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Abstract. Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras,

which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We

present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove

translationally equivalent to the original one. We then study some formulas that define a

semi-Heyting implication, and specialize this study to the case in which the formulas use

only the lattice operators and the intuitionistic implication. We prove then that all the

logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics.
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1. Introduction

Semi-Heyting algebras were defined by H. P. Sankappanavar in [15] as a vari-
ety generalizing the one of Heyting algebras while retaining some important
features, like the fact that they are all pseudocomplemented distributive lat-
tices and their congruences are determined by filters. Semi-Heyting algebras
are algebras A = 〈A,∨,∧,→,�,⊥〉 that satisfy the conditions:

(SH1) 〈A,∨,∧,�,⊥〉 is a bounded lattice.
(SH2) x ∧ (x → y) ≈ x ∧ y
(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)]
(SH4) x → x ≈ �.

The resulting variety of Semi-Heyting algebras, denoted by SH, presents
complex behavior, since one may define different implication operations over
a single lattice to obtain different semi-Heyting algebras. For example, if
the lattice is a chain with 5 elements, there are 10400 different ways of
endowing it with a semi-Heyting implication [1]. One of the questions we
set out to answer in this work is wether there are some subvarieties where
the implication over a given lattice can be determined in a unique way.

A key feature of semi-Heyting algebras is that each one of them may
be turned into a Heyting algebra by defining the implication x →H y as
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x → (x ∧ y). It is clear that Heyting algebras themselves are semi-Heyting
algebras, so a lattice is the underlying lattice of a semi-Heyting algebra if
and only if it is the underlying lattice of a Heyting algebra.

As part of the ongoing tradition of finding the relationship between al-
gebraic structures and logics, one of us introduced in [4] semi-intuitionistic
logic as the logic counterpart of semi-Heyting algebras, proving complete-
ness. In section 2, we present a different set of axioms for semi-intuitionistic
logic, which we prove in section 3 is translationally equivalent to the origi-
nal one. The change we propose is in order to unify the algebraic and logic
language, removing the need to distinguish between terms and formulas and
also reduce the number of axioms. In section 4 we prove completeness again
but this time using the fact that with the implication →H, semi-intuitionistic
logic is an implicative logic in the sense of [13]. In section 5 we study some
formulas that define a semi-Heyting implication, while in section 6 we spe-
cialize this study to the case in which the formulas use only the lattice op-
erators and the intuitionistic implication. We prove then that all the logics
thus obtained are equivalent to intuitionstic logic, give their Kripke seman-
tics and prove completeness with respect to them. In the appendix we offer
some of the longer proofs.

2. Semi-Intuitionistic Logic

Following [7], a logical language L is a set of connectives, each with a fixed
arity n ≥ 0. For a countably infinite set Var of propositional variables, the
formulas of the logical language L are inductively defined as usual.

A logic in the language L is a pair L = 〈Fm,�L〉 where Fm is the set
of formulas and �L is a substitution-invariant consequence relation on Fm.
The set Fm may also be endowed with an algebraic structure, by considering
the connectives of the language as operation symbols. The resulting algebra
is often called the algebra of formulas and denoted by Fm. We will present
finitary logics by means of their “Hilbert style” sets of axioms and inference
rules.

We introduce now the semi-intuitionistic logic SI, in the language
{∧,∨,→,⊥,�}, by means of the following set of axioms. Here α →H β
is an abbreviation for α → (α ∧ β) that makes the axioms easier to read.

(S1) α →H (α ∨ β)

(S2) β →H (α ∨ β)

(S3) (α →H γ) →H [(β →H γ) →H ((α ∨ β) →H γ)]]
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(S4) (α ∧ β) →H α

(S5) (γ →H α) →H [(γ →H β) →H (γ →H (α ∧ β))]

(S6) �
(S7) ⊥ →H α

(S8) ((α ∧ β) →H γ) →H (α →H (β →H γ))

(S9) (α →H (β →H γ)) →H ((α ∧ β) →H γ)

(S10) (α →H β) →H ((β →H α) →H ((α → γ) →H (β → γ)))

(S11) (α →H β) →H ((β →H α) →H ((γ → β) →H (γ → α)))

The inference rule is semi-Modus Ponens (SMP): For all Γ∪{φ, γ} ⊆ Fm,
if Γ �SI φ and Γ �SI φ → (φ ∧ γ), then Γ �SI γ. Notice that this is Modus
Ponens for the implication →H.

Semi-intuitionistic logic was introduced in [4] using the language {∧,∨,
→,¬} and a different set of axioms. We are going to denote that system
SI ′. It was proved there that the logic SI ′ is complete with respect to the
class of algebras SH. The logic SI ′ was defined using the axioms (S1) to
(S11) replacing the axioms (S6) and (S7) by

(S6’) α →H α

(S7’) (α ∧ ¬α) →H β

and adding the axioms

(S12’) (α →H β) →H [(β →H γ) →H (α →H γ)]

(S13’) (α ∧ β) →H β

(S14’) (α ∧ (β → γ)) →H (α ∧ ((α ∧ β) → (α ∧ γ)))
(S15’) (α ∧ ((α ∧ β) → (α ∧ γ))) →H (α ∧ (β → γ))

(S16’) (α ∧ (α → β)) →H (α ∧ β)

(S17’) (α ∧ β) →H (α ∧ (α → β))

(S18’) (α →H ¬α) →H (¬α)

with semi-Modus Ponens as the only inference rule.
We are going to verify that these two logics, SI and SI ′, are transla-

tionally equivalent (in the sense of Definition 3.3). As a consequence we will
have that the logic SI is complete with respect to the variety SH.

Now we prove some of the results in the logics SI and SI ′ that will be
needed. The proof of the following lemma is given in the Appendix.
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Lemma 2.1. The following statements hold in the logic SI:

(a) If Γ �SI ψ then Γ �SI α →H ψ.

(b) �SI α →H α

(c) If �SI φ then �SI α →H (α ∧ φ).

(d) �SI (α ∧ β) →H β (S13’)

(e) �SI (α ∧ β) →H (β ∧ α)

(f) �SI α → α

(g) �SI α →H (β →H (α ∧ β))

(h) �SI ((α ∧ β) ∧ γ) →H ψ if and only if �SI (α ∧ (β ∧ γ)) →H ψ.

(i) �SI (α ∧ β) → (β ∧ α)

(j) If �SI (α ∧ β) →H γ then �SI (β ∧ α) →H γ

(k) If �SI α →H β then �SI (α∧γ) →H (β∧γ) and �SI (γ∧α) →H (γ∧β).

(l) If �SI α →H (β ∧ γ) then �SI α →H γ.

(m) If �SI α →H β and �SI β →H α, then �SI (α →H γ) →H (β →H γ) and
therefore �SI (β →H γ) →H (α →H γ).

(n) �SI (α →H β) →H [(β →H γ) →H (α →H γ)] (S12’)

(o) �SI α →H [α ∧ ((α ∧ β) →H β)]

(p) �SI ((α ∧ β) ∧ α) → ((α ∧ β) ∧ β)

(q) �SI (α ∧ (β → γ)) →H (α ∧ ((α ∧ β) → (α ∧ γ))) (S14’)

(r) �SI (α ∧ ((α ∧ β) → (α ∧ γ))) →H (α ∧ (β → γ)) (S15’)

(s) �SI (α ∧ β) →H (α ∧ (α → β)) (S17’)

(t) �SI (α ∧ (α → β)) →H (α ∧ β) (S16’)

3. Equivalent Axiomatics

The logic systems SI and SI ′ use different languages, so to prove they are
essentially the same we use the following definitions inspired by those found
in [11].

Definition 3.1. Given two propositional languages L and L′ using the same
set Var of variables, a translation is a function h : FmL → FmL′ satisfying:

1. If xi is a propositional variable in L, then h(xi) = xi;
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2. If f is a k-place connective in L, and {x1, . . . , xk} ⊆ Var, to the formula
f(x1, . . . , xk) we assign a formula βf of FmL′ , where βf contains only
variables from {x1, . . . , xk}. Then for any {α1, . . . , αk} ⊆ FmL,

h(f(α1, . . . , αk)) = βf (h(α1), . . . , h(αk))

Definition 3.2. If A and B are logics in the languages L and L′, respec-
tively, a translation h from L into L′ is sound if h(φ) is provable in B when-
ever φ is provable in A. That is,

If �A φ then �B h(φ).

Furthermore, we assume that in both logics there is a connective ↔ such
that the following axiom schema and inference rules governing this connec-
tive are valid:

(B1) � φ ↔ φ;

(B2) φ ↔ ψ � ψ ↔ φ;

(B3) φ ↔ ψ,ψ ↔ γ � φ ↔ γ;

(B4) α1 ↔ β1, . . . , αk ↔ βk � f(α1, . . . , αk) ↔ f(β1, . . . , βk), where f is
any k-place connective in the system.

Definition 3.3. [11] We say that the logics A and B are translationally
equivalent if there are translations h1 and h2 so that

1. Both h1 and h2 are sound;

2. For any formula φ in FmL, �A φ ↔ h2(h1(φ));

3. For any formula φ in FmL′ , �B φ ↔ h1(h2(φ)).

For the rest of this section, we fix the languages L = {∧,∨,→,⊥,�} and
L′ = {∧,∨,→,¬}, and use a common set of variables Var. For α, β ∈ FmL

or FmL′ , let α ↔H β be the formula (α →H β) ∧ (β →H α). We check that
this connective satisfies the conditions (B1) to (B4).

The proofs of Lemmas 3.4-3.8 are given in the Appendix.

Lemma 3.4. Let Γ∪{α, β} ⊆ FmL. Then the following conditions are equiv-
alent:

(a) Γ �SI α ↔H β,

(b) Γ �SI α →H β and Γ �SI β →H α,

Lemma 3.5. Let {α, β} ⊆ FmL.

a) �SI α ↔H α
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b) α ↔H β �SI β ↔H α

c) α ↔H β, β ↔H γ �SI α ↔H γ

d) α ↔H β, γ ↔H δ �SI (α ∧ γ) ↔H (β ∧ δ)
e) α ↔H β, γ ↔H δ �SI (α ∨ γ) ↔H (β ∨ δ)
f) α ↔H β, γ ↔H δ �SI (α → γ) ↔H (β → δ)

In the proofs of the last two lemmas we don’t use the axioms (S6) and
(S7), so we can use the same proofs for the logic SI ′.

As a consequence of Lemma 3.5 we have:

Corollary 3.6. �SI ⊥ ↔H ⊥ and �SI � ↔H �.

Lemma 3.7. Let {α, β} ⊆ FmL′. Then α ↔H β �SI′ ¬α ↔H ¬β.

From the results above, conditions (B1) to (B4) hold in both logics SI
and SI ′.

In order to prove a version of the deduction theorem we need the following
lemma.

Lemma 3.8. Let Γ ∪ {α, β} ⊆ FmL.

a) �SI (α ∧ (α → ⊥)) →H β

b) If Γ �SI α and Γ �SI β then Γ �SI α ∧ β.

c) �SI α →H (α ∧ (⊥ → ⊥)).

d) If Γ �SI β ↔H ⊥ then Γ �SI β →H (α ∧ ⊥) and Γ �SI (α ∧ ⊥) →H β.

e) �SI [α∧ (α →H (α → ⊥))] →H ⊥ and �SI ⊥ →H [α∧ (α →H (α → ⊥))].

Theorem 3.9. (Deduction theorem for SI and SI ′) Let Γ∪{φ, ψ} ⊆ FmL.
Then

Γ ∪ {φ} �SI ψ iff Γ �SI φ →H ψ.

The corresponding result also holds for SI ′.

Proof . Assume that Γ ∪ {φ} �SI ψ. We shall prove Γ �SI φ →H ψ by
induction on the proof for ψ. If ψ is an axiom of SI or a formula in Γ, then
Γ �SI ψ. By Lemma 2.1, part (a) we have Γ �SI φ →H ψ.

Since SMP is the only inference rule, we may assume that there is some
formula α such that Γ ∪ {φ} �SI α and Γ ∪ {φ} �SI α →H ψ. Then by
inductive hypothesis we have,

1. Γ �SI φ →H α and

2. Γ �SI φ →H (α →H ψ).
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3. Γ �SI φ →H φ by Lemma 2.1, part (b).

4. Γ �SI φ →H (φ ∧ α) by (S5) and SMP applied to 1 and 3.

5. Γ �SI (φ ∧ α) →H ψ by (S9) and SMP applied to 2.

6. Γ �SI φ →H ψ by (S12’) and SMP applied to 4 and 5.

For the other implication, we assume that Γ �SI φ →H ψ. Then Γ ∪
{φ} �SI φ →H ψ. Since Γ ∪ {φ} �SI φ, Γ ∪ {φ} �SI ψ obtains.

The same proof can be used to prove the result for SI ′, since only axioms
common to both are used. See also [4, Theorem 3.18]. �

Some further results in SI ′ are needed.

Lemma 3.10. SI ′ proves the following:

a) �SI′ ¬α ↔H (α →H (¬α))

b) Γ �SI′ ¬β →H (β → (α ∧ ¬α))

c) Γ �SI′ (β → (α ∧ ¬α)) →H ¬β
d) Γ �SI′ (β →H (β →H (α ∧ ¬α))) →H (β →H (α ∧ ¬α))

We now define translations that let us verify the equivalence.

Definition 3.11. Let h1 be the translation from FmL to FmL′ defined by:

• h1(α ∧ β) = h1(α) ∧ h1(β),

• h1(α ∨ β) = h1(α) ∨ h1(β),

• h1(α → β) = h1(α) → h1(β),

• h1(�) = x → x and h1(⊥) = x ∧ ¬x, where x is a fixed variable.

Lemma 3.12. The translation h1 is sound.

Proof . We want to check that for φ ∈ FmL, if �SI φ then �SI′ h1(φ).
If φ is an axiom other than (S6) and (S7), this is trivial. The translation
of (S6) is the axiom (S6’) of SI ′. The translation of (S7), h1(⊥ →H α) =
(x ∧ ¬x) →H h1(α), is an instance of axiom (S7’) of SI ′.

