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Juan Manuel Cornejo The Semi Heyting–Brouwer
Logic

Abstract. In this paper we introduce a logic that we name semi Heyting–Brouwer logic,

SHB, in such a way that the variety of double semi-Heyting algebras is its algebraic

counterpart. We prove that, up to equivalences by translations, the Heyting–Brouwer logic

HB is an axiomatic extension of SHB and that the propositional calculi of intuitionistic

logic I and semi-intuitionistic logic SI turn out to be fragments of SHB.

Keywords: Semi Heyting–Brouwer logic, Semi-Heyting algebras, Heyting–Brouwer logic,

Heyting algebras.

1. Introduction

The Heyting–Brouwer logic, HB, was introduced by Rauszer [17,18] by
means of a Hilbert-style propositional calculus. It has been also studied
by other authors under different names, such as dual intuitionistic logic
[7,9], subtractive logic [5,6] or bi-intuitionistic logic [10,11], and even with
different approaches (algebraic, relational, axiomatic, by sequents, etc.). Its
algebraic counterpart is the variety DblH of double Heyting algebras [2,12],
also known as Heyting–Brouwer algebras [21], biHeyting-algebras [13] and
semi-Boolean algebras [17,18].

In [19], Sankappanavar introduced the variety SH of semi-Heyting alge-
bras, an abstraction of Heyting algebras, and in [3] we defined a new logic SI
called semi-intuitionistic logic such that the semi-Heyting algebras are the
semantics for SI. Besides, the intuitionistic logic is an axiomatic extension
of SI.

Several expansions of semi-Heyting algebras were later studied in [20],
the most important of which is perhaps the variety DblSH of double semi-
Heyting algebras, an abstraction of DblH.

In this paper we introduce the semi Heyting–Brouwer logic SHB by
means of a Hilbert-style propositional calculus. We prove that, up to equiv-
alences by translations, HB is an axiomatic extension of SHB and that the
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propositional calculi of intuitionistic logic I [16] and semi-intuitionistic logic
SI [3,4] turn out to be fragments of SHB. We prove that the algebraic se-
mantics of this logic is the variety DblSH and we study several properties
of it.

2. Preliminaries

An algebra A = 〈A;∨,∧,→,⊥,�〉 is said to be a semi-Heyting algebra,
SH-algebra for short, if it satisfies the following conditions:

(SH1) 〈A;∨,∧,⊥,�〉 is a bounded lattice,

(SH2) x ∧ (x→ y) ≈ x ∧ y,
(SH3) x ∧ (y → z) ≈ x ∧ ((x ∧ y)→ (x ∧ z)),
(SH4) x→ x ≈ � .

If instead of axiom (SH4) we put

(SH5) (x ∧ y)→ y ≈ �,

then A is a Heyting algebra [19] (H-algebra, for short).
An algebra A = 〈A;∨,∧,→,←,⊥,�〉 is said to be a double semi-Heyting

algebra, DblSH-algebra for short, if it satisfies the following conditions:

(dSH1) 〈A;∨,∧,→,⊥,�〉 is an SH-algebra,

(dSH2) x ∨ (x← y) ≈ x ∨ y,
(dSH3) x ∨ (y ← z) ≈ x ∨ ((x ∨ y)← (x ∨ z)),
(dSH4) x← x ≈ ⊥.

If a DblSH-algebra A is such that 〈A;∨,∧,→,⊥,�〉 is a H-algebra and,
we replace condition (dSH4), by

(dSH5) (x ∨ y)← y ≈ ⊥
then A is a double Heyting algebra (DblH-algebra) [12].

The class of SH-algebras, H-algebras, DblSH-algebras and DblH-alge-
bras will be respectively denoted by SH,H,DblSH and DblH.

It is known that if A ∈ H then for a, b, c ∈ A,

(R) a ∧ b ≤ c if and only if a ≤ b→ c.

In a similar way, (see [17,21]) if A ∈ DblH and a, b, c ∈ A then

(dR) a ∨ b ≥ c if and only if a ≥ b← c.
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From (R) and (dR) it follows that for a, b ∈ A, with A ∈ DblH,

a ≤ b if and only if a→ b = � and a ≤ b if and only if b← a = ⊥.
Following [8], a (logical) language L = 〈L, ar〉 will be a set L of connec-

tives, each with a fixed arity ar ≥ 0. For a countably infinite set V ar of
propositional variables, the formulas of the logical language L are induc-
tively defined as usual.

A logic in the language L is a pair L = 〈FmL,�L〉 where FmL is the set
of formulas and �L is a substitution-invariant consequence relation on FmL.
The set FmL may also be endowed with an algebraic structure, by consid-
ering the connectives of the language as operation symbols. The resulting
algebra is often called the algebra of formulas and denoted by FmL. We will
present finitary logics by means of their “Hilbert style” sets of axioms and
inferences rules.

An expansion of a language L = 〈L, ar〉 is a language L′ = 〈L′, ar′〉 such
that L ⊆ L′ and ar′ � L = ar. A language L is a fragment of a language L′

when L′ is an expansion of L.
The Heyting–Brouwer logic HB, over a language {∨,∧,→, −̇,¬,�}, is

defined in [17] in terms of the following set of axioms:

(B1) (α→ β)→ [(β → γ)→ (α→ γ)],

(B2) α→ (α ∨ β),

(B3) β → (α ∨ β),

(B4) (α→ γ)→ [(β → γ)→ ((α ∨ β)→ γ)],

(B5) (α ∧ β)→ α,

(B6) (α ∧ β)→ β,

(B7) (γ → α)→ [(γ → β)→ (γ → (α ∧ β))],

(B8) ((α ∧ β)→ γ)→ (α→ (β → γ)),

(B9) (α→ (β → γ))→ ((α ∧ β)→ γ),

(B10) α→ (β ∨ (α−̇β)),

(B11) (α→ β)→ (¬β → ¬α),

(B12) (α−̇β)→ (� (α→ β)),

(B13) (γ−̇(α−̇β))→ (α−̇(γ ∨ β)),

(B14) (¬(α−̇β))→ (α→ β),

(B15) (α→ (γ−̇γ))→ (¬α),

(B16) (¬α)→ (α→ (γ−̇γ)),
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(B17) ((γ → γ)−̇α)→ (� α),

(B18) (� α)→ ((γ → γ)−̇α),

whose inference rules are:

(MP) Γ �HB φ and Γ �HB φ→ γ yield Γ �HB γ (Modus Ponens),

(r) Γ �HB φ yields Γ �HB ¬(� φ).

