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Abstract
In this paper we provide a detailed proof-theoretical analysis of a natural de-

duction system for classical propositional logic that (i) represents classical proofs
in a more natural way than standard Gentzen-style natural deduction, (ii) admits
of a simple normalization procedure such that normal proofs enjoy the Weak Sub-
formula Property, (iii) provides the means to prove a Non-Contamination Property
of normal proofs that is not satisfied by normal proofs in the Gentzen tradition and
is useful for applications, especially to formal argumentation, (iv) naturally leads
to defining a notion of depth of a proof, to the effect that, for every fixed natural
k, normal k-depth deducibility is a tractable problem and converges to classical
deducibility as k tends to infinity.
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1 Introduction
Gentzen introduced his natural deduction systems NJ and NK in his [1935] paper in
order to “set up a formal system that comes as close as possible to actual reasoning”
[p. 68]. In the same paper, Gentzen also introduced his sequent calculi LJ and LK
to overcome some technical difficulties in the proof of his “main result” (Hauptsatz),
namely the subformula theorem for first order logic. The theorem ensures that the
search for proofs can be pursued by analytic methods, i.e. by considering only infer-
ence steps involving formulae that are “contained” in the assumptions or in the conclu-
sion.1 Thus, no particular ingenuity is required, at least in principle, to construct such

1“No concepts enter into the proof other than those contained in its final result, and their use was therefore
essential to the achievement of that result” [Szabo, 1969, p. 69]; “the final result is, as it were, gradually built
up from its constituent elements” [Szabo, 1969, p. 88].
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analytic arguments and their search is amenable to algorithmic treatment.
Gentzen proved the subformula property in the context of his sequent calculi by

means of the celebrated “cut-elimination” theorem. The proof of the same result for
the natural deduction systems, usually ascribed to Dag Prawitz 2 [1965], makes use of
a “normalization” procedure by means of which any proof can be reduced to one with a
specified (albeit not unique) normal form. Dag Prawitz [1965] proved a normalization
theorem (with a weak subformula property) for the fragment without ∨ and ∃. Nor-
malization procedures for the full system were provided in [Statman, 1974, Stålmarck,
1991]. More recently Jan von Plato [2012] has obtained a full normalization theorem
using a considerably simpler procedure.

Natural deduction is now widely used in the teaching of logic,3 and has been thor-
oughly investigated in the philosophical and proof-theoretical literature.4 In automated
deduction circles, however, it has been considerably neglected in favour of alterna-
tive methods such as resolution, the sequent calculus, the method of analytic tableaux
or variants thereof. The official motivation — namely that natural deduction is less
amenable to the development of automated proof search methods — can be, and has
been, challenged, especially in view of the normalization theorem and the related sub-
formula property of proofs.5 Moreover, owing to recent advances in Artificial Intel-
ligence and Human-Oriented Computing, most notably the research program on For-
mal Argumentation Theory pioneered by [Dung, 1995], there is a growing need for
automated proof procedures based on natural inference patterns that, in the spirit of
Gentzen’s work, come “as close as possible to actual reasoning” and can therefore be
fruitfully employed in human-computer interaction [Modgil et al., 2013].

Our starting point in this paper is the well-known fact that Gentzen-style natural de-
duction is natural from the point of view of intuitionistic logic, but not from the point
of view of classical logic, for its introduction and elimination rules are faithful to the
intuitionistic meaning of the logical operators, but not to their classical meaning. As a
result they are unable to adequately represent the natural inference patterns that exploit
the inner symmetries of classical logic. This is a serious hindrance towards provid-
ing adequate alternatives to the more popular methods used in the field of automated
deduction for classical logic.

The main purpose of this paper is an in-depth proof-theoretical analysis of a non-
standard natural deduction system for classical propositional logic that we call C-
intelim — where “intelim” stands for “introduction and elimination”6 — which is based

2In the same year Andrés Raggio also published a short paper containing a proof of Gentzen’s Hauptsatz
[Raggio, 1965]. Jan von Plato has recently discovered that, in fact, Gentzen had a proof also for his natural
deduction system NJ that he decided not to publish [von Plato, 2008] probably because he despaired to show
a similar result for classical logic. For an excellent overview of Prawitz’s work in proof theory see [Wansing,
2015].

3In fact, for this purpose the Jas̀koswski-Fitch presentation of proofs is much more popular than the
original Gentzen-Prawitz presentation which, on the other hand, is dominant in proof-theoretical studies.
For a comparison see [Pelletier and Hazen, 2012, Hazen and Pelletier, 2014].

4 For insightful and comprehensive treatments see [Tennant, 1990, Negri and von Plato, 2001]). For the
history of natural deduction see [Pelletier and Hazen, 2012].

5See, for example, [Tennant, 1992, Sieg and Pfenning, 1998]; for more recent examples see [Indrze-
jczak, 2010, Ferrari and Fiorentini, 2015, Maretić, 2018]. For a more comprehensive list of references see
[Indrzejczak, 2010, pp. 96–97].

6As a reviewer pointed out to us, the first use of the term “intelim” is probably due to Frederik B. Fitch
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on the classical truth-table meaning of the logical operators and, while sharing some
interesting features with Gentzen-style natural deduction, brings it somewhat closer to
the method of analytic tableaux. This allows us to prove a normalization theorem that
is more informative than the ones that are usually shown for Gentzen-style systems.
The rules of this system were first proposed in [Mondadori, 1989] and discussed in
[D’Agostino, 2005].7 This is, however, the first time these rules are the object of a de-
tailed proof-theoretical investigation aimed at a direct comparison with the large body
of literature on Gentzen-style natural deduction.