Suppose now that for some β ∈ FmL, �SI β and �SI β →H φ. Then,
by inductive hypothesis, �SI′ h1(β) and �SI′ h1(β →H φ). Hence �SI′

h1(β) →H h1(φ) and in consequence, by SMP, �SI′ h1(φ). �
Definition 3.13. Let h2 : FmL′ → FmL be the translation given by

• h2(α ∧ β) = h2(α) ∧ h2(β),

• h2(α ∨ β) = h2(α) ∨ h2(β),

• h2(α → β) = h2(α) → h2(β),
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• h2(¬α) = h2(α) → ⊥
Lemma 3.14. The translation h2 is sound.

Proof . It is enough to check that the translations of axioms (S6’), (S7’)
and (S12’) to (S18’) are theorems of SI.

The translation of (S6’) is h2(α) →H h2(α), which we proved in Lemma
2.1 (b).

The translation of (S7’) is also a theorem:
�SI (h2(α) ∧ (h2(α) → ⊥)) →H h2(β) by Lemma 3.8, part a).

The translations of (S12’) to (S17’) yield instances of those same axioms
and were proved in Lemma 2.1.

Finally, we prove that the translation of (S18’), (h2(α) →H (h2(α) →
⊥)) →H (h2(α) → ⊥), is also a theorem of SI.

Let γ be the formula α →H (α → ⊥).

1. �SI [α ∧ γ] →H ⊥ and �SI ⊥ →H [α ∧ γ] by Lemma 3.8 (e).

2. �SI [α ∧ γ] ↔H ⊥ by Lemma 3.4 applied to 1.

3. �SI [γ ∧ ⊥] →H [α∧ γ] and �SI [α∧ γ] →H [γ ∧ ⊥] by Lemma 3.8 (d).

4. �SI [α∧ γ] →H [γ ∧α] and �SI [γ ∧α] →H [α∧ γ] by Lemma 2.1, (e).

5. �SI [γ ∧ ⊥] →H [γ ∧ α] and �SI [γ ∧ α] →H [γ ∧ ⊥] by Lemma 2.1(n)
and SMP applied to 3 and 4.

6. �SI [[γ ∧ ⊥] → [γ ∧ ⊥]] →H [[γ ∧ α] → [γ ∧ ⊥]] by (S10) and SMP
applied to the previous step.

7. �SI [γ ∧ [[γ ∧ ⊥] → [γ ∧ ⊥]]] →H [γ ∧ [[γ ∧ α] → [γ ∧ ⊥]]] by Lemma
2.1 (k) applied to step 6.

8. �SI [γ ∧ [[γ ∧ α] → [γ ∧ ⊥]]] →H [γ ∧ [α → ⊥]] by Lemma 2.1(r).

9. �SI [γ ∧ [α → ⊥]] →H (α → ⊥) by Lemma 2.1(d).

10. �SI [γ ∧ [[γ ∧ ⊥] → [γ ∧ ⊥]]] →H (α → ⊥) by Lemma 2.1(n) and SMP
applied to 7, 8 and 9.

11. �SI [γ ∧ (⊥ → ⊥)] →H [γ ∧ [[γ ∧ ⊥] → [γ ∧ ⊥]]] by Lemma 2.1(q) .

12. �SI [γ ∧ (⊥ → ⊥)] →H (α → ⊥) by Lemma 2.1(n) and SMP applied
to 10 and 11.

13. �SI γ →H [γ ∧ (⊥ → ⊥)] by Lemma 2.1 (f) and (c).

14. �SI γ →H (α → ⊥) by Lemma 2.1(n) and SMP applied to 12 and 13.

15. �SI (α →H (α → ⊥)) →H (α → ⊥) replacing γ by its definition. �
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Theorem 3.15. The logics SI and SI ′ are translationally equivalent.

Proof. To prove this we shall consider the translations h1 and h2 introduced
in Lemmas 3.12 and 3.14.

Let φ ∈ FmL. We prove now that

�SI φ ↔H h2(h1(φ)) (1)

by induction over the structure of φ. If φ = x, with x ∈ Var, then h2(h1(x)) =
x and the result follows from 2.1 (b).

Suppose now that φ = φ1 ∨ φ2 with φ1, φ2 ∈ FmL. By inductive hypoth-
esis, we have that �SI φ1 ↔H h2(h1(φ1)) and �SI φ2 ↔H h2(h1(φ2)). Using
Lemma 3.5, e), and theorem 3.9 this yields �SI (φ1 ∨ φ2) ↔H (h2(h1(φ1)) ∨
h2(h1(φ2))). By the definitions of h1 and h2, h2(h1(φ1)) ∨ h2(h1(φ2)) =
h2(h1(φ1 ∨ φ2)), so we have the result for this case.

For φ = φ1 → φ2 and φ = φ1 ∧ φ2 the proofs are similar. If φ = ⊥, then
h2(h1(φ)) is the formula x ∧ (x → ⊥), for some x ∈ Var.

1. �SI ⊥ →H (x ∧ (x → ⊥)) by (S7).

2. �SI (x ∧ (x → ⊥)) →H (x ∧ ⊥) by Lemma 2.1(t).

3. �SI (x ∧ ⊥) →H ⊥ by Lemma 2.1(d).

4. �SI (x ∧ (x → ⊥)) →H ⊥ by Lemma 2.1(n) and SMP applied to 2
and 3.

5. �SI ⊥ ↔H (x ∧ (x → ⊥)) by Lemma 3.4 applied to 1 and 4.

Finally, for φ = �, h2(h1(φ)) is x → x and we have:

1. Since � is the axiom (S6), by Lemma 2.1, a), �SI (x → x) →H �.

2. �SI x → x by Lemma 2.1, part (f).

3. �SI � →H (x → x) by the previous item and Lemma 2.1, (a).

4. �SI � ↔H (x → x) by Lemma 3.4 applied to items 1 and 3.

We check now that
�SI′ ψ ↔H h1(h2(ψ)) (2)

for ψ ∈ FmL′ . The cases in which ψ = x, with x ∈ Var, ψ = ψ1 ∨ ψ2,
ψ = ψ1 → ψ2 and ψ = ψ1 ∧ ψ2 with ψ1, ψ2 ∈ FmL′ are verified as before. It
only remains to check that

�SI′ ¬α ↔H h1(h2(¬α)).

1. �SI′ ¬α ↔H (α → (x ∧ ¬x)) by Lemma 3.10 (b).

2. �SI′ ¬α →H (α → (x ∧ ¬x)) by Lemma 3.4 applied to item 1.
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3. �SI′ α ↔H h1(h2(α)) by inductive hypothesis.

4. �SI′ (x ∧ ¬x) ↔H (x ∧ ¬x) by Lemma 3.5 (a).

5. α ↔H h1(h2(α)), (x ∧ ¬x) ↔H (x ∧ ¬x) �SI′ [α → (x ∧ ¬x)] ↔H

[h1(h2(α)) → (x ∧ ¬x)] by Lemma 3.5 f).

6. �SI′ [α → (x ∧ ¬x)] ↔H [h1(h2(α)) → (x ∧ ¬x)] by theorem 3.9 and
SMP applied to 3 and 4.

7. �SI′ [α → (x ∧ ¬x)] →H [h1(h2(α)) → (x ∧ ¬x)] by Lemma 3.4.

8. �SI′ (¬α) →H [h1(h2(α)) → (x ∧ ¬x)] by Lemma 2.1(n) and SMP
applied to 2 and 7.

In a similar way we obtain,

9. �SI′ [h1(h2(α)) → (x ∧ ¬x)] →H (¬α).

10. �SI′ (¬α) ↔H [h1(h2(α)) → (x ∧ ¬x)] by Lemma 3.4.

Finally, we note that h1(h2(¬α)) is the formula h1(h2(α)) → (x ∧ ¬x). �
From now on, we use interchangeably x → x and �, ¬x and x → ⊥, and ⊥
and ¬(x → x).

4. Algebraic Semantics

The set of formulas FmL can be algebrized in the usual way. The homomor-
phisms from the formula algebra FmL into an L-algebra A are called inter-
pretations. The set of all such interpretations is denoted by Hom(FmL,A).
If h ∈ Hom(FmL,A) then the interpretation of a formula α under h is its
image hα ∈ A. For formulas in FmL′ , we first translate them via h2 and
then interpret them as L-formulas.

Equations are pairs of formulas that will be written in the form α ≈ β.
An equation α ≈ β is satisfied by the interpretation h in A if hα = hβ. We
denote this by |=A α ≈ β[[h]]. An algebra A satisfies the equation α ≈ β if
all the interpretations in A satisfy it; in symbols,

|=A α ≈ β if and only if |=A α ≈ β[[h]] for all h ∈ Hom(Fm,A).

A class of algebras K satisfies the equation α ≈ β when all the algebras in
K satisfy it; i.e.

|=K α ≈ β if and only if |=A α ≈ β for all A ∈ K.

Since the class of algebras we are working with is that of semi-Heyting
algebras SH, we can introduce a pre-order relation on the set of formulas:
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given α, β ∈ FmL (or FmL′), we write α ≤ β iff |=SH α ≈ α∧β. Furthermore,
we will denote |=SH simply by |=, and introduce the following notation; for
Γ ∪ {α, β} ⊆ FmL and A ∈ SH:

Γ |=A α ≈ β if and only if

for all γ ∈ Γ if |=A γ ≈ �, then |=A α ≈ β.

And

Γ |= α ≈ β if and only if Γ |=A α ≈ β for all A ∈ SH.

Using theorems 3.17 and 3.18 from [4] it is easy to verify the following
theorem.

Theorem 4.1. For Γ ∪ {φ} ⊆ FmL′ the following are equivalent:

1. Γ �SI′ φ

2. Γ |= φ ≈ �
By theorems 3.9, 3.15, and 4.1, we obtain the next result:

Theorem 4.2. (Completeness) For Γ ∪ {φ} ⊆ FmL the following are equiv-
alent:

1. Γ �SI φ

2. Γ |= φ ≈ �
It is worth noting that the inference rule SMP implies the traditional

Modus Ponens (MP) for the connective →.

Lemma 4.3. If Γ �SI α and Γ �SI α → β then Γ �SI β.

Proof.

1. Γ �SI α by hypothesis.

2. Γ �SI α → β by hypothesis.

3. Γ �SI α ∧ (α → β) by Lemma 3.8, part b).

4. Γ �SI α ∧ β by SMP applied to 3 and Lemma 2.1(t).

5. Γ �SI β by SMP in 4 and Lemma 2.1(d). �

On the other hand, the following example shows that Modus Ponens does
not imply SMP. Consider the logic B defined by axioms (S1) to (S11), with
MP as its only inference rule. We next present an algebraic model for the
logic B that is not a semi-Heyting algebra.
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Consider the algebra A with universe {⊥,�} and the operations ∧,∨,→
defined by:

∧ ⊥ �
⊥ � �
� � �

∨ ⊥ �
⊥ ⊥ �
� � �

→ ⊥ �
⊥ ⊥ �
� ⊥ �

This algebra A satisfies x →H y = x → (x∧ y) ≈ � for any election of x and
y, and all the axioms except (S6) are of that form. It is also easy to check
that MP is satisfied in A. Therefore, A is a model for the logic B. It is also
clear that A is not a semi-Heyting algebra.

Definition 4.4. [13] Let L be a logic in a language with a binary connective
→, either primitive or defined by a term in exactly two variables. Then L
is called an implicative logic with respect to the binary connective → if the
following conditions are satisfied:

(IL1) �L α → α.

(IL2) α → β, β → γ �L α → γ.

(IL3) For each connective f in the language of arity n > 0,{
α1 → β1, . . . , αn → βn

β1 → α1, . . . , βn → αn

}
�L f(α1, . . . , αn) → f(β1, . . . , βn).

(IL4) α, α → β �L β.

(IL5) α �L β → α.

Definition 4.5. [13, Definition 6, page 181] Let L be an implicative logic
on the language L. An L-algebra is an algebra A of similarity type L that
has an element � with the following properties:

(LALG1) For all Γ ∪ {φ} ⊆ FmL and all h ∈ Hom(FmL,A), if Γ �L φ
and hΓ ⊆ {�} then hφ = �

(LALG2) For all a, b ∈ A, if a → b = � and b → a = � then a = b.

The class of L-algebras is denoted by Alg∗L.

Lemma 4.6. SI is an implicative logic with respect to the binary connective
→H.

Proof. Observe that

�SI α →H α

by Lemma 2.1, (b). Condition (IL2) follows from Lemma 2.1(n) by SMP.
Condition (IL3) follows from Lemma 3.5. Condition (IL4) is SMP, and (IL5)
follows from Lemma 2.1, part (a). �
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We note that the logic SI is not an implicative logic with respect to the
operator →. For this consider the two-element commutative semi-Heyting
algebra 2̄. If x �SI y → x then, by the deduction theorem 3.9, it follows
that �SI x →H (y → x). Using completeness (theorem 4.2), 2̄ |= x →H (y →
x) ≈ �, which does not hold for x = � and y = ⊥.

Since SI is an implicative logic with respect to the binary connective
→H, we have the next result using [13, Theorem 7.1, p. 222].

Theorem 4.7. The logic SI is complete with respect to the class Alg∗SI.
In other words, for all Γ ∪ {φ} ⊆ FmL,

Γ �SI φ if and only if hΓ ⊆ {�} implies hφ = �,
for all h ∈ Hom(FmL,A) and all A ∈ Alg∗SI.

As a consequence, by theorem 4.2, we have

Corollary 4.8. Alg∗SI = SH.

5. Formulas that Define Semi-Heyting Implications

In this section we characterize semi-intuitionistic formulas in two variables
that define semi-Heyting implications.

Lemma 5.1. Let ε(x, y) ∈ FmL be a formula in two variables. Then

|= x ∧ ε(y, z) ≈ x ∧ ε(x ∧ y, x ∧ z).
Proof. By an easy induction on the construction of the formula ε(x, y). The
key step is the one for the implication, where (SH3) is used. Let a, b, c ∈ A
with A ∈ SH. We assume that for i = 1, 2, x∧ εi(y, z) ≈ x∧ εi(x∧ y, x∧ z).

