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Abstract

We prove that the positive fragment of first-order intuitionistic logic in the lan-
guage with two individual variables and a single monadic predicate letter, without
functional symbols, constants, and equality, is undecidable. This holds true regard-
less of whether we consider semantics with expanding or constant domains. We then
generalise this result to intervals [QBL,QKC] and [QBL,QFL], where QKC is
the logic of the weak law of the excluded middle and QBL and QFL are first-order
counterparts of Visser’s basic and formal logics, respectively. We also show that,
for most “natural” first-order modal logics, the two-variable fragment with a single
monadic predicate letter, without functional symbols, constants, and equality, is un-
decidable, regardless of whether we consider semantics with expanding or constant
domains. These include all sublogics of QKTB, QGL, and QGrz—among them,
QK, QT, QKB, QD, QK4, and QS4.

1 Introduction

While the (first-order) quantified classical logic QCl is undecidable [6], it contains a
number of rather expressive decidable fragments [3]. This has long stimulated interest
in drawing the borderline between decidable and undecidable fragments of QCl using a
variety of criteria, in isolation or in combination, imposed on the language. One such
criterion is the number and arity of predicate letters allowed in the language: while the
monadic fragment is decidable [1], the fragment containing a single binary letter is not,
as follows from [9]. Another criterion is the number of individual variables allowed in
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the language: while the two-variable fragment is decidable [17, 10], the three-variable
fragment is not [24].

Similar questions have long been of interest in (first-order) quantified intuitionistic and
modal logics. For languages without restrictions on the number of individual variables,
Kripke [14] has shown that all “natural” quantified modal logics with two monadic pred-
icate letters are undecidable, while Maslov, Mints, and Orevkov [15] and, independently,
Gabbay [8] have shown that quantified intuitionistic logic with a single monadic predicate
letter is undecidable.

The question of where the borderline lies in the intuitionistic and modal case when
it comes to the number of individual variables allowed in the language has recently been
investigated by Kontchakov, Kurucz, and Zakharyschev in [12]. It is shown in [12] that
two-variable fragments of quantified intuitionistic and all “natural” modal logics are un-
decidable. Moreover, it is established in [12] that, to obtain undecidability of two-variable
fragments, in the intuitionistic case, it suffices to use two binary and infinitely many
monadic predicate letters, while in the modal case, it suffices to use only (infinitely many)
monadic predicate letters.

Two questions were raised in [12] concerning the languages combining restrictions
on the number of individual variables and predicate letters: first, how many monadic
predicate letters are needed to obtain undecidability of the two-variable fragments in the
modal case, and second, whether it suffices to use monadic predicate letters to obtain
undecidability of the two-variable fragment in the intuitionistic case.

In the present paper, we address both of the aforementioned questions. First, we
show that for two-variable fragments of most modal logics considered in [12], it suffices to
use a single monadic predicate letter to obtain undecidability. Second, we show that the
positive fragment of quantified intuitionistic logic QInt is undecidable in the language
with two variables and a single monadic predicate letter. We also show that the latter
result holds true for all logics in intervals [QBL,QKC] and [QBL,QFL], where QKC

is the logic of the weak law of the excluded middle and QBL and QFL are first-order
counterparts of Visser’s basic and formal logics, respectively.

The paper is structured as follows. In section 2, we prove undecidability results about
modal logics. In section 3, we do likewise for the intuitionistic and related logics. We con-
clude, in section 4, by discussing how our results can be applied in settings not considered
in this paper and pointing out some open questions following from our work.

2 Modal logics

In this section, we prove undecidability results about two-variable fragments of quanti-
fied modal logics with a single monadic predicate letter. This is essentially achieved by
adapting to the first-order language of Halpern’s technique [11] for establishing complexity
results for single-variable fragments of propositional modal logics.
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2.1 Syntax and semantics

A (first-order) quantified modal language contains countably many individual variables;
countably many predicate letters of every arity; Boolean connectives ∧ and ¬; modal
connective ✷; and a quantifier ∀. Formulas as well as the symbols ∨, →, ∃, and ✸ are
defined in the usual way. We also use the following abbreviations: ✷

+ϕ = ϕ ∧ ✷ϕ and
✸

+ϕ = ϕ ∨✸ϕ.
A Kripke frame is a tuple F = 〈W,R〉, where W is a non-empty set (of worlds)

and R is a binary (accessibility) relation on W . A predicate Kripke frame is a tuple
FD = 〈W,R,D〉, where 〈W,R〉 is a Kripke frame and D is a function from W into a set
of non-empty subsets of some set (the domain of FD), satisfying the condition that wRw′

implies D(w) ⊆ D(w′). We call the set D(w) the domain of w. We will also be interested
in predicate frames satisfying the condition that wRw′ implies D(w) = D(w′); we refer
to such frames as frames with constant domains.

A Kripke model is a tuple M = 〈W,R,D, I〉, where 〈W,R,D〉 is a predicate Kripke
frame and I is a function assigning to a world w ∈ W and an n-ary predicate letter P an
n-ary relation I(w, P ) on D(w). We refer to I as the interpretation of predicate letters
with respect to worlds in W .

An assignment in a model is a function g associating with every individual variable x
an element of the domain of the underlying frame.

The truth of a formula ϕ in a world w of a model M under an assignment g is
inductively defined as follows:

• M, w |=g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ I(w, P );

• M, w |=g ϕ1 ∧ ϕ2 if M, w |=g ϕ1 and M, w |=g ϕ2;

• M, w |=g ¬ϕ1 if M, w 6|=g ϕ1;

• M, w |=g
✷ϕ1 if wRw′ implies M, w′ |=g ϕ1, for every w

′ ∈ W ;

• M, w |=g ∀xϕ1 if M, w |=g′ ϕ1, for every assignment g′ such that g′ differs from g
in at most the value of x and such that g′(x) ∈ D(w).

Note that, given a Kripke model M = 〈W,R,D, I〉 and w ∈ W , the tuple
Mw = 〈Dw, Iw〉, where Dw = D(w) and Iw(P ) = I(w, P ), is a classical predicate model.

We say that ϕ is true at world w of model M and write M, w |= ϕ if M, w |=g ϕ holds
for every g assigning to free variables of ϕ elements of D(w). We say that ϕ is true in M

and write M |= ϕ if M, w |= ϕ holds for every world w of M. We say that ϕ is true in
predicate frame FD and write FD |= ϕ if ϕ is true in every model based on FD. We say
that ϕ is true in frame F and write F |= ϕ if ϕ is true in every predicate frame of the form
FD. Finally, we say that a formula is true in a class of frames if it is true in every frame
from the class.

Let M = 〈W,R,D, I〉 be a model, w ∈ W , and a1, . . . , an ∈ D(w). Let ϕ(x1, . . . , xn)
be a formula whose free variables are among x1, . . . , xn. We write M, w |= ϕ[a1, . . . , an]
to mean M, w |=g ϕ(x1, . . . , xn), where g(x1) = a1, . . . , g(xn) = an.
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Given a propositional normal modal logic L, let QL be QCl ⊕ L where ⊕ is the
operation of closure under (predicate) substitution, modus ponens, generalization, and
necessitation. Of particular interest to us are the quantified counterparts QGL, QGrz,
and QKTB of propositinal logics GL, QGrz, and KTB. We recall that GL is the logic
of Kripke frames whose accessibility relation is irreflexive, transitive, and contains no
infinite ascending chains, while Grz is the logic of frames whose accessibility relation
is reflexive, transitive, antisymmetric, and does not contain infinite ascending chains of
pairwise distinct worlds (in other words, the accessibility relation on the frames for Grz

is the reflexive closure of the one on the frames for GL). We also recall that QGL and
QGrz are Kripke-incomplete [16, 20], but are valid on all the frames for GL and Grz,
respectively. Thus, for technical reasons—namely, to avoid being distracted with Kripke-
completeness—we define logics QGLsem and QGrzsem as the sets of quantified formulas
true in all the frames of GL and Grz, respectively. What is important for us is that
QGL ⊆ QGLsem and QGrz ⊆ QGrzsem. Lastly, we recall that KTB is the logic of
Kripke frames whose accessibility relation is reflexive and symmetric and that QKTB is
complete with respect to this class of frames.