The restriction of C-intelim to normal proofs enforces a stricter control discipline
on proof-construction, to the effect that normal proofs, besides enjoying the subformula
property, enjoy also a kind of weak relevance property that we call non-contamination.
We say that a proof of A depending on Γ is “contaminated” if one of the following
conditions holds: (i) A is equal to the special “falsum” symbol f (i.e., the proof is
refutation of Γ) and, for some ∆ ⊂ Γ, the formulae in ∆ are syntactically disjoint8 from
those in Γ \∆; (ii) A 6= f and, for some ∆ ⊆ Γ, the formulae in ∆ are syntactically
disjoint from those in (Γ \∆) ∪ {A}.

The classical validity of ex-falso quodlibet, or better, ex-contradictione quodlibet
— from an inconsistent Γ infer any arbitrary conclusion A — implies that for any
natural deduction system that is complete for classical logic there are inferences that
admit only of contaminated proofs. However, in normal C-intelim this can happen only
in the trivial case in which the proof is essentially a (non-contaminated) refutation of
Γ, that is, immediately obtained from such a refutation by means of a peculiar use of
the ex-falso quodlibet principle. The paradigmatic example is:

A ¬A

f

B

(1)

where the conclusion is obtained from a non-contaminated refutation of the same as-
sumptions by means of an application of ex-falso that is meaningless from the point of
view of deductive practice.9 If this is the case, we call such a proof improper and show
that it can always be readily transformed into a normal non-contaminated proof of f
depending on the same assumptions, by simply removing the bizarre applications of
ex-falso. On the other hand, proper normal proofs are always non-contaminated and so
satisfy the requirement, often called the variable-sharing property, that their premises
are never syntactically disjoint from their conclusion (except for the special case in

[1952].
7They are also used in [D’Agostino and Floridi, 2009, D’Agostino et al., 2013, D’Agostino, 2015] in

order to characterize various sequences of tractable approximations to classical propositional logic.
8Two formulae are syntactically disjoint when they share no atomic subformula.
9 As Michael Dummett once put it: “Obviously, once a contradiction has been discovered, no one is

going to go through it: to exploit it to show that the train leaves at 11:52 or that the next Pope will be a
woman.” [Dummett, 1991, p. 209]. A controversial justification of (1) is provided by the celebrated “Lewis
proof”. See [Bennett, 1969] for a thorough discussion in which the author provides an interesting example
which does not appear to be counterintuitive argues that “the logic of the Lewis argument can be displayed in
indefinitely many other examples, whose validity is highlighted by the their being possible — even plausible
— slices of real argumentative life” (p. 220).
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which the conclusion is f and the proof is, therefore, a non-contaminated refutation of
the assumptions).10

Thus, our normalization theorem allows us to show that the restriction of C-intelim
to normal proofs enjoys the following

Non-contamination property: if π is a proof of A depending on as-
sumptions Γ, then either π is non-contaminated or π is improper. (NCP)

In the latter case there is a straightforward (linear time) procedure to turn π into a non-
contaminated proof of f depending on the same set Γ of assumptions. To the best of
our knowledge, NCP and a notion of normal proof that automatically satisfies it are
investigated in this paper for the first time.

NCP is not enforced by the standard notion(s) of normal proof in Gentzen-style
natural deduction for classical logic. We maintain that a control discipline on the (au-
tomated) generation of proofs that enforces this property is of considerable potential
interest for a variety of application areas in that it stops the generation of obviously re-
dundant proofs in which a subset of the assumptions on which the conclusion depends
are totally unrelated to the other assumptions and to the conclusion. (This point will be
discussed in Section 7.) A prominent research area in which NCP is of crucial impor-
tance is, again, that of Formal Argumentation Theory that is now widely regarded as a
most promising research program in Artificial Intelligence [Bench-Capon and Dunne,
2007].

Moreover, our normalization theorem leads to a straightforward definition of a mea-
sure of depth for normal natural deduction proofs in such a way that, for every fixed k,
if a proof of depth ≤ k exists, it can be found in polynomial time. The resulting notion
of depth-bounded natural deduction lays the foundations for modelling the deductive
practice of resource-bounded agents that reason according to classical logic. We main-
tain that this approach looks promising in view of practical applications of Argumen-
tation Theory to real-world, resource-bounded agents [D’Agostino and Modgil, 2016,
2018]. From this point of view, this paper is a further articulation of a research program
whose philosophical and computational aspects have been investigated in [D’Agostino
and Floridi, 2009, D’Agostino et al., 2013, D’Agostino, 2014, 2015]. Here, the focus
is on the proof-theoretical presentation, on the normalization theorem — with three
different“shades” of normal proofs each of which is interesting in its own right — and
on the NCP of normal proofs.

The paper is organized as follows. In Section 2 we discuss the drawbacks of
Gentzen-style natural deduction from the point of view of classical logic. In Section 3
we present the C-intelim system and discuss its main features. The normalization the-
orem is proved in two steps. In Section 4 we discuss the intermediate notion of quasi-
normal proof and argue that it has a proof-theoretical interest on its own, in that it
allows representations of proofs that exclude trivial detours, while not necessarily be-
ing “analytic”, and that may, in some cases, be significantly shorter than any analytic
proof.

10This property establishes a surface connection with the proof-theory of relevance logic. It is worth
stressing however, that the concerns of relevance logicians are not restricted to banning irrelevant applications
of ex-falso quodlibet, but also with the behaviour of the conditional operator that, in our approach, is entirely
classical.
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Then, in Section 6 we define the notion of normal proof and show that it enjoys the
weak subformula property (every formula occurring in a normal proof of A depend-
ing on a set Γ of assumptions is either a subformula of some formula in Γ ∪ {A}, or
the negation of such a subformula, or is equal to f). Next, in Sections 7 and 8 we
discuss the contamination problem and introduce the distinction between proper and
improper normal proofs, showing that proper normal proofs enjoy the variable-sharing
property, are refutation-complete and are also complete with respect to all classical
consequences of consistent sets of assumptions. In Section 9 we discuss the correspon-
dence between the C-intelim system analysed in this paper and the tableau-like method
used in [D’Agostino, 2015] that here we call C-intelim Tableaux. We argue that, in the
context of classical logic, the latter could provide a smooth transition to implementable
algorithms for the search of natural deduction proofs that may successfully compete
with the more popular alternatives based on resolution, sequent calculi or tableaux.
This further supports the promise of this approach for use by real-world, resource-
bounded agents. (See also the concluding section on this point.) Finally, in Section 10
we report some complexity facts about C-intelim, and in particular that the notion of
normal k-depth C-intelim deducibility provides a hierarchy of tractable approximation
to classical propositional logic.

