the same (e.g. single-particle) system. The ‘measure-
ments’ in the system type then correspond to different ‘branches’ of these
measurements — i.e. the projectors arising in their spectral decompositions.
In this context, ‘No-Signalling’ means the ability to swap outcomes for given
projectors between different measurements — i.e. non-contextuality.

We might say that under this reading, we are considering constraints
on information flow between different measurements of the same system,
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as counterfactual alternatives, rather than between space-like separated re-
gions.

It is not clear if the fact that Kochen-Specker and GHZ can be brought
into a common format in this way can lead to a more unified understanding
of these phenomena. It is tempting to look for a connection with Mermin’s
proposal for a unified derivation of KS and GHZ [26]. However, on closer
inspection this does not appear to be related. Note in particular that KS
as it appears here (following [6]) is a substantially different result to GHZ,
since KS excludes a much wider range of hidden-variable models.

7. Physical Models

So far, our formal development has been physics-free. We see this clean
separation between a simple mathematical framework, which can be used
to prove clear-cut results from precisely formulated assumptions, and the
much more complex structures and concepts from physics which provide the
motivation, as a virtue. However, it is of course important to make the
connection, which we shall now do.

Empirical Models Arising from Quantum Mechanics

We shall now spell out how quantum systems give rise to a class of empirical
models, which we shall call QM. Thus if EM is the class of all empirical
models, QM ⊆ EM.

Suppose we are given a system type (M,O) of arity n. A quantum
realization of this system type is specified by the following data:

• Finite dimensional Hilbert spaces H1, . . . ,Hn.

• For each i ∈ n, m ∈ Mi, and o ∈ Oi, a linear operator Am,o on Hi,
subject to the condition:

∑

o∈Oi

A†
m,oAm,o = IHi

.

Thus (Am,o)o∈Oi
forms a generalized measurement [28].

• A state ρ, i.e. a density operator on H1 ⊗ · · · ⊗Hn.

For each choice of measurement m ∈ M , and outcome o ∈ O, the usual
‘statistical algorithm’ of quantum mechanics defines a probability pm(o) for
obtaining outcome o from performing the measurement m on ρ:

pm(o) = Tr(A†
m,oAm,oρ)
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where Am,o = Am1,o1 ⊗ · · · ⊗Amn,on .
We define a relational empirical model e ⊆M ×O by

e(m, o) ≡ (pm(o) > 0).

Thus e arises as the ‘possibilistic collapse’ of the usual quantum mechanical
formalism. We take QM to be the class of empirical models which are realized
by quantum systems in this fashion.

In the examples to follow, we will be in the special case where ρ is a
pure state, ρ = |ψ〉〈ψ|, and the measurements are projective, so Am,o =
|ψm,o〉〈ψm,o|, where ψm,o is the eigenvector corresponding to the outcome o.
In this case, the statistical algorithm is equivalently given by:

pm(o) = |〈ψ | ψm,o〉|2,

where ψm,o = ψm1,o1 ⊗ · · · ⊗ ψmn,on .
We can now add to the content of the results of the previous section by

indicating how the empirical models used in the proofs arise from quantum
systems; that is, showing that these systems are in the class QM. This will
‘complete’ the usual derivations of these results in application to quantum
mechanics, although it is striking how much of the work can be factored out
to the purely relational level.

EPR

The empirical system used in the proof of Proposition 6.1 arises from the
2-qubit system, H1 = H2 = C

2, with the state |01〉+|10〉√
2

, and with 1-qubit

measurements in the computational basis.

GHZ

Consider a 3-qubit system, H1 = H2 = H3 = C
2. The ‘GHZ state’ is

represented as
|000〉 + |111〉√

2

in the computational basis. We can interpret the computational basis in
each component as corresponding to the measurement for spin Up or Down
along the z-axis. We also have measurement for spin Right or Left along the
x-axis, with basis vectors

|0〉+ |1〉√
2

,
|0〉 − |1〉√

2
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and similarly for spin Forward or Back along the y-axis, with basis vectors

|0〉+ i|1〉√
2

,
|0〉 − i|1〉√

2

These bases, with eigenvalues corresponding to the spins, determine observ-
ables X and Y . For example, |0〉+|1〉√

2
is the eigenvector of X corresponding

to the measurement outcome spin Right. For each component, we interpret
the measurements 1 and 2 as X and Y , and the outcomes G and R as the
two possible spin directions along the given axis: G for spin Right for X and
spin Forward for Y , and R for the alternative outcomes. We can compute
the quantum mechanical probabilities for these measurement outcomes on
the GHZ state; for example, the probability distribution on outcomes for the
measurement XY Y , corresponding to 122 in our labelling, is:

pXY Y (o) =







1/4, o ∈ {RRR,RGG,GRG,GGR}
0 otherwise.