In [17] the author shows that the algebraic semantics associated to HB is
the class of double Heyting algebras (named semi-Boolean algebras in [17]).

3. Semi Heyting–Brouwer Logic

This section is devoted to define a logic whose propositional calculus con-
tains an axiomatic extension equivalent to the logic HB and whose algebraic
counterpart is the variety of double semi-Heyting algebras [20].

We define the semi Heyting–Brouwer logic SHB over the language L =
{∨,∧,→,←,⊥,�} in terms of the following set of axioms, in which we re-
spectively denote α→H β and α←H β to represent the formulas α→ (α∧β)
and α← (α ∨ β).

(S1) α→H (α ∨ β),

(S2) β →H (α ∨ β),

(S3) (α→H γ)→H [(β →H γ)→H ((α ∨ β)→H γ)],

(S4) (α ∧ β)→H α,

(S5) (γ →H α)→H [(γ →H β)→H (γ →H (α ∧ β))],

(S6) �,
(S7) ⊥ →H α,

(S8) ((α ∧ β)→H γ)→H (α→H (β →H γ)),

(S9) (α→H (β →H γ))→H ((α ∧ β)→H γ),

(S10) [α→H (β ∨ γ)]→H [(β ←H α)→H γ],

(S11) [(β ←H α)→H γ]→H [α→H (β ∨ γ)],
(S12) (α→H β)→H ((β →H α)→H ((α→ γ)→H (β → γ))),

(S13) (α→H β)→H ((β →H α)→H ((γ → β)→H (γ → α))),

(S14) ((α←H β)←H ((β ←H α)←H ((α← γ)←H (β ← γ))))→H ⊥,
(S15) ((α←H β)←H ((β ←H α)←H ((γ ← β)←H (γ ← α))))→H ⊥,
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(S16) ((α ∨ (β ← γ))←H (α ∨ ((α ∨ β)← (α ∨ γ))))→H ⊥,
(S17) ((α ∨ ((α ∨ β)← (α ∨ γ)))←H (α ∨ (β ← γ)))→H ⊥,
(S18) ((α ∨ (α← β))←H (α ∨ β))→H ⊥,
(S19) ((α ∨ β)←H (α ∨ (α← β)))→H ⊥,
(S20) (α← α)→H ⊥.

The inference rule is SHB-Modus Ponens (sHB-MP): Γ �SHB φ and
Γ �SHB φ →H γ yield Γ �SHB γ. As we will see in Lemma 4.8, sHB-MP
implies Modus Ponens.

Let us show now some elemental properties of the logic SHB that will be
useful in what follows. Consider the following formulas:

(S′1) (α ∧ β)→H β,

(S′2) (α→H β)→H [(β →H γ)→H (α→H γ)],

(S′3) (α ∧ (β → γ))→H (α ∧ ((α ∧ β)→ (α ∧ γ))),
(S′4) (α ∧ ((α ∧ β)→ (α ∧ γ)))→H (α ∧ (β → γ)),

(S′5) (α ∧ β)→H (α ∧ (α→ β)),

(S′6) (α ∧ (α→ β))→H (α ∧ β).

The following lemma can be proved as in [4].

Lemma 3.1. Let Γ∪{α, β} ⊆ FmL. In SHB, the following conditions hold:

(a) If Γ �SHB α then Γ �SHB β →H α.

(b) Γ �SHB α→H α.

(c) Γ �SHB α where α is one of the axioms (S′1) to (S′6).

Lemma 3.2. Let Γ ∪ {α, β} ⊆ FmL. Then

(a) Γ, α→H β, β →H γ �SHB α→H γ.

(b) Γ, α, α→H β �SHB β.

(c) Γ, α �SHB β →H α.

(d) Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (α ∨ γ)→H (β ∨ δ).
(e) Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (α ∧ γ)→H (β ∧ δ).
(f) Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (α→ γ)→H (β → δ).

(g) Γ, α, β �SHB α ∧ β.
(h) Γ �SHB ((α→H ⊥) ∧ (β →H ⊥))→H ((α ∨ β)→H ⊥).

(i) Γ �SHB (α ∨ ⊥)→H α
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(j) Γ �SHB ((β ←H α)→H ⊥)→H (α→H β).

(k) Γ, (α←H β)→H ⊥, α→H ⊥ �SHB β →H ⊥.
(l) Γ, α, (β ←H α)→H ⊥ �SHB β.

Proof. Items (a) to (g) can be proved as in [4].

(h) 1. Γ �SHB (α →H ⊥) →H [(β →H ⊥) →H ((α ∨ β) →H ⊥)] by
axiom (S3).

2. Γ �SHB [(α →H ⊥) →H [(β →H ⊥) →H ((α ∨ β) →H ⊥)]] →H

[[(α→H ⊥) ∧ (β →H ⊥)]→H [((α ∨ β)→H ⊥)]] by axiom (S9).
3. Γ �SHB [(α →H ⊥) ∧ (β →H ⊥)] →H [((α ∨ β) →H ⊥)] from

sHB-MP in 1 and 2.

(i) 1. Γ �SHB (α→H α)→H [(⊥ →H α)→H ((α∨⊥)→H α)] by (S3).
2. Γ �SHB α→H α from Lemma 3.1 (b).
3. Γ �SHB (⊥ →H α)→H ((α ∨ ⊥)→H α) by sHB-MP in 1 and 2.
4. Γ �SHB ⊥ →H α by axiom (S7).
5. Γ �SHB (α ∨ ⊥)→H α by sHB-MP in 3 and 4.

(j) 1. Γ �SHB [(α →H (β ∨ ⊥)) ∧ α]→H [α ∧ (α →H (β ∨ ⊥))] from [4,
Lemma 2.1 (e)].

2. Γ �SHB [α∧ (α→H (β∨⊥))]→H (α∧ (α∧ (β∨⊥))) from Lemma
3.1 (c).

3. Γ �SHB [(α→H (β∨⊥))∧α]→H (α∧ (α∧ (β∨⊥))) from Lemma
3.1 (c) and sHB-MP in 1 and 2.

4. Γ �SHB (α∧ (α∧ (β ∨⊥)))→H (α∧ (β ∨⊥)) from Lemma 3.1 (c).

5. Γ �SHB [(α→H (β ∨ ⊥)) ∧ α]→H (α ∧ (β ∨ ⊥)) from Lemma 3.1
(c) and sHB-MP in 3 and 4.