In this paper we restrict ourselves to propositional logic. Extending our main results
to first-order logic is non-trivial, especially if one attaches a crucial importance to the
notion of depth-bounded reasoning . In the first-order case such a notion requires incor-
porating some of the ideas put forward by Jaakko Hintikka (e.g., in [Hintikka, 1972])
to provide an analogous hierarchy of depth-bounded approximations to first-oder logic.
It also involves solving some technical problem related to the transformation of proofs
into RB-canonical ones. Since a characterization of depth-bounded reasoning is crucial
in view of practical applications in a variety of areas we shall postpone these investi-
gations until a subsequent paper. Throughout this paper we assume that the reader is
familiar with the basic notions of Gentzen-style natural deduction.11

2 Is Gentzen-style natural deduction really natural for
classical logic?

It is well-known that Gentzen-style natural deduction provides a natural formalization
of intuitionistic logic, but a quite unnatural formalization of classical logic. Gentzen
himself observed that his classical calculus NK was obtained by adding to the intuition-
istic calculus NJ the law of excluded middle in “a purely external manner” that spoiled
the harmony between introductions and eliminations [Szabo, 1969, p. 81]. This ap-
proach was illuminating in that it clarified the relationship between the two logical
systems, but did so from the vantage point of intuitionistic logic. It is, therefore, only
to be expected that the NK proof of an inference that is classically, but not intuitionis-
tically, valid turns out to be rather unnatural. The same holds true for Prawitz’s variant
[Prawitz, 1965], that consists in replacing the intuitionistic ex-falso rule and the law
of excluded middle with classical reductio. Prawitz’s rules for natural deduction are

11For references see footnote 4 above.
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shown in Table 1.12 Recall that in some of the rules, the vertical dots stand for a natu-
ral deduction proof of the formula below the dots depending on assumptions that may
include the ones enclosed in square brackets. The latter are “discharged” by the appli-
cation of the rule in the sense that the conclusion no longer depends on them, but only
on the yet undischarged assumptions that occur in the leaves. We call discharge rules
those rules that involve the discharge of assumptions and inference rules those rules
that do not. So, in this system, the inference rules are ∧I, ∧E , ∨I, →E , ¬E and fI,
while the discharge rules are ∨E ,→I, ¬I. It is important to note that in the discharge
rules assumptions may be discharged vacuously, i.e., even if they do not occur in the
leaves of the proof tree. A system for classical logic is obtained by replacing the infer-
ence rule fI with the discharge rule fC.13 Note that the intuitionistic falsum rule fI

is a special case of the classical one that arises when the assumption ¬A is vacuously
discharged.

A proof of A depending on Γ is a tree of occurrences of formulae constructed in
accordance with the rules14 such that A occurs at the root and Γ is the set of all the
undischarged assumptions occurring at the leaves. The system is complete for classical
logic in the sense that for every ∆, A such that A is a classical consequence of ∆, then
there is a natural deduction proof of A depending on some Γ ⊆ ∆.

Let us consider a proof in Prawitz’s system for intuitionistic logic of the intuition-
istically valid inference:

¬A ∨ ¬B ` ¬(A ∧B) (2)

We use numerals to keep track of the assumptions that are discharged by the application
of a proof rule. The numerals corresponding to the discharged assumptions are shown
beside the inference line.

¬A ∨ ¬B

[¬A]1

[A ∧B]3

A

f
3

¬(A ∧B)

[¬B]2

[A ∧B]3

B

f
3

¬(A ∧B)
1,2

¬(A ∧B)

(3)

Let us now consider a standard proof of the reverse inference in Prawitz’s system for
classical logic:

¬(A ∧B) ` ¬A ∨ ¬B (4)

12For an explanation of the rules the reader can refer to Prawitz’s book or to other expositions, for example
those cited in footnote 4.

13As mentioned above, Gentzen’s system NK used the law of excluded middle A ∨ ¬A as an axiom, i.e.
an extra assumption that can be freely introduced in a proof, instead of fC. He also remarked that this axiom
could have been equivalently replaced by the inference rule ¬¬A/A.

14For a formal definition see [Prawitz, 1965].
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INTRODUCTION RULES

A B
∧I

A ∧B

A
∨I1

A ∨B

B
∨I2

A ∨B

[A]
···
B

→ I
A→ B

[A]
···
f
¬I

¬A

ELIMINATION RULES

A ∧B
∧E1

A

A ∧B
∧E2

B

A ∨B

[A]
···
C

[B]
···
C
∨E

C

A→ B A
→ E

B

¬A A
¬E

f

FALSUM RULES

f
fI

A

[¬A]
···
f

fC
A

Table 1: Prawitz’s rules for natural deduction.
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which is not intuitionistically valid.

¬(A ∧B)

[¬(¬A ∨ ¬B)]1

[¬A]2

¬A ∨ ¬B

f
2

A

[¬(¬A ∨ ¬B)]1

[¬B]3

¬A ∨ ¬B

f
3

B

A ∧B

f
1

¬A ∨ ¬B

(5)

This proof is quite unnatural from the classical point of view in that it does not exploit
the inner symmetries of classical logic. Indeed, it is very different from the previous
one. However, in a classical setting, the two proofs should essentially be the same,
modulo the duality of ∨ and ∧. By contrast, in both the classical sequent calculus LK
and the Tableau method the proofs of (2) and (4) have essentially the same structure.