If ε(a, b) = ε1(a, b) → ε2(a, b) then a ∧ ε(b, c) = a ∧ (ε1(b, c) → ε2(b, c)) =
a ∧ ((a ∧ ε1(b, c)) → (a ∧ ε2(b, c))) = a ∧ ((a ∧ ε1(a ∧ b, a ∧ c)) → (a ∧ ε2(a ∧
b, a ∧ c))) = a ∧ (ε1(a ∧ b, a ∧ c) → ε2(a ∧ b, a ∧ c)) = a ∧ ε(a ∧ b, a ∧ c). �

Looking at the definition of semi-Heyting algebras and using Lemma 5.1,
we can easily see which formulas define operations that yield new semi-
Heyting algebras:

Lemma 5.2. Let 〈A,∨,∧,→,⊥,�〉 be a semi-Heyting algebra. Then a for-
mula in two variables ε(x, y) ∈ FmL satisfies the following conditions:

a) |= ε(x, x) ≈ �,

b) |= x ∧ ε(x, y) ≈ x ∧ y,
if and only if 〈A,∨,∧, ε,⊥,�〉 ∈ SH.
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We denote with IF the set of all the formulas in two variables that define
a semi-Heyting implication.

The following lemma states that we can always define a Heyting algebra
structure over any semi-Heyting algebra. Moreover, among all the semi-
Heyting implication operations that can be defined in a given distributive
lattice, the Heyting implication is the greatest one.

Lemma 5.3. [2, Lemma 4.1] Let 〈A,∨,∧,→,⊥,�〉 be a semi-Heyting algebra.
If we define a →H b = a → (a∧b) for every a, b ∈ A, then 〈A,∨,∧,→H,⊥,�〉
is a Heyting algebra. Furthermore, a → b ≤ a →H b for every a, b ∈ A.

Proof. We prove first that →H is a semi-Heyting implication. Let a, b, c ∈ A
with A ∈ SH. Conditions a) and b) from Lemma 5.2 are verified as follows:
a →H a = a → (a ∧ a) = �, so we have a). For condition b), a ∧ (a →H b) =
a ∧ (a → (a ∧ b)) = a ∧ a ∧ b = a ∧ b.

Finally, to prove that →H is a Heyting algebra implication, it is enough
to prove that for all a, b ∈ A, (a ∧ b) →H a = (a ∧ b) → ((a ∧ b) ∧ a) = �,
which follows from a) and elementary lattice properties.

For the second statement, we calculate (a → b) ∧ (a →H b) = (a →
b) ∧ [a → (a ∧ b)] = (a → b) ∧ [(a ∧ (a → b)) → (a ∧ b ∧ (a → b))] = (a →
b) ∧ ((a ∧ b) → (a ∧ b)) = (a → b) ∧ � = a → b. Thus a → b ≤ a →H b. �

Pseudocomplemented lattices or p-lattices have been studied by many au-
thors (see, for example [3], [8], [9], [13]). Semi-Heyting algebras are pseudo-
complemented [14] (with ¬x = x → ⊥) as well.

Since there may be more than one semi-Heyting implication over a given
lattice, we denote with the pair 〈A,→〉 the algebras in the variety SH to make
explicit which implication we are considering. Next we show that regardless
the implication chosen, they all agree on the pseudocomplement.

Corollary 5.4. Let A = 〈A,→〉 ∈ SH. Then |=A x → ⊥ ≈ x →H ⊥, where
→H is defined as in Lemma 5.3.

Proof. Let a ∈ A. From Lemma 5.3 we have that a → ⊥ = a → (a ∧ ⊥) =
a →H ⊥. �

In Lemma 5.3 we saw that from any semi-Heyting implication → we can
obtain the Heyting implication. The next result shows that to recover the
original implication, it is enough to know its values for x < y.

Lemma 5.5. Let A = 〈A,→〉 ∈ SH. Then

|=A x → y ≈ (x →H y) ∧ ((x ∧ y) → y).
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Proof . Let a, b ∈ A. Then we calculate (a → (a ∧ b)) ∧ ((a ∧ b) → b) =
(a → (a ∧ b)) ∧ [(a ∧ (a → (a ∧ b))) → b] = (a → (a ∧ b)) ∧ [(a ∧ (a →
(a∧b))) → (b∧((b∧a) → (b∧a∧b)))] = (a → (a∧b))∧ [(a∧(a → (a∧b))) →
(b ∧ (a → (a ∧ b)))] = (a → (a ∧ b)) ∧ (a → b) = (a → b) ∧ (a → (a ∧ b)) =
(a → b)∧ [(a∧ (a → b)) → (a∧b∧ (a → b))] = (a → b)∧ ((a∧b) → (a∧b)) =
(a → b) ∧ � = a → b. �

In [14] the variety of commutative semi-Heyting algebras was defined.
These are the semi-Heyting algebras satisfying the identity x → y ≈ y → x.

The next result generalizes [2, Lemma 4.3].

Lemma 5.6. Let A = 〈A,→〉 be a semi-Heyting algebra. If we define on A
the implication

x ↔H y = (x →H y) ∧ (y →H x),

then:

(a) 〈A,↔H〉 is a commutative semi-Heyting algebra.

(b) |=A x ↔H y ≤ x → y

(c) ↔H is the only commutative semi-Heyting operation that can be defined
over A.

Proof.

(a) Let us check that ↔H is a semi-Heyting implication. In first place, a ↔H

a = (a →H a) ∧ (a →H a) = � ∧ � = �. Now we calculate a ∧ (a ↔H

b) = a ∧ (a →H b) ∧ (b →H a) = a ∧ b ∧ (b →H a) = a ∧ b ∧ a = a ∧ b so
〈A,↔H〉 is a semi-Heyting algebra. It is straightforward to check that
the implication is commutative.

(b) We prove that a ↔H b ≤ a → b on A. Indeed (a → b) ∧ (a ↔H b) = (a →
b)∧(a → (a∧b))∧(b → (a∧b)) = [(a∧(a → (a∧b))) → (b∧(a → (a∧b)))]∧
(a → (a∧b))∧(b → (a∧b)) = ((a∧b) → b)∧(a → (a∧b))∧(b → (a∧b)) =
[(a∧b∧(b → (a∧b))) → (b∧(b → (a∧b)))]∧(a → (a∧b))∧(b → (a∧b)) =
((a∧b) → (a∧b))∧(a → (a∧b))∧(b → (a∧b)) = �∧(a → (a∧b))∧(b →
(a∧ b)) = (a → (a∧ b))∧ (b → (a∧ b)) = a ↔H b. Thus, a ↔H b ≤ a → b.

(c) Let → and →′ be two commutative semi-Heyting implications defined
over A. Then (a → b)∧ (a →′ b) = (a → b)∧ [(a∧ (a → b)) →′ (b∧ (a →
b))] = (a → b) ∧ [(a ∧ b) →′ (b ∧ (b → a))] = (a → b) ∧ [(a ∧ b) →′

(b ∧ a)] = a → b. Therefore, (a → b) ≤ (a →′ b). In a similar fashion,
one proves (a →′ b) ≤ (a → b). �

The next result determines a necessary and sufficient condition for semi-
Heyting terms to be semi-Heyting implications.
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Theorem 5.7. A formula ε(x, y) defines a semi-Heyting implication if and
only if

x ↔H y ≤ ε(x, y) ≤ x →H y.

Proof. If ε(x, y) defines a semi-Heyting implication, it follows immediately
from Lemmas 5.3 and 5.6 that x ↔H y ≤ ε(x, y) ≤ x →H y.

Assume now that x ↔H y ≤ ε(x, y) ≤ x →H y. Then |= x ↔H x ≤ ε(x, x)
so |= x ↔H x ≈ �.

Since x ∧ y = x ∧ (x ↔H y) ≤ x ∧ ε(x, y) ≤ x ∧ (x →H y) = x ∧ y, we
obtain x ∧ ε(x, y) = x ∧ y. By Lemma 5.1 it follows that ε(x, y) defines a
semi-Heyting implication. �

As an example, let us consider the totally ordered lattice

C : ⊥ < a1 < a2 < · · · < an < an+1 < · · · < �
with a countable number of elements.

We define on C an operation → by:

x → y =

⎧⎨
⎩
y if x > y,
ak+1 if x = ⊥, y = ak with k ≥ 1,
� otherwise.

Using [1, Lemmas 2.2 and 2.3] we can check that 〈C,→〉 is a semi-Heyting
chain.

We define x n→ y recursively:

x
1→ y = x → y and x

n+1→ y = x → (x n→ y).

Observe that in C, ⊥ n→ a1 = an+1. Now we consider the formulas:

εn(x, y) := (x ↔H y) ∨ (¬x ∧ (x n→ y)).

It follows immediately that x ↔H y ≤ εn(x, y). Since ¬x ≤ x →H y for all
x, we also have that εn(x, y) ≤ x →H y, so εn ∈ IF .

In the algebra C, taking x = ⊥ and y = a1, the formula εn(x, y) yields
εn(⊥, a1) = an+1. Consequently all the formulas in {εn(x, y)}n∈N give, in
general, different semi-Heyting implications on C.

In Heyting algebra, however, all these formulas collapse.

Lemma 5.8. If A = 〈A; →H〉 is a Heyting algebra then εAn (a, b) = εAm(a, b)
for all a, b ∈ A and n,m ∈ N.

Proof . We check first that a →H b ≤ a
n→H b for all n ∈ N by induction

over n. For n = 1 it is immediate. For the inductive step: a ∧ (a →H b) ≤
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a ∧ (a k→H b) ≤ a
k→H b. So a →H b ≤ a →H (a k→H b) = a

k+1→H b since A is a
Heyting algebra.

It is easy to verify that a ∧ (a n→H b) = a ∧ b. Then a ∧ (a n→H b) ≤ b, so
a

n→H b ≤ a →H b. Then we have εAn (a, b) = (a ↔H b) ∨ (¬a ∧ (a →H b)) =
εAm(a, b). �

6. Intuitionistic Formulas that Define Semi-Heyting Implications

We have seen in Lemma 5.3 that in every semi-Heyting algebra, we have
the intuitionistic implication →H. This implication, unlike semi-intuitionistic
implications in general, is uniquely determined for each underlying lattice.
Therefore, when we consider formulas in the language {∧,∨,⊥,�,→H}, they
have a unique interpretation in a lattice once the variables have been as-
signed. We call these formulas H-formulas. These formulas can of course also
be written in the language L.

Definition 6.1. Let IFH be the set of H-formulas in two variables that
define a semi-intuitionistic implication, that is, that fulfill the conditions of
Lemma 5.2.

In this section our first goal is to prove that each formula in IFH de-
termines a subvariety of SH that is term equivalent to the one of Heyting
algebras, and also a semi-intuitionistic propositional calculus translationally
equivalent to the intuitionistic one.

First we will present an infinite family of formulas of this kind and prove
that they yield different implications.

Let FH(x) be the free Heyting algebra on one generator x (see for example
[10], [3]). There exists in this algebra an infinite sequence of H-formulas on
the variable x, {Mi(x)}i≥1 pairwise non-equivalent and such that x ≤ Mi(x).
For each i ∈ I we define the formula

μi(x, y) = (x ↔H y) ∨ (y ∧Mi(x)).

Lemma 6.2. The family of H-formulas {μi(x, y)}i∈I define non-equivalent
semi-intuitionistic implications.

Proof. It is clear that x ↔H y ≤ μi(x, y). Since x ∧ y ∧Mi(x) = x ∧ y ≤ y,
y ∧ Mi(x) ≤ x →H y , so μi(x, y) ≤ x →H y. Therfore, by Theorem 5.7,
μi(x, y) ∈ IFH .

If i �= j then the formulas μi(x, y) and μj(x, y) are not equivalent. To see
this, it is enough to consider in the semi-Heyting algebra FH(x),
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μi(x,�) = x ∨Mi(x) = Mi(x)

and since Mi(x) �= Mj(x) we have that μi(x,�) �= μj(x,�). �
For ε ∈ IFH we introduce the following subvariety of the variety of semi-

Heyting algebras.

SHε = {A ∈ SH : |=A x → y ≈ ε}.
In all of these varieties, the implication operation is uniquely determined,

since ε is an H-formula.

Corollary 6.3. The varieties associated to the formulas μi(x, y) and
μj(x, y), SHμi

and SHμj
, are incomparable.

We can construct another sequence of non-equivalent H-formulas, and di-
fferent also from the formulas μi. Consider a sequence of formulas {Nj(x)}j≥1

such that Nj(x) ≥ x ∨ ¬x in the algebra FH(x). Now let

νj(x, y) = (x ↔H y) ∨ (y ∧Nj(x)) ∨ (¬x ∧ ¬¬y).
Lemma 6.4. The H-formulas νj(x, y) are in IFH . If i �= j then νi �= νj.
Furthermore, the formulas νj are not equivalent to μi for any i.

Proof. In the semi-Heyting algebra FH(x) we calculate

νi(x,�) = x ∨Ni(x) ∨ ¬x = Ni(x)

so, since Ni(x) �= Nj(x) in FH(x),we have that νi(x,�) �= νj(x,�) if i �= j.
Therefore {νi}i≥1 is an infinite sequence of non-equivalent formulas.

Finally, consider the Heyting algebra A in the diagram below:

�

� �

� �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

⊥

�

a b

c d

We have that νA
i (⊥, b) = ¬b∨(b∧Ni(⊥))∨(¬⊥∧¬¬b) = ¬b∨(b∧Ni(⊥))∨

¬¬b = a ∨ (b ∧ Ni(⊥)) ∨ d = �. On the other hand, μA
j (⊥, b) = ¬b ∨ (b ∧

Mj(⊥)). Since Mj(x) is an H-formula then Mj(⊥) ∈ {⊥,�}. Therefore
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μA
j (⊥, b) =

{¬b ∨ b if Mj(⊥) = �
¬b if Mj(⊥) = ⊥ =

{
a ∨ b if Mj(⊥) = �
a if Mj(⊥) = ⊥

=
{
c if Mj(⊥) = �
a if Mj(⊥) = ⊥

So νA
i (⊥, b) �= μA

j (⊥, b). �
Theorem 6.5. The varieties SHε are term-equivalent to the variety H of
Heyting algebras, for all ε ∈ IFH .