6. Γ �SHB (α ∧ (β ∨ ⊥))→H (β ∨ ⊥) from Lemma 3.1 (c).
7. Γ �SHB (α ∧ (α ∧ (β ∨ ⊥)))→H (β ∨ ⊥) from Lemma 3.1 (c) and

sHB-MP in 5 and 6.
8. Γ �SHB [(α →H (β ∨ ⊥)) ∧ α] →H (β ∨ ⊥) from Lemma 3.1 (c)

and sHB-MP in 3 and 7.
9. Γ �SHB (β ∨ ⊥)→H β by item (i).

10. Γ �SHB [(α →H (β ∨ ⊥)) ∧ α] →H β from Lemma 3.1 (c) and
sHB-MP in 8 and 9.

11. Γ �SHB [(β ←H α)→H ⊥]→H [α→H (β ∨ ⊥)] by axiom (S11).
12. Γ �SHB [α →H (β ∨ ⊥)] →H (α →H β) by (S8) and sHB-MP in

10.
13. Γ �SHB [(β ←H α) →H ⊥] →H (α →H β) from Lemma 3.1 (c)

and sHB-MP in 11 and 12.
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(k) 1. Γ, (α←H β)→H ⊥, α→H ⊥ �SHB (α←H β)→H ⊥.
2. Γ, (α ←H β) →H ⊥, α →H ⊥ �SHB ((α ←H β) →H ⊥) →H

(β →H α) by item (j) .
3. Γ, (α←H β)→H ⊥, α→H ⊥ �SHB β →H α by sHB-MP in 1 and

2.
4. Γ, (α←H β)→H ⊥, α→H ⊥ �SHB α→H ⊥.
5. Γ, (α←H β)→H ⊥, α→H ⊥ �SHB β →H ⊥ from Lemma 3.1 (c)

and sHB-MP in 3 and 4.

(l) 1. Γ, α, (β ←H α)→H ⊥ �SHB (β ←H α)→H ⊥.
2. Γ, α, (β ←H α) →H ⊥ �SHB ((β ←H α) →H ⊥) →H (α →H β)

by item (j).
3. Γ, α, (β ←H α)→H ⊥ �SHB α→H β by sHB-MP in 1 and 2.
4. Γ, α, (β ←H α)→H ⊥ �SHB α.
5. Γ, α, (β ←H α)→H ⊥ �SHB β by sHB-MP in 3 and 4.

The following is a version of the deduction theorem for this logic.

Theorem 3.3. (Deduction) Let Γ ∪ {φ, ψ} ⊆ FmL. Then

Γ ∪ {φ} �SHB ψ if and only if Γ �SHB φ→H ψ.

Proof. Suppose that Γ∪ {φ} �SHB ψ. We are going to prove that Γ �SHB
φ→H ψ by induction on the length of the proof of the formula ψ. If ψ is an
axiom of the logic SHB, then Γ �SHB ψ, and by Lemma 3.1 (a), Γ �SHB
φ→H ψ. Suppose that there exists α ∈ FmL such that Γ∪{φ} �SHB α and
Γ ∪ {φ} �SHB α→H ψ. Then, by inductive hypothesis,

1. Γ �SHB φ→H α and

2. Γ �SHB φ→H (α→H ψ).

3. Γ �SHB φ→H φ by Lemma 3.1 (b).

4. Γ �SHB φ→H (φ ∧ α) by (S5) and sHB-MP in 1 and 3.

5. Γ �SHB (φ ∧ α)→H ψ by (S9) and sHB-MP in 2.

6. Γ �SHB φ→H ψ from Lemma 3.1 (c) and sHB-MP in 4 and in 5.

For the converse, assume that Γ �SHB φ→H ψ. Then Γ∪{φ} �SHB φ→H ψ.
Since Γ ∪ {φ} �SHB φ, it follows that Γ ∪ {φ} �SHB ψ by sHB-MP.

The following lemma will be used to prove that SHB is an implicative
logic in the sense of [15].

Lemma 3.4. Let Γ ∪ {α, β} ⊆ FmL. Then

Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (α← γ)→H (β ← δ).
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Proof.

1. Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB β →H α.

2. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB α →H (α ∨ ⊥) by axiom
(S1).

3. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB β →H (α ∨ ⊥) by Lemma
3.1 (c) and sHB-MP in 1 and 2.

4. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB [β →H (α ∨ ⊥)] →H

[(α←H β)→H ⊥] by (S10).

5. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB (α ←H β) →H ⊥ by
sHB-MP in 3 and 4.

Similarly,

6. Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (β ←H α)→H ⊥.

Denote ε = (β ←H α) and θ = ((α ←H β) ←H ((β ← γ) ←H (α ←
γ))).

7. Γ, (ε←H θ)→H ⊥, ε→H ⊥ �SHB θ →H ⊥ by Lemma 3.2 (k).

8. Γ, (ε←H θ)→H ⊥ �SHB (ε→H ⊥)→H (θ →H ⊥) by Theorem 3.3.

9. Γ �SHB ((ε ←H θ) →H ⊥) →H ((ε →H ⊥) →H (θ →H ⊥)) by
Theorem 3.3.

10. Γ �SHB (ε←H θ)→H ⊥ by axiom (S14).

11. Γ �SHB (ε→H ⊥)→H (θ →H ⊥) by sHB-MP in 9 and 10.

12. Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (ε→H ⊥)→H (θ →H ⊥).

13. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB ((β ←H α) →H ⊥) →H

(θ →H ⊥) by definition of ε.

14. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB θ →H ⊥ by sHB-MP in 6
and 13.

15. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB ((α ←H β) ←H ((β ←
γ)←H (α← γ)))→H ⊥ by definition of θ.

In the rest of the proof, ε and θ will respectively denote the formulas

(α←H β) and ((β ← γ)←H (α← γ)).

Then,

16. Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (ε←H θ)→H ⊥.
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17. Γ �SHB ((ε←H θ)→H ⊥)→H ((ε→H ⊥)→H (θ →H ⊥)) By Lemma
3.2 (k) and Theorem 3.3.

18. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB ((ε ←H θ) →H ⊥) →H

((ε→H ⊥)→H (θ →H ⊥)).

19. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB (ε →H ⊥) →H (θ →H ⊥)
by sHB-MP in 16 and 18.

20. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB ((α ←H β) →H ⊥) →H

(θ →H ⊥) by the definition of ε.

21. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB θ →H ⊥ by sHB-MP in 5
and 20.

22. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB ((β ← γ) ←H (α ←
γ))→H ⊥ by the definition of θ.

23. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB [((β ← γ) ←H (α ←
γ))→H ⊥]→H [(α← γ)→H ((β ← γ) ∨ ⊥)] by the axiom (S11).

24. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB (α ← γ) →H ((β ←
γ) ∨ ⊥) by sHB-MP in 22 and 23.

25. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB ((β ← γ) ∨ ⊥) →H (β ←
γ) from Lemma 3.2 (i).

26. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB (α ← γ) →H (β ← γ) by
Lemma 3.1 (c) and sHB-MP in 24 and 25.

In a similar way, by axiom (S15) we have that

27. Γ, α→H β, γ →H δ, β →H α, δ →H γ �SHB (β ← γ)→H (β ← δ).

28. Γ, α →H β, γ →H δ, β →H α, δ →H γ �SHB (α ← γ) →H (β ← δ) by
Lemma 3.1 (c) and sHB-MP in 26 and 27.

Definition 3.5. [15] An implicative logic is a logic L in a language L with
a binary connective → (either primitive or defined by an algebraic term in
exactly two variables) such that the following conditions are satisfied (for
all formulas appearing in them):

(IL1) �L α→ α.

(IL2) α→ β, β → γ �L α→ γ.

(IL3) For each λ ∈ L, of arity n > 0,{
α1 → β1, . . . , αn → βn

β1 → α1, . . . , βn → αn

}
�L λα1 . . . αn → λβ1 . . . βn.
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(IL4) α, α→ β �L β.

(IL5) α �L β → α.

Definition 3.6. [15, Definition 6, p. 181] Let L be an implicative logic on
the language L. An L-algebra is an algebra A of similarity type L that has
an element � with the following properties:

(LALG1) For all Γ ∪ {φ} ⊆ FmL and all h ∈ Hom(FmL,A), if Γ �L φ and
hΓ ⊆ {�} then hφ = �

(LALG2) For all a, b ∈ A, if a→ b = � and b→ a = � then a = b.

The class of L-algebras will be denoted Alg∗L.

The following theorem is now an immediate consequence of Lemma 3.1
(b), Lemma 3.2 (d), (e), (f) and Lemma 3.4.

Theorem 3.7. The logic SHB is implicative with respect to the connective
→H .

4. Completeness

In this section we show that in any double semi-Heyting algebra it is pos-
sible to define a new implication operation in such a way that the resulting
algebra becomes a double Heyting algebra. Note that x→H y and x←H y
respectively denote x→ (x ∧ y) and x← (x ∨ y).

It is known that if 〈A;∨,∧,→,⊥,�〉 is a semi-Heyting algebra, then
〈A;∨,∧,→H ,⊥,�〉 ∈ H [1, Lemma 4.1]. In a similar way we are going to
check that if 〈A;∨,∧,→,←,⊥,�〉 ∈ DblSH then〈A;∨,∧,→H ,←H ,⊥,�〉
is a DblH-algebra.

Lemma 4.1. If 〈A;∨,∧,→,←,⊥,�〉 is a DblSH-algebra then 〈A;∨,∧,→H

,←H ,⊥,�〉 ∈ DblH. In addition, if a, b ∈ A then a → b ≤ a →H b and
a←H b ≤ a← b.

Proof. From the previous remark, 〈A;∨,∧,→H ,⊥,�〉 is an H-algebra. Let
a, b ∈ A. Then a ∨ (a ←H b) = a ∨ (a ← (a ∨ b)) = a ∨ (a ∨ b) = a ∨ b by
(dSH2) and a∨ (b←H c) = a∨ (b← (b∨ c)) = a∨ ((a∨ b)← (a∨ (b∨ c))) =
a ∨ ((a ∨ b) ← ((a ∨ b) ∨ (a ∨ c))) = a ∨ ((a ∨ b) ←H (a ∨ c)) by (dSH3).
Besides, a←H a = a← (a ∨ a) = a← a = ⊥ by using condition (dSH4)

Since (a∨b)←H b = (a∨b)← ((a∨b)∨b) = (a∨b)← (a∨b) = ⊥ it follows
that
〈A;∨,∧,→H ,←H ,⊥,�〉 ∈ DblH [20].
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In [1, Lemma 4.1] it is proved that if a, b ∈ A then a→ b ≤ a→H b. From
conditions (dSH3) and (dSH4), the inequality a←H b ≤ a← b follows from
(a←H b)∨(a← b) = [a← (a∨b)]∨(a← b) = [(a∨(a← b))← ((a∨b)∨(a←
b))] ∨ (a← b) = ((a ∨ b)← (a ∨ b)) ∨ (a← b) = ⊥ ∨ (a← b) = a← b.

Corollary 4.2. If 〈A;∨,∧,→,←,⊥,�〉 ∈ DblH and a, b ∈ A then a →
b = a→H b and a←H b = a← b.

Proof. For a, b ∈ A, (a→ b) ∧ (a→H b) = [(a ∧ (a→H b))→ b)] ∧ (a→H

b) = (a ∧ b → b) ∧ (a →H b) = � ∧ (a →H b) = a →H b, and, similarly,
(a ← b) ∨ (a ←H b) = [(a ∨ (a ←H b)) ← b)] ∨ (a ←H b) = (a ∨ b ←
b) ∨ (a←H b) = ⊥ ∨ (a←H b) = a←H b. Now we apply Lemma 4.1.

Definition 4.3. [15] A logic L defined over a language L is said to be
complete with respect to a class of algebras K of the same type if it verifies
the following condition: For all Γ ∪ {φ} ⊆ FmL,Γ �L φ if and only if

hΓ ⊆ {�} implies hφ = � for all h ∈ Hom(FmL,A) and all A ∈ K,

where Hom(FmL,A) represents the set of the homomorphisms from the
formula algebra FmL into A.

We are going to prove that the semi Heyting–Brouwer logic SHB is com-
plete with respect to the variety DblSH.

Since SHB is an implicative logic with respect to the binary connective
→H , by Theorem 3.7, we have the next result using [15, Theorem 7.1, p. 222].

Lemma 4.4. The SHB logic is complete with respect to the class Alg∗SHB
in the sense of Definition 4.3.

In order to prove that the logic SHB is complete with respect to the
variety DblSH of double semi-Heyting algebras, by Lemma 4.4, it is enough
to prove that Alg∗SHB = DblSH. We need first the following lemma.