As these two examples strongly suggest, standard natural deduction may be natural
from the point of view of intuitionistic logic, but is not so natural from the point of view
of classical logic. If we are interested in a deduction system that is really natural for
classical logic, we need introduction and elimination rules that closely reflect the clas-
sical meaning of the logical operators and the way in which these are used in classical
proofs. In such a system a formula and its negation should be treated symmetrically.
Moreover, the conjunction and disjunction operators should be governed by dual rules.
This is the case, for instance, with the tableau method, where we have tableau rules for
a compound formula of a given logical form and for its negation and where the rules
for ∧ and ∨ are dual of each other.15 However, the interplay between introduction and
elimination rules as well as the possibility of generating direct proofs, that are typical
of natural deduction, are inevitably lost in the tableau method that uses only elimination
rules, so that a proof of a conclusion from a set of assumptions is obtained by refuting
its negation on the basis of the assumptions.16

15Smullyan once claimed that tableaux could indeed be presented as a sort of natural deduction for clas-
sical logic ([Smullyan, 1965]). Dual rules are also used in the natural deduction system EN ∗ proposed by
Kent Bendall in [1978], who also advocates the use of signed formulae to solve the separation problem for
classical logic. (On this point see also Section 3 below.)

16As a reviewer pointed out to us, an early use of dual rules for negative conjunctions and disjunctions in
a system of natural deduction can be found in [Fitch, 1952, p. 60], some of which, namely the introduction
rules, are used also in the system discussed in the next section. However, the elimination rules were not
disegned to satisfy the separation property and exploit the De Morgan equivalences. On the other hand,
elimination rules for negative disjunctions can be formulated as in the next section, while an elimination rule
for negative conjunctions could be introduced as dual of Gentzen’s rule of disjunction elimination. The main
advantage of the system presented in the next section, is that it minimizes the use of discharge rules, which
has important implication from the point of view of computational complexity and depth-bounded reasoning.
The interested reader may want to show how Fitch’s system can be simulated by C-intelim and viceversa.
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3 C-intelim deduction
The C-intelim system is a natural deduction system whose rules, unlike those of stan-
dard natural deduction, are faithful to the classical meaning of the logical operators
(i.e., to their truth-table interpretation) and not to their intuitionistic meaning. It was
introduced in [Mondadori, 1989] and further investigated in [D’Agostino, 2005].17 The
C-intelim rules are shown in Table 2.

For the sake of philosophical analysis, the rules are best presented in terms of
signed formulae of the form T A or F A, with A an ordinary formula. The standard
reading of these signed formulae is “A is true” and “A is false”. In the context of clas-
sical logic this appears as the most natural way of achieving “separation” in the sense
of [Bendall, 1978, p. 250] — each rule deals only with one logical operator and a proof
should make use only of intelim rules for the operators that occur in the premises or
in the conclusion — as well as the stronger form of separation that is embodied in the
subformula property. This is also the approach followed by Smullyan [1968] in his
presentation of the tableau method. For a well-argued philosophical defence of the use
of signed formulae in the proof theory of classical logic the reader is referred to [Ben-
dall, 1978]. More recently, the use of signed formulae for philosophical purposes has
been central in the discussion on “bilateralism” [Smiley, 1996, Rumfit, 2000, Humber-
stone, 2000, Ferreira, 2008, Gabbay, 2017] as an inferential approach to the meaning
of the classical operators. An alternative, but closely related, way of achieving the
same results in terms of ordinary formulae is that of resorting to multi-conclusion se-
quents as the primary components of a deduction system. The connection between
multi-conclusion sequents and signed formulae is made apparent when looking at the
translation of classical sequent proofs in systems with no structural rules like Kleene’s
G4 [Kleene, 1967, chapter 6] into closed semantic tableaux.18

Note that in C-intelim the introduction and elimination rules for the logical op-
erators, as well as the falsum rules, are all inference rules, involving no discharge of
assumptions. The only discharge rule RB is a structural rule that expresses the classical
principle of bivalence and is therefore peculiar to classical logic. For each application
of RB the formulaA that occurs in the discharged assumptions is called the RB-formula
of that application. A C-intelim proof of A depending on Γ is a tree of occurrences of
signed formulae constructed in accordance with the C-intelim rules such that T A oc-
curs at the root and {T B | B ∈ Γ} is the set of all undischarged assumptions that
occur at the leaves.

Observe that the intelim rules for disjunction and conjunction are dual of each other,
and that a signed formula and its conjugate are treated symmetrically, as they should
be in a classical setting. For each logical operator, we have intelim rules for a signed

17In [D’Agostino and Floridi, 2009, D’Agostino et al., 2013, D’Agostino, 2015] similar rules are used in
a different format to define a hierarchy of tractable depth-bounded approximations to classical propositional
logic.

18See [D’Agostino, 1990, Section 2.2] for the details. For another interesting approach, in the context of
the Curry-Howard correspondence for classical logic, see [Aschieri et al., 2018]. On the other hand, without
essential extensions of the logical language (signed formulae) or of the intuitive notion of inference rule
(multi-conclusion sequent calculus), or other non-standard technical devices most authors are skeptical about
the possibility of a genuine inferential semantics for classical logic. One notable exception is [Sandqvist,
2009]; see also the analysis in [Makinson, 2013].
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formula containing it as main operator as well as intelim rules for its conjugate. This
feature is shared by the tableau method and other bilateral systems of deduction, such
as Bendall’s [Bendall, 1978] or Rumfit’s [Rumfit, 2000]. Unlike the tableau method,
however, C-intelim contains introduction as well as elimination rules and so can be
used for direct proofs as well as for refutations. Moreover, the elimination rules for
T A → B, T A ∨ B and F A ∧ B do not generate any branching and are standard
inference rules that require an additional minor premise. So, unlike Gentzen-style nat-
ural deduction and other “bilateral” natural deduction systems, C-intelim contains no
discharge rule for the logical operators.

