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4 Denotational semantics for modal systems S3–S5

extended by axioms for propositional quantifiers
and identity

Steffen Lewitzka∗

Abstract

There are logics where necessity is defined by means of a givenidentity con-
nective: �ϕ := ϕ ≡ ⊤ (⊤ is a tautology). On the other hand, in many stan-
dard modal logics the concept of propositional identity (PI) ϕ ≡ ψ can be de-
fined by strict equivalence (SE)�(ϕ ↔ ψ). All these approaches to modality
involve a principle that we call the Collapse Axiom (CA): “There is only one
necessary proposition.” In this paper, we consider a notionof PI which relies on
the identity axioms of Suszko’s non-Fregean logicSCI . ThenS3 proves to be
the smallest Lewis modal system where PI can be defined as SE. We extendS3
to a non-Fregean logic with propositional quantifiers such that necessity and PI
are integrated as non-interdefinable concepts. CA is not valid and PI refines SE.
Models are expansions ofSCI -models. We show thatSCI -models are Boolean
prealgebras, and vice-versa. This associates Non-FregeanLogic with research on
Hyperintensional Semantics. PI equals SE iff models are Boolean algebras and
CA holds. A representation result establishes a connectionto Fine’s approach to
propositional quantifiers and shows that our theories areconservativeextensions of
S3–S5, respectively. If we exclude the Barcan formula and a related axiom, then
the resulting systems are still complete w.r.t. a simpler denotational semantics.

Keywords: non-Fregean logic, modal logic, propositional identity, propositional
quantifiers, denotational semantics, hyperintensional semantics

1 Introduction

The semantical approach to some Lewis-style modal logics studied in this paper relies
on the principles of R. Suszko’s non-Fregean logic (see, e.g., [3, 4, 21, 22]). The es-
sential feature of a non-Fregean logic is an identity connective≡ such that(ϕ ≡ ψ) →
(ϕ ↔ ψ) is a theorem but the so-called Fregean Axiom(ϕ ↔ ψ) → (ϕ ≡ ψ) is
not valid. A formulaϕ ≡ ψ can be read as “ϕ andψ have the same denotation.” The
basic non-Fregean logic is the Sentential Calculus with Identity SCI [3, 4]. SCI ex-
tends classical propositional logic by an identity connective and identity axioms which
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can be given by the following three schemes:ϕ ≡ ϕ, (ϕ ≡ ψ) → (ϕ → ψ), and
(ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ]), whereχ[x := ϕ] is the formula that results
from substitutions of all occurrences of variablex in χ with formulaϕ. A model of
SCI can be defined as a structureM = (M,TRUE , f⊥, f⊤, f¬, f∨, f∧, f→, f≡) such
that for all elementsa, b of the universeM , the conditions (ii)(a)–(e) and (g) of Defi-
nition 3.4 below are satisfied. An assignment (or valuation)is a functionγ : V → M
from the set of propositional variablesV toM which extends in the canonical way to a
function from the whole set of formulas toM . The satisfaction relation then is defined
as(M, γ) � ϕ :⇔ γ(ϕ) ∈ TRUE. More expressive non-Fregean logics which contain
also propositional quantifies and further ingredients are studied, e.g., in [21, 2, 16].

We define a proposition as the denotationγ(ϕ) ∈ M of a formulaϕ in a model
M under a given assignmentγ.1 The proposition denoted byϕ can be identified with
the equivalence class{ψ | (M, γ) � ϕ ≡ ψ} which is the set of all formulas having
the same denotation asϕ. We call this set theextensionof ϕ. An extensional model
contains only two propositions: the True and the False. In such a model, a proposition is
given by its truth-value. If there were only extensional models, then the Fregean Axiom
would be valid andSCI would be equivalent with classical propositional logic. The
intensionof a formulaϕ is expressed by its syntactical form.2 In a non-Fregean logic
with propositional quantifiers we call a modelintensionalif extension and intension of
sentences (formulas with no free variables) can be put in one-to-one correspondence,
i.e., if for all sentencesϕ, ψ, (M, γ) � ϕ ≡ ψ iff ϕ =α ψ. The existence of such a
model (see [16]) ensures thatϕ ≡ ψ is logically valid iff ϕ =α ψ. That is, besides
alpha-congruence, no further identifications between sentences are forced by the logic.
Therein lies the expressive power of non-Fregean logic. Intensions of sentences are no
longer indiscernible and semantic properties can be modeled easily (see, e.g., [14, 15,
16]). This feature, however, can be lost if a specific non-Fregean theory involves too
strong principles.

Early approaches to modality in logics with an identity connective have been de-
veloped by M. J. Cresswell [6, 7] and R. Suszko [21], see also theHistorical Noteat
the end of [21]. Suszko elaborates two particularSCI -theories which correspond to
the modal logicsS4 andS5, respectively. Ishii [12, 13] is able to generalize these
results by modifying the axioms of propositional identity of SCI . His systemPCI

corresponds exactly to modal logicK. Moreover, he shows thatPCI can be extended
to systems which correspond to many other normal modal logics, includingS4 andS5.
All these proposals have in common that the modal operator isintroduced or defined
by means of the identity connective:�ϕ := ϕ ≡ ⊤. Consequently, there is only one
necessary proposition, namely the proposition denoted by⊤. We call this principle the
Collapse Axiom. Moreover, propositional identityϕ ≡ ψ is given by strict equivalence
�(ϕ↔ ψ) and models are forced to be Boolean algebras (with some additional struc-
ture). In particular, logically equivalent formulas, suchasϕ → ψ and¬ϕ ∨ ψ, are
indiscernible although they express different intensions. We argue that these algebraic

1Suszko refers to the elements of a non-Fregean model assituations. His aim was to develop asituational
semantics[23] as an attempt to formalize aspects of Wittgenstein’sTractatus[20].

2In a non-Fregean logic with propositional quantifiers, alpha-congruent formulas, i.e., formulas that differ
at most on their bound variables, express the same intensionand should denote the same proposition. We
writeϕ =α ψ if ϕ andψ are alpha-congruent.

2



constraints are (at least in case of Lewis systemsS3 –S5 ) unnecessarily strong and re-
strict the potential of intensional modeling in non-Fregean logic. For instance, in [15]
it is shown that if a non-Fregean model has many necessary (=known) propositions,
then common knowledge in a group can be modeled in a natural way. The approaches
mentioned above adopt the limitations which are already inherent in possible worlds
semantics. In fact, if at a given normal worldw (in some Kripke frame), the proposi-
tion denoted by formulaϕ is defined as the set of those worlds which are accessible
fromw and whereϕ is true, thenϕ andψ denote the same proposition iff�(ϕ ↔ ψ)
is true atw. Hence, propositional identityϕ ≡ ψ is given by strict equivalence. Sup-
pose now�ϕ and�ψ are true atw. Sinceϕ → (ψ → ϕ) is a theorem, Necessitation
yields�(ϕ → (ψ → ϕ)). Applying theK-axiom and Modus Ponens, we derive
�(ψ → ϕ). Similarly, we obtain�(ϕ → ψ). Thus,ϕ andψ are strictly equivalent
and denote the same proposition. Thus, the Collapse Axiom(�ϕ ∧ �ψ) → (ϕ ≡ ψ)
is valid. One goal of this paper is to capture some Lewis modalsystems by a non-
Fregean semantics without the above described limitations. In particular, the Collapse
Axiom should be invalid. Consequently, necessity and propositional identity must be
axiomatized independently from each other. A further goal of this paper is to find an
appropriate axiomatization of propositional quantifiers (i.e., quantifiers that range over
the model-theoretic universe of a model) which is independent from specific properties
of the possible worlds framework. In a first approach, we givean axiomatization which
essentially corresponds to that presented by K. Fine [8] andwhich is sound and com-
plete w.r.t. our first kind of denotational semantics. That axiomatization contains the
Barcan formula, valid in the possible worlds semantics considered in [8, 5], as well as
a related extensional principle. Both principles can be excluded from the original ax-
iomatization if we work with a weaker, simpler and in some sense “more intensional”
denotational semantics which we consider in the last section of the paper.

2 The deductive system

The setFm(C) of formulas is inductively defined over a setV = {x0, x1, x2, ...}
of propositional variables, a setC of propositional constants such that⊤,⊥ ∈ C,
logical connectives¬,→,∨,∧,⊥,⊤, the identity connective≡, the modal operator�
for necessity and a universal propositional quantifier∀. ϕ ↔ ψ is an abbreviation for
(ϕ → ψ) ∧ (ψ → ϕ). By var(ϕ), fvar(ϕ), con(ϕ) we denote the set of variables,
free variables, constants occurring in formulaϕ, respectively. These notations also
apply (in the obvious way) to sets of formulasΦ, e.g.,fvar(Φ) etc. A substitution is
a functionσ : V ∪ C → Fm(C). If u1, ..., un ∈ V ∪ C, ψ1, ..., ψn ∈ Fm(C) and
σ is a substitution, thenσ[u1 := ψ1, ..., un := ψn] is the substitution which mapsui
to ψi (i = 1, ..., n) and coincides withσ on (V ∪ C) r {u1, ..., un}. The identity
substitutionu 7→ u is denoted byε. Instead ofε[u1 := ψ1, ..., un := ψn] we also write
[u1 := ψ1, ..., un := ψn]. If we writeσ : V → Fm(C), then we tacitly assume thatσ
is a substitution satisfyingσ(c) = c for all c ∈ C. A substitutionσ extends to a function
fromFm(C) toFm(C) which we denote again byσ. We apply postfix notation:ϕ[σ].
The extension is defined canonically in most of the cases:(ϕ ∨ ψ)[σ] := ϕ[σ] ∨ ψ[σ],
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etc. Only the quantifier case needs a specification:

(∀xϕ)[σ] = ∀y(ϕ[σ[x := y]]),

wherey is the least variable ofV greater than all elements of
⋃

{fvar(σ(u)) | u ∈
fvar(∀xϕ) ∪ con(∀xϕ)}. We say that the variabley is forced by the substitutionσ
w.r.t. ∀xϕ.

In analogy to the Lambda Calculus, two formulasϕ, ψ are said to be alpha-congruent,
notation:ϕ =α ψ, if ϕ andψ differ at most on their bound variables. For instance,
∀x((x ≡ ⊥) ∨ (x ≡ ⊤)) =α ∀y((y ≡ ⊥) ∨ (y ≡ ⊤)). Alpha-congruent formulas
express the same intension and should denote the same proposition in every model.
This is ensured by the model-theoretic semantics.

We assume that∀xϕ ∈ Fm(C) implies x ∈ fvar(ϕ). Strings such as∀xc or
∀y(x ≡ x) are not formulas. This can be guaranteed by a suitable definition ofFm(C),
see [16]. Also for a proof of the following fact we refer the reader to [16]. Recall that
ε is the identity substitution.ε applied to a formula may result in a renaming of bound
variables.

Lemma 2.1 ([16]) Let ϕ, ψ ∈ Fm(C). Thenϕ[ε] =α ϕ. Moreover,ϕ =α ψ ⇔
ϕ[ε] = ψ[ε].

The quantifier rankqr(ϕ) of a formulaϕ is recursively defined in the follow-
ing way: qr(u) = 0 for u ∈ V ∪ C, qr(¬ψ) = qr(�ψ) = qr(ψ), qr(ψ@χ) =
max{qr(ψ), qr(χ)}, where@ ∈ {∨,∧,→,≡}, qr(∀xψ) = 1 + qr(ψ).

A sentence is a formula with no free variables.Fmm ⊆ Fm(C) is the set of for-
mulas of basic modal logic, i.e., the set of those formulas which are quantifier-free,
do not contain the identity connective and do not contain constants distinct from⊥,⊤.
Fmp is the set of those formulas ofFmm which do not contain the modal operator�,
i.e.,Fmp is the set of formulas of basic propositional logic. By a substitution-instance
of ϕ ∈ Fmp we mean a formula which results from uniformly replacing some vari-
ables inϕ by formulas ofFm(C).

All formulas of the following form are axioms:

(i) propositional tautologies and their substitution-instances

(ii) �ϕ→ ϕ

(iii) �(ϕ→ ψ) → (�ϕ→ �ψ)

(iv) �(ϕ→ ψ) → �(�ϕ→ �ψ)

(v) ϕ ≡ ψ, wheneverϕ =α ψ

(vi) (ϕ ≡ ψ) → (ϕ→ ψ)

(vii) (ψ ≡ ψ′) → (ϕ[x := ψ] ≡ ϕ[x := ψ′]), if x ∈ fvar(ϕ)
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(viii) ∀x(ϕ ≡ ψ) → (∀xϕ ≡ ∀xψ)

(ix) ∀xϕ→ ϕ[x := ψ]

(x) ∀x(ϕ → ψ) → (∀xϕ→ ∀xψ)

(xi) ∀x(ϕ → ψ) → (ϕ→ ∀xψ), if x /∈ fvar(ϕ)

(xii) �∀xϕ→ ∀x�ϕ

(xiii) ∀x�ϕ→ �∀xϕ (Barcan formula)

The setAX of all axioms is the smallest set that contains all formulas (i)–(xiii)
above and is closed under the following condition (*): Ifϕ is an axiom andx ∈
fvar(ϕ), then∀xϕ is an axiom.