Lemma 4.5. If A ∈ DblSH and a, b, c ∈ A then the following conditions
hold:

(a) ((a←H b)←H ((b←H a)←H ((a← c)←H (b← c))))→H ⊥ = �
(b) ((a←H b)←H ((b←H a)←H ((c← b)←H (c← a))))→H ⊥ = �
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Proof. Observe that
(a←H b) ∨ (b←H a) ∨ ((a← c)←H (b← c))

= (a←H b) ∨ (b←H a) ∨ (([a ∨ (a←H b)]← c)←H (b← c))
= (a←H b) ∨ (b←H a) ∨ (((a ∨ b)← c)←H (b← c))
= (a←H b) ∨ (b←H a) ∨ (((a ∨ b)← c)←H ([b ∨ (b←H a)]← c))
= (a←H b) ∨ (b←H a) ∨ (((a ∨ b)← c)←H ((b ∨ a)← c))
= (a←H b) ∨ (b←H a) ∨ (((a ∨ b)← c)←H ((a ∨ b)← c))
= (a←H b) ∨ (b←H a) ∨ ⊥
= (a←H b) ∨ (b←H a).

Consequently, ((a← c)←H (b← c)) ≤ (a←H b)∨ (b←H a). By Lemma
4.1, the condition (dR) for the connective ←H holds. So (b ←H a) ←H

((a← c)←H (b← c)) ≤ (a←H b). Therefore

(a) (a←H b)←H [(b←H a)←H ((a← c)←H (b← c))] = ⊥.
Item (b) can be proved in a similar way.

So we have the following theorem.

Theorem 4.6. Alg∗SHB = DblSH.

Proof. For A = 〈A;∨,∧,→,←,⊥,�〉 ∈ DblSH, consider Γ∪ {φ} ⊆ FmL

and h ∈ Hom(FmL,A) such that Γ �SHB φ and hΓ ⊆ {�}. We are going to
prove that hφ = � by induction on the proof of the formula φ.

If φ is an axiom of (S1) to (S9), (S12) or (S13) then hφ = � [3,4]. If
φ is either the axiom (S14) or (S15) we also have hφ = � by Lemma 4.5.
The same conclusion can be obtained if φ is the axiom (S10), (S11) or from
(S16) to (S20) by using conditions (dSH1) to (dSH4) of the definition of a
DblSH-algebra [17].

Suppose now that there exists ψ ∈ FmL such that Γ �SHB ψ and Γ �SHB
ψ →H φ. By inductive hypothesis, � = h(ψ →H φ) = h(ψ) →H h(φ) =
� →H h(φ) = h(φ). Consequently, we have (LALG1).

Condition (LALG2) is immediate, since if a → b = � then a ≤ b. Thus
A ∈ Alg∗SHB.

Consider now A = 〈A;∨,∧,→,←,⊥,�〉 ∈ Alg∗SHB. Let a, b, c ∈ A
and h ∈ Hom(FmL,A) such that h(x) = a, h(y) = b and h(z) = c with
x, y, z ∈ V ar. By axioms (S1) to (S9), (S12), (S13) we have that A =
〈A;∨,∧,→,⊥,�〉 ∈ SH [3,4]. Besides, by axioms (S14), (S15), (S10), (S11)
and (S16) to (S20) the identities (dSH1) to (dSH4) hold for any a, b, c. Thus
A = 〈A;∨,∧,→,←,⊥,�〉 ∈ DblSH.

We are now ready to prove the following theorem.
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Theorem 4.7. The SHB logic is complete with respect to the class DblSH.

The following lemma proves that in SHB, (sHB-MP) implies (MP). It
also proves the inference rule (r) for the logic SHB.

Lemma 4.8. In SHB,
(a) Γ �SHB φ and Γ �SHB φ→ γ imply Γ �SHB γ.

(b) If we define for α ∈ FmL the operations ¬α = α → ⊥ and � α =
α← � we have that Γ �SHB φ yields Γ �SHB ¬(� φ).

Proof. Let us check condition (a).

1. Γ �SHB φ by hypothesis.

2. Γ �SHB φ→ γ by hypothesis.

3. Γ, φ, φ→ γ �SHB φ ∧ (φ→ γ) by Lemma 3.2 (g).

4. Γ �SHB φ→H ((φ→ γ)→H (φ ∧ (φ→ γ))) by Theorem 3.3.

5. Γ �SHB φ ∧ (φ→ γ) by sHB-MP in 1, 2 and 4.

6. Γ �SHB [φ ∧ (φ→ γ)]→H (φ ∧ γ) by Lemma 3.1 (c).

7. Γ �SHB φ ∧ γ by sHB-MP in 5 and 6.

8. Γ �SHB (φ ∧ γ)→H γ by Lemma 3.1 (c).

9. Γ �SHB γ by sHB-MP in 7 and 8.

Now we prove (b).

1. Γ, φ �SHB � →H (φ ∨ �) by (S2).

2. Γ, φ �SHB [� →H (φ ∨ �)]→H [(α←H �)→H ⊥] by (S10).

3. Γ, φ �SHB (α←H �)→H ⊥ by sHB-MP in 1 and 2.

4. Γ �SHB φ→H [(α←H �)→H ⊥] by Theorem 3.3.

5. Γ �SHB φ by hypothesis.

6. Γ �SHB (α←H �)→H ⊥ by sHB-MP in 4 and 5.

Let A ∈ DblSH and a ∈ A. Since (a←H �)→H ⊥ = (a← (a∨�))→H

⊥ = (a ← �) →H ⊥ = (a ← �) → [(a ← �) ∧ ⊥] = (a ← �) → ⊥, by
Theorem 4.7.

7. Γ �SHB [(α←H �)→H ⊥]→H [(α← �)→ ⊥].

8. Γ �SHB (α← �)→ ⊥ by sHB-MP in 6 and 7.

Following [4], the following example shows that Modus Ponens does not
imply sHB-MP. Consider the logic D defined by axioms (S1) to (S20), with
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MP as its only inference rule. We next present an algebraic model for the
logic D that is not a double semi-Heyting algebra.

Consider the algebra A with universe {⊥,�} and the operations ∧,∨,→
,← defined by:

∧ ⊥ �
⊥ � �
� � �

∨ ⊥ �
⊥ ⊥ �
� � �

→ ⊥ �
⊥ ⊥ �
� ⊥ �

← ⊥ �
⊥ ⊥ �
� ⊥ �

This algebra A satisfies x →H y = x → (x ∧ y) ≈ � for any election
of x and y, and all the axioms except (S6) are of that form. Therefore, A
is a model for the logic D. The rule MP is satisfied and A is not a double
semi-Heyting algebra.