The rules RNC (Rule of Non-Contradiction) and XFQ (Ex-Falso Quodlibet) are in-
ference rules that express the basic principle of classical semantics according to which
no valuation can make the same formula both true and false. We find it convenient
to represent this principle by making use of the “falsum” symbol f. Throughout this
paper we make the simplifying assumption that “f” occurs only in the context of the
falsum rules, namely as conclusion or RNC or as premise of XFQ, and nowhere else.
From the point of view of classical logic this is a reasonable stipulation and avoids
a good deal of tedious details in the proofs and in the definitions. However, there is
no loss of generality in making this simplifying assumption. So, for us f will be es-
sentially a marker to make it explicit that a contradiction has been reached. Note that
each inference rule expresses the fact that every Boolean valuation that satisfies its
premise(s) satisfies also its conclusion.19 Then, RNC and XFQ are classically correct
for the simple reason that no Boolean valuation can satisfy their premises. In our view
RB, RNC and XFQ are all structural rules, in that they reflect the fundamental prop-
erties governing the underlying (classical) notions of truth and falsity — governed by
the principles of bivalence and non-contradiction — and not the inferential behaviour
of some logical operators.20

Under an alternative reading of signed formulae, we may interpret them as asser-
tions about the current information state: T A would then mean that we possess the
information that A is true and F A that we possess the information that A is false. In
this view all the inference rules are rules that draw straightforward conclusions from
information that we actually possess. On the other hand the rule RB simulates alter-
native information states that extend the actual one. Thus, the discharged assumptions
in each application of RB are called virtual assumptions in that they represent “virtual
information”, i.e. information that we do not actually possess. The notion of proof-tree
based on these rules is essentially the same as that of standard natural deduction, except
that a proof of A depending on the undischarged assumptions Γ is replaced by a proof
of T A depending on the undischarged assumptions {T B | B ∈ Γ}.

For all practical purposes, however, we may find it convenient to work with un-
signed formulae, by exploiting the classical meaning of negation. This amounts to
simply removing the sign T before a formula and replacing the sign F with the nega-
tion operator. The resulting rules for unsigned formulae are displayed in Table 3. In
this version, the intelim rules are no longer “separated”, the subformula property holds

19That a Boolean valuation v satisfies a signed formula is to be intended in the obvious way: v satisfies
T A when v(A) = 1 and F A when v(A) = 0.

20As explained above, we do not treat f as a logical operator.
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INTRODUCTION RULES

T A T B
T∧ I

T A ∧B

F A
F∧ I1

F A ∧B

FB
F∧ I2

FA ∧B

F A F B
F∨ I

F A ∨B

T A
T∨ I1

T A ∨B

T B
T∨ I2

T A ∨B

T A F B
F→ I

F A→ B

F A
T→ I1

T A→ B

T B
T→ I2

T A→ B

T A
F¬I

F ¬A

F A
T¬I

T ¬A

ELIMINATION RULES

T A ∨B F A
T∨ E1

T B

T A ∨B F B
T∨ E2

T A

F A ∨B
F∨ E1

F A

F A ∨B
F∨ E2

F B

F A ∧B T A
F∧ E1

F B

F A ∧B T B
F∧ E2

F A

T A ∧B
T∧ E1

T A

T A ∧B
T∧ E2

T B

T A→ B T A
T→ E1

T B

T A→ B F B
F→ E2

F A

F A→ B
F→ E1

T A

F A→ B
F→ E2

F B

T ¬A
T¬E

F A

F ¬A
F¬E

T A

FALSUM RULES RULE OF BIVALENCE

T A F A
RNC

T f

T f
XFQ∗

S A

[T A]
···

S B

[F A]
···

S B
RB∗

S B

∗ under any uniform substitution of S with T or F .

Table 2: The C-intelim rules for signed formulae.
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INTRODUCTION RULES

A B
∧I

A ∧B

¬A
¬∧ I1

¬(A ∧B)

¬B
¬∧ I2

¬(A ∧B)

¬A ¬B
¬∨ I

¬(A ∨B)

A
∨I1

A ∨B

B
∨I2

A ∨B

A ¬B
¬→ I

¬(A→ B)

¬A
→ I1

A→ B

B
→ I2

A→ B

A
¬¬I

¬¬A

ELIMINATION RULES

A ∨B ¬A
∨E1

B

A ∨B ¬B
∨E2

A

¬(A ∨B)
¬∨ E1

¬A

¬(A ∨B)
¬∨ E2

¬B

¬(A ∧B) A
¬∧ E1

¬B

¬(A ∧B) B
¬∧ E2

¬A

A ∧B
∧E1

A

A ∧B
∧E2

B

A→ B A
→ E1

B

A→ B ¬B
→ E2

¬A
¬(A→ B)

¬→ E1
A

¬(A→ B)
¬→ E2

¬B

¬¬A
¬¬E

A

FALSUM RULES RULE OF BIVALENCE

A ¬A
RNC

f

f
XFQ

A

[A]
···
B

[¬A]
···
B

RB
B

Table 3: The C-intelim rules for unsigned formulae.
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only in a weaker form (see Section 6) and the rules RNC and RB no longer appear to be
structural, since they do mention the negation operator. On the other hand, we can look
at this version of the rules only as a practically convenient “translation” of the rules
for signed formulae into an ordinary logical language, and refer to the original version
for all philosophical purposes. In particular, we can still regard RNC and RB (as well
as XFQ) as structural rules in that their original version for signed formulae does not
mention any logical operator.21 In the sequel we shall present all our results with refer-
ence to the rules for unsigned formulae and leave it to the more philosophically-minded
readers to translate them into the original version for signed formulae.