The possibilistic collapse of these probabilities produces a GHZ model, as
used in the proof of Proposition 6.2.

Hardy

A detailed discussion of quantum realizations of the Hardy construction is
given in [18, 27]. We shall just give a simple concrete instance.

We consider the two-qubit system, with X2 and Y2 measurement in the
computational basis. We take R = 0, G = 1. The eigenvectors for X1 are
taken to be

√

3

5
|0〉+

√

2

5
|1〉, −

√

2

5
|0〉+

√

3

5
|1〉

and similarly for Y1. The state is taken to be

√

3

8
|10〉 +

√

3

8
|01〉 − 1

2
|00〉.

One can then calculate the probabilities to be

pX1Y2
(RR) = pX2Y1

(RR) = pX2Y2
(GG) = 0,

and pX1Y1
(RR) = 0.09, which is very near the maximum attainable value

[27]. The possibilistic collapse of this model is thus a Hardy model.
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KS

For the Kochen-Specker argument, as previously explained in our discussion
in 6.4, the empirical model does not arise from a quantum system in the
fashion we have been describing. Rather, the elements m1, . . . ,m18 are taken
to be unit vectors in R

4, chosen so that each quadruple in the table used in
the proof forms an orthonormal basis. A suitable assignment of vectors is
given in [7].

Thus we see that there is indeed no conflict with the usual understanding
of the behaviour of physical systems, and in particular that they satisfy No-
Signalling.

8. Probabilistic Models

Given a finite system type (M,O), let p : M × O → [0, 1] be a probability
distribution. We can form a relational model e as the possibilistic collapse
of p:

e(m, o) ≡ p(m, o) > 0.

Probabilistic models such as p are the empirical models studied in [6]. Simi-
larly, the hidden-variable models studied there are probability distributions

q :M ×O × Λ → [0, 1].

We can form the possibilistic collapse of these to relational hidden-variable
models h ⊆M ×O × Λ in similar fashion.

The properties of models we have been studying in this paper are all rela-
tional analogues of properties of probabilistic models. So it is natural to ask:
which properties of probabilistic models are inherited by their possibilistic
collapses?

Firstly, some notation. Given a probability distribution p and an incom-
plete list of arguments s, p(s) is obtained as the marginal, i.e. by summing
over all extensions of s to a full list of arguments. Similar conventions apply
to conditional probabilities. With this convention, we note that p(s) > 0 iff
e(s)↓, where e is the possibilistic collapse of p.

The standard definition of No-Signalling for probabilistic systems is as
follows.

• Probabilistic No-Signalling (PNS).
For all m, o, m, m′:

p(m,m) > 0 ∧ p(m,m′) > 0 → p(o|m,m) = p(o|m,m′).
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Proposition 8.1. If p satisfies PNS, then its possibilistic collapse satisfies
NS.

Proof. Let e be the possibilistic collapse of p. Suppose that e(m,m, o)↓ and
e(m,m′)↓. Then p(m,m) > 0 and p(m,m′) > 0, and by PNS, p(o|m,m) =
p(o|m,m′). Now

e(m,m, o)↓ → p(o|m,m) > 0 → p(o|m,m′) > 0 → e(m,m′, o)↓.

We now consider properties of probabilistic hidden-variable models. These
are the notions which have been studied in the literature, and which we have
found relational analogues for in this paper. We shall formulate these under
the assumption that the set of values Λ for the hidden variable is finite. This
incurs no loss of generality, given that the measurement and outcome sets
are finite, by virtue of Lemma 6.5 of [5].

• Probabilistic λ-Independence (PλI) [10].
For all m, m′, λ:

q(m) > 0 ∧ q(m′) > 0 → q(λ|m) = q(λ|m′).

• Probabilistic Outcome Independence (POI) [19, 32].
For all m, o ∈ Oi, o ∈ O−

i , λ:

q(m,λ) > 0 → q(o|m,λ) = q(o|o,m, λ).

• Probabilistic Parameter Independence (PPI) [19, 32].
For all o, m ∈Mi, m ∈M−

i , λ:

q(m,λ) > 0 → q(o|m,m, λ) = q(o|m,λ).

• Probabilistic Locality (PL) [4].
For all m, o, λ:

q(m,λ) > 0 → q(o|m,λ) =
n
∏

i=1

q(oi|mi, λ).