5. Relationships with the Logics HB, I and SI

In this section we prove that the logic HB is, up to equivalences by transla-
tions (see Definition 5.3), an axiomatic extension of the logic SHB. At the
end of this section we check that the propositional calculi of intuitionistic
logic I and semi-intuitionistic logic SI turn out to be fragments of SHB.

Let us recall the following definitions [14].

Definition 5.1. Given two languages L and L′, a function h : FmL →
FmL′ is a translation, where FmL and FmL′ are built using the same set
of variables, if satisfies the following conditions:

1. If xi is a propositional variable in L, then h(xi) = yi where yi is a
propositional variable in L’;

2. Let f be a k-place connective of L, for any subset {x1, . . . , xk} ⊆ X.
To the formula f(x1, . . . , xk) we assign a formula βf of FmL′ , where βf

contains only variables from {x1, . . . , xk}. Then

h(f(α1, . . . , αk)) = βf (h(α1), . . . , h(αk))

Definition 5.2. If A and B are logics in the languages L and L′, and h is a
translation from L into L′, then the translation is sound if h(φ) is provable
in B whenever φ is provable in A. That is,

If �A φ then �B h(φ).

Furthermore, we assume that in the logics there is a connective ↔ such
that the following schematic axioms and inference rules governing this con-
nective are valid:
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(T1) � φ↔ φ,

(T2) φ↔ ψ � ψ ↔ φ,

(T3) φ↔ ψ,ψ ↔ γ � φ↔ γ,

(T4) α1 ↔ β1, . . . , αk ↔ βk � f(α1, . . . , αk) ↔ f(β1, . . . , βk), where f is
any k-place connective in the system.

Definition 5.3. [14] We say that the logics A and B are translationally
equivalent if there are translations h1 and h2 so that

1. Both h1 and h2 are sound;

2. For any formula φ in FmL,�A φ↔ h2(h1(φ)),

3. For any formula φ in FmL′ ,�B φ↔ h1(h2(φ)).

For the rest of this sections, we fix the languages L = {∨,∧,→,←,⊥,�}
and L′ = {∨,∧,→, −̇,¬,�}. For α, β ∈ FmL or FmL′ , we write α↔H β by
(α→H β)∧(β →H α). We check that this connective satisfies the conditions
(T1) to (T4) in the logics SHB and HB.

In [15] the author proves the following result:

Theorem 5.4. HB is complete with respect to the variety DblH, that is,
for Γ ∪ {φ} ⊆ FmL′ ,Γ �HB φ if and only if hΓ ⊆ {�} implies hφ =
� for all h ∈ Hom(FmL′ ,A) and all A ∈ DblH.

Observe that if A ∈ DblH and a →H b = � with a, b ∈ A then a ≤ b.
So it is easy to prove, by Theorem 5.4, the following result.

Lemma 5.5. In the logic HB the following conditions hold:

(a) �HB φ↔H φ,

(b) φ↔H ψ �HB ψ ↔H φ,

(c) φ↔H ψ,ψ ↔H γ �HB φ↔H γ,

(d) φ↔H ψ �HB (¬φ)↔H (¬ψ),

(e) φ↔H ψ �HB (� φ)↔H (� ψ),

(f) φ↔H ψ, α↔H β �HB (φ ∨ α)↔H (ψ ∨ β),

(g) φ↔H ψ, α↔H β �HB (φ ∧ α)↔H (ψ ∧ β),

(h) φ↔H ψ, α↔H β �HB (φ→ α)↔H (ψ → β),

(i) φ↔H ψ, α↔H β �HB (α−̇φ)↔H (β−̇ψ).

In a similar way, by Theorem 4.7 we have the following result.

Lemma 5.6. In the logic SHB the following statements hold:
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(a) �SHB φ↔H φ,

(b) φ↔H ψ �SHB ψ ↔H φ,

(c) φ↔H ψ,ψ ↔H γ �SHB φ↔H γ,

(d) φ↔H ψ �SHB ⊥ ↔H ⊥,

(e) φ↔H ψ �SHB � ↔H �,

(f) φ↔H ψ, α↔H β �SHB (φ ∨ α)↔H (ψ ∨ β),

(g) φ↔H ψ, α↔H β �SHB (φ ∧ α)↔H (ψ ∧ β),

(h) φ↔H ψ, α↔H β �SHB (φ→ α)↔H (ψ → β),

(i) φ↔H ψ, α↔H β �SHB (α← φ)↔H (β ← ψ).

In Lemmas 5.5 and 5.6 we checked conditions (T1) to (T4) for the logics
HB and SHB. Next, we will introduce an axiomatic extension that will be
equivalent by translations to the Heyting–Brouwer Logic.

Definition 5.7. Let A be the axiomatic extension of SHB defined by the
axioms:

(A1) (α→H β)→H (α→ β),

(A2) (α← β)→H (α←H β)

By Theorem 3.7, A is implicative with respect to the connective →H .
Hence, by [15, Theorem 7.1, p. 222] we have that:

Lemma 5.8. The logic A is complete with respect to the class Alg∗A in the
sense of definition 4.3.

In what follows we define translations between the logics A and HB in
order to verify that they are equivalent by translations.

Lemma 5.9. Consider the translation scheme h̃1 : FmL → FmL′ in the
logics A and HB defined by

• h̃1(x) = x if x is a variable,

• h̃1(α ∧ β) = h̃1(α) ∧ h̃1(β),

• h̃1(α ∨ β) = h̃1(α) ∨ h̃1(β),

• h̃1(α→ β) = h̃1(α)→ h̃1(β),

• h̃1(α← β) = h̃1(β)−̇h̃1(α),

• h̃1(�) = α→ α,

• h̃1(⊥) = α ∧ ¬α.
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Then the translation h1 is sound.

Proof. We want to check that for φ ∈ FmL, if �A φ then �HB h1(φ).
Assume that φ is an axiom. Observe that the assertion is trivial if φ is (S1),
(S2), (S3), (S4), (S5), (S8), (S9), (S10), (S11), (S12) or (S13). Let us prove
the following sentences.

By Theorem 5.4,

1. �HB α→ α and

2. �HB (β ∧ ¬β)→H h1(α).

From the definition of h1,

3. �HB h1(�) and

4. �HB h1(⊥ →H α).

As in Lemma 4.5, (a ←H b) ←H [(b ←H a) ←H ((a ← c) ←H (b ←
c))] = ⊥. for a, b, c ∈ A and A ∈ DblH. So [(a ←H b) ←H [(b ←H

a)←H ((a← c)←H (b← c))]]→H ⊥ = �.