In the unsigned version the two-premise elimination rules correspond to time-
honoured principles of inference: modus ponens, modus tollens, disjunctive syllogism
and its dual.22 In the elimination rules, the formula containing the logical operator
that is to be eliminated is called major premise and the other (if any) is called minor
premise. The less natural rules, from the point of view of ordinary usage, namely the
introduction rules for a true conditional and the elimination rules for a false conditional,
are related to the Philonian meaning of this operator which is, however, typical of clas-
sical logic. The Philonian conditional, also called “material implication”, is defined by
A→ B =def ¬A∨B or, equivalently, byA→ B =def ¬(A∧¬B). This is the closest
we can get to a “real” conditional operator in the Boolean framework. Clearly, such
a conditional can be discarded from the language with no significant loss as far as the
structure of arguments is concerned.

In the unsigned calculus, as in Gentzen-Prawitz natural deduction, a C-intelim
proof of A depending on Γ is a tree of occurrences of formulae constructed in ac-
cordance with the C-intelim rules such that A occurs at the root and Γ is the set of
all undischarged assumptions that occur at the leaves. The tree in Figure 1 shows a
C-intelim deduction of G depending on

{A→ ¬B,B ∨ C,¬(C ∧ ¬B), A ∨ E, (E ∨ F )→ ¬D,¬G→ D}.

Note that the last step is an occurrence of RB that discharges the temporary assumptions
A (which occurs twice among the leaves of the left subtree) and ¬A (which occurs
once among the leaves of the right subtree). This example also shows that the standard
format in which proofs are represented, while being very perspicuous, is somewhat
inefficient, in that it may involve an unnecessary duplication of assumptions and of
identical subproofs. In Section 9 we shall present a more “streamlined” format for
C-intelim proofs that partly avoids the redundancy of the standard format and is more
suitable for proof-search algorithms. However, the standard format is better suited to
proving results on the transformation of proofs. Therefore, se shall stick to in order to
provide a clearer presentation of the normalization and non-contamination theorems.
The trees in Figure 2 show C-Intelim proofs of (2) and (4). Note that the proof on
the right is much closer to the classical way of reasoning than the standard natural

21In its version for unsigned formulae RB is sometimes called “Classical Dilemma” and can be used, as in
[Tennant, 1990], in addition to the standard intuitionistic rules, to obtain another variant of Gentzen’s natural
deduction for classical logic.

22Chrysippus (III century B.C.) listed these rules among the fundamental indemonstrable principles of
reasoning (anapodeiktoi), except that he intended disjunction in its exclusive sense.
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[A]1 A→ ¬B

¬B B ∨ C

C ¬(C ∧ ¬B)

¬¬B

B

[A]1 A→ ¬B

¬B

f

G

¬G→ D

E ∨ F → ¬D

[¬A]2 A ∨ E

E

E ∨ F

¬D

¬¬G

G
1,2

G

Figure 1: A C-intelim proof.

(¬A ∨ ¬B)

[A]1

¬¬A

¬B

¬(A ∧B)

[¬A]2

¬(A ∧B)
1,2

¬(A ∧B)

¬(A ∧B) [A]1

¬B

¬A ∨ ¬B

[¬A]2

¬A ∨ ¬B
1,2

¬A ∨ ¬B

Figure 2: C-intelim proofs of (2) and (4).

deduction proof shown in (5) and, accordingly, exhibits the same structure as the one
on the left.

Definition 3.1. We say that A is C-intelim deducible from Γ, and write Γ `IE A, if
there is a C-intelim proof of A depending on ∆ ⊆ Γ.

The completeness of C-intelim for classical propositional logic can be easily shown
by simulating the rules of Prawitz’s system or the truth-table method (this is left to the
reader).23

Remark 3.1. RB can be used, together with the elimination rules, to simulate any of
the introduction rules. Conversely, RB can be used together with the introduction rules
to simulate any of the elimination rules. To see this it is sufficient to look at the two
examples in Figure 3. This clearly implies that RB + Introduction rules and RB +
Elimination rules are both complete for classical logic and are essentially equivalent
to the systems KI and KE (see Section 9 for references). However, using both intro-
duction and elimination rules (i) allows for more natural and shorter proofs (although
not essentially shorter because the simulation is clearly polynomial); (ii) it makes a
substantial difference when the notion of depth-bounded proof is taken into account, in

23To simulate a truth-table proof of A from Γ it is sufficient to express all possible assignments of truth-
values to the atomic formulae occurring in Γ ∪ {A} by means of virtual assumptions introduced via RB,
and then use the introduction rules to obtain either T A, or F B for some B ∈ Γ . In most cases, it is not
necessary to represent all possible assignments to all the atomic formulae occurring in Γ ∪ {A}. (This is
essentially Kalmar’s strategy for proving completeness.)
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[A ∨B]1

[¬(A ∨B)]2

¬A A

f

A ∨B
1,2

A ∨B

[B]1

[¬B]2 ¬A

¬(A ∨B) A ∨B

f

B
1,2

B

Figure 3: Simulating introductions via RB + eliminations and simulating eliminations
via RB + introductions.

that it reduces the number of applications of the RB rule (the only discharge rule of the
system) that, as we shall see, is key to define the depth of a C-intelim deduction.

4 Quasi-normal proofs
In this section we introduce the notion of quasi-normal proof as a step towards the
notion of normal proof that will be introduced in Section 6. However, quasi-normal
proofs are of interest in their own right, in that they allow for the representation of non-
analytic proofs (i.e., proofs that do not enjoy the subformula property) that, however,
contain no “detours” and can, in some cases, be much shorter than any analytic proof.24

Definition 4.1. An application of RB is canonical in a C-intelim tree T if there is no
application of an inference (intelim or falsum) rule in T below its conclusion. A tree
T is RB-canonical if all applications of RB in it are canonical.