The rules of inference are:

• Modus Ponens MP: “Fromϕ andϕ→ ψ inferψ.”

• Axiom Necessitation AN: “Ifϕ is an axiom, then infer�ϕ.”

The resulting deductive system is an amalgam of basic non-Fregean logicSCI
(propositional logic + the axioms of propositional identity (v)–(vii)) and Lewis modal
logic S3 (propositional logic + axioms (ii)–(iv) + rule AN) togetherwith axioms for
propositional quantification (axioms (ix)–(xiii)) and bridge axiom (viii).3 We refer to
that system asS3∀≡. S4∀≡ is the system that results from adding the axiom scheme
�ϕ → ��ϕ. S5∀≡ is obtained by adding the scheme¬�ϕ → �¬�ϕ to S4∀≡.
Since the Necessitation Rule is not part of the deductive system, we are able to de-
fine the notion ofderivationin the same natural way as in (non-modal) propositional
logic: a derivation ofϕ ∈ Fm(C) fromΦ ⊆ Fm(C) is a finite sequence of formulas
ϕ1, ..., ϕn = ϕ such that for eachi = 1, ..., n: ϕi ∈ Φ or ϕi is an axiom orϕi is ob-
tained by rule AN orϕi is obtained by rule MP applied to formulasϕj ,ϕk = ϕj → ϕi,
wherej, k < i.

Usually, the Barcan formula (axiom (xiii)) refers to a certain semantic property of
first-order modal logics and in that context it has been the object of some philosophi-
cal debates. The Barcan formula is also considered as an axiom in the approaches to
propositional quantifiers presented by Fine [8] and Bull [5]. In fact, the Barcan for-
mula as well as its converse (axiom (xii)) are valid in the possible worlds semantics.
In our approach, the Barcan formula corresponds to a semantic property which is used
to establish soundness of Axiom Necessitation (see the firstequivalence of (3.1) after
Definition 3.4 below). The converse of the Barcan formula ensures that a weak Gener-
alization Rule holds, see Lemma 2.4 below.4 Note that if propositional identityϕ ≡ ψ
is given by strict equivalence�(ϕ↔ ψ), then the bridge axiom (viii) is derivable from
the Barcan formula. In the proof of the Completeness Theorem, axiom (viii) ensures
that a certain higher-order function on the universe of the constructed model is well-
defined. In the simpler and weaker semantics defined in the last section, models do not

3We follow a Lemmon-style axiomatization ofS3, see, e.g., [11], pp. 199. Note that stating axiom (viii)
implies that variablex occurs free in bothϕ andψ.

4In contrast to [8], our system does not contain the full Generalization Rule.
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contain that higher-order function and the Barcan formula as well as axiom (viii) can
be avoided.

Definition 2.2 If Φ ∪ {ϕ} ⊆ Fm(C), then we writeΦ ⊢m ϕ in order to express that
there is a derivation ofϕ fromΦ in systemSm∀

≡, wherem ∈ {3, 4, 5}.

Lemma 2.3 (Deduction Theorem)If Φ ∪ {ϕ} ⊢m ψ, thenΦ ⊢m ϕ → ψ, for m ∈
{3, 4, 5}.

Proof. It is enough to considerm = 3. The assertion can be shown by induction
on the lengthn of a derivation ofψ from Φ ∪ {ϕ}. If n = 1, thenψ is an axiom or
ψ ∈ Φ ∪ {ϕ} or ψ is obtained by the rule of Axiom Necessitation AN. In the first
two cases, the assertion follows from standard arguments using classical propositional
logic. Supposeψ = �ψ′ for some axiomψ′. ThenΦ ⊢3 ψ

′. By AN, Φ ⊢3 �ψ′. Since
�ψ′ → (ϕ → �ψ′) is an axiom (a substitution-instance of a propositional tautology),
MP yields the assertion. Now supposen > 1 and the claim is true for all derivations
of length≤ n− 1. We may assume that the last step in the derivation is MP (all other
cases follow in the same way as before). The assertion then follows from axioms of
propositional logic. Q.E.D.

Lemma 2.4 (Generalization) If Φ ⊢m ϕ andx ∈ fvar(ϕ) r fvar(Φ), thenΦ ⊢m

∀xϕ, form ∈ {3, 4, 5}.

Proof. As before, we considerm = 3 and show the assertion by induction on the
lengthn of a derivation. Ifn = 1 and the conditions of the Lemma hold, thenϕ is an
axiom or it is obtained by AN (note thatϕ ∈ Φ is impossible). In the first case,∀xϕ
is an axiom and thereforeΦ ⊢3 ∀xϕ. In the second case,ϕ = �ϕ′ for some axiom
ϕ′. Then∀xϕ′ is an axiom, and by AN we obtainΦ ⊢3 �∀xϕ′. Axiom (xii) and MP
yield the assertion. Now we supposen > 1 and the assertion holds for all derivations
of length≤ n − 1. We may assume that the last step of the derivation is MP. There
are formulasψ andψ → ϕ derived in less steps. Ifx ∈ fvar(ψ), then by induction
hypothesis:Φ ⊢3 ∀xψ andΦ ⊢3 ∀x(ψ → ϕ). The assertion then follows from axiom
(x) and MP. Now supposex /∈ fvar(ψ). Sincex ∈ fvar(ϕ), the induction hypothesis
yieldsΦ ⊢3 ∀x(ψ → ϕ). By axiom (xi) and MP,Φ ⊢3 ψ → ∀xϕ. MP yields the
assertion. Q.E.D.

Lemma 2.5 (Necessitation)In S4∀≡ andS5∀≡, the Necessitation Principle holds. That
is, for anyϕ ∈ Fm(C), if ⊢m ϕ, then⊢m �ϕ, form ∈ {4, 5}.

Proof. We fix m = 4 and show the assertion by induction on the lengthn of a
derivation ofϕ from the empty set. Ifn = 1, thenϕ is an axiom orϕ is derived by
the rule AN. In the former case, AN yields⊢4 �ϕ. In the latter case, there is an axiom
ψ such thatϕ = �ψ. Then the axiom�ψ → ��ψ and the rule of MP yield⊢4 �ϕ.
Now suppose there is a derivation ofϕ of lengthn > 1. We may assume that the
last step is MP. There are derivations of formulasψ andψ → ϕ of length less than
n, respectively. By induction hypothesis,�ψ and�(ψ → ϕ) are derivable from the
empty set. Axiom (iii) and MP yield⊢4 �ϕ. Q.E.D.
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Lemma 2.6 For anyϕ, ψ ∈ Fm(C), ⊢m (ϕ ≡ ψ) → �(ϕ ≡ ψ), form ∈ {3, 4, 5}.

Proof. It suffices to considerm = 3. Then
⊢3 (ϕ ≡ ψ) → ((ϕ ≡ x)[x := ϕ] ≡ (ϕ ≡ x)[x := ψ]), by axiom (vii), where
x /∈ fvar(ϕ)
⊢3 ((ϕ ≡ ϕ) ≡ (ϕ ≡ ψ)) → (�x[x := (ϕ ≡ ϕ)] ≡ �x[x := (ϕ ≡ ψ)]), again by
axiom (vii)
⊢3 (ϕ ≡ ψ) → (�(ϕ ≡ ϕ) ≡ �(ϕ ≡ ψ)), by transitivity of implication in proposi-
tional logic
⊢3 (ϕ ≡ ψ) → (�(ϕ ≡ ϕ) → �(ϕ ≡ ψ)), by axiom (ii) and transitivity of implica-
tion
⊢3 (ϕ ≡ ψ) → �(ϕ ≡ ψ), since�(ϕ ≡ ϕ) is a theorem (apply AN to axiom (v))
Q.E.D.

3 Denotational semantics

Recall that a preorder is a binary relation which is reflexiveand transitive (but not
necessarily anti-symmetric). There are several ways to introduce Boolean prealgebras
(see, e.g., [9, 17]). We propose the following definition.

Definition 3.1 Let M = (M, f⊥, f⊤, f¬, f∨, f∧, f→,≤M) be a structure with uni-
verseM , operationsf⊥, f⊤, f¬, f∨, f∧, f→ onM of type0, 0, 1, 2, 2, 2, respectively,
and a preorder≤M onM . We callM a Boolean prealgebra (or a Boolean prelattice)
if the equivalence relation≈M defined by

a ≈M b :⇔ a ≤M b andb ≤M a

is a congruence relation onM and the quotient algebra ofM modulo≈M is a
Boolean algebra with lattice order≤′ given bya ≤′ b ⇔ a ≤M b, and induced
operationsf⊥, f⊤, f¬, f∨, f∧, f→ for bottom and top element, complement, supremum
(join), infimum (meet) and implication, respectively (a, b denote the congruence classes
of a, b ∈M modulo≈M).

A filter F (with respect to≤M) in a Boolean prealgebraM is a non-empty subset
F ⊆M such that for alla, b ∈M the usual filter axioms hold:

• if a ∈ F anda ≤M b, thenb ∈ F

• if a, b ∈ F , thenf∧(a, b) ∈ F

• f⊥ /∈ F

An ultrafilter (or prime filter) w.r.t.≤M is a maximal filter w.r.t.≤M.5

Notice that any filter of a Boolean prealgebra contains the elementf⊤ because in
the quotient Boolean algebra the top elementf⊤ is contained in every lattice filter.

5Prime filters, in its general form, are defined in a different way. Recall, however, that in a Boolean lattice
every prime filter is a maximal filter, i.e., both concepts coincide. In [3], the “truth-set” of aSCI -model is
defined in terms of prime filters.
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Lemma 3.2 LetM be a Boolean prealgebra with preorder≤M and letF be a filter
w.r.t. ≤M. The following conditions are equivalent.

(i) F is the smallest filter, i.e., the intersection of all (ultra)filters w.r.t.≤M.

(ii) F = {a ∈M | a ≈M f⊤}.

(iii) a ≤M b⇔ f→(a, b) ∈ F , for all a, b ∈M .

Proof. (iii)→(ii): Let a ∈ F . Sincef→(a, f→(f⊤, a)) represents a propositional
tautology, it equals the top element of the quotient Booleanalgebra. Hence, it is an
element of any filter of the Boolean prealgebra, in particular of F . By (iii), f⊤ ≤M a.
Alsoa ≤M f⊤ becausef⊤ is the top element of the quotient algebra. Now (ii) follows.
(ii)→(i): Let G be any filter. Ifa ∈ F , thena ≈M f⊤ ∈ G. SinceG is a filter,a ∈ G.
It follows thatF ⊆ G. Thus,F is the smallest filter.
(i)→(iii): a ≤M b iff a ≤′ b in the quotient algebra with lattice order≤′ iff f→(a, b) =
f⊤ (as in any Boolean algebra). By (i),F is the smallest filter of the Boolean prealge-
bra. One easily shows that the canonical homomorphisma 7→ amapsF to the smallest
lattice filter of the quotient algebra, i.e., tof⊤. Hence, the last condition is equivalent
with f→(a, b) ∈ F . Q.E.D.

If M is a Boolean prealgebra with preorder≤M, then it is possible thatM is al-
ready a Boolean algebra and≤M is not the lattice order≤. In this case,≤ refines≤M.
For, a ≤ b ⇔ f→(a, b) = f⊤ ⇒ a ≤M b. Thus, the smallest filterF w.r.t. ≤M is
a lattice filter of the Boolean algebraM, i.e., a filter w.r.t.≤. The quotient algebra of
M modulo≈M (i.e., modulo the lattice filterF ) then is a further Boolean algebra.

Boolean prealgebras are considered as models in research onHyperintensionswhere
logical modeling is investigated mainly from the viewpointof natural language seman-
tics (see, e.g., [9, 17]). It is argued that possible worlds semantics does not provide
enough intensions for the modeling of natural language meanings. Solutions are dis-
cussed where propositions are viewed as elements of Booleanprealgebras. However,
a connection toNon-Fregean Logic, found in the next theorem, seems to have been
unnoticed so far. Boolean prealgebras and models ofSCI are essentially the same
objects:

Theorem 3.3 The following assertions (a)–(c) hold true.
(a) If M = (M, f⊥, f⊤, f¬, f∨, f∧, f→,≤M) is a Boolean prealgebra, thenM′ =
(M,TRUE , f⊥, f⊤, f¬, f∨, f∧, f→, f≡) is a model ofSCI , whereTRUE is an ul-
trafilter w.r.t. the preorder≤M and f≡ is any binary function such thatf≡(a, b) ∈
TRUE ⇔ a = b, for all a, b ∈M .
(b) SupposeM = (M,TRUE , f⊥, f⊤, f¬, f∨, f∧, f→, f≡) is a model ofSCI . LetF
be the intersection of all setsT ⊆M such that

(M,T, f⊥, f⊤, f¬, f∨, f∧, f→, f≡)

is a model ofSCI . Definea ≤M′ b :⇔ f→(a, b) ∈ F . Then≤M′ is a preorder onM
andM′ := (M, f⊥, f⊤, f¬, f∨, f∧, f→,≤M′) is a Boolean prealgebra such that the
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setsT are ultrafilters andF is the smallest filter w.r.t.≤M′ .
(c) The transformations described in (a) and (b) are in the following sense inverse to
each other. IfM is a Boolean prealgebra, thenM′′ = M; and if M is aSCI -model,
then one can find an ultrafilter ofM′ and a functionf≡ such thatM′′ = M.