Proposition 8.2. For each property ϕ ∈ {λI,OI,PI,L}: if q satisfies Pϕ,
then its possibilistic collapse satisfies ϕ.

This is proved similarly to Proposition 8.1.
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An Example

We shall now show by an illustrative example how the results of the last
few sections can be put together to lift No-Go theorems from the relational
setting to apply to probabilistic models.

The following definition is taken from [6]5. A probabilistic hidden vari-
able model q : M × O × Λ → [0, 1] realizes a probabilistic empirical model
p :M ×O → [0, 1] if for all m, p(m) > 0 ↔ q(m) > 0, and

p(m) > 0 → ∀o. p(o|m) = q(o|m).

Proposition 8.3. If q realizes p, then the possibilistic collapse of q realizes
the possibilistic collapse of p.

Next, we observe that the process of obtaining a relational model from a
quantum system, as described in section 7, naturally factors into two parts;
obtaining a probabilistic model, and then applying the possibilistic collapse.

Now we can lift Propositions 6.2 and 6.3 to results about probabilistic
models.

Proposition 8.4. There is a probabilistic empirical model p which arises
from a quantum system, and which is not realized by any probabilistic hidden-
variable model satisfying PλI and PL.

Proof. We let p be the probabilistic model arising from the GHZ system
described in section 7. Suppose that p is realized by a probabilistic hidden
variable model q. Now assume for a contradiction that q satisfies PλI and
PL. By Proposition 8.2, the possibilistic collapse of q is a relational hidden-
variable model h satisfying λI and L, and by Proposition 8.3, h realizes
the empirical relational model e arising as the possibilistic collapse of p.
Since e meets the conditions of Proposition 6.2, this yields the required
contradiction.

Exactly the same argument can be made for Hardy models, using Propo-
sition 6.3.

9. Building Probabilistic Models from Relational Models

We now turn to the question of some kind of converse result. Of course,
the possibilistic collapse loses a great deal of information. For example, the
probabilistic systems of arity 1 with one measurement and n outcomes form

5The terminology ‘q is equivalent to p’ is used in [6].
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the probability simplex ∆(n) on n vertices. Their image under possibilistic
collapse is the set of non-empty subsets of n. In general, if the possibilistic
collapse of p satisfies a property ϕ, it need not be the case that p satisfies
Pϕ.

We can, however, ask a different question, which is important in relating
the respective structure of classes of probabilistic and relational models: if
we have a relational model h satisfying some property ϕ, can we find a prob-
abilistic model q whose possibilistic collapse is h, and which satisfies Pϕ? In
other terms, we already know that possibilistic collapse preserves properties
of models, so its image on the class of probabilistic models satisfying Pϕ is
included in the class of relational models satisfying ϕ. We are asking if it is
surjective.

We shall obtain strikingly different results depending on the property in
question.

• For No-Signalling, we shall prove a negative result: there are relational
models satisfying No-Signalling which do not arise from any probabilistic
model satisfying Probabilistic No-Signalling. This holds even for bipar-
tite systems.

• For local hidden-variable models, we shall obtain a positive result. More-
over, the constructions involved in showing this are conceptually inter-
esting in their own right, and give a new twist to the old question of
assigning probabilities to logical structures.

9.1. No-Signalling: Negative Result

Proposition 9.1. There are empirical models e satisfying NS such that
there is no probabilistic model p satisfying PNS whose possibilistic collapse
is e.

Proof. We shall give an explicit counter-example. Consider the following
bipartite system, with

M1 = {X1,X2}, M2 = {Y1, Y2}, O1 = {a1, a2}, O2 = {b1, b2}.

We tabulate e as a 4× 4 boolean matrix:
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(a1, b1) (a1, b2) (a2, b1) (a2, b2)

(X1, Y1) 1 1 0 1

(X1, Y2) 1 0 1 1

(X2, Y1) 1 0 1 1

(X2, Y2) 1 1 0 1

One can check by calculation that e satisfies NS. Now assume for a contra-
diction that there is a probabilistic model satisfying PNS whose possibilistic
collapse is e. Such a model has the form

(a1, b1) (a1, b2) (a2, b1) (a2, b2)

(X1, Y1) c d 0 e

(X1, Y2) f 0 g h

(X2, Y1) i 0 j k

(X2, Y2) l m 0 n

where c, . . . , n are positive real numbers. Applying the equations arising
from PNS we obtain:

c+ d = f

e = g + h

i = l +m

j + k = n

c = i+ j

d+ e = k

f + g = l

h = m+ n

Since these are positive numbers, this implies

c < f < l < i < c

and hence c < c, yielding the required contradiction.
As another example, we give a somewhat more compact tripartite system,

with M1 = {X}, M2 = {Y }, M3 = {Z1, Z2}, O1 = {a1, a2}, O2 = {b1, b2},
O3 = {c}. We tabulate the relation as follows:
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(a1, b1, c) (a1, b2, c) (a2, b1, c) (a2, b2, c)

(X,Y,Z1) 1 1 0 1

(X,Y,Z2) 1 0 1 1

Similar reasoning can be applied to this example.