The notion of RB-canonical tree is motivated both by technical reasons concerning
the proof of normalization and also by the fact that in RB-canonical proofs there is a
clear separation between the components consisting only of applications of inference
rules and the final applications of the discharge rule RB. Any C-intelim proof can be
turned into an RB-canonical one by applying the following transformations:25

[A]1

T1
C

[¬A]2

T2
C

1,2
C

D

;

[A]1

T1
C

D

[¬A]2

T2
C

D
1,2

D

(T1)

24That analytic proofs may be significantly longer than non-analytic ones is well-known in the literature
on the relative complexity of proof systems. Proof systems that generate only analytic proofs, such as the
Tableau Method or Resolution, can be polynomially simulated by Frege systems (i.e., standard Hilbert-style
axiomatic systems) but cannot polynomially simulate Frege systems. For an overview of these results see
[Urquhart, 1995].

25In the sequel, the transformations must be intended as follows: replace locally a subtree of the form
shown on the left of “;” with a subtree of the form shown on its right.
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[A]1

T1
C

[¬A]2

T2
C

1,2
C

T3
D

E

;

[A]1

T1
C
T3
D

E

[¬A]2

T2
C

T3
D

E
1,2

E

(T2)

The transformations (T1) and (T2) are the analogue, in our system, of Prawitz’s “per-
mutative reductions” [Prawitz, 1965, pp. 50–51], and can be applied, respectively,
whenever C/D is an instance of a one-premise inference rule, and whenever C,D/E
is an instance of a two-premise inference rule. Their repeated application results in
pushing downwards all the applications of RB so that, eventually, the conclusion of an
application of RB is never used as a premise of an intelim or of a falsum rule and must
be identical to the conclusion of the whole proof.26

Remark 4.1. These transformations involve some duplication of occurrences of for-
mulae or of identical subproofs, and therefore can increase in the size of the proof.
While in the case of (T1) it can be shown that this increase is at most linear in the size
of T , (T2) may lead to exponentially longer proofs.

Given a subtree T ′ of T , let dncRB(T ′) be equal to zero if T ′ ends with an ap-
plication of RB, and equal to the total number of applications of RB in T ′ if T ′ ends
with an application of an inference rule. We introduce the parameter d1(T ) = 〈m,n〉
where m is the maximum value of dncRB for a subtree of T and n is the number of of
subtrees for which the value of dncRB is maximum. Consider the lexicographic order
on d1 defined in the usual way: 〈m,n〉 < 〈m′, n′〉 if and only if m < m′ or m = m′

and n < n′.
The reader can verify that each application of the transformations (T1)–(T2) to a

subtree of T such that its root is not followed by any other application of an inference
rule (i.e., it is followed only by applications of RB, if any) yields a tree for which the
value of d1 is strictly less than that of T , until it eventually drops to 〈0, 0〉, yielding
an RB-canonical proof of the same conclusion depending exactly on the same set of
assumptions.

Remark 4.2. If the transformations are applied to arbitrary subtrees with no side
condition, it is not the case that each transformation step decreases d1. However,
it can be shown that: applications of (T1) never increase d1 and decrease its value
whenever there are no applications of two-premise inference rules below its root; (ii)
d1 may be increased by applications of (T2), but reaches a maximum when (T2) cannot
be further applied, and then starts decreasing until it reaches the value 〈0, 0〉. Hence,
there is a finite sequence of transformation steps, no matter to which subtrees they are
applied, that yields an RB-canonical tree.

26On this reduction to what we call RB-canonical form, see also [Tennant, 1990, p. 94], where it is used
to prove that every classically refutable set of assumptions is also intuitionistically refutable (in the proposi-
tional case). Tennant uses RB (Classical Dilemma) in addition to the intuitionistic Gentzen rules to charac-
terize classical propositional logic.
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Lemma 4.1. Every C-intelim proof of A depending on Γ can be transformed into an
RB-canonical C-intelim proof of A depending on Γ, by means of any sufficiently long
sequence of applications of (T1)–(T2).

Definition 4.2. Let the depth of an RB-canonical C-intelim proof T , denoted by depth(T ),
be defined as follows:

1. If T contains no application of RB, then depth(T ) = 0;

2. if T has the form
[A]
T1
B

[¬A]
T2
B

B

then depth(T ) = max(depth(T1),depth(T2)) + 1.

The notion of depth for RB-canonical proofs emphasizes the role of RB as the
only discharge rule that involves the use of “virtual information”. Its significance as
a proxy for the intuitive notion of depth of the reasoning process represented by the
proof27 depends on how the “virtual space”, i.e., the set of formulae that may be used
as RB-formulae, is bounded. We shall see in the sequel that the virtual space can be
bounded in a variety of ways and, in particular, can be restricted to the subformulae of
the assumptions and of the conclusion of the proof (as required for normal proofs).

Definition 4.3. We call 0-depth component of an RB-canonical C-intelim proof T any
maximal 0-depth subtree of T , i.e., one that is not a proper subtree of any 0-depth
subtree of T .

Note that in an RB-canonical proof T the conclusion of every 0-depth component
is the conclusion of T itself. The general structure of an RB-canonical k-depth C-
intelim proof ofA depending on Γ is illustrated in Figure 4. The triangles labelled with
T1, . . . , Tn represent the 0-depth components of the proof. Each 0-depth component Ti
is a proof of A depending on Γi ∪ ∆i such that: (i) Γi ⊆ Γ, (ii) ∆i, with |∆i| ≤ k,
is the set of virtual assumptions introduced in Ti that are subsequently discharged in
T via applications of RB, (iii) Ti contains only applications of inference rules (no
application of RB). The nodes below the root of each 0-depth component Ti contain
only occurrences ofA that result from applications of the structural rule RB discharging
the virtual assumptions in ∆i.

Definition 4.4. Given a C-intelim proof T , we say that an application of RB in T is
redundant if one of the following conditions hold:

1. at least one of its virtual assumptions is vacuously discharged,

2. its conclusion still depends on one of the discharged virtual assumptions.
27By this we mean a notion that can be sensibly associated with the “difficulty” of proving the conclusion

from the assumptions both from the computational and the cognitive viewpoint.
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T1

A

T2

A

A

A

Tn−1

A

Tn

A

A

A

A

Figure 4: Structure of an RB-canonical C-intelim proof.