Proof. The proof of (a) is straightforward. We prove (b). One easilychecks that≤M′

is a preorder,F is a filter and all setsT such as given in the theorem are ultrafilters w.r.t.
≤M′ . From the definition ofF it follows thatF = {a ∈M | a ≈M′ f⊤} and≈M′ is
a congruence relation. Then for the quotient algebra we geta ≤′ b iff f→(a, b) = f⊤,
where≤′ is the partial order as given in the definition andf⊤ = F . It follows that the
quotient algebra is a Boolean algebra with lattice order≤′.
Finally, we show (c). LetM be a Boolean prealgebra. Then we obtain theSCI -model
M′ according to (a). FromM′ we obtain the Boolean prealgebraM′′ in accordance
with the construction in (b). By Lemma 3.2, the preorder ofM is exactly the preorder
defined forM′′. Also the universes and operations are the same. Thus,M = M′′.
The second part of the assertion follows readily from the construction. Q.E.D.

We observe that for a given model ofSCI one may find a Boolean prealgebra in
a simpler way. SupposeM = (M,TRUE , f⊥, f⊤, f¬, f∨, f∧, f→, f≡) is a model
of SCI . Definea ≤M′ b :⇔ f→(a, b) ∈ TRUE . Then,≤M′ is a preorder and
M′ := (M, f⊥, f⊤, f¬, f∨, f∧, f→,≤M′) is a Boolean prealgebra. In fact, the quo-
tient algebra modulo≈M′ is the two-element Boolean algebra.

Definition 3.4 A propositional domain for the languageFm(C) is a structure

M = (M,TRUE ,NEC , f⊥, f⊤, f�, f¬, f∨, f∧, f→, f≡, f∀, Γ )

whereM is a non-empty set whose elements are called propositions,TRUE ⊆ M is
the set of true propositions,NEC ⊆ M is the set of necessary propositions,f⊥, f⊤,
f�, f¬, f∨, f∧, f→, f≡ are operations onM of type0, 0, 1, 1, 2, 2, 2, 2, respectively,
f∀ : M

M → M is a higher-order function, andΓ : C → M is the so-called Gamma-
function satisfyingΓ (⊥) = f⊥ andΓ (⊤) = f⊤. An assignment forM is a function
γ : V → M . If γ ∈ MV is an assignment,x ∈ V and a ∈ M , thenγax is the
assignment which mapsx to a and maps variablesy 6= x to γ(y). An assignmentγ
extends in the following way to a unique functionγ : Fm(C) → M . γ(c) = Γ (c) for
c ∈ C, γ(�ϕ) = f�(γ(ϕ)), γ(¬ϕ) = f¬(γ(ϕ)), γ(ϕ@ψ) = f@(γ(ϕ), γ(ψ)), for
@ ∈ {≡,∨,∧,→}, and finallyγ(∀xϕ) = f∀(λz.γ

z
x(ϕ)), wherez is any new variable

andλz.γzx(ϕ) denotes the functionm 7→ γmx (ϕ) from M to M .6 Givenϕ ∈ Fm,
x ∈ fvar(ϕ), γ ∈ MV , a functiont : M → M is said to be(ϕ, x, γ)-definable if
t(m) = γmx (ϕ), for all m ∈ M . A functiont : M → M is said to be definable ift is
(ϕ, x, γ)-definable for someϕ ∈ Fm(C), x ∈ fvar(ϕ) andγ ∈MV . A propositional
domainM is aS3∀≡-model if the following conditions hold:

6Very similar semantics for quantifiers are given in [10, 2]. Note that we cannot simply interpret the
universal quantifier as an infinite meet operation or as the infimum of an arbitrary (infinite) subset. This
would require a complete Boolean (pre)algebra – a conditionwhich is apparently too strong to establish a
Completeness Theorem (see the completeness proof below). Moreover, requiring the existence of countably
complete (non-principal) ultrafilters would involve questions concerning the set-theoretical foundations.
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(i) If NEC 6= ∅, then the relation≤M onM defined by

a ≤M b :⇔ f→(a, b) ∈ NEC

is a preorder and(M, f⊥, f⊤, f¬, f∨, f∧, f→,≤M) is a Boolean prelattice.

(ii) The following truth conditions hold for alla, b ∈M (even ifNEC = ∅):

(a) f⊥ ∈M r TRUE , f⊤ ∈ TRUE

(b) f→(a, b) ∈ TRUE ⇔ a /∈ TRUE or b ∈ TRUE

(c) f¬(a) ∈ TRUE ⇔ a /∈ TRUE

(d) f∧(a, b) ∈ TRUE ⇔ a ∈ TRUE andb ∈ TRUE

(e) f∨(a, b) ∈ TRUE ⇔ a ∈ TRUE or b ∈ TRUE

(f) f�(a) ∈ TRUE ⇔ a ∈ NEC

(g) f≡(a, b) ∈ TRUE ⇔ a = b

(h) f∀(t) ∈ TRUE whenevert : M → M is a definable function with image
im(t) ⊆ TRUE 7

(iii) If NEC 6= ∅, thenNEC ⊆ TRUE is a filter onM , i.e., for alla, b ∈M :

(a) if a ∈ NEC anda ≤M b, thenb ∈ NEC

(b) if a, b ∈ NEC , thenf∧(a, b) ∈ NEC

(iv) If NEC 6= ∅, then the following hold for alla, b ∈M :

(a) f⊤ ≤M f≡(a, a)

(b) f≡(a, b) ≤M f→(a, b)

(c) f≡(a, b) ≤M f≡(t(a), t(b)), for any definable functiont : M →M

(d) f�(a) ≤M a

(e) f�(f→(a, b)) ≤M f→(f�(a), f�(b))
8

(f) f�(f→(a, b)) ≤M f�(f→(f�(a), f�(b)))

(g) f∀(t) ≤M f≡(f∀(t1), f∀(t2)), whenevert1 is (ϕ, x, γ)-definable,t2 is
(ψ, x, γ)-definable, andt is the(ϕ ≡ ψ, x, γ)-definable functiont(a) =
f≡(t1(a), t2(a))

(h) f∀(t) ≤M t(a), for any definable functiont : M →M

(i) f∀(t) ≤M f→(f∀(t1), f∀(t2)), whenevert1 is (ϕ, x, γ)-definable,t2 is
(ψ, x, γ)-definable, andt is the(ϕ → ψ, x, γ)-definable functiont(a) =
f→(t1(a), t2(a))

7The implicationf∀(t) ∈ TRUE ⇒ im(t) ⊆ TRUE , for any definablet, will follow from (iv)(h)
and the fact thatTRUE is a filter onM .

8This condition follows from (f) and (d).
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(j) f∀(t) ≤M f→(a, f∀(t
′)), whenevert′ is (ψ, x, γ)-definable, andt is the

(ϕ→ ψ, x, γ)-definable functiont(a) = f→(b, t′(a)), whereb is the deno-
tation ofϕ andfvar(ϕ) = ∅9

(k) f�(f∀(t)) ≈M f∀(t
′), for every definable functiont : M → M and func-

tion t′ : M →M with t′(a) = f�(t(a)).

(l) f∀(t) ∈ NEC whenevert : M → M is a definable function with image
im(t) ⊆ NEC10

A S3∀≡-model is called normal ifNEC 6= ∅, otherwise the model is called non-
normal. A normalS3∀≡-model is aS4∀≡-model iff�(a) ≤M f�(f�(a)) for every
a ∈ M . A S4∀≡-model is aS5∀≡-model iff¬(f�(a)) ≤M f�(f¬(f�(a))) for every
a ∈M .

Note that ifNEC 6= ∅, thenTRUE is an ultrafilter. In order to see this, suppose
a ∈ TRUE anda ≤M b. The latter condition impliesf→(a, b) ∈ NEC ⊆ TRUE ,
by (i). Then by condition (ii)(b),b ∈ TRUE . By (ii)(a), f⊥ /∈ TRUE . Together with
(ii)(b), this establishes the filter conditions. Using (ii)(c) one shows thatTRUE is a
maximal filter.

Observe that the higher-order functionf∀ : MM →M satisfies for every definable
functiont ∈MM the following conditions:

f∀(t) ∈ NEC ⇔ im(t) ⊆ NEC

f∀(t) ∈ TRUE ⇔ im(t) ⊆ TRUE
(3.1)

The first equivalence is given by the conditions (iv)(l)+(iv)(h). This equivalence is
important for the soundness of rule AN: ifϕ is an axiom andx ∈ fvar(ϕ), then∀xϕ
is an axiom and, by rule AN, should be mapped to a necessary proposition. The second
equivalence is given by the conditions (ii)(h)+(iv)(h) which ensure the following for
any assignmentγ ∈ MV : γ(∀xϕ) ∈ TRUE iff γmx (ϕ) ∈ TRUE for all m ∈ M .
SinceTRUE andNEC are filters,a ≈M b implies (a ∈ TRUE ⇔ b ∈ TRUE)
and (a ∈ NEC ⇔ b ∈ NEC ). One also verifies that≈M is, by condition (iv)(f),
a congruence relation with respect tof�. In fact, (iv)(f) establishes monotonicity of
f�: if a ≤M b, thenf�(a) ≤M f�(b). However,≈M is, in general, not a congruence
relation with respect to the operationf≡. That is,a ≈M b anda′ ≈M b′ does not imply
f≡(a, a

′) ≈M f≡(b, b
′). In fact, if a = a′ andb 6= b′, then we obtain propositions

f≡(a, a
′) ∈ TRUE andf≡(b, b′) /∈ TRUE with different truth values.

Note that for a non-normal model, the conditions (i), (iii) and (iv) are irrelevant.

Lemma 3.5 (Coincidence Lemma)Let M be a model,ϕ ∈ Fm(C), and let γ,
γ′ : V → M be assignments such thatγ(x) = γ′(x) for all x ∈ fvar(ϕ). Then
γ(ϕ) = γ′(ϕ).

The proof of the Coincidence Lemma is an induction onϕ, simultaneously for all
assignmentsγ, γ′. The lemma says in particular that the denotation of a sentence, i.e.,

9The denotation of a sentence is independent of any assignment.
10This condition follows from (iv)(k) together with (ii)(f) and (ii)(h).
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a formula with no free variables, is independent of any assignment and depends only
from the Gamma-function.

Observe that ifx, y are distinct variables, then(γax)
b
y = (γby)

a
x for any assignment

γ and elementsa, b of the model-theoretic universe. Ifx1, ..., xn are pairwise distinct
variables, then we writeγa1,...,a2

x1,...,xn
for the assignment(...((γa1

x1
)a2

x1
)...)an

xn
.

Definition 3.6 LetM be a model,γ : V →M an assignment andσ : V → Fm(C) a
substitution. Then we denote the assignmentx 7→ γ(σ(x)) byγσ.

The next result is an analogue of the Substitution Lemma of classical first-order
logic.

Lemma 3.7 (Substitution Lemma) Let M be a model,γ : V → M an assignment
andσ : V → Fm(C) a substitution. Then

γσ(ϕ) = γ(ϕ[σ]).

Proof. Induction onϕ simultaneously for all assignmentsγ and all substitutionsσ.
The basis casesϕ = x andϕ = c follow immediately from the definition. Most of
the cases of the induction step follow straightforwardly. We show the quantifier case.
Let u ∈ V such thatu /∈ fvar(σ(x)) for all x ∈ fvar(∀yψ). Then one easily checks
that (γσ)ay(v) = γauσ[y := u](v) for everyv ∈ fvar(ψ) and everya ∈ M . In the
following, letu be the variable forced by the substitutionσ w.r.t. ∀yψ. Then:

γσ(∀yψ) = f∀(λz.(γσ)
z
y(ψ))

= f∀(λz.((γ
z
uσ[y := u])(ψ)) by the Coincidence Lemma

= f∀(λz.(γ
z
u(ψ[σ[y := u]))) by the induction hypothesis

= γ(∀u(ψ[σ[y := u]))

= γ((∀yψ)[σ])

Q.E.D.

Notice that the Substitution Lemma implies equations of thefollowing form:

γγ(ϕ1),...,γ(ϕn)
x1,...,xn

(ϕ) = γ(ϕ[x1 := ϕ1, ..., xn := ϕn]).

Definition 3.8 LetM be aS3∀≡-model,γ : V → M an assignment andϕ ∈ Fm(C).
Satisfaction (truth) ofϕ in the interpretation(M, γ) is defined as follows:

(M, γ) � ϕ :⇔ γ(ϕ) ∈ TRUE .

This notion extends in the usual way to sets of formulas. ForΦ ⊆ Fm(C) define
Mod3(Φ) := {(M, γ) | M a normalS3∀≡-model,γ ∈ MV and (M, γ) � Φ}.
Logical consequence is defined as follows:

Φ 3 ϕ :⇔Mod3(Φ) ⊆Mod3({ϕ}).