Proof. The equivalence is given by the equation x →H y = ε(x, x ∧ y) and
the fact that ε is an H-formula. �
Definition 6.6. Let ε be a formula in IFH . The logic SIε is the axiomatic
extension of SI defined by adding the axiom schema:

(Sε) (α → β) ↔H ε

As an example, let SIC denote the logic SIα↔Hβ, that is, the axiomatic
extension of SI characterized by the axiom schema:

(C) (α → β) ↔H (α ↔H β)

The logic SIC is interesting, for it provides a new interpretation of the
implicative connective. One has that, for instance, ⊥ → � = ⊥.

From Lemma 4.6, we have the following:

Lemma 6.7. Let ε be a formula in IFH . The logic SIε is implicative with
respect to the binary connective →H.

Lemma 6.8. Let ε be a formula in IFH . Then Alg∗SIε = SHε.

Proof . Let us take A ∈ Alg∗SIε. By Theorem 4.7, Alg∗SIε ⊆ Alg∗SI =
SH. If we take Γ = ∅ and φ = (x → y) ↔H ε in condition (LALG1) of
Definition 4.5, we have that A ∈ SHε.

Consider now A ∈ SHε. We want to check that A is a SIε-algebra.
Suppose that Γ �SIε

φ and hΓ ⊆ {�} with Γ ∪ {φ} ⊆ FmL, and h ∈
Hom(FmL,A). If φ = (x → y) ↔H ε, since A ∈ SHε, hφ = �. Thus
SHε ⊆ Alg∗SIε. �

Since SIε is an implicative logic with respect to the binary connective
→H, by Lemma 6.7 and Lemma 6.8, we have the following result.

Theorem 6.9. The logic SIε is complete with respect to the class Alg∗SIε =
SHε:
For all Γ ∪ {φ} ⊆ FmL, Γ �SIε φ if and only if hΓ ⊆ {�} implies hφ = �
for all h ∈ Hom(FmL,A) and all A ∈ Alg∗SIε.
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6.1. Translations

In [4] it is proved that the intuitionistic logic I is an axiomatic extension of
the logic SI. Here we will give translations proving that if ε ∈ IFH , then
SIε is translationally equivalent to I.

We use the language L = {∧,∨,⊥,�,→} and we write α →H β as an
abbreviation of α → (α∧ β), while α →ε β stands for ε(α, β). Notice that if
h is a semi-Heyting algebra homomorphism, we have of course that h(x →
y) = h(x) → h(y) but also h(x →H y) = h(x) →H h(y) and h(x →ε y) =
h(x) →ε h(y).

In a Heyting algebra, the equation x → y ≈ x →H y is valid, while in the
variety SHε, x → y ≈ x →ε y is valid.

Lemma 6.10. Let ·◦ : Fm → Fm be the translation:

• (α ∧ β)◦ = α◦ ∧ β◦

• (α ∨ β)◦ = α◦ ∨ β◦

• (α → β)◦ = α◦ →H β◦.

Then this translation is sound.

Proof. Consider a formula α ∈ Fm such that �I α. We need to prove that
α◦ is a theorem of SIε. For this, we take an arbitrary algebra 〈A,→〉 ∈ SHε,
and h ∈ Hom(Fm, 〈A,→〉). We define on A the implication x →H y =
x → (x ∧ y). It will be enough to prove that h(α◦) = �. By Lemma 5.3,
〈A,→H〉 is a Heyting algebra. Now let h′ ∈ Hom(Fm, 〈A,→H〉) be the only
homomorphism such that h′(x) = h(x) for every variable x.

We prove by induction over the formula α that h′(α) = h(α◦). If α =
α1 → α2, then h′(α) = h′(α1 → α2) = h′(α1) →H h′(α2). By inductive
hypothesis, this is h(α◦

1) →H h(α◦
2) = h(α◦

1 →H α◦
2) = h((α1 → α2)◦). The

other inductive steps are trivial. Since �I α, by completeness, h′(α) = �,
so h(α◦) = �. �

The formula ε provides also a translation of SIε in I.

Lemma 6.11. Let ε(x, y) ∈ IFH . The translation ·∗ : Fm → Fm:

• (α ∧ β)∗ = α∗ ∧ β∗

• (α ∨ β)∗ = α∗ ∨ β∗

• (α → β)∗ = α∗ →ε β
∗

is sound.
Note that the translation ·∗ depends on the formula ε(x, y).
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Proof . Let α ∈ Fm such that �SIε α. To prove that �I α∗ we take a
Heyting algebra 〈A,→〉 and h ∈ Hom(Fm, 〈A,→〉). It will be enough to
prove that h(α∗) = �. On A we define the implication x →ε y = ε(x, y).
Then we have that 〈A,→ε〉 ∈ SHε. Now consider the homomorphism h′ ∈
Hom(Fm, 〈A,→ε〉) such that h′(x) = h(x) for all variables x.

We prove inductively that for all α ∈ Fm, h(α∗) = h′(α). If α = α1 →
α2 with α1, α2 ∈ Fm then h′(α) = h′(α1 → α2) = h′(α1) →ε h

′(α2) =
h(α∗

1) →ε h(α∗
2) = h(α∗

1 →ε α
∗
2) = h((α1 → α2)∗).

The other inductive steps are trivial. Since �SIε α, by completeness,
h′(α) = �, so h(α∗) = �. �

Since both I and SIε are axiomatic extensions of SI, Lemma 3.5 and
Corollary 3.6 hold for these logics, so conditions (B1) to (B4) are satis-
fied as well. The next three lemmas conclude the proof of the translational
equivalence between I and SIε.

Lemma 6.12. For every formula α ∈ Fm,
�I α ↔ (α◦)∗.

Proof. Let A = 〈A,→〉 be a Heyting algebra and h ∈ Hom(Fm, 〈A,→〉).
By completeness, it will be enough to show that h(α) = h((α◦)∗) for all
α ∈ Fm. We proceed by induction on α, and as before, the only non-trivial
case is the one of the implication.

If α = α1 → α2, h((α◦)∗) = h(((α1 → α2)◦)∗) = h((α◦
1 → (α◦

1 ∧ α◦
2))

∗) =
h(α◦∗

1 →ε (α◦∗
1 ∧α◦∗

2 )) = h(α◦∗
1 ) →ε (h(α◦∗

1 )∧h(α◦∗
2 )). By inductive hypoth-

esis then, h((α◦)∗) = h(α1) →ε (h(α1) ∧ h(α2)). Since →ε is a semi-Heyting
implication, by Lemma 5.3, h(α1) →ε (h(α1) ∧ h(α2)) = h(α1) →H h(α2).
Given that h is a homomorphism, and A is a Heyting algebra, h(α1) →H

h(α2) = h(α1 → α2) = h(α). �
Lemma 6.13. Let α, β ∈ Fm and ε(x, y) ∈ IFH . Then

(α →ε β)◦ = α◦ →ε β
◦.

Proof. We show this by induction on the formula ε.
Assume that α →ε β = γ(α, β) ∧ δ(α, β). Then (α →ε β)◦ = (γ ∧ δ)◦ =

γ◦ ∧ δ◦. By inductive hypothesis this is γ(α◦, β◦) ∧ δ(α◦, β◦) = α◦ →ε β
◦.

If α →ε β = γ(α, β) →H δ(α, β). Then (α →ε β)◦ = (γ →H δ)◦ = (γ →
(γ ∧ δ))◦ = γ◦ →H (γ◦ ∧ δ◦) = γ◦ → (γ◦ ∧ δ◦). By inductive hypothesis this
is γ(α◦, β◦) → (γ(α◦, β◦)∧δ(α◦, β◦)) = γ(α◦, β◦) →H δ(α◦, β◦) = α◦ →ε β

◦.
The rest of the induction steps are similar. �

Lemma 6.14. For every formula α ∈ Fm,
�SIε

α ↔ (α∗)◦.
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Proof. Let 〈A,→〉 ∈ SHε and h ∈ Hom(Fm,A). By completeness, it will
be enough to prove that h(α) = h((α∗)◦). We proceed by induction on α,
where the step for the implication is as follows.

If α = α1 → α2, then h((α∗)◦) = h(((α1 → α2)∗)◦) = h((α∗
1 →ε α

∗
2)

◦).
By Lemma 6.13, this equals h(α∗◦

1 →ε α
∗◦
2 ) = h(α∗◦

1 ) →ε h(α∗◦
2 ). By induc-

tive hypothesis this is h(α1) →ε h(α2) = h(α1 →ε α2) = h(α1 → α2) =
h(α). �

Thus we have proved the following:

Theorem 6.15. For any ε ∈ IFH , the logic SIε is translationally equivalent
to the intuitionistic logic I.

In particular, each one of the examples at the beginning of this section
gives a logic which is equivalent to I.

Our next goal is to prove that for any axiomatic extension A of SI that
is translationally equivalent to I, there exists a formula δ such that A is
equivalent to SIδ in the sense that they prove the same theorems.

Let A be a logic that is an axiomatic extension of SI and is translationally
equivalent to I. There exist then translations h1, h2 : Fm → Fm such that
for all φ ∈ Fm the following conditions hold:

(a) If �I φ then �A h1φ

(b) If �A φ then �I h2φ

(c) �I φ ↔H h2(h1(φ))

(d) �A φ ↔H h1(h2(φ)).

We consider the formula δ = (h2(x → y))◦. Here we use first the transla-
tion h2 that gives an intuitionistic translation of the implication in A, and
then apply the translation ·◦, so that the resulting formula can be written
using only the implication →H.

Lemma 6.16. For any α ∈ Fm, �A α if and only if �SIδ
(h2(α))◦.

Proof . Assume that �A α. Then by condition (b) above, �I h2(α). By
Lemma 6.10, �SIδ

(h2(α))◦. Then the translation ∗ corresponding to the
logic SIδ introduced in Lemma 6.11 is such that �I ((h2(α))◦)∗. Therefore,
by Lemma 6.12, we have that �I h2(α). From condition (a) it follows that
�A h1(h2(α)). Finally, �A α is valid by (d). �
Lemma 6.17. For every α ∈ Fm, �A α → β if and only if �SIδ

α → β.

Proof . By the definition of δ, we have that �SIδ
(α → β) ↔H ((h2(α →

β))◦) . Using Lemma 3.4, this means that �SIδ
α → β if and only if �SIδ
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(h2(α → β))◦. Therefore, by Lemma 6.16, �SIδ
α → β if and only if �A

α → β. �

Theorem 6.18. The logics A and SIδ have the same theorems.

Proof. We will prove that �A α if and only if �SIδ
α. By Lemma 2.1,a),

and 3.9, �A α if and only if �A (β → β) →H α. By Lemma 6.17, �A (β →
β) →H α if and only if �SIδ

(β → β) →H α. Using again Lemma 2.1,a),
�SIδ

(β → β) →H α if and only if�SIδ
α. �

6.2. Kripke Models and Priestley Representations

Given a formula ε ∈ IFH , it is easy to find the Kripke models for the logic
SIε. Just as in the case of intuitionistic logic (see [6]), we show how to
construct an algebra in SHε from a Kripke model, and conversely, build a
Kripke model from an algebra in SHε in such a way that validity of formulas
in the algebraic model coincides with validity in the Kripke model.

We first give a Kripke-style semantics for each of the logics SIε (which,
we know, are translationally equivalent to the intuitionistic calculus I).

Definition 6.19. Let ε ∈ IFH . 〈W,R,�ε〉 is a Kripke model for the logic
SIε (or ε-Kripke model) if W is a non-empty set, R ⊆ W ×W is a reflexive
and transitive binary relation and �ε⊆ W × Fm is a relation such that for
all v, w ∈ W the following conditions hold:

(1) For all α ∈ Var, if w �ε α and wRv, then v �ε α.

(2) w �ε α ∧ β iff w �ε α and w �ε β.

(3) w �ε α ∨ β iff w �ε α or w �ε β.

(4) w �ε � for all w ∈ W and w �ε ⊥ for no w ∈ W .

(5) w �ε α → β iff Pε(w),

where Pε(w) is a predicate associated to the formula ε(α, β) defined as
follows:

Pε(w) iff

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w �ε α if ε(α, β) = α
w �ε β if ε(α, β) = β
w �ε α and w ��ε α if ε(α, β) = ⊥
w �ε α if ε(α, β) = �
Pε1(w) and Pε2(w) if ε(α, β) = ε1(α, β) ∧ ε2(α, β)
Pε1(w) or Pε2(w) if ε(α, β) = ε1(α, β) ∨ ε2(α, β)
for all v ∈ W such that wRv,
if Pε1(v) then Pε2(v) if ε(α, β) = ε1(α, β) →H ε2(α, β)
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with ε1(α, β) and ε2(α, β) H-formulas. Notice that although ε ∈ IFH , its sub-
formulas are not necessarily in IFH , so we need to define Pγ(w) recursively
for all H-formulas γ.

If ε(α, β) is simply α →H β, the semantics above coincides with the Kripke
semantics for intuitionistic logic. We denote the satisfaction relation for this
case by �H.

As an example, for the formula (α →H β) ∧ (β →H α), the predicate
P(α→Hβ)∧(β→Hα)(w) is “if w �H α then w �H β and if w �H β then w �H α”.
That is, “ w �H α iff w �H β”.

Definition 6.20. A formula α is ε-Kripke-valid in the model 〈W,R,�ε〉 if
w �ε α for each w ∈ W . We denote this by 〈W,R〉 �ε α. The formula is
ε-Kripke-valid if it is valid in every model.

Given ε ∈ IFH , and an ε-Kripke model 〈W,R,�ε〉, a set X ⊆ W is
increasing if for all x ∈ X and v ∈ W , if xRv then v ∈ X. Let A be the set
of increasing subsets of W ordered by inclusion. On A we define X →H Y as
the biggest increasing set contained in (W \X)∪Y . It is well known that this
operation is the relative pseudocomplement or intuitionistic implication on
the lattice A ([6]). Now we can define on A the operationX → Y = εA(X,Y )
for all X,Y ∈ A.