Given a logic L and a closed formula ϕ in the language of L, we say that ϕ is L-
satisfiable if ¬ϕ 6∈ L. If L is complete with respect to a class C of frames, L-satisfiability
of ϕ amounts to ϕ being true at a world of a model based on a frame in C.

We now turn to addressing the question, raised in [12], of how many monadic predicate
letters are needed in the language of quantified modal logics to obtain undecidability of
their two-variable fragments. Using suitable adaptations of a technique originally pro-
posed in [11], and further refined in [4], [22], and [23], for propositinal languages, we show
that all sublogics of QGL, QGrz, and QKTB are undecidable in the language with a
single monadic predicate letter.

2.2 Sublogics of QGL and QGrz

In this section, we prove that all sublogics ofQGL andQGrz are undecidable in languages
with two individual variables and a single monadic predicate letter.

In the proof, we rely on the undecidability result by Kontchakov, Kurucz, and Za-
kharyaschev [12] concerning first-order modal logics with two variables: we use their for-
mulas encoding an undecidable tiling problem as a basis for our reduction. Even thought
their formulas are not suitable as are for our purposes, they can be readily modified, as
explained in the proof of Theorem 2.6 below, to be used in our argument.

We begin with a description of a satisfiability-preserving transformation of formulas
that we subsequently, in the proof of Theorem 2.6, apply to a slightly modified version of
the formulas obtained by Kontchakov, Kurucz, and Zakharyaschev [12].

Let ϕ be a (closed) formula containing monadic predicate letters P1, . . . , Pn. Let Pn+1

be a monadic predicate letter distinct from P1, . . . , Pn and let B = ∀xPn+1(x). Define an
embedding ·′ as follows:
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Pi(x)
′ = Pi(x), where i ∈ {1, . . . , n};

(¬φ)′ = ¬φ′;
(φ ∧ ψ)′ = φ′ ∧ ψ′;
(∀xφ)′ = ∀xφ′;
(✷φ)′ = ✷(B → φ′).

Lemma 2.1. Let L ∈ {QK,QGLsem,QGrzsem}. Then, ϕ is L-satisfiable if, and only

if, B ∧ ϕ′ is L-satisfiable.

Proof. Assume that M, w0 |= ϕ, for some M based on a frame for L and some w0. Let
M′ be a model that extends M by setting I(w, Pn+1) = D(w), for every w ∈ W . Then,
M′, w0 |= B ∧ϕ′. Conversely, assume that M, w0 |= B ∧ϕ′, for some M based on a frame
for L. Let M′ be a submodel of M with W ′ = {w : M, w |= B}. Then, M′, w0 |= ϕ.
Note that, for every logic L in the statement of the Lemma, M′ is based on a frame for L. ✷

Remark 2.2. In view of the proof of Lemma 2.1, if B ∧ϕ′ is satisfied in a model M, we

can assume, without a loss of generality, that B is true in M.

Now, given a monadic predicate letter P , we inductively define the following sequence
of formulas:

δ1(x) = P (x) ∧✸(¬P (x) ∧✸✷
+P (x));

δm+1(x) = P (x) ∧✸(¬P (x) ∧✸δm(x)).

Using formulas from this sequence, define, for every k ∈ {1, . . . , n+ 1}, the formula

αk(x) = δk(x) ∧ ¬δk+1(x) ∧✸✷
+¬P (x).

We now define models associated with formulas αk(x). For every k ∈ {1, . . . , n + 1},
let Fk = 〈Wk, Rk〉 be a Kripke frame where Wk = {w0

k, . . . , w
2k
k } ∪ {w∗

k} and Rk is the
transitive closure of the relation {〈wi

k, w
i+1
k 〉 : 0 6 i < 2k}∪ {〈w0

k, w
∗
k〉}. For every such k,

let Mk = 〈Wk, Rk, D, I〉 be a model with constant domains and let a be an individual in
the domain of every Mk (other than that, the relationship between the domains of Mks
is immaterial at this point). We say that Mk is a-suitable if

Mk, w |= P [a] ⇐⇒ w = w2i
k , for i ∈ {0, . . . , k}.

Lemma 2.3. Let a be an individual in the domain of the models M1, . . . ,Mn+1 and let

M1, . . . ,Mn+1 be a-suitable. Then,

Mk, w |= αm[a] ⇐⇒ k = m and w = w0
k.

Proof. Straightforward. ✷

Remark 2.4. Notice that the statement of Lemma 2.3 holds true if we replace the acces-

sibility relations in M1, . . . ,Mn+1 with their reflexive closures.
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Now, for every αk(x), where k ∈ {1, . . . , n+ 1}, define

βk(x) = ¬P (x) ∧✸αk(x).

Let ϕ∗ be the result of replacing in ϕ′ of Pk(x) with βk(x), for every k ∈ {1, . . . , n+ 1}.
Call a formula ψ containing only monadic predicate letters L-suitable if either ψ is

not L-satisfiable or ψ is satisfiable in a model M, based on a frame with constant do-
mains validating L, satisfying the downward inheritance property for monadic letters:
M |= ✸P (x) → P (x), for every monadic predicate letter P (we call such a model L-
suitable).

Lemma 2.5. Let L ∈ {QK,QGLsem,QGrzsem} and let ϕ be an L-suitable formula.

Then, B ∧ ϕ′ is L-satisfiable if, and only if, ∀x βn+1(x) ∧ ϕ
∗ is L-satisfiable.

Proof. The right-to-left direction follows from the closure of L under predicate substitu-
tion. For the other direction, suppose that B∧ϕ′ is QK-satisfiable. Let M = 〈W,R,D, I〉
be a model such that M, w0 |= B ∧ ϕ′, for some w0 ∈ W . In view of Remark 2.2, we may
assume, without a loss of generality, that M |= B.

For every w ∈ W and every frame Fk (1 6 k 6 n + 1), let Fw
k = 〈{w} ×Wk, R

w
k 〉 be

an isomorphic copy of Fk. For every w ∈ W and k ∈ {1, . . . , n+ 1}, add {w} ×Wk to W
to obtain the set W ∗. Define the relation R∗ on W ∗ as follows:

R∗ = R ∪
⋃

{

Rw
k ∪ {〈w, (w,w0

k)〉} : w ∈ W, 1 6 k 6 n + 1
}

.

Thus, for every w ∈ W , we make the roots of frames Fw
1 , . . . ,F

w
n+1 accessible from w.

Next, for every u ∈ W ∗ let

D∗(u) =

{

D(u), if u ∈ W,
D(w), if u ∈ {w} ×Wk.

Finally, for every u ∈ W ∗ and every a ∈ D∗(u), let

〈a〉 ∈ I∗(u, P ) ⇌ u = (w,w2i
k ), for some w ∈ W , k ∈ {1, . . . , n+1},

and i ∈ {0, . . . , k}; and M, w |= Pk[a].

Let M∗ = 〈W ∗, R∗, D∗, I∗〉. It immediately follows from Lemma 2.3 that, for every
w ∈ W , every a ∈ D(w), and every k ∈ {1, . . . , n+ 1},

M, w |= Pk[a] ⇐⇒ M∗, w |= βk[a].