As usual, we write3 ϕ instead of∅ 3 ϕ. Logical consequence for the logics
generated by the class of all normalS4∀≡-models, the class of all normalS5∀≡-models,
respectively, are defined analogously.
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Note that we have defined logical consequence only with respect to the class of
normal models. This is in accordance with the situation in modal logic S3 where
validity of a formulaϕ is defined as truth ofϕ in all normal worlds in all Kripke
models.

It is not hard to show that a normal model satisfies all axioms and rules of inference.
For instance, letϕ′ be a substitution-instance of the propositional tautologyϕ. In each
Boolean algebra,ϕ is mapped by any assignment to the top element. Then in our
Boolean prealgebras,ϕ is mapped by any assignment to an element of the smallest
filter containingf⊤ (if the model is normal, that filter isNEC ) and thus to an element
of TRUE . By the Substitution Lemma, the same holds forϕ′. Consider now the
axiom∀xϕ → ϕ[x := ψ]. Let M be a model and suppose(M, γ) � ∀xϕ for some
assignmentγ ∈ MV . Thenf∀(λz.γzx(ϕ)) ∈ TRUE . In particular,γax(ϕ) ∈ TRUE

wherea = γ(ψ). By the Substitution Lemma,γ(ϕ[x := ψ]) = γax(ϕ) ∈ TRUE .
Now we consider axiom (v),ϕ ≡ ψ wheneverϕ =α ψ. Supposeϕ =α ψ. By
Lemma 2.1, this is equivalent with the conditionϕ[ε] = ψ[ε], whereε is the identity
substitution. We haveγ = γε, for any assignmentγ : V → M . The Substitution
Lemma impliesγ(ϕ) = γε(ϕ) = γ(ϕ[ε]) = γ(ψ[ε]) = γε(ψ) = γ(ψ). Thus,γ(ϕ ≡
ψ) = f≡(γ(ϕ), γ(ψ)) ∈ TRUE and(M, γ) � ϕ ≡ ψ. Also the soundness of axiom
(vii) follows from the Substitution Lemma and the Coincidence Lemma (alternatively,
one may carry out an induction onϕ). We leave the remaining cases to the reader.

Theorem 3.9 (Soundness)Φ ⊢m ϕ⇒ Φ m ϕ, form ∈ {3, 4, 5}.

4 Completeness

Completeness theorems for logics with an identity connective and quantifiers that range
over a universe of denotations of formulas or sentences havebeen proved by several
authors ( see, e.g., [10, 2, 19, 24]). We apply the typical Henkin construction.

Lemma 4.1 If ϕ is an axiom,c a constant andy ∈ V r var(ϕ), thenϕ[c := y] is an
axiom.

Proof. The assertion is obviously true for most of the axioms. We show the assertion
for axiom scheme (ix):∀xϕ→ ϕ[x := ψ]. We have

(∀xϕ→ ϕ[x := ψ])[c := y]

= (∀xϕ)[c := y] → (ϕ[x := ψ])[c := y]

= ∀z(ϕ[c := y, x := z]) → ϕ[c := y][x := ψ′]

= ∀zϕ[c := y][x := z] → ϕ[c := y][x := z][z := ψ′]

= ∀zχ→ χ[z := ψ′],

wherez is the variable forced by[c := y] w.r.t. ∀xϕ → ϕ[x := ψ], ψ′ = ψ[c := y],
andχ = ϕ[c := y][x := z]. Note thaty 6= x sincey /∈ var(ϕ). The formula
∀zχ→ χ[z := ψ′] is clearly an axiom of scheme (ix). Q.E.D.
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If we want to make explicit that a derivation of a formulaϕ from a setΦ contains
only formulas with constants fromC, then we writeΦ ⊢C

3 ϕ. For a setΦ of formulas
let Φ[c := y] := {ψ[c := y] | ψ ∈ Φ}.

Lemma 4.2 (Elimination of constants) LetC be a set of constants and letc be any
constant, possiblyc /∈ C. PutC′ := C ∪ {c}. ThenΦ ⊢C′

3 ϕ impliesΦ[c := y] ⊢C
3

ϕ[c := y], for almost ally ∈ V .11

Proof. We show the assertion by induction on the lengthn of a derivation ofϕ from
Φ in languageFm(C′). If n = 1, thenϕ is an axiom orϕ ∈ Φ or ϕ is obtained
by rule AN. By Lemma 4.1, ifϕ is an axiom, thenϕ[c := y] is an axiom for any
y ∈ V r var(ϕ). It follows that in all three casesΦ[c := y] ⊢C

3 ϕ[c := y], if we
choosey ∈ V r var(ϕ). Now suppose the derivation has lengthn > 1. We may
assume that the last step of the derivation is Modus Ponens. Then there are formulas
ψ, ψ → ϕ derived in less steps. By induction hypothesis,Φ[c := u] ⊢C

3 ψ[c := u] for
almost allu ∈ V , andΦ[c := z] ⊢C

3 (ψ → ϕ)[c := z] for almost allz ∈ V . But then
holds both,Φ[c := y] ⊢C

3 ψ[c := y] andΦ[c := y] ⊢C
3 (ψ → ϕ)[c := y] for almost

all y ∈ V . The last formula equalsψ[c := y] → ϕ[c := y]. MP yields the assertion.
Q.E.D.

Corollary 4.3 SupposeΦ ∪ {ϕ} ⊆ Fm(C), x ∈ fvar(ϕ) andc is a constant such
thatc /∈ con(Φ ∪ {ϕ}). ThenΦ ⊢3 ϕ[x := c] impliesΦ ⊢3 ∀xϕ.

Proof. SupposeΦ ⊢3 ϕ[x := c] and the conditions of the Corollary are satisfied.
Since derivation is finitary, we may assume thatΦ is a finite set. Thenvar(Φ ∪ {ϕ})
is finite, too. By Lemma 4.2, we may find any ∈ V r var(Φ ∪ {ϕ}) such that
Φ[c := y] ⊢3 ϕ[x := c][c := y]. Hence,Φ ⊢3 ϕ[x := y] (c does not occur in
Φ ∪ {ϕ}). Becausey does not occur (free) inΦ, we may apply Lemma 2.4 which
yieldsΦ ⊢3 ∀y(ϕ[x := y]). This formula is alpha-congruent with∀xϕ. Then the
axioms (v) and (vi) together with MP yieldΦ ⊢3 ∀xϕ. Q.E.D.

In our treatment of Henkin sets (Definitions 4.4 and 4.6, Lemma 4.7) we adopt
some ideas and notations from [18].

Definition 4.4 A setΦ ⊆ Fm(C) is called a Henkin set if

• Φ is maximally consistent

• Φ ⊢3 ∀xϕ⇔ Φ ⊢3 ϕ[x := c] for all c ∈ C

The next observation follows immediately from axioms (xii)and (xiii).

Lemma 4.5 LetΦ ⊆ Fm(C) be a Henkin set. Then:

Φ ⊢3 �∀xϕ⇔ Φ ⊢3 �ϕ[x := c] for all c ∈ C.

11“for almost ally ∈ V ” meansfor all but finitely many variables. That is, there are only finitely many
variablesy such that the property stated in the Lemma does not hold.
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Definition 4.6 To each pairϕ, x, whereϕ ∈ Fm(C) andx ∈ fvar(ϕ), we assign
exactly one new constantcϕ,x /∈ C and define

ϕx := ¬(¬∀xϕ → ¬ϕ[x := cϕ,x]).

Furthermore,Y (C) := {¬(ϕx) | ϕ ∈ Fm(C), x ∈ fvar(ϕ)}.

Note that¬(ϕx) can be written as∃x¬ϕ → ¬ϕ[x := cϕ,x]. In this sense,cϕ,x can
be seen as a witness for the truth of∃x¬ϕ.

Lemma 4.7 If Φ ⊆ Fm(C) is consistent, then so isΦ ∪ Y (C) ⊆ Fm(C′), where
C′ = C ∪ {cϕ,x | ϕ ∈ Fm(C), x ∈ V } according to Definition 4.6.

Proof. SupposeΦ ∪ Y (C) ⊆ Fm(C′) is inconsistent. There are formulas¬(ϕx0

0 ),
...,¬(ϕxn

n ) ∈ Y (C) such thatΦ ∪ {¬(ϕxi

i ) | i ≤ n} is inconsistent. We may assume
that n is minimal with this property. Letx := xn, ϕ := ϕn, c := cn,ϕ, Φ′ :=
Φ ∪ {¬(ϕxi

i ) | i < n}. ThenΦ′ is consistent andΦ′ ∪ {¬(ϕx)} is inconsistent. In
particular,Φ′ ∪ {¬(ϕx)} ⊢3 ⊥. By the Deduction Theorem,Φ′ ⊢3 ¬(ϕx) → ⊥.
Contra-position yieldsΦ′ ⊢3 ⊤ → ϕx. By MP,Φ′ ⊢3 ¬(¬∀xϕ → ¬ϕ[x := c]). This
yieldsΦ′ ⊢3 ¬∀xϕ andΦ′ ⊢3 ϕ[x := c]. By construction,c /∈ con(ϕ) ∪ con(Φ′).
We may apply Corollary 4.3 and obtainΦ′ ⊢3 ∀xϕ andΦ′ ⊢3 ¬∀xϕ. But thenΦ′ is
inconsistent, a contradiction. Hence,Φ ∪ Y (C) ⊆ Fm(C′) is consistent. Q.E.D.

Definition 4.8 LetΦ ⊆ Fm(C) be maximally consistent. Forϕ, ψ ∈ Fm(C) define
ϕ ≈Φ ψ :⇔ Φ ⊢3 ϕ ≡ ψ.

Lemma 4.9 LetΦ ⊆ Fm(C) be maximally consistent. Then≈Φ is an equivalence re-
lation onFm(C) containing alpha-congruence and satisfying the following: if ϕ1 ≈Φ

ψ1 andϕ2 ≈Φ ψ2, then¬ϕ1 ≈Φ ¬ψ1, �ϕ1 ≈Φ �ψ1, ϕ1@ϕ2 ≈Φ ψ1@ψ2, where
@ ∈ {∨,∧,→,≡}. That is,≈Φ is a congruence relation onFm(C) containing alpha-
congruence.

Proof. By axiom (v),≈Φ is reflexive and contains alpha-congruence. Supposeϕ ≈Φ

ψ and consider the formulax ≡ ϕ, wherex ∈ V r var(ϕ). Sinceϕ ≡ ϕ is an
axiom, the axiom(ϕ ≡ ψ) → ((x ≡ ϕ)[x := ϕ] ≡ (x ≡ ϕ)[x := ψ]) together
with MP yieldsψ ≈Φ ϕ. Thus, the relation is symmetric. Now letϕ ≈Φ ψ and
ψ ≈Φ χ. Let δ := (x ≡ χ), wherex ∈ V r var(χ). By axiom (vii) and MP,
δ[x := ϕ] ≈Φ δ[x := ψ]). By hypothesis,Φ ⊢3 δ[x := ψ]. Symmetry of≈Φ, axiom
(vi) and MP yieldΦ ⊢3 δ[x := ϕ]. That is,ϕ ≈Φ χ and≈Φ is transitive. Now suppose
ϕ1 ≈Φ ψ1 andϕ2 ≈Φ ψ2. Letx ∈ V rvar(ψ2) andy ∈ V rvar(ϕ1). By axiom (vii),
(ϕ1 ∧ ϕ2) = (ϕ1 ∧ y)[y := ϕ2] ≈Φ (ϕ1 ∧ y)[y := ψ2] = (ϕ1 ∧ ψ2) = (x ∧ ψ2)[x :=
ϕ1] ≈Φ (x ∧ ψ2)[x := ψ1] = ψ1 ∧ ψ2. The remaining cases follow in a similar way.
Q.E.D.

Propositional logic, axiom (vi) and symmetry of≈Φ imply the next result.

Lemma 4.10 LetΦ be maximally consistent andϕ, ψ ∈ Fm(C). Then:
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• ϕ ∈ Φ iff Φ ⊢3 ϕ.

• If ϕ ≈Φ ψ, thenϕ ∈ Φ ⇔ ψ ∈ Φ.

Theorem 4.11 Every Henkin set has a normal model.