9.2. Locality: Positive Results

Measurement Locality

We will need to consider one additional property of models, which as far as we
know has not been discussed previously in the literature. In the probabilistic
format, following [6], we are using joint distributions, on measurements as
well as outcomes (and hidden parameters in the case of hidden-variable mod-
els). This means that probabilities p(m) are being assigned to measurements
themselves; whereas in most accounts, one only considers a family of condi-
tional probabilities p(o|m), for outcomes conditioned on measurements. Of
course, the joint distribution does determine these conditional probabilities,
and can be considered more general. However, some issues of interpretation
arise; see [6] for a discussion.

In particular, when we consider locality conditions, it seems natural to
suppose that which measurements may be selected at site i and lead to an
outcome should be independent of the measurement choices made at other
sites. This is expressed in probabilistic form by the following property:

• Probabilistic Measurement Locality (PML):

∀m ∈M.p(m) =
n
∏

i=1

p(mi).

The relational form is:

• Measurement Locality (ML):

∀m ∈M.e(m)↓ ↔
n
∧

i=1

e(mi)↓.

For a hidden-variable model, the condition is:

∀m ∈M.h(m,λ)↓ ↔
n
∧

i=1

h(mi, λ)↓.
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It is easy to see that possibilistic collapse of a system satisfying PML results
in a system satisfying ML.

Note that, given a family of probability distributions pm on O, we can
always pass to a joint distribution on M ×O, by setting

p(m, o) =
pm(o)

N

where N = card(M). Of course, we then recover the probabilities pm(o) =
p(o|m) we started with from this assignment; while p(m) = 1/N . Moreover,
this joint distribution will satisfy PML.

The Construction

Given a relational hidden-variable model h ⊆ M × O × λ satisfying λI, the
probabilistic hidden-variable model qh is defined by:

qh(m, o, λ) =







1/Wm,λ h(m)↓
0 otherwise,

where

L = card({λ ∈ Λ | h(λ)↓}), N = card({m | h(m)↓}),

Km,λ = card({o | h(m, o, λ)}), Wm,λ = Km,λLN.

It is clear that the possibilistic collapse of qh is h. Also, qh is a probability
distribution: since h satisfies λI, h(λ)↓ and h(m)↓ implies h(m,λ)↓, and
hence

∑

λ,m,o

qh(m, o, λ) = LN(Km,λ/Wm,λ) = 1.

Proposition 9.2. Let h ⊆M ×O×Λ be a relational hidden-variable model
satisfying ML, λI, and L. Then qh satisfies PML, PλI, and PL.

Proof. For each i ∈ n, we define:

N i = card({m ∈Mi | h(m)↓})
Ki

m,λ = card({o ∈ Oi | h(m, o, λ)↓}).

Since by assumption, h satisfies ML,

h(m,λ)↓ ↔
∧

i∈n
h(mi, λ)↓,
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and since h satisfies λI,

h(m)↓ ↔
∧

i∈n
h(mi)↓.

Similarly, since h satisfies L, we have

∀m, o, λ. [h(m, o, λ) ↔
∧

i∈n
h(m, oi, λ)↓]. (3)

Hence we have

N =
∏

i∈n
N i, Km,λ =

∏

i∈n
Ki

m,λ. (4)

So the ‘logical’ independence conditions λI and L imply that these quantities
can be computed locally from the numbers N i, Ki

m,λ.

Firstly, we consider PλI. Suppose that qh(m) > 0 and qh(m′) > 0. Then
h(m)↓ and h(m′)↓. We evaluate qh(λ|m):

qh(λ|m) =

∑

o q
h(m, o, λ)

∑

o,λ′ qh(m, o, λ′)
.

The numerator evaluates to Km,λ/Wm,λ = 1/LN ; while the denominator
evaluates to

∑

λ′∈Λ

Km,λ′

Wm,λ′

=
L

LN
=

1

N
.

Hence qh(λ|m) = 1/L, which is independent of m.