By completeness between DblH and HB [17],

5. �HB ((h1α ←H h1β) ←H ((h1β ←H h1α) ←H (h1(α ← γ) ←H

h1(β ← γ))))→H (ψ ∧ ¬ψ).

6. �HB h1(((α←H β)←H ((β ←H α)←H ((α← γ)←H (β ← γ))))→H

⊥) by the definition of h1.

Similarly,

7. �HB h1(((α←H β)←H ((β ←H α)←H ((γ ← β)←H (γ ← α))))→H

⊥).

From conditions (dSH2) and (dSH3), by Theorem 5.4, it follows that:

8. �HB h1(((α ∨ (β ← γ))←H (α ∨ ((α ∨ β)← (α ∨ γ))))→H ⊥).

9. �HB h1(((α ∨ ((α ∨ β)← (α ∨ γ)))←H (α ∨ (β ← γ)))→H ⊥).

10. �HB h1(((α ∨ (α← β))←H (α ∨ β))→H ⊥).

11. �HB h1(((α ∨ β)←H (α ∨ (α← β)))→H ⊥).

In a similar way, by condition (dSH4), we have that

12. �HB h1((α← α)→H ⊥).

By conditions 3, 4, 6, 7, 8, 9, 10, 11, 12 we have that if φ is (S6),
(S7), (S14), (S15), (S16), (S17), (S18), (S19) or (S20) then �HB h1(φ).
If φ is (A1) or (A2), by Corollary 4.2 and completeness of HB, it is
immediate. Suppose now that there exists γ ∈ FmL such that Γ �A β
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and Γ �A β →H φ. Then, by inductive hypothesis, h1(Γ) �HB h1(β)
and h1(Γ) �HB h1(β →H φ). Hence h1(Γ) �HB h1(β) →H h1(φ) and,
thus, by (sHB-MP), h1(Γ) �HB h1(φ).

We will need the following result in order to prove the soundness of the
function defined in Lemma 5.11.

Lemma 5.10. If A ∈ Alg∗A and a, b, c ∈ A then

(a) (a→ b)→ [(b→ ⊥)→ (a→ ⊥)] = �,

(b) (b← a)→ ((a→ b)← �) = �,

(c) (c← (b← a))→ ((b ∨ c)← a) = �,

(d) [(b← a)→ ⊥]→ [(a→ b)] = �.

Proof.

(a) Recall that, by Lemma 4.1, →H is a Heyting implication. Since

a ∧ (a→ b) ∧ (b→ ⊥) = a ∧ b ∧ (b→ ⊥) = a ∧ b ∧ ⊥
it follows that (a → b) ∧ (b → ⊥) ≤ a →H ⊥. Consequently, a → b ≤
(b → ⊥) →H (a →H ⊥) and, thus, (a → b) →H [(b → ⊥) →H (a →H

⊥)] = �.
Since �A (α →H β) →H (α → β), by Lemma 5.8, a →H b ≤ a → b.
Hence, by Lemma 4.1,

a→H b = a→ b. (I)

Then (a→ b)→ [(b→ ⊥)→ (a→ ⊥)] = �.
(b) Observe that a ∧ [((a→ b)← �) ∨ b] = [a ∧ ((a→ b)← �)] ∨ [a ∧ b] =

[a ∧ ((a → b) ← �)] ∨ [a ∧ (a → b)] = a ∧ [((a → b) ← �) ∨ (a →
b)] = a ∧ ((a→ b) ∨ �) = a ∧ � = a. Then a ≤ ((a→ b)← �) ∨ b. By
condition (dR), b←H a ≤ (a→ b)← �, and consequently,

[b←H a]→H [(a→ b)← �] = �.
Since �A (α← β)→H (α←H β) (axiom A2), by Lemma 5.8, we have
that a← b ≤ a←H b. Thus, by Lemma 4.1,

a←H b = a← b. (II)

So, from (I) and (II), [b← a]→ [(a→ b)← �] = �
(c) Since (c ← (b ← a)) ∨ ((b ∨ c) ← a) = ((c ∨ ((b ∨ c) ← a)) ← (b ←

a)) ∨ ((b ∨ c) ← a) = ((c ∨ (b ← a)) ← (b ← a)) ∨ ((b ∨ c) ← a) =
((c ∨ (b← a))←H (b← a)) ∨ ((b ∨ c)← a) by (I) and (II), then (c←
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(b← a))∨ ((b∨ c)← a) = ((c∨ (b← a))←H (b← a))∨ ((b∨ c)← a) =
⊥∨((b∨c)← a) = (b∨c)← a. So (c← (b← a))→H ((b∨c)← a) = �.
Therefore (c← (b← a))→ ((b ∨ c)← a) = �.

(d) By axiom (S11), �A [(β ←H α) →H γ] →H [α →H (β ∨ γ)]. Then, by
Lemma 5.8 we have that [(b←H a)→H ⊥]→H [a→H (b∨⊥)] = � and
consequently, [(b ← a) →H ⊥] →H [(a →H b)] = �. The conclusion
follows now from (I) y (II).

Lemma 5.11. Let the translation h̃2 : FmL′ → FmL in the logics HB and
A be defined by

• h̃2(x) = x if x is a variable,

• h̃2(α ∧ β) = h̃2(α) ∧ h̃2(β),

• h̃2(α ∨ β) = h̃2(α) ∨ h̃2(β),

• h̃2(α→ β) = h̃2(α)→ h̃2(β),

• h̃2(α−̇β) = h̃2(β)← h̃2(α),

• h̃2(¬α) = α→ ⊥,

• h̃2(� α) = α← �.

Then the translation h2 is sound.

Proof. Suppose that φ is an axiom. We want to prove that �A h2(φ). This
is clear if φ is one of the axioms (B1) to (B9), being that the connectives
¬,� −̇ do not appear in φ.

1. �A ((h2(β) ∨ (h2(β)← h2(α)))←H (h2(β) ∨ h2(α)))→H ⊥ by (S18).

2. �A (((h2(β) ∨ (h2(β) ← h2(α))) ←H (h2(β) ∨ h2(α))) →H ⊥) →H

((h2(β) ∨ h2(α))→H (h2(β) ∨ (h2(β)← h2(α)))) by Lemma 3.2 (j).

3. �A (h2(β) ∨ h2(α)) →H (h2(β) ∨ (h2(β) ← h2(α))) by sHB-MP in 1
and 2.

4. �A h2(α→ (β ∨ (α−̇β))) by definition of h2.

From Lemmas 5.8 and 5.10,

5. �A (h2(α)→ h2(β))→ [(h2(β)→ ⊥)→ (h2(α)→ ⊥)].