Proof. Let Φ ⊆ Fm(C) be a Henkin set. Byϕ we denote the equivalence class of
ϕ ∈ Fm(C) modulo≈Φ.
Claim 1: For everyϕ ∈ Fm(C) there is ac ∈ C such thatc ≈Φ ϕ.
Proof of the Claim: If x ∈ V r var(ϕ), then obviouslyΦ ⊢3 (x ≡ ϕ)[x := ϕ].
Contra-position of axiom (ix) yields:Φ ⊢3 (x ≡ ϕ)[x := ϕ] → ¬∀x¬(x ≡ ϕ). By
MP: Φ ⊢3 ¬∀x¬(x ≡ ϕ). SinceΦ is consistent,Φ 03 ∀x¬(x ≡ ϕ). BecauseΦ
is a Henkin set,Φ 03 ¬(c ≡ ϕ) for somec ∈ C. Φ is maximally consistent, thus
Φ ⊢3 c ≡ ϕ. This proves Claim 1. Our modelM is given by the following:

M := {ϕ | ϕ ∈ Fm(C)}

TRUE := {ϕ | ϕ ∈ Φ}

NEC := {ϕ | �ϕ ∈ Φ}

f⊤ := ⊤, f⊥ := ⊥, f�(ϕ) := �ϕ, f¬(ϕ) := ¬ϕ

f→(ϕ, ψ) := ϕ→ ψ, f≡(ϕ, ψ) := ϕ ≡ ψ

f∨(ϕ, ψ) := ϕ ∨ ψ, f∧(ϕ, ψ) := ϕ ∧ ψ

Γ (c) := c

By the previous results, all these ingredients are well-defined. Furthermore, fort ∈
MM we define

f∀(t) :=

{

∀xϕ, if there is aϕ such thatt(c) = ϕ[x := c] for all c ∈ C

f⊤, if such a formulaϕ does not exist

Note that Claim 1 impliesM = {c | c ∈ C}. It remains to show thatf∀ is well-
defined. Lett ∈ MM and suppose there are two formulasϕ, ψ ∈ Fm(C) such that
ϕ[x := c] = t(c) = ψ[y := c] for all c ∈ C. Without lost of generality, we may as-
sume thatx /∈ var(ψ). Thenϕ[x := c] ≈Φ ψ[y := c] = (ψ[y := x])[x := c], for
all c ∈ C. SinceΦ is a Henkin set,Φ ⊢3 ∀x(ϕ ≡ (ψ[y := x])). By axiom (viii),
Φ ⊢3 ∀xϕ ≡ ∀x(ψ[y := x]). Note that∀x(ψ[y := x]) =α ∀yψ. By axiom (v) and
transitivity of ≈Φ we get∀xϕ ≈Φ ∀yψ, that is,∀xϕ = ∀yψ = f∀(t). Thus,f∀ is
well-defined. For each∀xϕ ∈ M , the functiont ∈ MM , given byt(c) = ϕ[x := c],
is definable in the sense of Definition 3.4. This follows from the proof of Claim 2
below. Now it is not difficult to verify thatM is a normalS3∀≡-model. In particular,
all truth conditions are satisfied. We only consider the conditions (ii)(g) and (iv)(a).
We haveϕ = ψ iff ϕ ≡ ψ ∈ Φ iff f≡(ϕ, ψ) = ϕ ≡ ψ ∈ TRUE . This shows con-
dition (ii)(g). Furthermore, ifϕ = ψ, thenϕ ≡ ψ ∈ Φ. By Lemma 2.6 and MP,
�(ϕ ≡ ψ) ∈ Φ. Hence,f≡(ϕ, ψ) = ϕ ≡ ψ ∈ NEC . Thus, condition (iv)(a) holds.
Now letβ : V → M be the assignment defined byx → x. We show that the interpre-
tation(M, β) is a model ofΦ.
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Claim 2: β(ϕ) = ϕ, for all ϕ ∈ Fm(C).
Proof of the Claim: Induction on the quantifier rankqr(ϕ) of ϕ. By induction on
the construction of quantifier-free formulas one easily shows that the assertion is true
for all formulas of quantifier rank0. Now suppose the assertion is true for all formu-
las of quantifier rankn. Let qr(ψ) = n andϕ = ∀xψ. Thenβ(ϕ) = β(∀xψ) =
f∀(λzβ

z
x(ψ)). Consider the functiont defined byt(c) := βc

x(ψ). Then t(z) =
λzβz

x(ψ). The Substitution Lemma and the induction hypothesis yield: t(c) = βc
x(ψ) =

β(ψ[x := c]) = ψ[x := c] for all c ∈ C (note thatqr(ψ[x := c]) < qr(∀xψ)). Hence,
β(∀xψ) = f∀(t) = ∀xψ. Hence,β(∀xψ) = f∀(t) = ∀xψ. So the Claim is true.
Consequently:

(M, β) � ϕ⇔ β(ϕ) = ϕ ∈ TRUE ⇔ ϕ ∈ Φ.

Q.E.D.

Theorem 4.12 Every consistent set has a normal model.

Proof. Let Φ ⊆ Fm(C) be consistent. We extendΦ to a Henkin setΦ∗ in an ex-
tended languageFm(C∗), C ⊆ C∗. Theorem 4.11 guarantees the existence of a
normal model ofΦ∗. Its reductw.r.t. the sublanguageFm(C) then will be the desired
model ofΦ. LetC0 := C, Φ0 := Φ. If Cn andΦn ⊆ Fm(Cn) are already defined,
then define

Cn+1 := Cn ∪ {cϕ,x | ϕ ∈ Fm(Cn), x ∈ fvar(ϕ)}

Φn+1 := Φn ∪ Y (Cn)

according to the notation of Definition 4.6. By Lemma 4.7,Φn+1 is consistent in
Fm(Cn+1). Finally, we putΦ+ :=

⋃

n<ω Φn. It follows that Φ+ ⊆ Fm(C∗),
whereC∗ =

⋃

n<ω Cn. Since derivation is finitary,Φ+ is consistent in the language
Fm(C∗). By a standard argument based on Zorn’s Lemma,Φ+ extends to a maximally
consistent setΦ∗ ⊆ Fm(C∗). If Φ∗ ⊢3 ∀xϕ, then by axiom (ix):Φ∗ ⊢3 ϕ[x := c]
for all c ∈ C∗. On the other hand, supposeΦ∗ ⊢3 ϕ[x := c] for all c ∈ C∗, where
x ∈ fvar(ϕ). Letn be minimal with the propertyϕ ∈ Fm(Cn). Thenϕ[x := cϕ,x] ∈
Fm(Cn+1) andcϕ,x ∈ Cn+1rCn. By construction,¬(ϕx) ∈ Y (Cn) ⊆ Φn+1 ⊆ Φ∗.
Thus,Φ∗ ⊢3 ¬(ϕx). Towards a contradiction supposeΦ∗ 03 ∀xϕ. SinceΦ∗ is max-
imally consistent,Φ∗ ⊢3 ¬∀xϕ. SinceΦ∗ ⊢3 ϕ[x := c] for all c ∈ C∗, we have in
particularΦ∗ ⊢3 ϕ[x := cϕ,x]. Thus,Φ∗ ⊢3 ¬∀xϕ ∧ ϕ[x := cϕ,x]. Equivalently,
Φ∗ ⊢3 ¬(¬∀xϕ → ¬ϕ[x := cϕ,x]). That is,Φ∗ ⊢3 ϕ

x. This is a contradiction to
Φ∗ ⊢3 ¬(ϕx) and the consistency ofΦ∗. Therefore,Φ∗ ⊢3 ∀xϕ. We have shown that
Φ∗ has the properties of a Henkin set. Let(M∗, β) be a normal model of the Henkin
setΦ∗ ⊆ Fm(C∗) and letΓ ∗ : C∗ → M be its Gamma-function. If we consider the
restrictionΓ : C → M of Γ ∗ to C ⊆ C∗, then we get a normal modelM w.r.t. the
sublanguageFm(C), the reduct ofM∗. Obviously,(M, β) � Φ. Q.E.D.

If Φ 03 ϕ, then using the Deduction Theorem (Lemma 2.3) one shows thatΦ ∪
{¬ϕ} is consistent. The existence of a normal model of that set impliesΦ 13 ϕ. The
Completeness Theorem follows.
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Theorem 4.13 (Completeness)For all Φ ∪ {ϕ} ⊆ Fm(C): Φ 3 ϕ⇔ Φ ⊢3 ϕ.

The result extends straightforwardly to Completeness Theorems for the systems
S4∀≡ andS5∀≡ w.r.t. the above defined semantics.

5 Propositional identity, strict equivalence and the Col-
lapse Theorem

Recall that by the Collapse Axiom we mean the scheme(�ϕ∧�ψ) → (ϕ ≡ ψ). This
logical property can be expressed in algebraic terms in the following way: “In every
normal model, the smallest filter is{f⊤}.”

Lemma 5.1 Propositional identity w.r.t. a given interpretation(M, γ) is a congruence
relation containing alpha-congruence onFm(C).12 Strict equivalence w.r.t. a given
interpretation is an equivalence relation onFm(C). Moreover, propositional identity
refines strict equivalence. That is,

3 (ϕ ≡ ψ) → (�(ϕ→ ψ) ∧�(ψ → ϕ)).

Proof. Given a model(M, γ), it follows easily from model-theoretic properties that
ϕ ≈i ψ :⇔ (M, γ) � ϕ ≡ ψ defines a congruence relation onFm(C) which
contains alpha-congruence. Similarly, the relationϕ ≈s ψ :⇔ (M, γ) � �(ϕ →
ψ) ∧ �(ψ → ϕ) defines an equivalence relation. Now suppose(M, γ) � ϕ ≡ ψ.
This impliesγ(ϕ) = γ(ψ). Since�(ϕ → ϕ) is valid, f�(f→(γ(ϕ), γ(ϕ))) =
f�(f→(γ(ϕ), γ(ψ))) ∈ TRUE. That is,(M, γ) � �(ϕ → ψ). Similarly, one shows
(M, γ) � �(ψ → ϕ). This shows the last assertion of the lemma. Q.E.D.

Note that strict equivalence is in general not acongruenceonFm(C). The reason
for this fact is the identity connective: see the remarks after Definition 3.4.

If the relations of strict equivalence and propositional identity coincide, then the
algebraic structure of models simplifies dramatically:

Theorem 5.2 (Collapse Theorem)Let M be a normal model and≤M its preorder.
The following are equivalent:

(i) M is a Boolean algebra and satisfies the Collapse Axiom.

(ii) M is a Boolean algebra withNEC = {f⊤}.

(iii) ≤M is a partial order.

(iv) Strict equivalence coincides with propositional identity, that is:
M � ∀x∀y((x ≡ y) ↔ (�(x→ y) ∧�(y → x))).

12By a congruence relation onFm(C) we mean an equivalence relation which is compatible with the
connectives¬,∨,∧,→,�,≡ (but not necessarily with the quantifier∀).
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Proof. (i) ⇒ (ii) is clear.
(ii) ⇒ (iii): Let ≤ be the lattice order. Thenf→(a, b) = f⊤ ⇔ a ≤ b, for all a, b ∈M ,
as in any Boolean algebra. But under the conditionNEC = {f⊤}, this is exactly the
definition of the preorder≤M in Definition 3.4.
(iii) ⇒ (iv): If (M, γ) � �(x → y) ∧ �(y → x), then γ(x) ≤M γ(y) and
γ(y) ≤M γ(x). Since≤M is a partial order,γ(x) = γ(y). Thus,(M, γ) � x ≡ y.
(iv) ⇒ (i): M is a Boolean prelattice with preorder≤M given by a ≤M b ⇔
f→(a, b) ∈ NEC . Supposea ≈M b, i.e. a ≤M b andb ≤M a. If we assigna, b to the
variablesx, y, respectively, then condition (iv) yieldsa = b. That is,≈M is the identity
onM and the quotient algebra ofM modulo≈M isM itself, which, by Definition 3.1,
must be a Boolean algebra. Moreover, by Lemma 3.2,NEC = {a ∈M | a ≈M f⊤}.
Since≈M is the identity, the Collapse Axiom follows. Q.E.D.

Note that if the normal modelM is a Boolean algebra, then its lattice order≤ is not
necessarily the preorder≤M. In other words, the setNEC , which is a filter w.r.t.≤M,
may strictly extend the (smallest) lattice filter{f⊤} of the Boolean algebra. Since the
lattice order≤ refines≤M,NEC is also a lattice filter. The lattice order coincides with
≤M if and only if the Boolean algebraM satisfies the Collapse Axiom. Similarly, the
condition of a modelM to satisfy the Collapse Axiom is not sufficient forM being a
Boolean algebra:≤M may be not anti-symmetric.

The models of the modalSCI -theories studied in [21] satisfy the properties (i)–(iv)
of the Collapse Theorem. Also the models of the non-Fregean logic developed by Ishi
[12, 13] are Boolean algebras and satisfy the Collapse Axiom(the identity connective
of that logic, however, satisfies in general not allSCI -axioms of propositional identity).

Theorem 5.3 We consider here the languageFmm of basic modal propositional logic.
If we introduce an identity connective defining

ϕ ≡ ψ := �(ϕ→ ψ) ∧�(ψ → ϕ),

then the axiom schemes of propositional identity (v)–(vii)ofAX are derivable inS3.13

That is, propositional identity is definable by strict equivalence inS3.