Lemma 6.21. A = 〈A,∪,∩,→,W, ∅〉 is an algebra in SHε.

Proof. It is clear that 〈A,∩,∪, ∅,W 〉 is a bounded lattice. By the definition
of the implication on A, X → Y = εA(X,Y ) so A ∈ SHε. �

Lemma 6.22. For each α ∈ Fm, the set m(α) = {w ∈ W : w �ε α} is an
increasing subset of W .

Proof. Let w ∈ m(α) and v ∈ W be such that wRv. So w �ε α. We want
to prove that v �ε α. We proceed by induction on α.

If α ∈ Var, by (1) in Definition 6.19 it follows that v �ε α.
Let α1, α2 ∈ Fm be such that α = α1 ∧ α2. Since w �ε α, from (2)

in Definition 6.19, we have that w �ε α1 and w �ε α2. By the inductive
hypothesis on the formulas α1 and α2, v �ε α1 and v �ε α2. Thus v �ε α.

The case in which α = α1 ∨ α2 is similar.
Assume now that α = α1 → α2. From w �ε α1 → α2, we know that

Pε(w) holds. Now we need to prove by induction on the formula ε that
Pε(v) holds.

• If ε(α1, α2) = α1 then, from (5), w �ε α1. Then by the inductive hypo-
thesis on α1, v �ε α1. So Pε(v).
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• If ε = ⊥ and Pε(w), we get a contradiction.

• Let ε1(α1, α2), ε2(α, α2) be H-formulas such that ε(α1, α2) = ε1(α1, α2)∧
ε2(α1, α2). Since Pε(w) holds, it follows that Pε1(w) and Pε2(w). By
inductive hypothesis, Pε1(v) and Pε2(v), so Pε(v).

• If ε(α1, α2) = ε1(α1, α2) →H ε2(α1, α2) with ε1(α1, α2), ε2(α1, α2)
H-formulas, what we need to show is that for each z ∈ W such that
vRz and Pε1(z), Pε2(z) obtains. Since Pε(w), then for all z′ ∈ W such
that wRz′, if Pε1(z

′) then Pε2(z
′). Given that wRv and vRz, it follows

that wRz and Pε2(z).

The remaining cases are similar to those above. �
The following lemma is proved in the Appendix.

Lemma 6.23. The function m : Fm → A defined by m(α) = {w ∈ W : w �ε

α} is a homomorphism.

It is clear from the construction above that a formula α is Kripke-valid in
a Kripke model if and only if m(α) = �A = W in its corresponding algebra.

Now we take an algebra A ∈ SHε and a homomorphism m : Fm → A
and find an ε-Kripke model 〈W,R,�ε〉 such that 〈W,R〉 �ε α iff m(α) = �.

To do this, take W the set of prime filters of A, and let R be the inclusion
relation. We say that F �ε α if and only if m(α) ∈ F for all prime filters F
of A.

Lemma 6.24. For each F ∈ W , Pε(F ) holds if and only if εA(m(α),m(β))
∈ F .

Proof. Proceeding by induction on ε, we have:

• If ε(α, β) = α, and Pε(F ) then F �ε α, so m(α) ∈ F . Then
εA(m(α),m(β)) ∈ F . The other inclusion is similar.

• If ε = ⊥, Pε(F ) is never true, the same as the proposition ⊥ ∈ F , since
F is a prime filter.

• In the case ε = ε1 ∧ ε2 with ε1(α, β), ε2(α, β) H-formulas, if Pε(F ) holds
then Pε1(F ) and Pε2(F ). By inductive hypothesis, εA1 (m(α),m(β)) ∈ F
and εA2 (m(α),m(β)) ∈ F . Since F is a filter, εA(m(α),m(β)) ∈ F . The
converse is similar.

• Assume now that ε = ε1 →H ε2 with ε1(α, β), ε2(α, β) H-formulas.

Suppose Pε(F ) holds. Then for each F1 ∈ W such that F ⊆ F1, if
Pε1(F1) then Pε2(F1). If εA(m(α),m(β)) = εA1
(m(α),m(β)) →H εA2 (m(α),m(β)) �∈ F , by [6, Lemma 6.2] we have that
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the filter F̄ generated by F and εA1 (m(α),m(β)) does not include the
element εA2 (m(α),m(β)). Then by [6, Lemma 6.4], there exists a prime
filter F1 such that F̄ ⊆ F1 and εA2 (m(α),m(β)) �∈ F1. Then F ⊆ F1 and
by the inductive hypothesis on ε2(x, y), Pε2(F1) does not hold. Since
εA1 (m(α),m(β)) ∈ F1, Pε1(F1) holds, a contradiction. Then we conclude
that εA(m(α),m(β)) ∈ F .

Now assume εA(m(α),m(β)) = εA1 (m(α),m(β)) →H εA2 (m(α),m(β)) ∈
F . Let F1 ∈ W be such that F ⊆ F1 and assume that Pε1(F1). We need
to prove that Pε2(F1) holds. Since Pε1(F1) holds, then εA1 (m(α),m(β)) ∈
F1. Since F ⊆ F1, we also have that εA1 (m(α),m(β)) →H εA2 (m(α),m(β))
∈ F1. It follows that εA2 (m(α),m(β))) ∈ F1 and by inductive hypothesis,
Pε2(F1). �

Theorem 6.25. 〈W,R,�ε〉 is an ε-Kripke model such that 〈W,R〉 �ε α iff
m(α) = �.

Proof. Conditions (1) through (4) from Definition 6.19 follow immediately
and are proved as in [6].

To prove that condition (5) holds, we need to show that F �ε α → β if
and only if Pε(F ). From the definition for �ε, it follows that F �ε α → β
if and only if m(α → β) ∈ F . Since m is a homomorphism, F �ε α → β
if and only if εA(m(α),m(β)) ∈ F . By Lemma 6.24, we can conclude that
F �ε α → β if and only if Pε(F ).

The conclusion that 〈W,R〉 �ε α if and only if m(α) = �
is immediate. �

From Lemma 6.21 and Theorem 6.25 we conclude the next result.

Theorem 6.26. The equation α ≈ � is satisfied in every algebra of SHε if
and only if α is Kripke-valid in every ε-Kripke model.

With respect to the Priestley representation of algebras in the variety
SHε, it is simply the Priestley representation of the Heyting algebra (see
[12], [5]) obtained defining →H over them. The semi-Heyting implication
operation can then be recovered by letting x → y = ε(x, y) in the Heyting
algebra obtained from its Priestley representation.
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Appendix: Proofs

Proof. of Lemma 2.1

(a) 1. Γ �SI (ψ ∧ α) →H ψ by axiom (S4).
2. Γ �SI [(ψ ∧ α) →H ψ] →H [ψ →H (α →H ψ)] by (S8).
3. Γ �SI ψ →H (α →H ψ) by SMP applied to 1 and 2.
4. Γ �SI ψ by hypothesis.
5. Γ �SI α →H ψ by SMP applied to 3 and 4.

(b) Let ψ the formula (α ∧ β) →H α.

1. �SI (α ∧ ψ) →H α by axiom (S4).
2. �SI [(α ∧ ψ) →H α] →H [((α ∧ ψ) →H α) →H ((α ∧ ψ) →H (α ∧ α))] by

axiom (S5).
3. �SI ((α∧ψ) →H α) →H ((α∧ψ) →H (α∧α)) by SMP applied to 1 and 2.
4. �SI (α ∧ ψ) →H (α ∧ α) by SMP applied to 1 and 3.
5. �SI (α ∧ α) →H α by axiom (S4).
6. �SI ψ by axiom (S4).
7. �SI (α ∧ α) →H ψ by part (a) and 6.
8. �SI [(α ∧ α) →H α] →H [((α ∧ α) →H ψ) →H ((α ∧ α) →H (α ∧ ψ))] by

axiom (S5).
9. �SI ((α∧α) →H ψ) →H ((α∧α) →H (α∧ψ)) by SMP applied to 5 and 8.

10. �SI (α ∧ α) →H (α ∧ ψ) by SMP applied to 7 and 9.
11. �SI ((α∧α) →H (α∧ψ)) →H [((α∧ψ) →H (α∧α)) →H ((α → (α∧ψ)) →H

(α → (α ∧ α)))] by axiom (S11).
12. �SI ((α∧ψ) →H (α∧ α)) →H ((α → (α∧ψ)) →H (α → (α∧ α))) by SMP

applied to 10 and 11.
13. �SI (α → (α ∧ ψ)) →H (α → (α ∧ α)) by SMP applied to 4 and 12.
14. �SI (α →H ψ) →H (α →H α) by the definition of →H .
15. �SI α →H ψ by axiom (S4) and by part (a).
16. �SI α →H α by SMP applied to 14 and 15.

(c) 1. �SI φ by hypothesis.
2. �SI α →H α by part (b).
3. �SI α →H φ by (a).

Therefore,
4. �SI (α →H α) →H [(α →H φ) →H (α →H (α ∧ φ))] by axiom (S5).
5. �SI α →H (α ∧ φ) SMP applied to 2, 3 and 4.

(d) 1. �SI β →H β by part (b).
2. �SI α →H (β →H β) by part (a).
3. �SI (α →H (β →H β)) →H ((α ∧ β) →H β) by (S9).
4. �SI (α ∧ β) →H β by SMP applied to 2 and 3.

(e) 1. �SI (α ∧ β) →H β by part (d).
2. �SI (α ∧ β) →H α by (S4).
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3. �SI ((α ∧ β) →H β) →H [((α ∧ β) →H α) →H ((α ∧ β) →H (β ∧ α))] by
axiom (S5).

4. �SI ((α∧β) →H α) →H ((α∧β) →H (β ∧α)) by SMP applied to 1 and 3.
5. �SI (α ∧ β) →H (β ∧ α) by SMP applied to 2 and 4.

(f) 1. �SI (α →H (α∧α)) →H [((α∧α) →H α) →H ((α → (α∧α)) →H (α → α))]
by (S11).

2. �SI (α →H α) →H [(α →H α) →H (α →H (α ∧ α))] by (S5).
3. �SI α →H α by part (b).
4. �SI α →H (α ∧ α) SMP applied to 3 and 2.
5. �SI ((α ∧ α) →H α) →H ((α → (α ∧ α)) →H (α → α)) by SMP applied to

4 and 1.
6. �SI (α ∧ α) →H α by (S4).
7. �SI (α → (α ∧ α)) →H (α → α) by SMP applied to 5 and 6.
8. �SI (α →H α)) →H (α → α) the definition of →H .
9. �SI α → α by SMP applied to 3 and 8.

(g) 1. �SI (α ∧ β) →H (α ∧ β) by part (b).
2. �SI ((α ∧ β) →H (α ∧ β)) →H (α →H (β →H (α ∧ β))) by axiom (S8).
3. �SI α →H (β →H (α ∧ β)) by SMP applied to 1 and 2.

(h) 1. �SI ((α ∧ β) ∧ γ) →H ψ by hypothesis.
2. �SI (α ∧ β) →H (γ →H ψ) by axiom (S8) and SMP applied to 1.
3. �SI α →H (β →H (γ →H ψ)) by axiom (S8) and SMP applied to 2.
4. �SI [α ∧ (β →H (γ →H ψ))] →H α by (S4).
5. �SI (β →H (γ →H ψ)) →H ((β ∧ γ) →H ψ) by axiom (S9).
6. �SI α →H [(β →H (γ →H ψ)) →H ((β ∧ γ) →H ψ)] by part (a).
7. �SI [α ∧ (β →H (γ →H ψ))] →H ((β ∧ γ) →H ψ) by axiom (S9) and SMP

applied to 6.
8. �SI [α ∧ (β →H (γ →H ψ))] →H [α ∧ ((β ∧ γ) →H ψ)] by axiom (S5) and

SMP applied to 4 and 7.
9. �SI [α ∧ ((β ∧ γ) →H ψ)] →H α by (S4).

10. �SI ((β ∧ γ) →H ψ) →H (β →H (γ →H ψ)) by axiom (S8).
11. �SI α →H [((β ∧ γ) →H ψ) →H (β →H (γ →H ψ))] by part (a).
12. �SI [α ∧ ((β ∧ γ) →H ψ)] →H (β →H (γ →H ψ)) by axiom (S9) and SMP

applied to 11.
13. �SI [α ∧ ((β ∧ γ) →H ψ)] →H [α ∧ (β →H (γ →H ψ))] by axiom (S5) and

SMP applied to 9 and 12.
14. �SI [α → (α ∧ (β →H (γ →H ψ)))] →H [α → (α ∧ ((β ∧ γ) →H ψ))] by

axiom (S11) and SMP applied to 8 and 13.
15. �SI [α →H (β →H (γ →H ψ))] →H [α →H ((β ∧ γ) →H ψ)] by the definition

of →H and 14.
16. �SI α →H ((β ∧ γ) →H ψ) by SMP applied to 3 and 15.
17. �SI (α ∧ (β ∧ γ)) →H ψ by axiom (S9) and SMP applied to 16.

The other implication can be verified in a similar way.
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(i) 1. �SI (β ∧ α) →H (α ∧ β) by part (e).
2. �SI (β ∧ α) →H (β ∧ α) by part (b).
3. �SI (β ∧ α) →H [(α ∧ β) ∧ (β ∧ α)] by axiom (S5) and SMP applied to 1

and 2.
4. �SI [(α ∧ β) ∧ (β ∧ α)] →H (β ∧ α) by part (d).
5. �SI [(α ∧ β) → ((α ∧ β) ∧ (β ∧ α))] →H [(α ∧ β) → (β ∧ α)] by axiom

(S11) and SMP applied to 3 and 4.
6. �SI ((α∧β) →H (β∧α)) →H [(α∧β) → (β∧α)] by the definition of →H .
7. �SI (α ∧ β) →H (β ∧ α) by part (e).
8. �SI (α ∧ β) → (β ∧ α) by SMP applied to 6 and 7.