We can then show that, for every w ∈ W , every subformula ψ(x1, . . . , xm) of ϕ, and every
a1, . . . , am ∈ D(w),

M, w |= ψ′[a1, . . . , am] ⇐⇒ M∗, w |= ψ∗[a1, . . . , am],

where ψ∗(x1, . . . , xm) is obtained by substituting β1(x), . . . , βn+1(x) for P1(x), . . . , Pn+1(x)
in ψ′(x1, . . . , xm).
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The proof proceeds by induction. We only consider the modal case, leaving the
rest to the reader. In this case, ψ′(x1, . . . , xm) = ✷(∀xPn+1(x) → χ′(x1, . . . , xm)) and
ψ∗(x1, . . . , xm) = ✷(∀x βn+1(x) → χ∗(x1, . . . , xm)). If M

∗, w 6|= ψ∗[a1, . . . , am], then there
exists w′ ∈ W ∗ with wR∗w′ such that M∗, w′ |= ∀x βn+1(x) and M∗, w′ 6|= χ∗[a1, . . . , am].
The condition M∗, w′ |= ∀x βn+1(x) guarantees that w′ ∈ W ; therefore, we may apply
the inductive hypothesis to conclude that M, w′ 6|= χ′[a1, . . . , am]. The other direction is
straightforward.

Thus, M∗, w0 |= ∀x βn+1(x) ∧ ϕ
∗, i. e., ∀x βn+1(x) ∧ ϕ

∗ is QK-satisfiable.
For QGLsem and QGrzsem, the proof is similar. The only difference is that, when

defining the model M∗, instead of R∗ mentioned above, we take as the accessibility rela-
tions its transitive, and its reflexive and transitive, closure, respectively. We only observe
that, for atomic formulas, the proof relies on L-suitability, for L ∈ {QGLsem,QGrzsem},
of ϕ and, hence, of B ∧ ϕ′: in the construction described above, we begin with an
L-suitable model for B ∧ ϕ′. ✷

We can now prove our main result in this section.

Theorem 2.6. Let L be a logic such that QK ⊆ L ⊆ QGL or QK ⊆ L ⊆ QGrz.

Then, L is undecidable in the language with two individual variables and a single monadic

predicate letter.

Proof. We first establish the following:

Sublemma 1. Let L ∈ {QK,QGLsem,QGrzsem}. Then, the problem of L-satisfiability
of L-suitable formulas containing only two individual variables and only monadic predicate

letters is undecidable.

Proof. By reduction from an undecidable [2] N× N tiling problem.
Kontchakov, Kurucz, and Zakharyaschev [12] define, for a finite set T of tile types (for

a brief description of the tiling problem considered here, see Section 3.2), the formula χT ,
a conjunction of the formulas (we write H(x, y) and V (x, y) for, respectively, succH(x, y)
and succV (x, y) used by Kontchakov, Kurucz, and Zakharyaschev)

∀x
∨

t∈T

(Pt(x) ∧
∧

t′ 6=t

Pt′(x));

∀x∀y (H(x, y) →
∧

right(t)6=left(t′)

¬(Pt(x) ∧ Pt′(y)));

∀x∀y (V (x, y) →
∧

up(t)6=down(t′)

¬(Pt(x) ∧ Pt′(y)));

∀x∃y H(x, y) ∧ ∀x∃y V (x, y);

∀x∀y (H(x, y) → ✷H(x, y));

∀x∀y (V (x, y) → ✷V (x, y));

∀x∀y (✸V (x, y) → V (x, y));

∀x✸D(x);

✷∀x∀y [V (x, y) ∧ ∃x (D(x) ∧H(x, y)) → ∀y (H(x, y) → ∀x (D(x) → V (y, x)))],
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and show that χT satisfies the condition

χT is L-satisfiable ⇐⇒ T tiles N× N. (∗)

We effectively construct from χT an L-suitable formula χ⋆
T and show that the condi-

tion (∗) remains satisfied if χT is replaced with χ⋆
T . Since the tiling of N × N by T is

undecidable [2], the statement of the Sublemma follows.
We first consider the case L = QK. Let χ◦

T be the formula obtained from χT by
substituting ¬D(x) for D(x). It should be clear that χ◦

T is QK-satisfiable if, and only if,
χT is QK-satisfiable.

Replace in χ◦
T every occurrence of ✷ψ by ✷(∀xQ(x) → ψ) and substitute into so

obtained formula the formulas ✸(¬QH
1 (x) ∧ ¬QH

2 (y)) and ✸(¬QV
1 (x) ∧ ¬QV

2 (y)) for,
respectively, H(x, y) and V (x, y). Denote the resultant formula by χ̄◦

T . Lastly, put
χ⋆
T = ∀xQ(x) ∧ χ̄◦

T .
We first show that χ⋆

T is satisfiable if, and only if, χ◦
T is satisfiable (and so χ⋆

T is
satisfiable if, and only if, T tiles N× N).

Suppose χ◦
T is satisfiable. Then, by (∗), there exists a tiling τ : N×N → T . We use τ

to define the model M: let

W = {w∗} ∪ {wij : i, j ∈ N} ∪ {w′
ij : i, j ∈ N};

R =
(

{w∗} × {wij : i, j ∈ N}
)

∪
((

{w∗} ∪ {wij : i, j ∈ N}
)

× {w′
ij : i, j ∈ N}

)

;
Dw = N× N, for every w ∈ W ′;

I(w,Q) =

{

∅ if w = w′
ij,

N× N if w 6= w′
ij;

I(w,QH
1 ) =

{

N× N− {〈i, j〉} if w = w′
ij,

N× N if w 6= w′
ij;

I(w,QH
2 ) =

{

N× N− {〈i+ 1, j〉} if w = w′
ij ,

N× N if w 6= w′
ij ;

I(w,QV
1 ) =

{

N× N− {〈i, j〉} if w = w′
ij,

N× N if w 6= w′
ij;

I(w,QV
2 ) =

{

N× N− {〈i, j + 1〉} if w = w′
ij ,

N× N if w 6= w′
ij ;

I(w∗, D) = N× N;
I(wij, D) = N× N− {〈i, j〉};
I(w′

ij, D) = ∅;
I(w, Pt) = {〈i, j〉 ∈ N× N : τ(i, j) = t}, for every w ∈ W ′;
M = 〈W,R,D, I〉.

The existence of τ implies that M, w∗ |= χ⋆
T .

Conversely, suppose χ⋆
T is satisfiable, i.e. M0, w0 |= χ⋆

T , for some model M0 and world
w0. If we remove from M0 the worlds refuting ∀xQ(x) and define the interpretation of
letters H and V to be the sets of pairs satisfying, respectively, ✸(¬QH

1 (x)∧¬QH
2 (y)) and

✸(¬QV
1 (x) ∧ ¬QV

2 (y)), then χ
◦
T is satisfied at w0 in the resultant model.

It remains to show that χ⋆
T is QK-suitable. To see that it is, observe that the model

M defined above is QK-suitable.
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Next, suppose L ∈ {QGLsem,QGrzsem}. The argument given above for QK applies
as is to QGLsem since the model M defined above is a QGLsem-model. For QGrzsem, the
argument is similar—the only difference is that, in defining a QGrzsem-suitable model
satisfying χ⋆

T , we take as the accessibility relation the reflexive closure of the relation R
defined above.

Since χ⋆
T contains only two individual variables and only monadic predicate letters,

the statement of the sublemma follows. ✷

Now, let F = {¬χ⋆
T : T tiles N× N} (thus, F contains only L-suitable formulas with

two individual variables and only monadic predicate letters). It follows from the proof
of Sublemma 1 that QK ∩ F = QGLsem ∩ F = QGrzsem ∩ F and that QK ∩ F is
undecidable.

By Lemmas 2.1 and 2.5, for L ∈ {QK,QGLsem,QGrzsem},

¬χ⋆
T ∈ L ∩ F ⇐⇒ ∀x βn+1(x) → ¬(¬χ⋆

T )
∗ ∈ L,

which implies the statement of the theorem. ✷

Corollary 2.7. QK, QT, QD, QK4, QS4, QGL, and QGrz are undecidable in the

language with two individual variables and a single monadic predicate letter.

Remark 2.8. Theorem 2.6 and Corollary 2.7 hold true if we replace every logic L men-

tioned in their statements with L⊕ bf , where bf = ∀x✷P (x) → ✷∀xP (x); adding bf to

L forces us to consider only predicate frames for L with constant domains.