Now we prove PL. Suppose that qh(m,λ) > 0, which implies h(m,λ)↓.
Firstly, we calculate:

qh(o|m,λ) =
qh(m, o, λ)

∑

o′ q
h(m, o′, λ)

=
Wm,λ

Km,λWm,λ

=
1

Km,λ

.

So by (4), it suffices to show, for each i ∈ n, m ∈Mi with h(m)↓, o ∈ Oi:

qh(o|m,λ) =
1

Ki
m,λ

.

We have:

qh(o|m,λ) =

∑

o,m q
h(m,m, o, o, λ)

∑

o′,o,m q
h(m,m, o′, o, λ)

.



31

Evaluating the numerator, we obtain:

∑

m

K−i
m,m,λ

Wm,m,λ

=
1

Ki
m,λLN

i
,

where
K−i

m,m,λ =
∏

j 6=i

Kj
m,mj ,λ

.

For the denominator, we have

∑

m

∑

o′,o

1

Wm,m,o′,o,λ

=
∑

m

Km,m,λ

Km,m,λLN
=

∑

m

1

LN
=

N−i

LN
=

1

LN i
.

Dividing through, we obtain 1/Ki
m,λ, and the proof is complete.

10. Maximum Entropy Characterization

The construction of probabilistic models from relational ones which we have
described in the previous section is clearly canonical in some sense — but
which? We now turn to the task of answering this question.

Clearly, it is some form of maximum entropy construction, where prob-
ability is shared as evenly as possible, subject to respecting the structure of
the locality conditions. It is, however, too naive to expect the joint probabil-
ity distribution p :M×O → [0, 1] itself to have maximum entropy among all
such with the same possibilistic collapse. The distribution with maximum
entropy among all those with a given possibilistic collapse e will simply be
the uniform distribution on the support

{(m, o) ∈M ×O | e(m, o)}.

This makes no distinction between measurements and outcomes, and does
not respect the local structure.

Thus we must find a more subtle characterization. To do this, we firstly
need to sharpen our discussion of probabilistic models. The following ele-
mentary observation will be useful.

Proposition 10.1. Let X, Y be finite sets. Given a probability distribution
p : X × Y → [0, 1], we can form a probability distribution θp on X by
marginalization:

θp(x) =
∑

y∈Y
p(x, y).
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We can also form a probability distribution px : y 7→ p(x, y)/θp(x) on Y for
each x ∈ X such that θp(x) > 0. In more familiar terms, px is the marginal-
ization of the conditional probability p(·|x). Conversely, given a probability
distribution θp on X, and a family {px}x∈X′ of probability distributions on
Y , where X ′ = {x ∈ X | θp(x) > 0}, we can form a joint distribution p′ on
X × Y by:

p′(x, y) =







θp(x)px(y), θp(x) > 0,

0, otherwise.
(5)

These passages are mutually inverse.

Proof. If we start with p, pass to θp and {px}, and then form a joint
distribution p′ from these by (5), then firstly

θp(x) > 0 ↔
∑

y

p(x, y) > 0.

Thus if θp(x) = 0, then p(x, y) = 0. If θp(x) > 0, then

p′(x, y) = θp(x)px(y) =
θp(x)p(x, y)

θp(x)
= p(x, y).

Thus p′ = p.

Conversely, if we start with θp and {px}, pass to p′, and then to θp′ and
{p′x}, then

θp′(x) =
∑

y

p′(x, y) =
∑

y

θp(x)px(y) = θp(x).

If θp(x) > 0, then

p′x(y) =
p′(x, y)
θp(x)

=
θp(x)px(y)

θp(x)
= px(y).

In our context, we take X =M and Y = O for probabilistic empirical mod-
els, and X = M × Λ, Y = O for hidden-variable models. We refer to the
distribution θp as the measurement prior. It can be understood as an ini-
tial probability on a given combination of measurements being performed.
Whether this arises from some experimental protocol involving randomiza-
tion, from ignorance, or from some other source, is not specified.
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We recall the standard definition of the entropy of a probability distri-
bution p : Z → [0, 1] on a finite set Z:

H(p) = −
∑

z

p(z) log p(z).

The following lemma gives a useful formula for the entropy of a joint distri-
bution following the decomposition of Proposition 10.1.

Lemma 10.2. Let p : X × Y → [0, 1] be a probability distribution, X, Y
finite. Then

H(p) = H(θp) +
∑

θp(x)>0

θp(x)H(px).