Proof. Suppose a connective≡ is defined in that way. We consider derivations in
modal logicS3. Since�(ϕ → ϕ) is derivable (by Axiom Necessitation), we get
ϕ ≡ ϕ, i.e. axiom (v’) of propositional identity. Axiom (vi) derives from axiom (ii).
In order to prove that axiom (vii) is derivable it suffices to show that the following are
theorems:

• (ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ)

• ((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ→ ϕ′) ≡ (ψ → ψ′))

• ((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ ∧ ϕ′) ≡ (ψ ∧ ψ′))

13In this quantifier-free context, we may replace axiom (v) by the stronger (v’):ϕ ≡ ϕ.
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• ((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ ∨ ϕ′) ≡ (ψ ∨ ψ′))

• ((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ ≡ ϕ′) ≡ (ψ ≡ ψ′))

• (ϕ ≡ ψ) → (�ϕ ≡ �ψ)

It is known that(�ϕ ∧ �ψ) ↔ �(ϕ ∧ ψ) is a theorem ofS3. Hence, strict
equivalence betweenϕ andψ can be expressed by�(ϕ ↔ ψ). By propositional logic
and rule AN we get�((ϕ ↔ ψ) → (¬ϕ ↔ ¬ψ)). Axiom (iii) and MP then yield
the first theorem above. Similarly, we get the second, third and fourth theorem. Let
us look at formula number 5. By propositional logic and AN:�(((ϕ ↔ ψ) ∧ (ϕ′ ↔
ψ′)) → ((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ′))). By axiom (iii) and MP:�((ϕ ↔ ψ) ∧ (ϕ′ ↔
ψ′)) → �((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ′)). By axiom (iv) and transitivity of implication:
�((ϕ ↔ ψ) ∧ (ϕ′ ↔ ψ′)) → �(�(ϕ ↔ ϕ′) ↔ �(ψ ↔ ψ′)). This yields the
fifth theorem. Finally, by axiom (iv) we have�(ϕ → ψ) → �(�ϕ → �ψ) and
�(ψ → ϕ) → �(�ψ → �ϕ). Hence,(�(ϕ → ψ) ∧ �(ψ → ϕ)) → (�(�ϕ →
�ψ) ∧�(�ψ → �ϕ)). From this one easily derives the last theorem. The scheme of
axiom (vii) now follows by induction on formulas. Q.E.D.

Corollary 5.4 S3 is the weakest Lewis modal system in which propositional identity is
definable by strict equivalence.

Proof. We saw that inS3 all axioms of propositional identity can be derived if one
defines propositional identity by strict equivalence. A particular axiom of propositional
identity is the following:(ϕ ≡ ψ) → (�ϕ ≡ �ψ), i.e.,(�(ϕ→ ψ) ∧�(ψ → ϕ)) →
(�(�ϕ → �ψ) ∧ �(�ψ → �ϕ)). This, however, is not a theorem of the weaker
Lewis systemS2 as one can show by constructing a Kripke model ofS2 (i.e., a Kripke
model with at least one normal world and reflexive accessibility relation) where that
formula is not true. Q.E.D.

6 Representation theorems

K. Fine [8] extends normal modal logics by axioms for propositional quantifiers and
studies several conditions which can be imposed upon the setof propositions. A natu-
ral condition, trivially satisfied in our denotational approach, is that propositions “are
closed under formulas”, i.e., each formula under any valuation denotes (“interprets”) a
proposition. In particular, propositions are closed underBoolean operations. We define
here aS3π-frame as a tripleF = (W,N,R, P ), whereW is a set of worlds,N ⊆ W
is a non-empty set of normal worlds,R ⊆W ×W is a reflexive and transitive accessi-
bility relation, andP ⊆ Pow(W ) is the set of propositions (“closed under formulas”).
In particular,∅,W ∈ P . We may assume here that the only world accessible from a
non-normal worldw is w itself. This will be helpful for the definition ofproposition
in the context of non-normal modal logic S3. We work with the languageFm(C0)
whereC0 = {⊥,⊤}. A valuation is a functiong : V → P which extends to the set
of constants such thatg(⊥) := ∅ andg(⊤) := W . If g, g′ are valuations such that
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g(y) = g′(y) for all y ∈ V r {x}, then we writeg =x g
′. The satisfaction relation for

a normal worldw ∈ N is defined as follows:

(w, g) � x :⇔ w ∈ g(x), for x ∈ V

(w, g) � c :⇔ w ∈ g(c), for c ∈ C0

(w, g) � ϕ ∨ ψ :⇔ (w, g) � ϕ or (w, g) � ψ

(w, g) � ϕ ∧ ψ :⇔ (w, g) � ϕ and(w, g) � ψ

(w, g) � ϕ→ ψ :⇔ (w, g) 2 ϕ or (w, g) � ψ

(w, g) � ¬ϕ :⇔ (w, g) 2 ϕ

(w, g) � �ϕ :⇔ (w′, g) � ϕ, for all w′ such thatwRw′

(w, g) � ϕ ≡ ψ :⇔ (w′, g) � ϕ iff (w′, g) � ψ, for all w′ such thatwRw′

(w, g) � ∀xϕ :⇔ (w, g′) � ϕ for all valuationsg′ such thatg′ =x g

The satisfaction relation for a non-normal worldw ∈ W rN is given in the same
way except for the condition concerning the modal operator which is replaced by the
following:

(w, g) 2 �ϕ

LetS3π be the set of formulas true at allnormalworlds in allS3π-frames under all
valuations. If we consider those frames whereN =W , then we obtain the theoryS4π.
S5π results fromS4π by imposing the additional condition thatR in each frame is an
equivalence relation. This is essentially the same way as the theoriesS4π andS5π
are defined in [8]. Of course, our theories contain, in addition, theorems with identity
connective (this connective is not an element of the language considered by Fine [8]).
Note that all axioms ofAX belong toS3π. One also easily checks that
(ϕ ≡ ψ) ↔ �(ϕ↔ ψ)
(ϕ ≡ ψ) → �(ϕ ≡ ψ)
belong toS3π. Recall that the latter is also derivable fromAX (see Lemma 2.6). The
former, however, is valid iff the Collapse Axiom holds (see Theorem 5.2). Note that
�(ϕ↔ ψ) → ��(ϕ↔ ψ) is not a theorem ofS3π. So we cannot replaceϕ ≡ ψ by
�(ϕ ↔ ψ) in every context (both formulas are equivalent in normal worlds but they
do not necessarily denote the same proposition).

In standard modal logic, a proposition is usually regarded as a set of possible
worlds. Relative to a given worldw of a given frame one may regard the proposi-
tion denoted byϕ as the set of those worlds which are accessible fromw and whereϕ
is true. Accordingly, two formulasϕ andψ denote the same proposition at worldw iff
ϕ ≡ ψ is true atw.

Theorem 6.1 Let k ∈ {3, 4, 5}, let F = (W,N,R, P ) be aSkπ-frame andC0 =
{⊥,⊤}. For every worldw ∈ W and every valuationg : V → P there exist aSk∀≡-
modelM satisfying the Collapse Axiom and an assignmentγ : V → M such that for
all ϕ, ψ ∈ Fm(C0) the following holds:

(M, γ) � ϕ⇔ (w, g) � ϕ.

21



In particular, (M, γ) � ϕ ≡ ψ ⇔ (w, g) � ϕ ≡ ψ. That is,ϕ andψ denote the
same proposition inM iff they denote the same proposition inF at world w. Thus,
the concept of a proposition as the denotation of a formula inmodelM and the modal
concept of a proposition as a set of possible worlds are equivalent.

Proof. For eachp ∈ P let cp be a constant symbol such thatp 6= q impliescp 6= cq.
PutC := {cp | p ∈ P}. We may assume that⊥,⊤ ∈ C. A valuationg : V → P
now extends to a function onV ∪ C such thatg(cp) = p. The second clause of the
truth definition above says:(w, g) � c :⇔ w ∈ g(c), wherec is now any element ofC.
By induction on formulas, simultaneously for all valuations, one shows the following
facts:
Coincidence Lemma: For all w ∈ W and allϕ ∈ Fm(C), if g(x) = g′(x) for all
x ∈ fvar(ϕ), then(w, g) � ϕ⇔ (w, g′) � ϕ.
Substitution Lemma: For anyw ∈ W , p1, ..., pn ∈ P , x1, ..., xn ∈ V , ϕ ∈ Fm(C)
and any valuationg, (w, gp1,...,pn

x1,...xn
) � ϕ⇔ (w, g) � ϕ[x1 := cp1

, ..., x2 := cpn
].

As a consequence we obtain the following:

(6.1)
(w, g) � ∀xϕ⇔ (w, gpx) � ϕ for all p ∈ P ⇔ (w, g) � ϕ[x := cp] for all p ∈ P.

Now letw ∈ W and letg : V → P be a valuation. Define the relation≈ onFm(C)
by ϕ ≈ ψ :⇔ (w, g) � ϕ ≡ ψ. One easily checks that≈ is a congruence relation on
Fm(C). Forϕ ∈ Fm(C) letϕ be the equivalence class ofϕmodulo≈. Every formula
denotes a proposition (in the terminology of [8], “P is closed under formulas”). Thus,
for eachϕ there is a constantc ∈ C such thatϕ ≈ c. In fact, we may choosec = cp if
ϕ denotes the propositionp ∈ P under the valuationg. Define

M := {ϕ | ϕ ∈ Fm(C)} = {c | c ∈ C}

TRUE := {ϕ | (w, g) � ϕ}

NEC := {ϕ | (w, g) � �ϕ}

f¬(ϕ) := ¬ϕ, f�(ϕ) = �ϕ, f⊤ := ⊤, f⊥ := ⊥, andf@(ϕ, ψ) := ϕ@ψ

for @ ∈ {∨,∧,→,≡}. The Collapse Axiom holds andNEC = {f⊤}. The above
sets and operations are well-defined and form a Boolean algebra M. We define the
Gamma-function byΓ (c) := c. Finally, the higher-order functionf∀ : MM → M is
given by

f∀(t) =:

{

∀xϕ, if there is aϕ such thatt(c) = ϕ[x := c] for all c ∈ C

f⊤, if such a formulaϕ does not exist

Now we may argue in a similar way as in the proof of Theorem 4.11, where a model
for a Henkin set is constructed. By (6.1),Φ = {ϕ ∈ Fm(C) | (w, g) � ϕ} has in fact
the properties of a Henkin set. We show thatf∀ is well-defined. Supposet ∈MM such
thatϕ[x := c] = t(c) = ψ[y := c] for two formulasϕ, ψ ∈ Fm(C) and for allc ∈ C.
Without lost of generality, we may assume thatx /∈ var(ψ). Thenϕ[x := c] ≈ ψ[y :=
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c] = (ψ[y := x])[x := c] for all c ∈ C. That is,(w, g) � �((ϕ↔ ψ[y := x])[x := c])
for all c ∈ C. By (6.1), (w, g) � ∀x�((ϕ ↔ ψ[y := x]). The Kripke semantics
implies: (w, g) � �(∀xϕ ↔ ∀xψ[y := x]). That is,∀xϕ = ∀xψ[y := x]. Note that
∀xψ[y := x] and∀yψ are alpha-congruent. Thus,f∀(t) = ∀xϕ = ∀yψ andf∀ is well-
defined. One verifies that all conditions of aS3∀≡-model are satisfied. For instance,
condition (iv)(k) holds because the Barcan formula and its converse belong toS3π.
Let γ : V → M be the assignment defined byx → x. In the same way as in Claim 2
of Theorem 4.11 one shows by induction of the quantifier-rankthatγ(ϕ) = ϕ for all
ϕ ∈ Fm(C). Then for everyϕ ∈ Fm(C):

(M, γ) � ϕ⇔ γ(ϕ) = ϕ ∈ TRUE ⇔ (w, g) � ϕ.

Finally, we consider the “reducts” of both models (i.e., therestrictions of the Gamma-
function, of the valuationg, respectively) to the sublanguageFm(C0) ⊆ Fm(C).
This yields the assertions. Note thatM is the two-element Boolean algebra ifw is a
non-normal world. Q.E.D.

Lemma 6.2 Let F be a filter of aS3∀≡-modelM. ThenF is the intersection of all
ultrafilters that extendF .

Proof. LetX =
⋂

{U ⊆M | U ⊇ F is an ultrafilter}. ThenF ⊆ X . Suppose there
is a ∈ X r F . Using Zorn’s Lemma (or an appropriate weaker principle) one shows
thatF extends to a maximal filter (i.e., an ultrafilter) which does not containa. We get
a /∈ X , a contradiction. Hence,F = X , i.e.,F is the meet of all ultrafilters extending
F . Q.E.D.

Some parts of the next result have parallels to the Jónsson-Tarski Theorem which
essentially says that a Boolean algebra with operators is embeddable in the full complex
algebra of its ultrafilter frame (see, e.g., [1] for a detailed discussion). In the proof of the
following Theorem 6.3 we shall construct a desired Kripke model from the ultrafilters
of a givenSm∀

≡-model, wherem ∈ {4, 5}, such that the same formulas are satisfied.
We were unable to prove the theorem for arbitraryS3∀≡-models. Note that also the
Jónsson-Tarski Theorem is applicable only tonormalmodal logics.

Recall that byFmm we denote the set of formulas of pure modal logic (without
identity connective and without quantifier).