We conclude this section by noticing that the results obtained herein are quite tight. In
has been shown in [26], Theorem 5.1, that for logicsQK,QT,QK4, andQS4, adding—on
top of the restriction to at most two individual variables and a single monadic predicate
letter—the very slight restriction that modal operators apply only to formulas with at
most one free individual variable results in decidable fragments. As noticed in [26], the
same holds true for the other logics mentioned in Corollary 2.7.

2.3 Sublogics of QKTB

We now prove results similar to those established in the preceding section for logics in
the interval [QK,QKTB], where QKTB is the predicate logic of reflexive and symmet-
ric frames. In so doing, we use an adaptation of a technique used in [23] for proving
results about computational complexity of finite-variable fragments of sublogics of the
propositional logic KTB.

We proceed as in the previous section right up to the point where formulas αk and
models Mk are defined. Then, we define the formulas αk as follows. First, let

✷
0ϕ = ϕ, ✷

60ϕ = ϕ,
✷

n+1ϕ = ✷✷
nϕ, ✷

6n+1ϕ = ✷
6nϕ ∧✷

n+1ϕ,
✸

nϕ = ¬✷n¬ϕ, ✸
6nϕ = ¬✷6n¬ϕ.

Next, inductively define, for every k ∈ {1, . . . , n+ 1}, the following sequence of formulas:

9



δ(x) = ✷
+P (x);

δkk(x) = ✷
6k¬P (x) ∧✸

k+1P (x) ∧✸
k+2δ(x);

δki (x) = ✷
6i¬P (x) ∧✸

i+1P (x) ∧✷✸
i+1P (x) ∧✸

2i+3δki+1(x), where 1 6 i < k.

For notational convenience, let δ12(x) = δ(x).
Lastly, let, for every k ∈ {1, . . . , n+ 1},

αk(x) = P (x) ∧✸
2δk1(x) ∧ ¬✸3δk2 (x).

Now we define models Mk associated with formulas αk. Given an individual a and
k ∈ {1, . . . , n + 1}, a model Mk, whose domain contains a, looks as follows. For brevity,
we call some worlds a-worlds; if a world is not an a-world, we call it an ā-world. The
model is a chain of worlds whose root, rk, is an a-world. The root is part of a pattern of
worlds, described below, which is in turn succeeded by three final a-worlds. The pattern
looks as follows: a single a-world is followed by 2i + 1 ā-worlds, for 1 6 i 6 k. Thus
the chain looks as follows: the root (an a-world), then three ā-worlds, then an a-world,
then five ā-worlds, then an a-world, . . . , then an a-world, then 2k + 1 ā-worlds, then
three a-worlds. The accessibility relation between the worlds of Mk is both reflexive and
symmetric.

We say that Mk is a-suitable if

Mk, w |= P [a] ⇐⇒ w is an a-world.

We can, then, prove the following analogue of Lemma 2.3.

Lemma 2.9. Let a be an individual in the domain of the models M1, . . . ,Mn+1 and let

M1, . . . ,Mn+1 be a-suitable. Then,

Mk, w |= αm[a] ⇐⇒ k = m and w = rk.

Proof. Straightforward. ✷

Let
βk(x) = ¬P (x) ∧ ✷✸P (x) ∧✸αk(x),

and let ϕ∗ be the result of replacing in ϕ′ of Pk(x) with βk(x), for every k ∈ {1, . . . , n+1}.
We can then prove the following analogue of Lemma 2.5:

Lemma 2.10. Let L ∈ {QK,QKTB}. Then, B ∧ ϕ′ is L-satisfiable if, and only if,

∀x βn+1(x) ∧ ϕ
∗ is L-satisfiable.

Proof. Analogous to the proof of Lemma 2.5, with the observation that the truth status
of formulas αk is not changed at the worlds of the models Mk once they get attached
to the model M satisfying the formula B ∧ ϕ′ to obtain the model M∗ satisfying the
formula ∀x βn+1(x)∧ϕ

∗, even though their roots can now see the worlds of M due to the
symmetry of the accessibility relation of M∗. For a detailed argument showing that the
truth status of formulas αk in M∗ at worlds from Mk is not affected, we refer the reader

10



to the proof of Lemma 3.9 in [23]. ✷

Then, using an argument analogous to the one used in the proof of Theorem 2.6, we
obtain the following:

Theorem 2.11. Let L be a logic such that QK ⊆ L ⊆ QKTB. Then, L is undecidable

in the language with two individual variables and a single monadic predicate letter.

Corollary 2.12. QKB and QKTB are undecidable in the language with two individual

variables and a single monadic predicate letter.

3 Intuitionistic and related logics

We now consider logics closely related to the quantified intuitionistic logic QInt.

3.1 Syntax and semantics

The (first-order) quantified intuitionistic language contains countably many individual
variables; countably many predicate letters of every arity; propositional constants ⊥
(“falsehood”) and ⊤ (“truth”); propositional connectives ∧, ∨, and →; and quantifiers
∃ and ∀. Formulas are defined in the usual way; when parentheses are left out, ∧ and
∨ are understood to bind tighter than →. We also use the following abbreviations:
✷ϕ = ⊤ → ϕ, ✷0ϕ = ϕ, and ✷

n+1ϕ = ✷✷
nϕ.

A Kripke frame is a tuple F = 〈W,R〉, where W is a non-empty set (of worlds) and R
is a binary (accessibility) relation on W that is reflexive, anti-symmetric, and transitive.

A Kripke model M = 〈W,R,D, I〉 is defined as in the modal case, except that
the interpretation function I satisfies the additional condition that wRw′ implies
I(w, P ) ⊆ I(w′, P ). An assignment is defined as in the modal case.

The truth of a formula ϕ in a world w of a model M under an assignment g is
inductively defined as follows:

• M, w 6|=g ⊥;

• M, w |=g ⊤;

• M, w |=g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ I(w, P );

• M, w |=g ϕ1 ∧ ϕ2 if M, w |=g ϕ1 and M, w |=g ϕ2;

• M, w |=g ϕ1 ∨ ϕ2 if M, w |=g ϕ1 or M, w |=g ϕ2;

• M, w |=g ϕ1 → ϕ2 if wRw′ and M, w′ |=g ϕ1 imply M, w′ |=g ϕ2, for every w
′ ∈ W ;

• M, w |=g ∃xϕ1 if M, w |=g′ ϕ1, for some assignment g′ that differs from g at most
in the value of x and such that g′(x) ∈ D(w);
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• M, w |=g ∀xϕ1 if M, w′ |=g′ ϕ1, for every w′ ∈ W such that wRw′ and every
assignment g′ such that g′ differs from g in at most the value of x and such that
g′(x) ∈ D(w′).

Truth in models, frames, and classes of frames is defined as in the modal case. QInt

is the set of formulas true in all frames.
We also consider some logics closely related to QInt. First, QKC is the quantified

counterpart of the propositional logic KC = Int + ¬p ∨ ¬¬p. Semantically, QKC is
characterized by the frames that satisfy the (convergence) condition that wRv1 and wRv2
imply the existence of a world u such that v1Ru and v2Ru.

Second, we consider quantified counterparts of Visser’s basic propositional logic BPL

and formal propositional logic FPL [25]: BPL and FPL are logics in the intuitionistic
language whose modal companions are K4 and GL—that is, given the Gödel’s trans-
lation t of the intuitionistic language into the modal one (see, for example, [5], § 3.9),
BPL = t−1(K4) and FPL = t−1(GL). Therefore, we define their quantified counter-
parts as logics QBL = T−1(QK4) and QFL = T−1(QGL), where T is the extension of t
with the following clauses: T (∃xϕ) = ∃xT (ϕ); and T (∀x1 . . .∀xn ϕ) = ✷∀x1 . . .∀xn T (ϕ),
where ϕ does not begin with a universal quantifier. To give the semantic account of QBL

and QFL, we use Kripke frames and models as defined for QInt, except that the acces-
sibility relation is now only required to be anti-symmetric and transitive. The relation
M, w |=g ϕ is defined as in the intuitionistic case, with the following modification for the
universal quantifiers:

• M, w |=g ∀x1 . . .∀xn ϕ1, where ϕ1 does not begin with a universal quantifier,
if M, w′ |=g′ ϕ1, for every w′ ∈ W such that wRw′ and every assignment g′

such that g′ differs from g in at most the values of x1, . . . , xn and such that
g′(x1), . . . , g

′(xn) ∈ D(w′).