Proof. By calculation:

H(p) = −
∑

θp(x)>0,y

p(x, y) log p(x, y)

= −
∑

θp(x)>0,y

θp(x)px(y) log θp(x)px(y)

= −
∑

θp(x)>0,y

θp(x)px(y)(log θp(x) + log px(y))

= −
∑

θp(x)>0,y

θp(x)px(y) log θp(x) + −
∑

θp(x)>0,y

θp(x)px(y) log px(y)

= −
∑

θp(x)>0

(
∑

y

px(y))θp(x) log θp(x) + −
∑

θp(x)>0,y

θp(x)px(y) log px(y)

= −
∑

θp(x)>0

θp(x) log θp(x) +
∑

θp(x)>0

θp(x)(−
∑

y

px(y) log px(y))

= H(θp) +
∑

θp(x)>0

θp(x)H(px).

Proposition 10.3 (Maximum Entropy Characterization). Given a hidden-
variable model h satisfying λI, let C be the set of probabilistic models whose
possibilistic collapse is h. For all q ∈ C:

H(θqh) ≥ H(θq) and [h(m,λ)↓ → H(qhm,λ) ≥ H(qm,λ)].
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Proof. Given q ∈ C, we note firstly that since q and qh both have the same
possibilistic collapse, θqh and θq have the same support, {(m,λ) ∈ M × Λ |
e(m,λ)↓}. Also, if (m,λ) is in the support, θqh(m,λ) = 1/LN . Thus θqh is
the uniform distribution on the support, and hence H(θqh) ≥ H(θq).

Now given (m,λ) in the support of θqh , q
h
m,λ(o) = 1/Km,λ, so q

h
m,λ is the

uniform distribution on its support, {o ∈ O | h(m, o, λ)}. Again, since q has
the same possibilistic collapse, qm,λ has the same support as qhm,λ. Hence

H(qhm,λ) ≥ H(qm,λ) for all (m,λ) in the support of θqh .

11. Classes of Models

The class of relational empirical models can be seen as a simplified image
of the space of physical theories. As we have seen, a surprising amount of
the structure of locality and related notions is preserved under the passage
by possibilistic collapse to this image. Thus it seems promising that by
understanding the structure of this class, we can gain insight into quantum
mechanics, and both sub- and super-quantum theories.

All the examples of empirical models we have considered so far have been
of finite type; it seems these suffice to encapsulate the key structural and
conceptual issues which arise in the foundations of quantum mechanics. We
define EM to be the class of empirical models of finite type. We define LHV

to be the class of empirical models e which are realized by hidden-variable
models satisfying λI and L. We also have the class NS of empirical models
which satisfy No-Signalling. In the light of Proposition 9.1, we also define the
class NSp of models which arise as the possibilistic collapse of probabilistic
models satisfying PNS.

The class QM comprises those empirical models which arise from quan-
tum systems in the manner described in section 7. However, this description
needs to be refined in one respect. The models arising from quantum systems
naturally give rise to probability distributions on outcomes pm. To be com-
pleted into joint distributions on M ×O according to the recipe provided by
Proposition 10.1, they also need to be equipped with a measurement prior.
Since we are only concerned here with the relational models they give rise to
by possibilistic collapse, this simply amounts to restricting the set of possible
measurements.

Given a set S ⊆ M and an empirical model e ⊆ M × O, we define the
restriction of e to S:

eS(m, o) ≡ e(m, o) ∧ m ∈ S.

Importantly, we have:
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Proposition 11.1. If e satisfies NS, so does eS.

Proof. A trivial consequence of the definition of NS.

We define QM to be the class of models obtained from quantum systems
by possibilistic collapse and restriction to a subset of measurements.

Our goal in this section is lay some basic groundwork for future study
by establishing the following (strict) inclusions:

LHV ⊂ QM ⊂ NSp ⊂ NS ⊂ EM.

11.1. The Quantum Non-Locality Zone

Proposition 11.2. We have the strict inclusion LHV ⊂ QM.

Proof. Firstly, consider a relational model of arity 1, with d outcomes. We
can represent this by a quantum system over a Hilbert space of dimension
d, with a chosen basis |i〉. We use the maximally mixed state

µ =
d

∑

i=1

1

d
|i〉〈i|.

We can then use projectors to represent arbitrary subsets of the outcomes.
Now given a model e of arity n in LHV, we use the product state µ1 ⊗

· · ·⊗µn, where µi is the maximally mixed state in a chosen basis for a Hilbert
space Hi of dimension di = card(Oi). By locality, this system realizes e. If e
is not total, we can use restriction to cut down the admissible measurements
in the quantum system appropriately. Thus LHV ⊆ QM.

By Proposition 6.2, we know that there are systems in QM which are not
in LHV, so the inclusion is strict.