Theorem 6.3 Let M be aS4∀≡-model and letγ : V → M be an assignment. There
exist a frame(W,R) of modal logicS4, a valuationg : V → Pow(W ) and a world
w ∈ W such that for allϕ, ψ ∈ Fmm:

(M, γ) � ϕ⇔ (w, g) � ϕ, and

(M, γ) � ϕ ≡ ψ ⇒ (w, g) � �(ϕ↔ ψ).
(6.2)

Moreover, if the modelM satisfies the Collapse Axiom and is a Boolean algebra, then
the implication in the second line of(6.2) can be replaced by a biconditional⇔, i.e.,
ϕ, ψ ∈ Fmm denote the same proposition inM underγ iff they denote the same
proposition at worldw under valuationg.
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Proof. Let TRUE , NEC be the sets of true, necessary propositions, respectively,
≤M the induced preorder ofM andW := {T | T is an ultrafilter w.r.t. ≤M}.
ThenTRUE ∈ W . For eacha ∈ M let |a| := {T | a ∈ T ∈ W}. Define
P = {|a| | a ∈ M}, the set of propositions for the desired Kripke model. For
T ∈ W let NECT := {a ∈ M | f�(a) ∈ T } and define the relation≤T by
a ≤T b :⇔ f→(a, b) ∈ NECT .
Claim 1: For eachT ∈ W , NEC ⊆ T .
Proof of the claim.By Lemma 3.2,NEC = {a ∈ M | a ≈M f⊤} andNEC is the
smallest filter.
Claim 2: For eachT ∈ W , NEC T ⊆ T . In particular,T is an ultrafilter w.r.t.≤T .
Proof of the claim.Let a ∈ NECT . By definition,f�(a) ∈ T . Sincef�(a) ≤M a
andT is a filter, we geta ∈ T . This shows the first part of the claim. We have
f→(a, b) ≈M f∨(f¬(a), b)) becauseM is a Boolean prealgebra. Thena ∈ T and
a ≤T b imply b ∈ T .
Claim 3: For eachT ∈ W , NEC ⊆ NEC T . In particular,≤M refines≤T .
Proof of the claim.Let a ∈ NEC . That is,f�(a) ∈ TRUE . f�(a) ≤M f�(f�(a))
becauseM is aS4∀≡-model. SinceTRUE is a filter, we getf�(a) ∈ NEC ⊆ T . By
definition,a ∈ NECT .
Claim 4: Every ultrafilter with respect to≤T belongs toW .
Proof of the claim.By Claim 3,≤M refines≤T .
Claim 5: For eachT ∈ W , if a ≤T b anda ∈ NECT , thenb ∈ NECT .
Proof of the claim. Let a ≤T b and a ∈ NECT . Thenf�(f→(a, b)) ∈ T and
f�(a) ∈ T . f�(f→(a, b)) ≤M f→(f�(a), f�(b)) and T is an ultrafilter. Thus,
f→(f�(a), f�(b)) ∈ T and finallyf�(b) ∈ T . That is,b ∈ NECT .
Claim 6: For eachT ∈ W , if a, b ∈ NECT , thenf∧(a, b) ∈ NECT .
Proof of the claim.Leta, b ∈ NECT . Thenf�(a), f�(b) ∈ T and thereforef∧(f�(a),
f�(b)) ∈ T . Note thatϕ := x → (y → (x ∧ y)) is a propositional tautology. By
Axiom Necessitation,�ϕ is a theorem. By soundness,�ϕ is valid. Choose an assign-
mentx 7→ a, y 7→ b. This showsa ≤M f→(b, f∧(a, b)). Sincea ∈ NECT , Claim
3 and Claim 5 yieldf→(b, f∧(a, b)) ∈ NECT . That is,b ≤T f∧(a, b). By Claim 5,
f∧(a, b) ∈ NECT .
Claim 7: For eachT ∈ W , NECT is the smallest filter w.r.t.≤T .
Proof of the claim.By Claim 5 and Claim 6,NECT is a filter w.r.t.≤T . Similarly as
in Lemma 3.2 one shows thatNECT = {a | a ≈T f⊤}, wherea ≈T b :⇔ (a ≤T b
andb ≤T a). Any filter containsf⊤ and the claim follows.
Claim 8: For eachT ∈ W , NECT =

⋂

{T ′ ∈W | NECT ⊆ T ′}.
Proof of the claim.SinceNECT is the smallest filter w.r.t.≤T , it is the intersection of
all ultrafilters w.r.t.≤T . By Claim 4, all those ultrafilters belong toW and the claim
follows.

We define the accessibility relationR onW by:

TRT ′ :⇔ NECT ⊆ T ′.

It is clear thatR is reflexive. SupposeTRT ′RT ′′. Let a ∈ NECT . Since we are
dealing with aS4∀≡-model,f�(a) ∈ NECT ⊆ T ′. Thena ∈ NECT ′ ⊆ T ′′. Hence,
NECT ⊆ T ′′. This shows thatR is transitive. Note that eachNECT is non-empty
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becauseNEC ⊆ NECT . Hence, there are no non-normal worlds inW . Thus,(W,R)
is a frame of modal logicS4. For a given assignmentβ : V → M of modelM we
define the valuationgβ : V → P by gβ(x) := |β(x)|.
Claim 9: For anyϕ ∈ Fmm, any assignmentβ : V →M of modelM and any world
T ∈W :

(T, gβ) � ϕ⇔ β(ϕ) ∈ T.

The claim follows by induction onϕ ∈ Fmm. The basis caseϕ = x is true by the
definition of gβ : (T, gβ) � x ⇔ T ∈ gβ(x) = |β(x)| ⇔ β(x) ∈ T . Most of the
remaining cases now follow straightforwardly from the induction hypothesis and the
definition of an assignment. We show the caseϕ = �ψ:

(T, gβ) � �ψ ⇔ (T ′, gβ) � ψ, for all T ′ ∈W with TRT ′

⇔ β(ψ) ∈ T ′, for all T ′ ∈ W with TRT ′, by induction hypothesis

⇔ β(ψ) ∈
⋂

{T ′ ∈W | NECT ⊆ T ′}, by definition ofR

⇔ β(ψ) ∈ NECT , by Claim 8

⇔ f�(β(ψ)) ∈ T, by definition ofNECT

⇔ β(�ψ) ∈ T, by definition of an assignment

Thus, Claim 9 is true. We consider the worldTRUE ∈ W , the given assignment
γ : V → M and the valuationgγ .14 Then for allϕ ∈ Fmm:

(TRUE , gγ) � ϕ⇔ γ(ϕ) ∈ TRUE ⇔ (M, γ) � ϕ.

This shows the first part of (6.2). Now suppose(M, γ) � ϕ ≡ ψ for ϕ, ψ ∈ Fmm.
Thenγ(ϕ) = γ(ψ). Thus,γ(ϕ) ∈ T iff γ(ψ) ∈ T , for eachT ∈ W . Then from Claim
9 it follows that(TRUE , gγ) � �(ϕ↔ ψ).

Finally, supposeM is a Boolean algebra that satisfies the Collapse Axiom. Then,
by Theorem 5.2, propositional identityϕ ≡ ψ is given by strict equivalence�(ϕ↔ ψ).
The last assertion of the theorem now follows from the first line of (6.2). Q.E.D.

Corollary 6.4 If the modelM in Theorem 6.3 is aS5∀≡-model, then we obtain a Kripke
model(W,R, gγ) of modal logicS5 such that the assertions of the theorem remain true.

Proof. The Claims 1–8 in the proof of Theorem 6.3 remain true. Moreover, Claim 3
can be replaced by the stronger
Claim 3’ : For eachT ∈W , NEC = NECT .
Proof of the Claim. By Claim 3,NEC ⊆ NECT . Now supposea /∈ NEC . Then
f¬(f�(a)) ∈ TRUE . SinceM is aS5∀≡-model,f�(f¬(f�a)) ∈ TRUE , that is,
f¬(f�(a)) ∈ NEC ⊆ T . Thus,f�(a) /∈ T anda /∈ NECT . Hence,NECT ⊆ NEC

and thereforeNEC = NECT .
The accessibility relationR onW is given as before. Then by Claim 3’,NECT =
NEC = NECT ′ for any worldsT, T ′ ∈ W . Thus, all worlds ofW are related by
R, andR is an equivalence relation. Then(W,R) is a frame of modal logicS5. Also

14Note thatNEC = NECTRUE . Thus, by Claim 1, the worldTRUE accesses everyT ∈ W .
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Claim 9 is true. The assertion now follows in the same way as inthe proof of the
theorem. Q.E.D.

Corollary 6.5 (Conservative extension)Our denotational semantics captures the stan-
dard modal systemsS3–S5 in the following sense. For anyϕ ∈ Fmm and k ∈
{3, 4, 5}, ϕ is a theorem ofSk∀≡ iff ϕ is a theorem of modal systemSk. Consequently,
the theorySk∀≡ is a conservative extension of modal systemSk.

Proof. Sk∀≡ contains all axioms ofSk. If k ∈ {4, 5}, then, by Lemma 2.5, also
the Necessitation Rule is derivable. Thus, every theorem ofSk is a theorem ofSk∀≡,
for k = 3, 4, 5. Now supposeϕ ∈ Fmm is not a theorem ofSk. Then there is a
Kripke model of systemSk with a normalworld w and valuationg : V → Pow(W )
such that(w, g) � ¬ϕ. That Kripke model can be seen as a frame(W,N,R, P ) with
P = Pow(W ). By Theorem 6.1, there is a normalSk∀≡-modelM and an assignment
γ such that(M, γ) � ¬ϕ. By soundness,ϕ cannot be a theorem ofSk∀≡. Q.E.D.

7 A simpler and more intensional semantics

AX contains the scheme (viii),∀x(ϕ ≡ ψ) → (∀xϕ ≡ ∀xψ), which represents an
extensionalprinciple. It can be read as follows: “Two definable functions are equal if
they have the same extensions (the same graphs)”. Our aim is to relax such extensional
constraints whenever this is possible and meaningful. In fact, we are able to define a
weaker semantics such that axiom scheme (viii) as well as theBarcan formula can be
avoided.

Let AX− be the set of axioms which is given by the smallest set that contains all
formulas (i)–(vii) and (ix)–(xii) ofAX and is closed under the following condition: If
ϕ ∈ AX

− andx ∈ fvar(ϕ), then∀xϕ ∈ AX
−.

As before, an assignment of a model with universeM is a functionγ : V → M .
In contrast to the denotational semantics of the first kind, however, there is no canon-
ical way to extendγ to a functionγ : Fm(C) → M . In fact, there is no explicitly
given algebraic structure on the universe of a model although parts of such structure
can be restored. Instead of an explicit algebraic structure, there are certain structural
conditions concerning assignments and substitutions. This style of semantics was de-
signed in [19] and has been further developed in [24] and [16]. We shall adopt some
technical machinery coming from the last two works, with some improvements and
simplifications.

Definition 7.1 A simple modelM = (M,TRUE ,NEC , Γ ) is given by a non-empty
propositional universeM , setsNEC ⊆ TRUE ⊆M and a functionΓ : C →M such
that the following conditions are satisfied.
Structural properties:15

15In [16], the Gamma-function is a functionΓ : Fm(C) ×MV → M which extends any given assign-
mentγ ∈MV and maps any formulaϕ to a propositionΓ (ϕ, γ) ∈M . The present definition is equivalent
to the definition given in [16]. The connection is given by: “γ(ϕ) = Γ (ϕ, γ)”.
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• γ(c) = Γ (c) for every assignmentγ : V →M and everyc ∈ C

• If γ, γ′ : V → M are assignments withγ(x) = γ′(x) for all x ∈ fvar(ϕ), then
γ(ϕ) = γ′(ϕ), for anyϕ ∈ Fm(C). (Coincidence Property)

• If σ : V → Fm(C) is a substitution,γ : V →M is an assignment, andγσ : V →
M is the assignment defined byx 7→ γ(σ(x)), thenγ(ϕ[σ]) = γσ(ϕ), for any
ϕ ∈ Fm(C). (Substitution Property)

For all assignmentsγ : V → M and all formulasϕ, ψ ∈ Fm(C) the followingtruth
conditions hold:

(i) Γ (⊥) ∈M r TRUE , Γ (⊤) ∈ TRUE

(ii) γ(ϕ→ ψ) ∈ TRUE ⇔ γ(ϕ) /∈ TRUE or γ(ψ) ∈ TRUE

(iii) γ(¬ϕ) ∈ TRUE ⇔ γ(ϕ) /∈ TRUE

(iv) γ(ϕ ∧ ψ) ∈ TRUE ⇔ γ(ϕ) ∈ TRUE andγ(ψ) ∈ TRUE

(v) γ(ϕ ∨ ψ) ∈ TRUE ⇔ γ(ϕ) ∈ TRUE or γ(ψ) ∈ TRUE

(vi) γ(�ϕ) ∈ TRUE ⇔ γ(ϕ) ∈ NEC

(vii) γ(ϕ ≡ ψ) ∈ TRUE ⇔ γ(ϕ) = γ(ψ)

(viii) γ(∀xϕ) ∈ TRUE ⇔ γax(ϕ) ∈ TRUE for all a ∈M

(ix) if γ(ϕ→ ψ) ∈ NEC , thenγ(�ϕ→ �ψ) ∈ NEC

(x) if γ(∀xϕ) ∈ NEC , thenγax(ϕ) ∈ NEC for all a ∈M

The following Substitution Lemma II is a version of [Lemma 3.14, [14]].