This clause is required to make, in the absence of reflexivity of the accessibility relation,
the formula ∀x∀y ϕ equivalent to the formula ∀y∀xϕ. Then, QBL is sound (and complete)
with respect to all such frames, while QFL is sound (but not complete) with respect to the
subclass where the converse of the accessibility relation is well-founded (i. e., with respect
to the frames of the logic GL). For technical reasons, namely to avoid being distracted
with Kripke-completeness, we define the logic QFLsem as the set of formulas valid in all
frames where the converse of the accessibility relation is well-founded; all that matters to
us is that QFL ⊆ QFLsem.

3.2 Undecidability results

We now address the question, raised in [12], of whether it suffices to use only monadic
predicate letters to obtain undecidability of the two-variable fragment QInt(2) of QInt.
We show that, in fact, it suffices to use a single monadic predicate letter to obtain un-
decidability of QInt(2). We do so by suitably adapting the technique used in [21] to
(polynomially) reduce satisfiability in propositional intuitionistic logic Int to satisfiabil-
ity in the fragment of Int with only two propositional variables. As the technique from [21]
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requires that we work with positive formulas, we first show that the positive monadic frag-
ment of QInt(2) is undecidable. We note here that transitioning from the propositional
language to the first-order one, we “strengthen” the result from [21] in the following sense:
while in the propositional case, (the positive fragment of) Int is polynomially reducible
to its two-variable subfragment, in the the first-order case, we (polynomially) reduce (the
positive fragment of) QInt(2) to its subfragment containing a single predicate letter.1

Working with the positive fragment of QInt also allows us to extend our results to the
interval [QInt,QKC], as all logics in this interval share the positive fragment. More-
over, a modification of this construction allows us to obtain analogous results for logics
in [QBL,QFL].

It is proven in [12] that QInt(2) is undecidable by reducing the following undecidable
tiling problem [2] to the complement of QInt(2): given a finite set T of tile types that
are tuples of colours t = 〈left(t), right(t), up(t), down(t)〉, decide whether T tiles the grid
N×N in the sense that there exists a function τ : N×N → T such that, for every i, j ∈ N,
we have up(τ(i, j)) = down(τ(i, j + 1)) and right(τ(i, j)) = left(τ(i+ 1, j)). The results
in this section build on this proof.

We start off by proving that the positive fragment of QInt(2) containing two binary
and an unlimited number of monadic predicate letters, as well as two propositional vari-
ables, is undecidable. This is achieved by eliminating the constant ⊥ from the formulas
used in the proof of undecidability of QInt(2) from [12]. For most formulas from [12], all
we do is replace ⊥ with a propositional variable q. The resultant formulas are listed below
for the reader’s convenience; for ease of reference, we preserve the numbering from [12]:

∀x
∨

t∈T

(Pt(x) ∧
∧

t′ 6=t

(Pt′(x) → q)), (1)

∧

right(t)6=left(t′)

∀x ∀y (H(x, y) ∧ Pt(x) ∧ Pt′(y) → q), (2)

∧

up(t)6=down(t′)

∀x ∀y (V (x, y) ∧ Pt(x) ∧ Pt′(y) → q), (3)

∀x ∃y H(x, y) ∧ ∀x ∃y V (x, y), (4)

∀x ∀y (V (x, y) ∨ (V (x, y) → q)), (5)

∀x ∀y [V (x, y) ∧ ∃x (D(x) ∧H(y, x)) → ∀y (H(x, y) → ∀x (D(x) → V (y, x)))]. (6)

Let ψ+
T be the conjunction of formulas (1) through (6). Then, define

ϕ+
T = ψ+

T → ((∃x (D(x) → q) → p) → p),

where p is a propositional variable distinct from q.

1In light of [19], the reduction of Int to its single-variable fragment would imply that the complexity
classes P and PSPACE are equivalent.
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Lemma 3.1. ϕ+
T /∈ QInt(2) if, and only if, T tiles N× N.

Proof. The proof is a minor modification of the proof of Theorem 1 from [12], with q
essentially playing the role that “falsehood” plays in [12].

For the left to right direction, we observe that, given a model M and a world w such
that M, w 6|= ϕ+

T , as well as an arbitrary d ∈ D(w), there exists a world u in M with wRu
such that M, u |= D[d] and M, u 6|= q. This is a straightforward consequence of the fact
that M, w 6|= (∃x (D(x) → q) → p) → p. Given this, the argument from [12] applies.

For the other direction, the model falsifying ϕ+
T is different from the one used in [12]

only in the evaluation of p and q. Thus, we use the same frame and interpretation of
predicate letters as in [12], and additionally make q false at every world of the model and
make p false at w0 and true at every other world. ✷

Since ϕ+
T is a positive formula, this immediately gives us the following:

Corollary 3.2. The positive fragment of QInt with two individual variables, two binary

predicate letters, an unlimited number of monadic predicate letters, and two propositional

variables is undecidable.

We now show how, drawing on an idea of Kripke’s for modal logics [14], one can, in
the positive fragment of QInt, simulate binary predicate letters using monadic predicate
letters and propositional variables. As this does not increase the number of individual
variables in a formula, it will allow us to eliminate binary predicate letters from the
formula ϕ+

T .

Lemma 3.3. Let χ be a positive formula in QInt containing an occurrence of a binary

predicate letter Q, and let Q1 and Q2 be monadic predicate letters, and r and s be propo-

sitional variables, not occurring in χ. Let χ′ be the result of uniformly replacing every

subformula of χ of the form Q(x, y) with (Q1(x) ∧ Q2(y) → r) ∨ s. Then, χ ∈ QInt if,

and only if, χ′ ∈ QInt.

Proof. The left-to-right direction follows from the closure of QInt under substitution.
For the other direction, assume that there exist M = 〈W,R,D, I〉 and w0 ∈ W such that
M, w0 6|= χ. We modify M to obtain a model M′ falsifying χ′ as follows. For every w ∈ W
and every a, b ∈ D(w) such that M, w 6|= Q[a, b], add to W a world wa,b with wR

′wa,b and
let

M′, wa,b 6|= r;
M′, wa,b |= s;
M′, wa,b |= Q1[d] ⇌ d = a;
M′, wa,b |= Q2[d] ⇌ d = b;

and let all the predicate letters different from Q1 and Q2 and occurring in χ′ be universally
true at every such world; likewise for propositional variables different from r and s. Also,
let M′, w 6|= s.

Then we can show that M, w |= θ[a1, . . . , am] if, and only if, M′, w |= θ′[a1, . . . , am],
for every subformula θ of χ, every w ∈ W , and every a1, . . . , am ∈ D(w), where θ′ is the
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result of substituting in θ every occurrence of Q(x, y) with (Q1(x)∧Q2(y) → r)∨ s. The
proof is by induction on θ.

For the base case, first note that ifM, w 6|= Q[a, b], then the presence inM′ of the world
wa,b guarantees that M

′, w 6|= (Q1[a]∧Q2[b] → r)∨s; on the other hand, if M, w |= Q[a, b],
then M′, w |= (Q1[a] ∧Q2[b] → r) ∨ s, as M, u 6|= Q1[a] or M, u 6|= Q2[b], for every u with
wR′u.