6. �A h2((α→ β)→ (¬β → ¬α)) by definition of h2.

In a similar way, the following conditions can be checked:

7. �A h2((α−̇β)→ (� (α→ β))),

8. �A h2((γ−̇(α−̇β))→ (α−̇(γ ∨ β))) and
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9. �A h2((¬(α−̇β))→ (α→ β)).

By completeness it is immediate that

10. �A [h2(α)→ (h2(γ)← h2(γ))]→ [h2(α)→ ⊥].

11. �A h2((α→ (γ−̇γ))→ (¬α)).

Similarly,

12. �A h2((¬α)→ (α→ (γ−̇γ))).
As in the items 11 and 12 we have that

13. �A h2(((γ → γ)−̇α)→ (� α)) and

14. �A h2((� α)→ ((γ → γ)−̇α)).

By conditions 4, 6, 7, 8, 9, 11, 12, 13 and 14 we have that if φ is (B10),
(B11), (B12), (B13), (B14), (B15), (B16), (B17) or (B18) then �A h2(φ).

Suppose now that there exists γ ∈ FmL′ such that Γ �HB β and Γ �HB
β →H φ. Then, by inductive hypothesis, h2(Γ) �A h2(β) and h2(Γ) �A
h2(β →H φ). Hence h2(Γ) �A h2(β)→H h2(φ) and, consequently, by (sHB-
MP), h2(Γ) �A h2(φ).

If φ = ¬(� ψ) and Γ �HB ψ then, by inductive hypothesis, h2(Γ) �A
h2(ψ). By Lema 4.8, h2(Γ) �A h2(¬(� ψ)).

The following lemma follows immediately from Theorem 4.7.

Corollary 5.12. Let Γ∪{α, β} ⊆ FmL. Then the following conditions are
equivalent:

(a) Γ �SHB α↔H β,

(b) Γ �SHB α→H β y Γ �SHB β →H α.

Theorem 5.13. The logics A and HB are translationally equivalent.

Proof. Consider the translations h1, h2 associated to the functions h̃1 and
h̃2 introduced in Lemmas 5.9 and 5.11.

For a given φ ∈ FmL, let us prove that

�A φ↔H h2(h1(φ)) (III)

by induction on the construction of φ. If φ = x, with x ∈ V ar it is immediate
by Lemma 5.6. Suppose that φ = φ1 ∨ φ2 with φ1, φ2 ∈ FmL.

1. �A φ1 ↔H h2(h1(φ1)) by inductive hypothesis.

2. �A φ2 ↔H h2(h1(φ2)) by inductive hypothesis.

3. φ1 ↔H h2(h1(φ1)), φ2 ↔H h2(h1(φ2)) �A (φ1 ∨ φ2)↔H
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(h2(h1(φ1)) ∨ h2(h1(φ2))) by Lemma 5.6.

4. �A (φ1 ↔H h2(h1(φ1))) →H [(φ2 ↔H h2(h1(φ2))) →H ((φ1 ∨ φ2) ↔H

(h2(h1(φ1)) ∨ h2(h1(φ2))))] by Theorem 3.3.

5. �A (φ1 ∨ φ2)↔H (h2(h1(φ1)) ∨ h2(h1(φ2))) by sHB-MP in 1, 2 y 4.

6. �A (φ1 ∨ φ2)↔H h2(h1(φ1 ∨ φ2)) by definition of h1 and h2.

The cases in which φ = φ1 → φ2, φ = φ1 ← φ2 or φ = φ1∧φ2 are similar.
Assume now that φ = ⊥. Let x ∈ V ar.

1. �A ⊥ →H (x ∧ (x→ ⊥)) by (S7).

2. �A (x ∧ (x→ ⊥))→H (x ∧ ⊥) by Lemma 3.1 (c).

3. �A (x ∧ ⊥)→H ⊥ by Lemma 3.1 (c).

4. �A (x ∧ (x→ ⊥))→H ⊥ by Lemma 3.1 (c) and sHB-MP in 2 and 3.

5. �A ⊥ ↔H (x ∧ (x→ ⊥)) by Corollary 5.12 in 1 and 4.

6. �A ⊥ ↔H h2(h1(⊥)) by definition of h1 and h2.

In order to prove condition (III) it is enough to consider φ = �. By com-
pleteness between DblH and HB [17],

1. �A � ↔H (x→ x).

2. �A � ↔H h2(h1(�)) by definition of h1 and h2.

Let us see now that

�HB ψ ↔H h1(h2(ψ)) (IV)

for ψ ∈ FmL′ . The cases in which ψ = x, with x ∈ V ar, ψ = ψ1 ∨ ψ2, ψ =
ψ1 → ψ2, ψ = ψ1 ← ψ2 and ψ = ψ1∧ψ2 with ψ1, ψ2 ∈ FmL′ can be checked
as before. It remains to be seen that

�HB ¬α↔H h1(h2(¬α)) and �HB� α↔H h1(h2(� α))

with α ∈ FmL′ .

1. �HB α↔H h1(h2(α)) by inductive hypothesis.

By completeness between DblH and HB [17],

2. �HB ¬α→H (α→ (x ∧ ¬x)) and

3. �HB [α→ (x ∧ ¬x)]→H [h1(h2(α))→ (x ∧ ¬x)] .

4. �HB (¬α)→H [h1(h2(α))→ (x ∧ ¬x)] by (S1) and sHB-MP in 2 and 3.

In a similar way,
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5. �HB [h1(h2(α))→ (x ∧ ¬x)]→H (¬α).

6. �HB (¬α)↔H [h1(h2(α))→ (x ∧ ¬x)] by Corollary 5.12.

7. �HB (¬α)↔H [h1(h2(¬α))] by the definition of h2.

In a similar way as item 7 it can be proved that :

8. �HB (� α)↔H h1(h2(� α)).

Theorem 5.13 allows us to state that the Heyting–Brouwer logic is, up
to equivalence by translations, an axiomatic extension of the semi Heyting–
Brouwer logic.

In [3] we introduced a semi-intuitionistic logic which is the algebraic
counterpart of the Sankappanavar’s semi-Heyting algebras [19] and it has
the intuitionistic propositional calculus [16] as an axiomatic extension. In
[4] it is proved that the logic defined by the axioms (S1), (S2), (S3), (S4),
(S5), (S6), (S7), (S8), (S9), (S12) and (S13) is equivalent by translations to
the one introduced in [3]. Thus SI (and consequently also I [3]) turns out
to be a fragment of the logic SHB.
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