(j) 1. �SI (α ∧ β) →H (β ∧ α) by (e)
2. �SI (α ∧ β) →H γ by hypothesis.
3. �SI (α ∧ β) →H ((β ∧ α) ∧ γ) by axiom (S5) and SMP applied to 1 and

2.
4. �SI [β ∧ (α ∧ γ)] →H β by axiom (S4).
5. �SI ((β ∧ α) ∧ γ) →H β by part (h) applied to 4.
6. �SI (α ∧ γ) →H α by axiom (S4).
7. �SI β →H [(α ∧ γ) →H α] by part (a).
8. �SI (β ∧ (α ∧ γ)) →H α by axiom (S9) and SMP applied to 7.
9. �SI ((β ∧ α) ∧ γ) →H α by part (h) applied to 8.

10. �SI ((β ∧ α) ∧ γ) →H (α ∧ β) by axiom (S5) and SMP applied to 5 and
9.

11. �SI [(β ∧α) → (α∧ β)] →H [(β ∧α) → ((β ∧α) ∧ γ)] by axiom (S11) and
SMP applied to 3 and 10.

12. �SI (β ∧ α) → (α ∧ β) by part (i).
13. �SI (β ∧ α) → ((β ∧ α) ∧ γ) by SMP applied to 11 and 12.
14. �SI (β ∧ α) →H γ by definicin de →H .

(k) 1. �SI (γ ∧ α) →H (α ∧ γ) by part (e).
2. �SI α →H β by hypothesis.
3. �SI γ →H (α →H β) by part (a).
4. �SI (γ ∧ α) →H β by axiom (S9) and SMP applied to 3.
5. �SI (γ ∧α) →H ((α∧γ)∧β) by axiom (S5) and SMP applied to 1 and 4.
6. �SI (γ ∧ β) →H γ by axiom (S4).
7. �SI α →H [(γ ∧ β) →H γ] by part (a).
8. �SI (α ∧ (γ ∧ β)) →H γ by axiom (S9) and SMP applied to 7.
9. �SI ((α ∧ γ) ∧ β) →H γ by part (h).

10. �SI (α ∧ (γ ∧ β)) →H α by axiom (S4).
11. �SI ((α ∧ γ) ∧ β) →H α by part (h).
12. �SI ((α ∧ γ) ∧ β) →H (γ ∧ α) by axiom (S5) and SMP applied to 9 and

11.
13. �SI [(α∧ γ) → (γ ∧α)] →H [(α∧ γ) → ((α∧ γ) ∧ β)] by axiom (S11) and

SMP applied to 5 and 12.
14. �SI (α ∧ γ) → (γ ∧ α) by part (i).
15. �SI (α ∧ γ) → ((α ∧ γ) ∧ β) by SMP applied to 13 and 14.
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16. �SI (α ∧ γ) →H β by the definition of →H .
17. �SI (α ∧ γ) →H γ by part (d).
18. �SI (α ∧ γ) →H (β ∧ γ) by axiom (S5) and SMP applied to 16 and 17.

Also,
19. �SI (γ ∧ (α ∧ β)) →H γ by axiom (S4).
20. �SI ((γ ∧ α) ∧ β) →H γ by part (h) applied to 19.
21. �SI (α ∧ β) →H α by axiom (S4).
22. �SI γ →H [(α ∧ β) →H α] by part (a).
23. �SI (γ ∧ (α ∧ β)) →H α by axiom (S9) and SMP applied to 22.
24. �SI ((γ ∧ α) ∧ β) →H α by (h).
25. �SI ((γ ∧ α) ∧ β) →H (α ∧ γ) by axiom (S5) and SMP applied to 23 and

20.
26. �SI (α ∧ γ) →H β by part (j) applied to 4.
27. �SI (α ∧ γ) →H (γ ∧ α) by (e).
28. �SI (α ∧ γ) →H ((γ ∧ α) ∧ β) by axiom (S5) and SMP applied to 27 and

26.
29. �SI [(γ ∧ α) → (α ∧ γ)] →H [(γ ∧ α) → [(γ ∧ α) ∧ β]] by axiom (S11) and

SMP applied to 25 and 28.
30. �SI (γ ∧ α) → (α ∧ γ) by part (i).
31. �SI (γ ∧ α) → [(γ ∧ α) ∧ β] by SMP applied to 29 and 30.
32. �SI (γ ∧ α) →H β by the definition of →H .
33. �SI (γ ∧ α) →H γ by el axioma (S4).
34. �SI (γ ∧ α) →H (γ ∧ β) by axiom (S5) and SMP applied to 32 and 33.

(l) 1. �SI (β ∧ γ) →H γ by part (d).
2. �SI α →H [(β ∧ γ) →H γ] by part (a).
3. �SI (α ∧ (β ∧ γ)) →H γ by axiom (S9) and SMP applied to 2.
4. �SI (α ∧ (β ∧ γ)) →H α by axiom (S4).
5. �SI (α ∧ (β ∧ γ)) →H (α ∧ γ) by axiom (S5) and SMP applied to 4 and 3.
6. �SI α →H (β ∧ γ) by hypothesis.
7. �SI γ →H (α →H (β ∧ γ)) by part (a).
8. �SI (γ ∧ α) →H (β ∧ γ) by axiom (S9) and SMP applied to 7.
9. �SI (α ∧ γ) →H (β ∧ γ) by part (j).

10. �SI (α ∧ γ) →H α by axiom (S4).
11. �SI (α∧γ) →H (α∧ (β ∧γ)) by axiom (S5) and SMP applied to 10 and 9.
12. �SI (α → (α ∧ (β ∧ γ))) →H (α → (α ∧ γ)) by axiom (S11) and SMP

applied to 5 and 11.
13. �SI (α →H (β ∧ γ)) →H (α →H γ) by the definition of →H .
14. �SI α →H γ by SMP applied to 6.

(m) 1. �SI (α →H γ) →H (α →H γ) by part (b).
2. �SI ((α →H γ) ∧ α) →H γ by axiom (S9) and SMP applied to 1.
3. �SI [α ∧ (α →H γ)] →H γ by part (j).
4. �SI [α ∧ (α →H γ)] →H (α →H γ) by part (d).
5. �SI α →H β by hypothesis.
6. �SI (α →H γ) →H (α →H β) by part (a).
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7. �SI [(α →H γ) ∧ α] →H β by axiom (S9) and SMP applied to 6.
8. �SI [α ∧ (α →H γ)] →H β by part (j) applied to 7.
9. �SI [α ∧ (α →H γ)] →H [β ∧ (α →H γ)] by axiom (S5) and SMP applied

to 8 and 4.
10. �SI [α ∧ (α →H γ)] →H [[β ∧ (α →H γ)] ∧ γ] by axiom (S5) and SMP

applied to 9 and 3.
11. �SI [β ∧ (α →H γ)] →H [[α ∧ (α →H γ)] →H [[β ∧ (α →H γ)] ∧ γ]] by part

(a).
12. �SI [[β ∧ (α →H γ)] ∧ [α ∧ (α →H γ)]] →H [[β ∧ (α →H γ)] ∧ γ]] by axiom

(S9) and SMP applied to 11.
13. �SI β →H α by hypothesis.
14. �SI (β ∧ (α →H γ)) →H (α ∧ (α →H γ)) by part (k).
15. �SI (γ ∧ (β ∧ (α →H γ))) →H (γ ∧ (α ∧ (α →H γ))) by part (k).
16. �SI (γ ∧ (β ∧ (α →H γ))) →H (α ∧ (α →H γ)) by part (l).
17. �SI ((β ∧ (α →H γ)) ∧ γ) →H (α ∧ (α →H γ)) by part (j).
18. �SI ((β ∧ (α →H γ)) ∧ γ) →H (β ∧ (α →H γ)) by axiom (S4).
19. �SI ((β ∧ (α →H γ)) ∧ γ) →H [(β ∧ (α →H γ)) ∧ (α ∧ (α →H γ))] by axiom

(S5) and SMP applied to 17 and 18.
20. �SI [(β ∧ (α →H γ)) → [(β ∧ (α →H γ)) ∧ (α∧ (α →H γ))]] →H [(β ∧ (α →H

γ)) → ((β ∧ (α →H γ)) ∧ γ)] by axiom (S11) and SMP applied to 12 and
19.

21. �SI [(β ∧ (α →H γ)) →H (α∧ (α →H γ))] →H [(β ∧ (α →H γ)) →H γ] by the
definition of →H .

22. �SI (β ∧ (α →H γ)) →H γ by SMP applied to 14 and 21.
23. �SI ((α →H γ) ∧ β) →H γ by part (j).
24. �SI (α →H γ) →H (β →H γ) by axiom (S8) and SMP applied to 23.

The other half is similar.

(n) 1. �SI (β →H γ) →H (β →H γ) by part (b).
2. �SI ((β →H γ) ∧ β) →H γ by axiom (S9) and SMP applied to 1.
3. �SI (β ∧ (β →H γ)) →H γ by part (j) applied to 2.
4. �SI α →H [(β ∧ (β →H γ)) →H γ] by part (a).
5. �SI [α ∧ (β ∧ (β →H γ))] →H γ by axiom (S9) and SMP applied to 4.
6. �SI (β ∧ (β →H γ)) →H β by axiom (S4).
7. �SI α →H [(β ∧ (β →H γ)) →H β] by part (a).
8. �SI [α ∧ (β ∧ (β →H γ))] →H β by axiom (S9) and SMP applied to 7.
9. �SI [α ∧ (β ∧ (β →H γ))] →H α by axiom (S4).

10. �SI [α ∧ (β ∧ (β →H γ))] →H (α ∧ β) by axiom (S5) and SMP applied to
9 and 8.

11. �SI [α∧ (β∧ (β →H γ))] →H [(α∧β)∧γ] by axiom (S5) and SMP applied
to 10 and 5.

12. �SI [(β ∧ (α ∧ β)) ∧ γ] →H γ by part (d).
13. �SI [β ∧ ((α ∧ β) ∧ γ)] →H γ by part (h) applied to 12.
14. �SI [((α ∧ β) ∧ γ) ∧ β] →H γ by part (j).
15. �SI ((α ∧ β) ∧ γ) →H (β →H γ) by axiom (S8) and SMP applied to 14.
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16. �SI (α ∧ β) →H β by part (d).
17. �SI γ →H [(α ∧ β) →H β] by part (a).
18. �SI [γ ∧ (α ∧ β)] →H β by axiom (S9) and SMP applied to 17.
19. �SI [(α ∧ β) ∧ γ] →H β by part (j).
20. �SI [α ∧ (β ∧ γ)] →H α by axiom (S4).
21. �SI [(α ∧ β) ∧ γ] →H α by part (h) applied to 20.
22. �SI [(α ∧ β) ∧ γ] →H [β ∧ (β →H γ)] by axiom (S5) and SMP applied to

19 and 15.
23. �SI [(α∧β)∧ γ] →H [α∧ [β ∧ (β →H γ)]] by axiom (S5) and SMP applied

to 21 and 22.
24. �SI [[(α ∧ β) ∧ γ] →H γ] →H [[α ∧ [β ∧ (β →H γ)]] →H γ] by part (m) in

view if 11 and 23.
25. �SI [(α ∧ β) ∧ γ] →H γ by part (d).
26. �SI [α ∧ [β ∧ (β →H γ)]] →H γ by SMP applied to 24 and 25.
27. �SI ((α ∧ β) ∧ (β →H γ)) →H γ by part (h) applied to 26.
28. �SI (α ∧ β) →H [(β →H γ) →H γ] by axiom (S8) and SMP applied to 27.
29. �SI (α →H β) →H (α →H β) by part (b).
30. �SI ((α →H β) ∧ α) →H β by axiom (S9) and SMP applied to 29.
31. �SI (α ∧ (α →H β)) →H β by part (j).
32. �SI (α ∧ (α →H β)) →H α by axiom (S4).
33. �SI (α ∧ (α →H β)) →H (α ∧ β) by axiom (S5) and SMP applied to 32

and 31.
34. �SI (β ∧ α) →H β by axiom (S4).
35. �SI β →H (α →H β) by axiom (S8) and SMP applied to 34.
36. �SI α →H (β →H (α →H β)) by part (a).
37. �SI (α ∧ β) →H (α →H β)) by axiom (S9) and SMP applied to 36.
38. �SI (α ∧ β) →H α by axiom (S4).
39. �SI (α ∧ β) →H (α ∧ (α →H β)) by axiom (S5) and SMP applied to 38

and 37.
40. �SI [(α ∧ β) →H [(β →H γ) →H γ]] →H [(α ∧ (α →H β)) →H [(β →H γ) →H

γ]] by part (m) and items 33 and 39.
41. �SI (α ∧ (α →H β)) →H [(β →H γ) →H γ] by SMP applied to 28 and 40.
42. �SI [(α ∧ (α →H β)) ∧ (β →H γ)] →H γ by axiom (S9) and SMP applied

to 41.
43. �SI [α ∧ ((α →H β) ∧ (β →H γ))] →H γ by part (h).
44. �SI [((α →H β) ∧ (β →H γ)) ∧ α] →H γ by part (j).
45. �SI ((α →H β)∧ (β →H γ)) →H (α →H γ) by axiom (S8) and SMP applied

to 44.
46. �SI (α →H β) →H [(β →H γ) →H (α →H γ)] by axiom (S8) and SMP

applied to 45.

(o) 1. �SI (α ∧ (α ∧ β)) →H (α ∧ β) by part (d).
2. �SI (α ∧ β) →H β by part (d).
3. �SI (α ∧ (α ∧ β)) →H β by part (n) and SMP applied to 1 and 2.
4. �SI α →H [(α ∧ β) →H β] by axiom (S8) and SMP applied to 3.
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5. �SI α →H α by part (b).
6. �SI α →H [α ∧ [(α ∧ β) →H β]] by axiom (S5) and SMP applied to 4 and

5.