The cases for θ = θ1 ∨ θ2, θ = θ1 ∧ θ2, and θ = ∃x θ1 are straightforward.
Let θ = θ1 → θ2. Assume that M′, w 6|= θ′[a1, . . . , am]. Then, M′, u |= θ′1[a1, . . . , am]

and M′, u 6|= θ′2[a1, . . . , am], for some u ∈ W ′ with wR′u. If we could apply the inductive
hypothesis to u, we would be done. To see that we can, notice that θ′2 is built out of
atomic formulas and the formula (Q1(x) ∧ Q2(y) → r) ∨ s, all of which are true under
every assignment in every w′ ∈ W ′ −W , using only ∧, ∨, →, ∃, and ∀. Therefore, θ′2
is true in every w′ ∈ W ′ −W under every assignment; hence, u ∈ W and the inductive
hypothesis is, therefore, applicable. Thus, M, w 6|= θ[a1, . . . , am]. The other direction is
straightforward.

The case θ = ∀x θ1 is similarly argued. ✷

Now, let ξ+T be the result of replacing in ϕ+
T of

H(x, y) with (H1(x) ∧H2(y) → r1) ∨ s1;
V (x, y) with (V1(x) ∧ V2(y) → r2) ∨ s2.

In view of Lemma 3.3, ξ+T 6∈ QInt(2) if, and only if, T tiles N×N. As we can replace in ξ+T
a propositinal variable such as q with, say, ∃xQ(x), we immediately obtain the following:

Theorem 3.4. The positive monadic fragment of QInt with two individual variables is

undecidable.

We now embed the positive monadic fragment of QInt(2) into its subfragment con-
taining formulas with only one monadic predicate letter, suitably adapting the technique
from [21]. As this embedding does not introduce any fresh variables, our main result in
this section immediately follows.

We begin by defining the frame F = 〈W,R〉 to be used in the construction of a refuting
countermodel. The frame F, depicted in Figure 1, is made up of levels of worlds. The
top-most, unnumbered, level comprises d1, d2, d

′
2 and d3; level 0 comprises a01, a

0
2, b

0
1 and

b02; level 1 comprises a11, a
1
2, a

1
3, b

1
1, b

1
2 and b

1
3; the accessibility relation between these worlds

is depicted by arrows (the arrows that can be inferred by reflexivity and transitivity are
omitted). The other levels are defined recursively.

For each k > 2, level k contains worlds akl and bkl , for every l ∈ {1, . . . , sk}, where sk
is defined by recursion: s1 = 3; sk+1 = (sk − 1)2. To define instances of the accessibility
relation between worlds of level k + 1 and worlds of level of k, for each k > 1, take the
lexicographic ordering of pairs 〈i, j〉, where i, j ∈ {2, . . . , sk}, and, provided 〈i, j〉 is the
mth pair in this ordering, put

ak+1
m Rbk1 , ak+1

m Raki , ak+1
m R bkj ,

bk+1
m Rak1, bk+1

m Raki , bk+1
m Rbkj .
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Figure 1: Frame F

Let Na = 〈W,R,D, I〉 be an intuitionistic Kripke model with a constant domain A
containing element a; we assume that A contains at least three elements—as we shall see,
this assumption does not lead to a loss of generality. We say that Na is a-suitable if, for
some a′ ∈ A− {a},

• I(d2, P ) = A− {a};

• I(d′2, P ) = {a′};

• I(d3, P ) = {a, a′};

• I(b01, P ) = {a′};

• I(w, P ) = ∅, for every w ∈ W − {d2, d
′
2, d3, b

0
1}.

We now define formulas of one free variable, x, so that each so defined formula ψ(x)
is associated with a world of an a-suitable model based on F (or a frame isomorphic to
F), in the following sense: for every w ∈ W , the relation w 6|= ψ(a) holds if, and only if,
w sees the world associated with ψ. For these formulas, we use notation making it clear
which worlds they correspond to: the formula Di, for i ∈ {1, 3}, corresponds to di, the
formula D2 corresponds to d2 and d′2, the formula Ak

i to aki , and the formula Bk
i to bki .
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First, we define formulas associated with the worlds of the three top-most levels:

D1 = ∃xP (x); A1
1(x) = A0

1(x) ∧ A
0
2(x) → B0

1(x) ∨B
0
2(x);

D2(x) = ∃xP (x) → P (x); A1
2(x) = A0

1(x) ∧ B
0
1(x) → A0

2(x) ∨B
0
2(x);

D3(x) = P (x) → ∀xP (x); A1
3(x) = A0

1(x) ∧ B
0
2(x) → A0

2(x) ∨B
0
1(x);

A0
1(x) = D2(x) → D1 ∨D3(x); B1

1(x) = A0
2(x) ∧ B

0
1(x) → A0

1(x) ∨B
0
2(x);

A0
2(x) = D3(x) → D1 ∨D2(x); B1

2(x) = A0
2(x) ∧ B

0
2(x) → A0

1(x) ∨B
0
1(x);

B0
1(x) = D1 → D2(x) ∨D3(x); B1

3(x) = B0
1(x) ∧ B

0
2(x) → A0

1(x) ∨A
0
2(x).

B0
2(x) = A0

1(x) ∧ A
0
2(x) ∧B

0
1(x) →

D1 ∨D2(x) ∨D3(x);

We proceed by recursion. Assume formulas associated with the worlds of level k,
where k > 1, have been defined. Take the lexicographic ordering of pairs 〈i, j〉, where
i, j ∈ {2, . . . , sk}, and, provided 〈i, j〉 is the mth pair in this ordering, put

Ak+1
m (x) = Ak

1(x) → Bk
1 (x) ∨ A

k
i (x) ∨B

k
j (x);

Bk+1
m (x) = Bk

1 (x) → Ak
1(x) ∨ A

k
i (x) ∨B

k
j (x).

Lemma 3.5. Let M = 〈W,R,D, I〉 be an a-suitable model and let w ∈ W . Then,

M, w 6|= Ak
m[a] ⇐⇒ wRakm and M, w 6|= Bk

m[a] ⇐⇒ wRbkm.

Proof. Induction on k. ✷

Now, let ϕ be a positive formula containing monadic predicate letters P1, . . . , Pn (we
may assume n > 2). For each i ∈ {1, . . . , n}, define

αi(x) = An+1
i (x) ∨Bn+1

i (x).

Finally, let ϕ∗ be the result of substituting, for every i ∈ {1, . . . , n}, of αi(x) for Pi(x)
into ϕ.

Lemma 3.6. ϕ ∈ QInt if, and only if, ϕ∗ ∈ QInt.

Proof. The right-to-left direction follows from the closure of QInt under pred-
icate substitution. For the other direction, assume that Mϕ, w0 6|= ϕ for some
Mϕ = 〈Wϕ, Rϕ, Dϕ, Iϕ〉 and w0 ∈ Wϕ. (We may assume without a loss of generality
that the domain of Mϕ contains at least three individuals; we use this fact in the con-
struction of M∗ below.) We need to construct a model M∗ falsifying ϕ∗ at some world.

For every w ∈ Wϕ and a ∈ Dϕ(w), let Fw
a = 〈{〈w, a〉} ×W ,Rw

a 〉 be an isomorphic
copy of the frame F under the isomorphism f : v 7→ 〈w, a, v〉.

Let
W ∗ = Wϕ ∪

(

⋃

w∈Wϕ

(

{w} ×Dϕ(w)
)

×W
)

.