11.2. The Super-Quantum Sub-Luminal Zone

We invoke a standard result: the No-Signalling or No-Communication The-
orem [16, 20, 21].

Theorem 11.3. Every probabilistic model arising from a quantum system
satisfies PNS.

As an immediate corollary of this theorem and Propositions 4.4 and 8.1,
we obtain:

Proposition 11.4. Every empirical model arising from a quantum system
has a realization by a hidden-variable model satisfying λI and PI.
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It follows from Proposition 4.1 that the missing ingredient in such hidden-
variable realizations will be OI.

A topic which has received much attention in recent work on quantum
information is that of non-local boxes; devices which exhibit super-quantum
correlations. In particular, the family of Popescu-Rohrlich boxes [30, 22]
achieve maximum violation of the Tsirelson bound on quantum correlations
[34], while still satisfying No-Signalling.

Consider the probabilistic model of arity 2, with Mi = Oi = {0, 1},
i = 1, 2. The conditional probabilities p(o|m) are tabulated as follows, where
the rows are indexed by measurements, and the columns by outcomes:

(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) α 0 0 α′

(1, 0) β 0 0 β′

(0, 1) γ 0 0 γ′

(1, 1) 0 δ δ′ 0

Lemma 11.5. If the model satisfies PNS, then all the entries labelled by
Greek letters must be equal to 1/2.

Proof. If we expand the definition of PNS, we obtain 8 equations of the
form

p(oi = j|mi = k,mi′ = 0) = p(oi = j|mi = k,mi′ = 1),

i = 1, 2, i′ = 3− i, j, k = 0, 1. Applying the equation with i = 1, j = k = 0
to the table, this yields α+0 = γ+0, hence α = γ. The remaining equations
yield

α′ = γ′, β = δ′, β′ = δ, α = β, α′ = β′, γ = δ, γ′ = δ′

in similar fashion. Altogether, these imply that all these quantities are equal,
and since each row of the table is a probability distribution, their common
value must be 1/2.

Hence the only probabilistic model of this form satisfying No-Signalling
is
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(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) 1/2 0 0 1/2

(1, 0) 1/2 0 0 1/2

(0, 1) 1/2 0 0 1/2

(1, 1) 0 1/2 1/2 0

Note that this model has the property that the non-zero entries are exactly
those for which

o1 ⊕ o2 = m1m2

where ⊕ is addition modulo 2. This is the simplest of the 8 PR-boxes [3]; it
satisfies

E(0, 0) +E(1, 0) +E(0, 1) −E(1, 1) = 4

where

E(x, y) =

1
∑

a,b=0

(−1)a+bp(o1 = a, o2 = b | m1 = x,m2 = y)

measures the correlation of the outcomes. Thus this model exceeds the
Tsirelson bound [34] of 2

√
2 for the maximum degree of correlation that can

be achieved by any bipartite quantum system of this form. It follows that
no quantum system can give rise to this probabilistic model.

Proposition 11.6. We have the strict inclusion QM ⊂ NSp.

Proof. By Theorem 11.3, any quantum system gives rise to a probabilistic
model satisfying PNS. By definition, the possibilistic collapse of this system
is in NSp. Thus we have the inclusion QM ⊆ NSp.

Now consider the relational model

(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) 1 0 0 1

(1, 0) 1 0 0 1

(0, 1) 1 0 0 1

(1, 1) 0 1 1 0

By Lemma 11.5, the only probabilistic model satisfying PNS which gives
rise to it by possibilistic collapse is the PR box. This shows both that the
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model is in NSp, and that no quantum system can give rise to this relational
model.

Proposition 11.7. We have the strict inclusion NSp ⊂ NS.

Proof. If e is in NSp, it arises by possibilistic collapse from p satisfying
PNS. By Proposition 8.1, it follows that e satisfies NS. Thus NSp ⊆ NS.
The strictness of the inclusion follows immediately from Proposition 9.1.

11.3. And Beyond

Proposition 11.8. We have the strict inclusion NS ⊂ EM.

Proof. By definition, NS ⊆ EM. The strictness of the inclusion follows
from Proposition 6.4.

12. Computational Aspects

12.1. Hidden-Variable Models

We shall investigate the computational complexity of the class LHVt, of total
relational models which can be realized by local hidden-variable models. We
begin with a simple ‘intrinsic’ characterization of this class, which does not
refer to hidden variables.

Proposition 12.1. A relational model is in LHVt if and only if it is a union
of total strongly deterministic models.