(p) 1. �SI (α ∧ β) → (α ∧ β) by part (f).
2. �SI ((α ∧ β) ∧ α) →H (α ∧ β) by (S4).
3. �SI ((α ∧ β) ∧ β) →H (α ∧ β) by (S4).
4. �SI (α ∧ β) →H α by (S4).
5. �SI (α ∧ β) →H (α ∧ β) by part (b).
6. �SI (α ∧ β) →H ((α ∧ β) ∧ α) by axiom (S5) and SMP applied to 4 and

5.
7. �SI (α ∧ β) →H β by part (d).
8. �SI (α ∧ β) →H (α ∧ β) by part (b).
9. �SI (α ∧ β) →H ((α ∧ β) ∧ β) by axiom (S5) and SMP applied to 7 and

8.
10. �SI (((α ∧ β) ∧ β) →H (α ∧ β)) →H (((α ∧ β) →H ((α ∧ β) ∧ β)) →H

(((α ∧ β) → (α ∧ β)) →H ((α ∧ β) → ((α ∧ β) ∧ β)))) by (S11).
11. �SI ((α ∧ β) →H ((α ∧ β) ∧ β)) →H (((α ∧ β) → (α ∧ β)) →H ((α ∧ β) →

((α ∧ β) ∧ β))) by SMP applied to 3 and 10.
12. �SI (((α ∧ β) → (α ∧ β)) →H ((α ∧ β) → ((α ∧ β) ∧ β))) by SMP applied

to 9 and 11.
13. �SI ((α ∧ β) →H ((α ∧ β) ∧ α)) →H ((((α ∧ β) ∧ α) →H (α ∧ β)) →H

(((α∧ β) → ((α∧ β) ∧ β)) →H (((α∧ β) ∧α) → ((α∧ β) ∧ β)))) by axiom
(S10).

14. �SI (((α ∧ β) ∧ α) →H (α ∧ β)) →H (((α ∧ β) → ((α ∧ β) ∧ β)) →H

(((α ∧ β) ∧ α) → ((α ∧ β) ∧ β))) by SMP applied to 6 and 13.
15. �SI ((α∧β) → ((α∧β)∧β)) →H (((α∧β)∧α) → ((α∧β)∧β)) by SMP

applied to 2 and 14.
16. �SI ((α ∧ β) → (α ∧ β)) →H (((α ∧ β) ∧ α) → ((α ∧ β) ∧ β)) by part (n)

and SMP applied to 12 and 15.
17. �SI ((α ∧ β) ∧ α) → ((α ∧ β) ∧ β) by SMP applied to 1 and 16.

(q) 1. �SI (β →H (α ∧ β)) →H [((α ∧ β) →H β) →H [(β → γ) →H ((α ∧ β) → γ)]]
by (S10).

2. �SI α →H (β →H (α ∧ β)) by part (g).
3. �SI α →H [((α ∧ β) →H β) →H [(β → γ) →H ((α ∧ β) → γ)]] by part (n)

and SMP applied to 1 and 2.
4. �SI [α ∧ ((α ∧ β) →H β)] →H [(β → γ) →H ((α ∧ β) → γ)] by axiom (S9)

and SMP applied to 3.
5. �SI α →H [α ∧ ((α ∧ β) →H β)] by part (o).
6. �SI α →H [(β → γ) →H ((α∧ β) → γ)] by part (n) and SMP applied to 4

and 5.
7. �SI [α ∧ (β → γ)] →H ((α ∧ β) → γ) by axiom (S9) and SMP applied to

6.
8. �SI [α ∧ (β → γ)] →H α by (S4).
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9. �SI [α∧ (β → γ)] →H [α∧ ((α∧β) → γ)] by axiom (S5) and SMP applied
to 7 and 8.

10. �SI ((α∧γ) →H γ) →H ((γ →H (α∧γ)) →H (((α∧β) → γ) →H ((α∧β) →
(α ∧ γ)))) by axiom (S11).

11. �SI (α ∧ γ) →H γ by part (d).
12. �SI (γ →H (α ∧ γ)) →H (((α ∧ β) → γ) →H ((α ∧ β) → (α ∧ γ))) by SMP

applied to 10 and 11.
13. �SI α →H (γ →H (α ∧ γ)) by part (g).
14. �SI α →H (((α ∧ β) → γ) →H ((α ∧ β) → (α ∧ γ))) by part (n) and SMP

applied to 12 and 13.
15. �SI (α∧ ((α∧ β) → γ)) →H ((α∧ β) → (α∧ γ)) by axiom (S9) and SMP

applied to 14.
16. �SI [α ∧ (β → γ)] →H ((α ∧ β) → (α ∧ γ)) by part (n) and SMP applied

to 9 and 15.
17. �SI [α ∧ (β → γ)] →H [α ∧ ((α ∧ β) → (α ∧ γ))] by axiom (S5) and SMP

applied to 8 and 16.

(r) 1. �SI ((α ∧ β) →H β) →H [(β →H (α ∧ β)) →H [((α ∧ β) → (α ∧ γ)) →H (β →
(α ∧ γ))]] by axiom (S10).

2. �SI (α ∧ β) →H β by part (d).
3. �SI (β →H (α ∧ β)) →H [((α ∧ β) → (α ∧ γ)) →H (β → (α ∧ γ))] by SMP

applied to 1 and 2.
4. �SI α →H (β →H (α ∧ β)) by part (g).
5. �SI α →H [((α ∧ β) → (α ∧ γ)) →H (β → (α ∧ γ))] by part (n) and SMP

applied to 3 and 4.
6. �SI [α ∧ ((α ∧ β) → (α ∧ γ))] →H (β → (α ∧ γ)) by (S9) and SMP applied

to 5.
7. �SI (γ →H (α ∧ γ)) →H [((α ∧ γ) →H γ) →H [(β → (α ∧ γ)) →H (β → γ)]]

by (S11).
8. �SI α →H (γ →H (α ∧ γ)) by part (g).
9. �SI α →H [((α ∧ γ) →H γ) →H [(β → (α ∧ γ)) →H (β → γ)]] by part (n)

and SMP applied to 7 and 8.
10. �SI [α∧ ((α∧γ) →H γ)] →H [(β → (α∧γ)) →H (β → γ)]] by (S9) and SMP

applied to 9.
11. �SI α →H [α ∧ ((α ∧ γ) →H γ)] by part (o).
12. �SI α →H [(β → (α ∧ γ)) →H (β → γ)]] by part (n) and SMP applied to

10 and 11.
13. �SI (α ∧ (β → (α ∧ γ))) →H (β → γ) by (S9) and SMP applied to 12.
14. �SI (α ∧ ((α ∧ β) → (α ∧ γ))) →H α by (S4).
15. �SI (α ∧ ((α ∧ β) → (α ∧ γ))) →H (α ∧ (β → (α ∧ γ))) by axiom (S5) and

SMP applied to 6 and 14.
16. �SI (α ∧ ((α ∧ β) → (α ∧ γ))) →H (β → γ) by part (n) and SMP applied

to 13 and 15.
17. �SI (α ∧ ((α ∧ β) → (α ∧ γ))) →H (α ∧ (β → γ)) by axiom (S5) and SMP

applied to 14 and 16.
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(s) 1. �SI ((α ∧ β) ∧ α) → ((α ∧ β) ∧ β) by part (p).
2. �SI (α ∧ β) →H (α ∧ β) by (b).
3. �SI (α ∧ β) →H [((α ∧ β) ∧ α) → ((α ∧ β) ∧ β)]] by (a) and 1.
4. �SI (α∧β) →H [(α∧β)∧ [((α∧β)∧α) → ((α∧β)∧β)]] by (S5) and SMP

applied to 2 and 3.
5. �SI [(α ∧ β) ∧ [((α ∧ β) ∧ α) → ((α ∧ β) ∧ β)]] →H [(α ∧ β) ∧ (α → β)] by

part (r).
6. �SI [(α ∧ β) ∧ (α → β)] →H (α → β) by part (d).
7. �SI (α ∧ β) →H (α → β) by part (n) and SMP applied to 4, 5 and 6.
8. �SI (α ∧ β) →H α by axiom (S4).
9. �SI (α∧β) →H (α∧ (α → β)) by axiom (S5) and SMP applied to 7 and 8.

(t) 1. �SI (α →H �) →H [(� →H α) →H [(α → β) →H (� → β)]] by (S10).
2. �SI ((α →H �) ∧ (� →H α)) →H ((α → β) →H (� → β)) by (S9) and SMP

applied to 1.
3. �SI ((� →H α) ∧ (α →H �)) →H ((α → β) →H (� → β)) using part (j)

applied to 2.
4. �SI (� →H α) →H [(α →H �) →H [(α → β) →H (� → β)]] by (S8) and

SMP applied to 3.
5. �SI (α ∧ �) →H α by (S4).
6. �SI α →H (� →H α) by axiom (S8) and SMP applied to 5.
7. �SI α →H [(α →H �) →H [(α → β) →H (� → β)]] by part (n) and SMP

applied to 4 and 6.
8. �SI (α ∧ (α →H �)) →H [(α → β) →H (� → β)] by axiom (S8) and SMP

applied to 7.
9. �SI ((α →H �) ∧ α) →H (α ∧ (α →H �)) by part (e).

10. �SI ((α →H �) ∧ α) →H [(α → β) →H (� → β)] by part (n) and SMP
applied to 8 and 9.

11. �SI (α →H �) →H [α →H [(α → β) →H (� → β)]] by axiom (S8) and SMP
applied to 10.

12. �SI � by (S6).
13. �SI α →H � by part (a).
14. �SI α →H [(α → β) →H (� → β)] by SMP applied to 11 and 13.
15. �SI (α ∧ (α → β)) →H (� → β) by axiom (S9) and SMP applied to 14.
16. �SI ((� ∧ β) →H β) →H [(β →H (� ∧ β)) →H [(� → β) →H (� → (� ∧ β))]]

by (S11).
17. �SI (� ∧ β) →H β by part (d).
18. �SI (β →H (� ∧ β)) →H [(� → β) →H (� → (� ∧ β))] by SMP applied to

16 and 17.
19. �SI β →H (β ∧ �) by part (c) and 12.
20. �SI (β ∧ �) →H (� ∧ β) by part (e).
21. �SI β →H (� ∧ β) by part (n) and SMP applied to 19 and 20.
22. �SI (� → β) →H (� → (� ∧ β)) by SMP applied to 18 and 21.
23. �SI (α ∧ (α → β)) →H (� → (� ∧ β)) by part (n) and SMP applied to 15

and 22.
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24. �SI (α ∧ (α → β)) →H (� →H β) by the definition of →H .
25. �SI [(α ∧ (α → β)) ∧ �] →H β by axiom (S9) and SMP applied to 24.
26. �SI [� ∧ (α ∧ (α → β))] →H [(α ∧ (α → β)) ∧ �] by part (e).
27. �SI [� ∧ (α∧ (α → β))] →H β by part (n) and SMP applied to 25 and 26.
28. �SI � →H [(α ∧ (α → β)) →H β] by axiom (S8) and SMP applied to 27.
29. �SI (α ∧ (α → β)) →H β by SMP applied to 12 and 28.
30. �SI (α ∧ (α → β)) →H α by axiom (S4).
31. �SI (α ∧ (α → β)) →H (α ∧ β) by axiom (S5) and SMP applied to 29 and

30. �

Proof. of Lemma 3.4.
(a) implies (b):

1. Γ �SI (α →H β) ∧ (β →H α) by hypothesis.

2. Γ �SI [(α →H β) ∧ (β →H α)] →H (α →H β) by (S4).

3. Γ �SI α →H β by SMP.

4. Similarly, Γ �SI β →H α, using Lemma 2.1(d).

(b) implies (a):

1. Γ �SI α →H β by hypothesis.

2. Γ �SI β →H α by hypothesis.

3. Γ �SI (α →H β) →H (α →H β) by Lemma 2.1, part (b).

4. Γ �SI (α →H β) →H (β →H α) by 2 and Lemma 2.1, part (a).

5. Γ �SI (α →H β) →H [(α →H β) ∧ (β →H α)] by (S5) and SMP applied to 3 and
4.

6. Γ �SI α ↔H β by SMP applied to 1 and 5 and the definition of ↔H . �

Proof. of Lemma 3.5

a) 1. �SI α →H α by Lemma 2.1, part (b).
2. �SI α ↔H α by Lemma 3.4.

b) 1. α ↔H β �SI α ↔H β.
2. α ↔H β �SI α →H β and α ↔H β �SI β →H α by Lemma 3.4.
3. α ↔H β �SI β ↔H α by Lemma 3.4.

c) 1. α ↔H β, β ↔H γ �SI α ↔H β
2. α ↔H β, β ↔H γ �SI α →H β by Lemma 3.4.
3. α ↔H β, β ↔H γ �SI β →H α by Lemma 3.4.
4. α ↔H β, β ↔H γ �SI β ↔H γ.
5. α ↔H β, β ↔H γ �SI β →H γ by Lemma 3.4.
6. α ↔H β, β ↔H γ �SI γ →H β by Lemma 3.4.
7. α ↔H β, β ↔H γ �SI (α →H β) →H ((β →H γ) →H (α →H γ)) by Lemma

2.1(n).
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8. α ↔H β, β ↔H γ �SI α →H γ by SMP.
In a similar manner,

9. α ↔H β, β ↔H γ �SI γ →H α.
10. α ↔H β, β ↔H γ �SI α ↔H γ by Lemma 3.4.

d) 1. α ↔H β, γ ↔H δ �SI α ↔H β.
2. α ↔H β, γ ↔H δ �SI α →H β by Lemma 3.4.
3. α ↔H β, γ ↔H δ �SI (α ∧ γ) →H α by (S4).
4. α ↔H β, γ ↔H δ �SI (α ∧ γ) →H β by Lemma 2.1(n) and SMP from 2 and

3.
5. α ↔H β, γ ↔H δ �SI γ ↔H δ.
6. α ↔H β, γ ↔H δ �SI γ →H δ by Lemma 3.4.
7. α ↔H β, γ ↔H δ �SI (α ∧ γ) →H γ by Lemma 2.1(d).
8. α ↔H β, γ ↔H δ �SI (α ∧ γ) →H δ by Lemma 2.1(n) and SMP from 6 and

7.
9. α ↔H β, γ ↔H δ �SI ((α ∧ γ) →H β) →H [((α ∧ γ) →H δ) →H ((α ∧ γ) →H

(β ∧ δ))] by (S5).
10. α ↔H β, γ ↔H δ �SI (α ∧ γ) →H (β ∧ δ) SMP from 4, 8 and 9.