Let S be the smallest relation on W ∗ such that

• Rϕ ⊆ S;
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•
⋃

w∈Wϕ, a∈Dϕ(w)

Rw
a ⊆ S;

• for every w ∈ Wϕ, every v ∈ W ∗ −Wϕ, every a ∈ Dϕ(w) and every i ∈ {1, . . . , n},

wSv ⇌ either v ∈ {〈w, a, an+1
i 〉, 〈w, a, bn+1

i 〉} and Mϕ, w 6|= Pi[a]
or v ∈ {〈w, a, an+1

n+1〉, 〈w, a, b
n+1
n+1〉},

and let R∗ be the reflexive transitive closure of S.
Let D∗(u) = Dϕ(u) if u ∈ Wϕ and D∗(u) = Dϕ(w) if u = 〈w, a, v〉, for some w ∈ Wϕ,

a ∈ Dϕ(w) and v ∈ W .
Let I∗ be an interpretation function on 〈W ∗, R∗, D∗〉 such that, for every w ∈ Wϕ and

every a ∈ Dϕ(w),

• I∗(〈w, a, d2〉, P ) = Dϕ(w)− {a};

• I∗(〈w, a, d′2〉, P ) = {a′}, where a′ is a fixed element of Dϕ(w)− {a};

• I∗(〈w, a, d3〉, P ) = {a, a′}, where a′ is a fixed element of Dϕ(w)− {a};

• I∗(〈w, a, b01〉, P ) = {a′}, where a′ is a fixed element of Dϕ(w)− {a};

• I∗(u, P ) = ∅, for every u ∈ W ∗ −
(

{d2, d
′
2, d3, b

0
1} × {〈w, c〉 : w ∈ Wϕ, c ∈ Dϕ(w)}

)

.

Finally, let M∗ = 〈W ∗, R∗, D∗, I∗〉. Evidently, I∗ satisfies the heredity condition; hence,
M∗ is an intuitionistic Kripke model.

We can now show, by induction on ψ, that Mϕ, w |= ψ[a1, . . . , am], if and only if,
M∗, w |= ψ∗[a1, . . . , am], for every w ∈ Wϕ, every a1, . . . , am ∈ D∗(w), and every subfor-
mula ψ of ϕ. We only consider the cases where ψ is atomic and where ψ = ψ1 → ψ2.

We shall rely on the following sublemmas, whose proof we leave to the reader:

Sublemma 2. For every w ∈ Wϕ and every a ∈ Dϕ(w),

M∗, w 6|= An
1 [a] and M∗, w 6|= Bn

1 [a].

Sublemma 3. Let Na = 〈W,R,D, I〉 be an a-suitable model with a constant domain A
and let b ∈ A− {a}. Then, for every w ∈ W , every k > 2 and every m ∈ {1, . . . , sk},

Na, w |= Ak
m[b] and Na, w |= Bk

m[b].

Observe that, for every w ∈ Wϕ and every a ∈ Dϕ(w), the submodel of M∗ whose set
of worlds is {〈w, a, v〉 : v ∈ {〈w, a〉}×W} is a generated submodel of M∗ and is a-suitable;
hence, Lemma 3.5 and Sublemma 3 apply to such submodels of M∗.

We now proceed with induction.
Let ψ = Pi(x), and so ψ∗ = An+1

i (x) ∨ Bn+1
i (x), for some i ∈ {1, . . . , n}.

Assume Mϕ, w 6|= Pi[a]. By definition of M∗, both wR∗〈w, a, an+1
i 〉

and wR∗〈w, a, bn+1
i 〉. By Lemma 3.5, both M∗, 〈w, a, an+1

i 〉 6|= An+1
i [a] and
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M∗, 〈w, a, bn+1
i 〉 6|= Bn+1

i [a]. Hence, by heredity, M∗, w 6|= An+1
i [a] and M∗, w 6|= Bn+1

i [a].
Therefore, M∗, w 6|= An+1

i [a] ∨ Bn+1
i [a].

Conversely, assume M∗, w 6|= An+1
i [a] ∨ Bn+1

i [a]. Then, M∗, w 6|= An+1
i [a] and

M∗, w 6|= Bn+1
i [a]. Hence, there exist u′, u′′ ∈ W ∗ and i, j ∈ {2, . . . , sn} such that

u′, u′′ ∈ R∗(w) and

u′ |= An
1 [a]; u′ 6|= Bn

1 [a]; u′ 6|= An
i [a]; u′ 6|= Bn

j [a];

u′′ |= Bn
1 [a]; u′′ 6|= An

1 [a]; u′′ 6|= An
i [a]; u′′ 6|= Bn

j [a].
(∗)

We show that u′ = 〈w, a, an+1
i 〉 and u′′ = 〈w, a, bn+1

i 〉.
Since u′ |= As

1[a] and u′′ |= Bs
1[a], by Sublemma 2, u′, u′′ ∈ W ∗ − Wϕ. Therefore,

from u′ 6|= Bn
1 (a) and u

′′ 6|= An
1 [a] we obtain, by Sublemma 3, that u′, u′′ ∈ {〈w, a〉} ×W .

Hence, from (∗) we obtain by Lemma 3.5 that, for some i, j ∈ {2, . . . , sn},

¬u′R∗〈w, a, an1〉; u′R∗〈w, a, bn1〉; u′R∗〈w, a, ani 〉; u′R∗〈w, a, bnj 〉;

¬u′′R∗〈w, a, bn1 〉; u′′R∗〈w, a, an1〉; u′′R∗〈w, a, ani 〉; u′′R∗〈w, a, bnj 〉.

Now, in F, and hence in Fa
w, only worlds of level greater than n see more than one world

of level n. Hence, u′ and u′′ belong to a level greater than n. Since every world of Fa
w of

level greater that n + 1 sees an1 and bn1 , by Lemma 3.5, for every world w of level greater
than n + 1, both w 6|= An

1 [a] and w 6|= Bn
1 [a]. Therefore, u′ and u′′ are worlds of level

n + 1. Since u′R∗u′ and u′′R∗u′′, in view of (∗), M∗, u′ 6|= An+1
i [a] and M∗, u′′ 6|= Bn+1

i [a].
Hence, by Lemma 3.5, u′R∗〈w, a, an+1

i 〉 and u′′R′′〈w, a, bn+1
i 〉. Therefore, u′ = 〈w, a, an+1

i 〉
and u′′ = 〈w, a, bn+1

i 〉.
Thus, wR∗〈a, an+1

i 〉 and wR∗〈w, a, bn+1
i 〉. Hence, M∗, w 6|= Pi[a].

Let ψ = ψ1 → ψ2. Assume M∗, w 6|= ψ∗[a1, . . . , am]. Then, M∗, u |= ψ∗
1 [a1, . . . , am]

and M∗, u 6|= ψ∗
2 [a1, . . . , am], for some u ∈ W ∗ with wR∗u. If we could apply the inductive

hypothesis to u, we would be done. To see that we can, notice that ψ∗
2 is built out of

formulas of the form An+1
i (x) ∨ Bn+1

i (x) using only ∧, ∨, →, ∃, and ∀. As, in view
of Lemma 3.5 and Sublemma 3, formulas An+1

i (x) ∨ Bn+1
i (x) are true at every world in

W ∗−Wϕ accessible fromWϕ, it follows that u ∈ Wϕ; the inductive hypothesis is, therefore,
applicable. Thus, Mϕ, w 6|= ψ[a1, . . . , am]. The other direction is straightforward.

We conclude that M∗, w0 6|= ϕ∗ and, thus, ϕ∗ /∈ QInt. ✷

As the construction of ϕ∗ from ϕ did not introduce any fresh individual variables, we
have the following:

Theorem 3.7. The positive fragment of QInt with two individual variables and a single

predicate letter is undecidable.

We now extend the argument presented above to the logics in the intervals
[QBL,QKC] and [QBL,QFL].

First, to establish the undecidability of the two-variable fragments of logics whose
semantics might contain irreflexive worlds, we need to slightly modify formulas (1) through
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(6) listed above. Therefore, we define ψ∗
T to be the conjunction of ψ+

T and following
formula:

∀x ∀y (H(x, y) ∨ (H(x, y) → q)), (5a)

and define
ϕ∗
T = ψ∗

T → [(∃x (D(x) → ✷
5q) → p) → ✷p].

This enables us to prove, using the tiling problem described above, that T tiles N× N if
and only if ϕ∗

T 6∈ L(2), where L ∈ {QBL,QFLsem}. We leave the details of the proof to
the reader. As the construction of ϕ∗

T is uniform for both logics, it follows that the claim
holds for every L ∈ [QBL,QFLsem]. Notice that the same proof also works for logics in
[QBL,QKC]. We simulate binary predicate letters by monadic ones as for QInt. We
now show how to simulate all monadic predicate letters with a single one.