Proof. Note firstly that a total model e ⊆M ×O is strongly deterministic
if and only if e =

∏

i fi, where fi : Mi → Oi, i ∈ n. If e =
⋃

λ fλ, where
fλ =

∏

i fλ,i, we can define a hidden variable model h by

h(m, o, λ) ≡ fλ(m) = o. (6)

This trivially satisfies λI, since each fλ is total, and satisfies SD by con-
struction.

Conversely, if e is in LHVt, by Proposition 5.4 it is realized by a hidden-
variable model h satisfying SD and λI. Each λ ∈ Λ such that h(λ)↓ induces
a function fλ =

∏

i fλ,i, fλ,i : Mi → Oi, whose graph is included in e. Since
e is realized by h, every element of e appears in the graph of fλ for some λ.
Hence e is a union of total strongly deterministic models.
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Note that the functions fλ =
∏

i fλ,i are the general form of Mermin-style
‘instructions’ [25], as in the proof of Proposition 6.2.

In order to simplify notation, we shall consider relational models of arity
n of the form (U, e), where e ⊆ Un × Un. Thus we use the same underlying
set U for both measurements and outcomes at each site. This loses a little
generality, but does not change the essentials.

We shall write HV(n) for the class of models of this form in LHVt. We
are interested in the algorithmic problem of determining if a structure (U, e)
of arity n is in HV(n).

Proposition 12.2. For each n, HV(n) is in NP.

Proof. It will be convenient to use some notions of finite model theory [24].

From Proposition 12.1, it is clear that HV(n) is defined by the following
second-order formula interpreted over finite structures:

∀~x.∃~y.R(~x, ~y) ∧ [∀~x, ~y.R(~x, ~y) → ∃f1, . . . , fn.
∧

i fi(xi) = yi ∧ ∀~v.R(~v, f1(v1), . . . , fn(vn))]
(7)

Here we are interpreting the relation symbol R by the given relation e.

By standard quantifier manipulations, (7) can be brought into an equiv-
alent Σ1

1 form, and hence HV(n) is in NP [24].

12.2. QM

We now turn to the question of determining whether a model is realized by
a quantum system.

We consider the class of models which can be realized by Hilbert spaces of
dimension d, which we write as QM(d). Note that if a model can be realized
in dimension d, it can be realized in any higher dimension, by working in a
subspace.

Proposition 12.3. The class QM(d) is in PSPACE. That is, there is a
PSPACE algorithm to decide, given an empirical model, if it arises from a
quantum system of dimension d.

Proof. We shall give an outline of the construction. The details are tedious
but straightforward.

Since we have fixed the dimensions of the Hilbert spaces to be used, the
quantum system can be presented as a list of complex matrices satisfying
various properties, each of which can be expressed in terms of the matrix
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components as equations or inequalities between algebraic expressions. Simi-
larly, the fact that the possibilistic reduction of the system matches the given
finite relation can be expressed in this fashion. We can also use the standard
representation of complex numbers as pairs of reals. Hence the existence of
a quantum system realizing the empirical model can be expressed by a first-
order sentence φ over the signature (+, 0,×, 1, <), interpreted over the reals.
By a classic result of Tarski [33], the first-order theory of this structure is
decidable.

The sentence φ can in fact be constructed to lie in the existential frag-
ment, i.e. to have the form ∃v1 . . . ∃vk.ψ, where ψ is a conjunction of atomic
formulas.This fragment has PSPACE complexity [8, 31]. Moreover, the sen-
tence can be constructed in polynomial time from the given relational em-
pirical model. Hence membership of QM(d) is in PSPACE.

The following question seems both interesting and challenging.

Question 12.4. 1. If a model of finite type can be realized by a quantum
system, can it always be realized by one of finite dimension?

2. Given a positive answer to (1), is the class ∃d.QM(d) decidable? Note
that, by Proposition 12.3, this class is certainly computably enumerable;
we can simply run the algorithm for QM(d) for increasing values of d.
The question is whether there is an effective bound for this procedure.

12.3. NSp

Finally, we consider the class NSp.

Proposition 12.5. The class NSp is in PSPACE.

Proof. Following the methods of Proposition 9.1 and Lemma 11.5, we can
reduce the question of membership of an empirical model in NSp to the truth
of a sentence in the existential fragment of the first-order theory of the reals,
as in the proof of the previous Proposition. The atomic formulas are the
PNS equations, together with strict positivity of the variables, and that
they sum to 1. Note that all these expressions are purely additive.

The nominal complexity suggested by the simple proofs of these results
is high; it is likely that better bounds can be achieved.

Question 12.6. Determine the exact complexity of the classes LHV, QM

and NSp.
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