Lemma 7.2 (Substitution Lemma II) LetM be a simple model andϕ ∈ Fm(C). If
σ, σ′ : V → Fm(C) are substitutions andγ, γ′ : V → M are assignments such that
γ(σ(x)) = γ′(σ′(x)) for all x ∈ fvar(ϕ), thenγ(ϕ[σ]) = γ′(ϕ[σ′]).

The relation of satisfaction (truth) is defined as before, weuse the same notation.
Similarly as before, one verifies that a simple model satisfies all axioms ofAX− un-
der any assignment (instead of the Substitution Lemma and the Coincidence Lemma
now apply the Substitution Property and the Coincidence Property, respectively). In or-
der to achieve soundness of the rule of Axiom Necessitation we impose the following
semantic constraint:

Definition 7.3 Let M be a simple model with universeM and the set of necessary
propositionsNEC . An assignmentγ : V → M is called admissible ifγ(ϕ) ∈ NEC

wheneverϕ ∈ AX
−. M is called an admissible model if every assignmentγ : V →M

is admissible.
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Note that in an admissible (simple) model,NEC 6= ∅.
We writeΦ ⊢ ϕ if there is a derivation ofϕ from Φ using axioms fromAX− and

the rules of Modus Ponens and Axiom Necessitation. We writeΦ  ϕ if for every
admissible simple modelM and any assignmentγ : V → M , (M, γ) � Φ implies
(M, γ) � ϕ.

Theorem 7.4 (Soundness and Completeness ofAX
−) For Φ ∪ {ϕ} ⊆ Fm(C)

Φ ⊢ ϕ⇔ Φ  ϕ.

Proof. We have already discussed soundness of the calculus and now concentrate on
the completeness proof. The results and definitions 4.1 – 4.10 of the first completeness
proof remain unchanged. Of course, also the Deduction Theorem and Generalization
can be adopted without any restrictions. Our task is now to construct an admissi-
ble simple model for a given setΦ which is a Henkin set w.r.t. the system based on
AX−. The construction is very similar to that given in the proof of Theorem 4.11.
The universeM , the setsTRUE andNEC and the Gamma-function are defined in
the same way. We do not define operationsf⊤, f⊥, f¬, f�, f→, f∨, f∧, f≡ andf∀. In-
stead, we have to determine in which way an assignmentγ : V → M extends to a
functionγ : Fm(C) → M such that the structural properties and the truth conditions
of a simple model are satisfied. For a given assignmentγ : V → M we fix a function
τγ : V → Fm(C) with the propertyτγ(x) ∈ γ(x) for everyx ∈ V . The Claim 2
below shows that the actual choiceτγ(x) ∈ γ(x) is not relevant. We interpretτγ as
a substitution (this impliesτγ(c) = c for c ∈ C). As in the first completeness proof,
the relation≈Φ is defined byΦ ⊢ ϕ ≡ ψ, whereΦ is maximally consistent, and byϕ
we denote the equivalence class ofϕ modulo≈Φ. Then we define the extension of an
assignmentγ : V →M by

γ(ϕ) := ϕ[τγ ],

for ϕ ∈ Fm(C).
Claim 2: Let σ, σ′ : V → Fm(C) be substitutions. Ifσ(x) ≈Φ σ′(x) for all x ∈
fvar(ϕ), thenϕ[σ] ≈Φ ϕ[σ

′].
Proof of the Claim: Let fvar(ϕ) = {x1, ..., xn}. We may assume thatσ = [x1 :=
ψ1, ..., xn := ψn] andσ′ = [x1 := ψ′

1, ..., xn := ψ′
2], and we may also assume that

noxi, i = 1, ..., n, occurs free in any of theψ1, ..., ψn, ψ
′
1, ..., ψ

′
n (otherwise, we may

replace such variables inϕ with others). Then the simultaneous substitutionsσ, σ′

can be carried out successively. That is, applying successively axiom (vii) we obtain:
ϕ[σ] = ϕ[x1 := ψ1, ..., xn := ψn] ≈Φ ϕ[x1 := ψ1, ..., xn−1 := ψn−1, xn := ψ′

n] ≈Φ

ϕ[x1 := ψ1, ..., xn−2 := ψn−2, xn−1 := ψ′
n−1, x2 := ψ′

n] ≈Φ ... ≈Φ ϕ[x1 :=
ψ′
1, ..., xn := ψ′

n] = ϕ[σ′].
Claim 3: The structural conditions of a simple model are satisfied.
Proof of the Claim: Clearly, γ(c) = c = Γ (c) for c ∈ C. In order to show the
Coincidence Property letϕ ∈ Fm(C) and letγ, γ′ be assignments such thatγ(x) =
γ′(x) for all x ∈ fvar(ϕ). Thenτγ(x) ≈Φ τγ′(x) for all x ∈ fvar(ϕ). Now we
may apply Claim 2. Next, we show the Substitution Property. Let γ : V → M be
an assignment,σ : V → Fm(C) a substitution andϕ ∈ Fm(C). We must show:
γ(ϕ[σ]) = γσ(ϕ). Recall thatγσ : V → M is the assignment given byx 7→ γ(σ(x)),

28



Definition 3.6. Thenγ(ϕ[σ]) = ϕ[σ][τγ ] andγσ(ϕ) = ϕ[τγσ]. So it is enough to
prove thatϕ[σ][τγ ] ≈Φ ϕ[τγσ]. By induction on formulas one shows that for anyχ ∈
Fm(C) and any substitutionsσ1 andσ2: χ[σ1][σ2] = χ[σ1 ◦ σ2], whereσ1 ◦ σ2 is the
substitution defined byx 7→ σ1(x)[σ2] (“first σ1, thenσ2”). So it remains to show that
ϕ[σ ◦ τγ ] ≈Φ ϕ[τγσ]. Letx ∈ fvar(ϕ). By definition,(σ ◦ τγ)(x) = σ(x)[τγ ]. On the
other hand,τγσ(x) ∈ γσ(x) = γ(σ(x)) = σ(x)[τγ ]. Hence,(σ ◦ τγ)(x) ≈Φ τγσ(x),
for all x ∈ fvar(ϕ). The assertion now follows from Claim 2. Thus, the Substitution
Property holds.
Claim 4: The truth conditions of a simple model are satisfied.
Proof of the Claim: We show truth condition (iv).γ(ϕ∧ψ) ∈ TRUE ⇔ (ϕ∧ψ)[τγ ] ∈
Φ ⇔ ϕ[τγ ] ∧ ψ[τγ ] ∈ Φ ⇔ ϕ[τγ ] ∈ Φ andψ[τγ ] ∈ Φ. Most of the remaining
truth conditions follow similarly applying axioms fromAX−. We concentrate on the
quantifier case:

γ(∀xϕ) ∈ TRUE

⇔ (∀xϕ)[τγ ] ∈ Φ

⇔ ∀y(ϕ[τγ [x := y]]) ∈ Φ, wherey is the forced variable

⇔ ϕ[τγ [x := y]][y := c] ∈ Φ, for all c ∈ C, sinceΦ is a Henkin set
(∗)
⇔ ϕ[τγ [x := c]] ∈ Φ, for all c ∈ C

(∗∗)
⇔ ϕ[τγc

x
] ∈ Φ, for all c ∈ C

⇔ γcx(ϕ) ∈ TRUE , for all c ∈M

It remains to show that the equivalences (*) and (**) hold.
(*): We have to ensure thaty /∈ fvar(ϕ[τγ ]). This follows from the fact thaty is the
variable forced by substitutionτγ w.r.t. ∀xϕ.
(**): Let z ∈ fvar(ϕ). First, we supposez 6= x. Thenτγ [x := c](z) = τγ(z) ∈ γ(z)
andτγc

x
(z) ∈ γcx(z) = γ(z). Thus,τγ [x := c](z) ≈Φ τγc

x
(z). Now supposez = x.

Thenτγ [x := c](z) = c andτγc
x
(z) ∈ γcx(z) = c. Again,τγ [x := c](z) ≈Φ τγc

x
(z). By

Claim 2,ϕ[τγ [x := c]] ≈Φ ϕ[τγc
x
]. (**) now follows from Lemma 4.10.

Truth condition (x) follows similarly using the direction from left to right of the equiv-
alence stated in Lemma 4.5.
Claim 5: M is an admissible (simple) model.
Proof of the Claim: Let γ : V → M be an assignment. We show thatγ is admissible.
Let ϕ ∈ AX−. By Axiom Necessitation,⊢3 �ϕ. Let fvar(ϕ) = {x1, ..., xn}. By
Lemma 2.4,⊢3 ∀x1...∀xn�ϕ. Applying successively the axiom scheme (ix), we get
ψ := �ϕ[x1 := c1, ..., x2 := c2] ∈ Φ, where theci are constants withci ≈Φ γ(xi). By
Claim 1 of Theorem 4.11, such constants exist. Moreover,γ(ci) = ci = γ(xi). Now
we apply Substitution Lemma II and the fact thatψ ∈ Φ contains no free variables and
get: γ(�ϕ) = γ(ψ) = ψ[τγ ] = ψ ∈ TRUE . By truth condition (vi),γ(ϕ) ∈ NEC .
Thus,

M := (M,TRUE ,NEC , Γ )

is an admissible simple model. Consider now the canonical assignmentβ : V → M
defined byx 7→ x.
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Claim 6: ϕ[τβ ] ≈Φ ϕ, for all ϕ ∈ Fm(C).
Proof of the Claim: We haveτβ(x) ≈Φ ε(x) for all x ∈ fvar(ϕ), whereε is the
identity substitution. By Claim 2,ϕ[τβ ] ≈Φ ϕ[ε]. By Lemma 2.1,ϕ[ε] is alpha-
congruent withϕ. Alpha-congruence is contained in≈Φ. Then the Claim follows from
transitivity of≈Φ.
Applying the definitions and Claim 6, we conclude:

(M, β) � ϕ⇔ β(ϕ) = ϕ[τβ ] = ϕ ∈ TRUE ⇔ ϕ ∈ Φ.

Hence,(M, β) � Φ. Finally, it remains to show that every consistent set extends to
a Henkin set (in an extended language). We may adopt the construction given in the
proof of Theorem 4.12. Q.E.D.

Theorem 7.5 EveryS3∀≡-model is an admissible simple model.

Proof. Let M be aS3∀≡-model. By the Coincidence Lemma 3.5 and the Substitu-
tion Lemma 3.7,M has the Coincidence Property and the Substitution Property. Thus,
the structural properties of a simple model are satisfied. The truth conditions follow
from the truth conditions of aS3∀≡-model along with the fact that every assignment
γ : V →M of aS3∀≡-model extends to a function onFm(C) such as specified in Def-
inition 3.4. Since aS3∀≡-model validates the rule of Axiom Necessitation, the modelis
also admissible. Q.E.D.

The converse of Theorem 7.5 is false. That is, the “simple” semantics is strictly
weaker or more general than the semantics of the first kind. This follows from the
corresponding soundness and completeness theorems and thefact thatAX− is strictly
contained inAX. Nevertheless, given an admissible simple modelM, we are able
to restore the structure of a Boolean prelattice onM . The functionf∨, for instance,
is defined as follows. Given any two elementsa, b ∈ M , put f∨(a, b) := γ(x ∨ y)
wheneverγ is an assignment andx, y ∈ V such thatγ(x) = a andγ(y) = b. Of
course, such an assignment and variables can be found. Moreover, that definition is
independent of the particular assignment and the particular variables: Suppose there is
another assignmentγ′ and variablesu, v with γ′(u) = a andγ′(v) = b. Let σ = ε
be the identity substitution and letσ′ be the substituition[x := u, y := v]. Then
γ(σ(x)) = a = γ′(σ′(x)) andγ(σ(y)) = b = γ′(σ′(y)). Substitution Lemma II
yields:f∨(a, b) = γ(x∨ y) = γ((x∨ y)[σ]) = γ′((x∨ y)[σ′]) = γ′(u∨ v). However,
it is not clear how to restore the higher-order functionf∀ without a semantic property
that corresponds to axiom (viii).

One goal of the paper was to present a non-Fregean semantics for some Lewis
modal logics such that the relation of propositional identity does not suffer from too
many restrictions. By the Collapse Theorem 5.2, propositional identity refines strict
equivalence, and both relations collapse iff the given model is a Boolean algebra and
satisfies the Collapse Axiom. The existence of an intensional model would imply that
there are, up to alpha-congruence, no restrictions at all onthe relation of propositional
identity, more precisely,⊢3 ϕ ≡ ψ iff ϕ =α ψ, for all ϕ, ψ ∈ Fm(C). The con-
struction of an intensional model, however, is difficult because of the impredicativity
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of propositional quantification. We believe that a similar construction as in [16] can be
applied.

Finally, we would like to point out that our approach strongly relies on the modal
principles inherent in Lewis modal systemsS3–S5 and on the concept of propositional
identity given by the axioms (v)–(vii). A non-Fregean semantics that capturesK as
well as many other normal modal systems is found in [12, 13]. This is achieved by
introducing a concept of propositional identity which is axiomatized in a different way.
However, the approach presented in [12, 13] involves the semantic limitations of stan-
dard modal logic: the Collapse Axiom is valid and models are Boolean algebras.
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