For the interval [QBL,QKC], notice that if we add to the model M∗ built in the
proof of Lemma 3.6 a world d accessible from every element of W ∗ and such that
I∗(d, P ) = D(d), the resultant model is a model of every logic in the interval [QBL,QKC].
Thus, we have the following:

Theorem 3.8. Let L be a logic in the interval [QBL,QKC]. Then, the positive fragment

of L with two individual variables and a single predicate letter is undecidable.

We next consider the interval [QBL,QFLsem]. In this case, we need to make a more
substantial modification to the frame F, as the semantics of QFLsem prohibits the ex-
istence of reflexive worlds. We then proceed as follows. First, add to W worlds d̄2, d̄

′
2,

and d̄3 with d2Rd̄2, d
′
2Rd̄

′
2, and d3Rd̄3. Second, for every k > 0, do the following: for

every world aki , add to W the world āki and, for every world bki , add to W the world
b̄ki ; also, let a

k
iRā

k
i and bkiRb̄

k
i , for every k and i. Lastly, whenever in F we had ak+1

i Rakj
or ak+1

i Rbkj , let ā
k+1
i Rakj and āk+1

i Rbkj ; also, whenever we had bk+1
i Rakj or bk+1

i Rbkj , let

b̄k+1
i Rakj and b̄k+1

i Rbkj . We then define a-suitable models so that I(d̄2, P ) = I(d2, P ),
I(d̄′2, P ) = I(d′2, P ), I(d̄3, P ) = I(d3, P ), and for every k and i, I(āik, P ) = I(aik, P ) and
I(b̄ik, P ) = I(bik, P ). In essence, we created “doubles” for the worlds d2, d

′
2, d3, a

i
k, and

bik, which serve to evaluate formulas whose main connective is → or ∀ at the worlds
whose doubles they are. Then, a-suitable models satisfy the condition in the statement
of Lemma 3.5, and the model M∗ built in the proof of Lemma 3.6 becomes a model of
every logic in [QBL,QFLsem]. As QFL ⊆ QFLsem, we have the following:

Theorem 3.9. Let L be a logic in the interval [QBL,QFL]. Then, the positive fragment

of L with two individual variables and a single predicate letter is undecidable.

Remark 3.10. Note that the results of this section hold true if we only consider frames

with constant domains.

4 Discussion

As already noticed, the results presented in the present paper concerning sublogics of
QGL and QGrz are quite tight: as shown in [26], for all “natural” sublogics of QGL
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and QGrz—including QK, QT, QD, QK4, QS4, QGL, and QGrz—adding to the
restriction to two individual variables and a single monadic predicate letter considered
in section 2 a minor restriction that the modal operators only apply to formulas with at
most one free variable, results in decidable fragments of those logics. It is not difficult
to notice that the results analogous to those obtained in section 2 can be obtained for
quasi-normal logics such as QS (Solovay’s logic) and Lewis’s QS1, QS2, and QS3 [7].

A notable exception in our consideration of modal logics is QS5, whose two-variable
monadic fragment was shown to be undecidable in [12]. While it is not difficult to extend
our results to the multimodal version of QS5—we need to modify the construction used
for sublogics QKTB by substituting a succession of two steps along distinct accessibility
relations for a single step along a single aceessibility relation in the frames of a-suitable
models—nor is it difficult to show, by encoding the tiling problem used in [12], that the
two-variable fragment of QS5 with two monadic predicate letters and infinitely many
propositional symbols is undecidable, the case of QS5 remains elusive. We conjecture
that the fragment of QS5 with two variables and a single monadic predicate letter is
decidable.

On the other hand, it is relatively straightforward to show that the two-variable frag-
ment of QS5 with a single monadic predicate letter and an infinite supply of individual
variables is undecidable. Indeed, let SIB be the first-order theory of a symmetric ir-
reflexive binary relation S; it is well-known that SIB is undecidable [18, 13]. We can
then simulate S(x, y) as ✷(¬P (x) ∨ ¬P (y)) and show that, if a quantified modal logic
L is valid on a frame containing a world that can see infinitely many worlds, then L is
undecidable in the language with a single monadic predicate letter (and infinitely many
individual variables). This observation covers all modal logics considered in [12], but not
covered by the results of section 2, including QS5, QGL.3, and QGrz.3.

By contrast, we can say nothing about superintuitionistic logics not included in the
interval [QInt,QKC], as our proof relies on the fact that we are working with the positive
fragment of those logics. It is not essential to our proof that formulas Ak

i (x) and B
k
i (x) be

positive; however, by discarding their positivity we would weaken, rather than strengthen,
our results.
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[3] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Springer, 1997.

[4] Alexander Chagrov and Mikhail Rybakov. How many variables does one need to
prove PSPACE-hardness of modal logics? In Advances in Modal Logic, volume 4,
pages 71–82, 2003.

[5] Alexander Chagrov and Michael Zakharyaschev. Modal Logic. Oxford University
Press, 1997.

[6] Alonzo Church. A note on the “Entscheidungsproblem”. The Journal of Symbolic

Logic, 1:40–41, 1936.

[7] Robert Feys. Modal Logics. E. Nauwelaerts, 1965.

[8] Dov M. Gabbay. Semantical Investigations in Heyting’s Intuitionistic Logic. D.
Reidel, 1981.
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Monatschefte für Mathematische Physika, 40:433–443, 1933.

[10] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem
for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[11] Joseph Y. Halpern. The effect of bounding the number of primitive propositions
and the depth of nesting on the complexity of modal logic. Aftificial Intelligence,
75(2):361–372, 1995.

[12] Roman Kontchakov, Agi Kurucz, and Michael Zakharyaschev. Undecidability of
first-order intuitionistic and modal logics with two variables. Bulletin of Symbolic

Logic, 11(3):428–438, 2005.

[13] Philip Kremer. On the complexity of propositional quantification in intuitionistic
logic. The Journal of Symbolic Logic, 62(2):529–544, 1997.

[14] Saul Kripke. The undecidability of monadic modal quantification theory. Zeitschrift
für Matematische Logik und Grundlagen der Mathematik, 8:113–116, 1962.

[15] Sergei Maslov, Gregory Mints, and Vladimir Orevkov. Unsolvability in the con-
structive predicate calculus of certain classes of formulas containing only monadic
predicate variables. Soviet Mathematics Doklady, 6:918–920, 1965.

[16] Franco Montagna. The predicate modal logic of provability. Notre Dame Journal of

Formal Logic, 25(2):179–189, 1984.

[17] Michael Mortimer. On languages with two variables. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, pages 135–140, 1975.

22



[18] Anil Nerode and Richard A. Shore. Second order logic and first order theories of
reducibility ordering. In J. Barwise, H. J. Keisler, and K. Kunen, editors, The Kleene

Symposium, pages 181–200. North-Nolland, 1980.

[19] Iwao Nishimura. On formulas of one variable in intuitionistic propositional calculus.
The Journal of Symbolic Logic, 25(4):327–331, 1960.

[20] Mikhail Rybakov. Enumerability of modal predicate logics and the condition of non-
existence of infinite ascending chains. Logicheskiye Issledovaniya, 8:155–167, 2001.

[21] Mikhail Rybakov. Complexity of intuitionistic propositional logic and its fragments.
Journal of Applied Non-Classical Logics, 18(2–3):267–292, 2008.

[22] Mikhail Rybakov and Dmitry Shkatov. Complexity and expressivity of propositional
dynamic logics with finitely many variables. To appear in Logic Journal of the IGPL.
doi:10.1093/jigpal/jzy014.

[23] Mikhail Rybakov and Dmitry Shkatov. Complexity of finite-variable fragments of
propositional modal logics of symmetric frames. To appear in Logic Journal of the

IGPL. doi:10.1093/jigpal/jzy018.
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