In a similar way,
11. α ↔H β, γ ↔H δ �SI (β ∧ δ) →H (α ∧ γ).
12. α ↔H β, γ ↔H δ �SI (α ∧ γ) ↔H (β ∧ δ) by Lemma 3.4.

e) 1. α ↔H β, γ ↔H δ �SI α ↔H β by identity.
2. α ↔H β, γ ↔H δ �SI α →H β by Lemma 3.4.
3. α ↔H β, γ ↔H δ �SI β →H (β ∨ δ) by (S1).
4. α ↔H β, γ ↔H δ �SI α →H (β ∨ δ) by Lemma 2.1(n) and SMP applied to 2

and 3.
5. α ↔H β, γ ↔H δ �SI γ ↔H δ by identity.
6. α ↔H β, γ ↔H δ �SI γ →H δ by Lemma 3.4.
7. α ↔H β, γ ↔H δ �SI δ →H (β ∨ δ) by (S2).
8. α ↔H β, γ ↔H δ �SI γ →H (β ∨ δ) by Lemma 2.1(n) and SMP applied to 6

and 7.
9. α ↔H β, γ ↔H δ �SI (α →H (β ∨ δ)) →H [(γ →H (β ∨ δ)) →H ((α ∨ γ) →H

(β ∨ δ))]] by (S3).
10. α ↔H β, γ ↔H δ �SI (α ∨ γ) →H (β ∨ δ) SMP applied to 4, 8 and 9.

Analogously,
11. α ↔H β, γ ↔H δ �SI (β ∨ δ) →H (α ∨ γ).
12. α ↔H β, γ ↔H δ �SI (α ∨ γ) ↔H (β ∨ δ) by Lemma 3.4.

f) 1. α ↔H β, γ ↔H δ �SI α ↔H β by identity.
2. α ↔H β, γ ↔H δ �SI α →H β and α ↔H β, γ ↔H δ �SI β →H α, by Lemma

3.4.
3. α ↔H β, γ ↔H δ �SI (α →H β) →H [(β →H α) →H ((α → γ) →H (β → γ))]

by (S10).
4. α ↔H β, γ ↔H δ �SI (α → γ) →H (β → γ) by SMP applied to 2 and 3.
5. α ↔H β, γ ↔H δ �SI γ ↔H δ by identity.
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6. α ↔H β, γ ↔H δ �SI γ →H δ and α ↔H β, γ ↔H δ �SI δ →H γ by Lemma
3.4.

7. α ↔H β, γ ↔H δ �SI (δ →H γ) →H [(γ →H δ) →H ((β → γ) →H (β → δ))] by
(S11).

8. α ↔H β, γ ↔H δ �SI (β → γ) →H (β → δ) by SMP applied to 6 and 7.
9. α ↔H β, γ ↔H δ �SI (α → γ) →H (β → δ) by (S12’) and SMP applied to 4

and 8.
Analogously,

10. α ↔H β, γ ↔H δ �SI (β → δ) →H (α → γ).
11. α ↔H β, γ ↔H δ �SI (α → γ) ↔H (β → δ) by Lemma 3.4. �

Proof. of Lemma 3.7.

1. α ↔H β �SI′ α ↔H β by identity.

2. α ↔H β �SI′ α →H β by Lemma 3.4.

3. α ↔H β �SI′ (¬β ∧ α) →H ¬β by axiom (S4).

4. α ↔H β �SI′ (¬β ∧ α) →H α by axiom (S13’).

5. α ↔H β �SI′ (¬β ∧ α) →H β by axiom (S12’) and SMP applied to 4 and 2.

6. α ↔H β �SI′ (¬β ∧ α) →H (β ∧ ¬β) by axiom (S5) and SMP applied to 5 and
3.

7. α ↔H β �SI′ (β ∧ ¬β) →H ¬α by axiom (S7’).

8. α ↔H β �SI′ (¬β ∧ α) →H ¬α by axiom (S12’) and SMP applied to 6 and 7.

9. α ↔H β �SI′ ¬β →H (α →H ¬α) by axiom (S8) and SMP applied to 8.

10. α ↔H β �SI′ (α →H ¬α) →H ¬α by axiom (S18’).

11. α ↔H β �SI′ ¬β →H ¬α by axiom (S12’) and SMP applied to 9 and 10.

Symmetrically, using that α ↔H β �SI′ β →H α, we have that

12. α ↔H β �SI′ ¬α →H ¬β.

13. α ↔H β �SI′ ¬α ↔H ¬β by Lemma 3.4. �

Proof. of Lemma 3.8.

a) 1. �SI ⊥ →H β by (S7).
2. �SI (α ∧ ⊥) →H ⊥ by Lemma 2.1(d).
3. �SI (α ∧ (α → ⊥)) →H (α ∧ ⊥) by Lemma 2.1(t).
4. �SI (α ∧ (α → ⊥)) →H β by Lemma 2.1(n) and SMP applied to the

previous items.

b) 1. Γ �SI (α →H α) →H [(α →H β) →H (α →H (α ∧ β))] by (S5).
2. Γ �SI α →H α by Lemma 2.1, part (b).
3. Γ �SI (α →H β) →H (α →H (α ∧ β)) by SMP applied to 1 and 2.
4. Γ �SI β by hypothesis.
5. Γ �SI α →H β by Lemma 2.1, part (a).
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6. Γ �SI α →H (α ∧ β) by SMP applied to 3 and 5.
7. Γ �SI α by hypothesis.
8. Γ �SI α ∧ β by SMP applied to 6 and 7.

c) 1. �SI α →H α by Lemma 2.1, part (b).
2. �SI ⊥ → ⊥ by Lemma 2.1, part (f).
3. �SI α →H (⊥ → ⊥) by Lemma 2.1, part (a).
4. �SI α →H (α ∧ (⊥ → ⊥)) by (S5) and SMP applied to 1 and 3.

d) 1. Γ �SI β ↔H ⊥ by hypothesis.
2. Γ �SI β →H ⊥ by Lemma 3.4.
3. Γ �SI ⊥ →H α (S7).
4. Γ �SI β →H α using Lemma 2.1(n) and SMP applied to 2 and 3.
5. Γ �SI (β →H α) →H [(β →H ⊥) →H (β →H (α ∧ ⊥))] (S5).
6. Γ �SI β →H (α ∧ ⊥) SMP applied to 4, 2 and 5.
7. Γ �SI (α ∧ ⊥) →H ⊥ by Lemma 2.1(d).
8. Γ �SI ⊥ →H β (S7).
9. Γ �SI (α ∧ ⊥) →H β using Lemma 2.1(n) and SMP applied to 7 and 8.

e) 1. �SI [α ∧ (α → (α ∧ (α → ⊥)))] →H [α ∧ (α ∧ (α → ⊥))] by Lemma 2.1(t).
2. �SI [α ∧ (α ∧ (α → ⊥))] →H (α ∧ (α → ⊥)) by Lemma 2.1(d).
3. �SI (α ∧ (α → ⊥)) →H (α ∧ ⊥) by Lemma 2.1(t).
4. �SI (α ∧ ⊥) →H ⊥ using Lemma 2.1(d).
5. �SI [α ∧ (α → (α ∧ (α → ⊥)))] →H ⊥ by Lemma 2.1(n) and SMP.
6. �SI [α ∧ (α →H (α → ⊥))] →H ⊥ by the definition of →H .

The other result is direct from (S7). �

Proof. of Lemma 3.10.

a) 1. ¬α �SI′ ¬α
2. ¬α �SI′ (α →H ¬α) by Lemma 2.1, part (a).
3. �SI′ ¬α →H (α →H ¬α) by theorem 3.9.
4. �SI′ (α →H ¬α) →H ¬α by (S18’).
5. �SI′ (α →H ¬α) ↔H ¬α by 3, 4 and Lemma 3.4.

b) 1. Γ �SI′ (α ∧ ¬α) →H β by (S7’).
2. Γ �SI′ (α ∧ ¬α) →H ¬β by (S7’).
3. Γ �SI′ (α ∧ ¬α) →H (β ∧ ¬β) by (S5) and SMP applied to 1 and 2.
4. Γ �SI′ (β ∧ ¬β) →H (α ∧ ¬α) by a similar argument.
5. Γ �SI′ (β ∧ ¬β) ↔H (α ∧ ¬α) by Lemma 3.4.
6. Γ �SI′ r1(β ∧ ¬β) →H r1(α∧ ¬α) with r1(x) = ¬β →H (β → x) by Lemma

3.4 and conditions (B1) to (B4).
7. Γ,¬β, β �SI′ ¬β.
8. Γ,¬β �SI′ β →H ¬β by Theorem 3.9 applied to 7.
9. Γ,¬β �SI′ β → (β ∧ ¬β) by definition of →H in 8.

10. Γ �SI′ r1(β ∧ ¬β) by Theorem 3.9 applied to 9.
11. Γ �SI′ r1(α ∧ ¬α) by SMP applied to 6 and 10.
12. Γ �SI′ ¬β →H (β → (α ∧ ¬α)) using the definition of r1 in 11.
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c) 1. Γ �SI′ (β ∧ ¬β) ↔H (α ∧ ¬α) as in part b).
2. Γ �SI′ r2(β ∧ ¬β) →H r2(α∧ ¬α) with r2(x) = (β → x) →H ¬β by Lemma

3.4 and conditions (B1) to (B4).
3. Γ �SI′ (β →H ¬β) →H ¬β by axiom (S18’).
4. Γ �SI′ (β → (β ∧ ¬β)) →H ¬β by the definition of →H in 3.
5. Γ �SI′ r2(β ∧ ¬β) using the definition of r2 in 4.
6. Γ �SI′ r2(α ∧ ¬α) by SMP applied to 2 and 5.
7. Γ �SI′ (β → (α ∧ ¬α)) →H ¬β using the definition of r2 in 6.

d) 1. β →H (β →H (α ∧ ¬α)) �SI′ β →H (β →H (α ∧ ¬α)).
2. β →H (β →H (α ∧ ¬α)), β �SI′ β →H (α ∧ ¬α) by Theorem 3.9 applied to

1.
3. β →H (β →H (α ∧ ¬α)), β �SI′ β.
4. β →H (β →H (α ∧ ¬α)), β �SI′ α ∧ ¬α using SMP in 2 and 3.
5. β →H (β →H (α ∧ ¬α)) �SI′ β →H (α ∧ ¬α) by Theorem 3.9 applied to 4.
6. Γ �SI′ (β →H (β →H (α ∧ ¬α))) →H (β →H (α ∧ ¬α)) by Theorem 3.9

applied to 5. �

Proof. of Lemma 6.23.
Let α, β ∈ Fm, and let us check that m(α∧ β) = m(α) ∩m(β). If w ∈ m(α∧ β),

then w �ε α ∧ β, so w �ε α and w �ε β. Therefore, w ∈ m(α) and w ∈ m(β), so
m(α ∧ β) ⊆ m(α) ∩m(β). The other direction has a similar proof.

The proof of m(α ∨ β) = m(α) ∪ m(β) is also straightforward. It is clear that
m(�) = W and m(⊥) = ∅.

Lastly, we prove that m(α → β) = m(α) → m(β). Observe that m(α →
β) = {w ∈ W : w �ε α → β} = {w ∈ W : Pε(w)} and m(α) → m(β) =
εA(m(α),m(β)). We prove that

{w ∈ W : Pε(w)} = εA(m(α),m(β))

by induction over ε. We exhibit only some of the cases.

• If ε(α, β) = α, then {w ∈ W : Pε(w)} = {w ∈ W : w �ε α} = m(α) =
εA(m(α),m(β)).

• If ε = ⊥ then {w ∈ W : Pε(w)} = ∅ = ⊥A.

• When ε = ε1 ∧ ε2 for H-formulas ε1 and ε2, {w ∈ W : Pε(w)} = {w ∈
W : Pε1(w) and Pε2(w)} = {w ∈ W : Pε1(w)} ∩ {w ∈ W : Pε2(w)} =
εA1 (m(α),m(β)) ∩ εA2 (m(α),m(β)) = εA(m(α),m(β)).

• If ε = ε1 →H ε2 for H-formulas ε1(α, β) and ε2(α, β), then εA(m(α),m(β)) =
εA1 (m(α),m(β)) →H εA2 (m(α),m(β)) is the biggest increasing subset contained
in

(
W \ εA1 (m(α),m(β))

) ∪ εA2 (m(α),m(β)).

To check that εA(m(α),m(β)) ⊆ {w ∈ W : Pε(w)}, let w ∈ εA(m(α),m(β)).
By condition (5) of Definition 6.19, it is enough to consider v ∈ W such
that wRv and Pε1(v) and then prove that Pε2(v). Since εA(m(α),m(β)) is
increasing, v ∈ εA(m(α),m(β)) ⊆ (

W \ εA1 (m(α),m(β))
) ∪ εA2 (m(α),m(β)) so
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v ∈ W \εA1 (m(α),m(β)) or v ∈ εA2 (m(α),m(β)). By inductive hypothesis on ε1 it
follows that {w ∈ W : Pε1(w)} = εA1 (m(α),m(β)). Therefore, since Pε1(v), v ∈
εA1 (m(α),m(β)). As a consequence, v ∈ εA2 (m(α),m(β)), so Pε2(v) because by
inductive hypothesis we also have that {w ∈ W : Pε2(w)} = εA2 (m(α),m(β)).

Going in the other direction, let w ∈ W be such that Pε(w). We prove first
that the increasing set M = {v ∈ W : wRv} ⊆ εA(m(α),m(β)) so w ∈
εA(m(α),m(β)), given that R is a reflexive relation. Let v ∈ M . If v �∈ W \
εA1 (m(α),m(β)) then v ∈ εA1 (m(α),m(β)). By the inductive hypothesis, this
means that Pε1(v). Since Pε(w) holds, then Pε2(v) because wRv. Therefore
v ∈ εA2 (m(α),m(β)), so M ⊆ (

W \ εA1 (m(α),m(β))
) ∪ εA2 (m(α),m(β)). Since

εA(m(α),m(β)) is the biggest of the increasing sets contained in
(
W \ εA1 (m(α),

m(β))
) ∪ εA2 (m(α),m(β)), M ⊆ εA(m(α),m(β)). �
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