Example 4.1. Consider a C-intelim proof T containing the following subproof:

T ′ =

[A]1 A→ B

B

C C → B

B
1

B.

T ′ is a proof ofB depending on Γ = {A→ B,C,C → B} ending with an application
of RB in which the virtual assumption ¬A is vacuously discharged in the righthand
subproof. Therefore, the last step of this proof is a redundant application of RB. Such
redundant application of RB can be eliminated by replacing T ′ with:

C C → B

B.

Example 4.2. Consider a proof T containing the following subproof:

T ′ =

[A]1 ¬A

f

B

[¬A]2 ¬A→ B

B
1,2

B.

Here, the application of RB is redundant because its conclusion still depends on the
undischarged occurrence of the assumption ¬A in the lefthand subproof. The latter,
however, is discharged as a virtual assumption in the righthand subproof. The re-
dundancy of this application is apparent if we consider that this subproof T ′ can be
replaced by the following equivalent one (i.e., with the same assumptions and conclu-
sions) that does not contain it:

¬A ¬A→ B

B
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Any C-intelim proof can be turned into one that contains no redundant applications
of RB by applying the following transformations28 that remove the redundant applica-
tions of RB:

[A]
T1
B

[¬A]
T2
B

B
;

Ti
B (T3)

where i = 1 if A is vacuously discharged in T1 or occurs as an undischarged assump-
tion in T2; i = 2 if ¬A is vacuously discharged in T2 or occurs as an undischarged
assumption in T1.

Note that the result of removing all redundant applications of RB from a C-intelim
proof of A depending on Γ will be a C-intelim proof of A depending on ∆ ⊆ Γ.

Let d2(T ) denote the number of redundant applications of RB in T . Observe that
each application of the transformations (T3) yields a tree T ′ such that d2(T ′) < d2(T ).
Thus:

Lemma 4.2. Every C-intelim proof ofA depending on Γ can be turned into a C-intelim
proof of A depending on ∆ ⊆ Γ that contains no redundant applications of RB, by
means of any sufficiently long sequence of applications of (T3) and with no increase in
the size or depth of the proof.

Remark 4.3. Observe that every application of (T3) that decreases d2(T ) does not
introduce any new application of RB and so cannot increase d1(T ).

Definition 4.5. A detour in a C-intelim proof T is an occurrence of a formula as
conclusion of an introduction and, at the same time, as major premise of an elimination.

The transformations (T4)–(T16) show how detours can be removed from a C-
intelim proof.29 Note that the final proof will have the same conclusion as the original
one and will depend on a subset of the original assumptions. (To save space we use the
variable i ranging over {1, 2}.)

28See Footnote 25.
29The notion of “detour” refers to a redundant use of the intelim rules and the removal of such detours

is key in the proof of the normalization theorem. In the context of Gentzen-style natural deduction it corre-
sponds to that of “maximum formula” in [Prawitz, 1965].
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T1
Ai

A1 ∨A2

T2
¬Ai

A(3−i)

;

T1
Ai

T2
¬Ai

f

A(3−i)

(T4)

T1
Ai

A1 ∨A2

T2
¬A(3−i)

Ai

;
T1
Ai

(T5)

T1
¬A1

T2
¬A2

¬(A1 ∨A2)

¬Ai

;
Ti
¬Ai

(T6)

T1
¬Ai

¬(A1 ∧A2)
T2
Ai

¬A(3−i)

;

T1
¬Ai

T2
Ai

f

¬A(3−i)

(T7)

T1
¬Ai

¬(A1 ∧A2)
T2

A(3−i)

¬Ai

;
T1
¬Ai

(T8)

T1
A1

T2
A2

A1 ∧A2

Ai

;
Ti
Ai

(T9)

T1
A

¬¬A

A

;
T1
A

(T10)
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T1
¬A1

A1 → A2

T2
A1

A2

;

T1
¬A1

T2
A1

f

A2

(T11)

T1
A2

A1 → A2

T2
A1

A2

;
T1
A2

(T12)

T1
¬A1

A1 → A2

T2
¬A2

¬A1

;
T1
¬A1

(T13)

T1
A2

A1 → A2

T2
¬A2

¬A1

;

T1
A2

T2
¬A2

f

¬A1

(T14)

T1
A1

T2
¬A2

¬(A1 → A2)

A1

;
T1
A1

(T15)

T1
A1

T2
¬A2

¬(A1 → A2)

¬A2

;
T2
¬A2

(T16)

Note that (i) the transformations (T4)–(T16) never increase the size of the proof, nor do
they increase its depth; (ii) in some cases, their application may introduce new detours;
for example in (T4) if Ai or ¬Ai are conclusions of introductions in T1 or T2, they are
not detours in the original subproof, but become such in the transformed one. However
these new detours are always of lower complexity than the one that is removed by the
transformation.

So, let d3(T ) be the sum of the complexities (i.e., number of the logical operators)
of all detours occurring in T and equal to 0 when there are no detours. Then, each
application of the transformations (T4)–(T16) decreases the value of d3(T ) until it
drops to 0, so yielding a proof that is detour-free.

21



Γ···
A

A ∨B

∆···
A ∨B

A ∨B

Λ···
¬A

B

Figure 5: Higher level detours

[A ∨B]1

[¬(A ∨B)]2

¬A

Γ···
A

f

A ∨B
1,2

A ∨B

∆···
¬B

A

Figure 6: Indirect detours

Lemma 4.3. Any C-intelim proof of A depending on Γ can be transformed into a C-
intelim proof of A depending on ∆ ⊆ Γ that contains no detours, by any sufficiently
long sequence of applications of (T4)–(T16) and with no increase in the size or depth
of the proof.

Remark 4.4. Note that the transformations (T4)–(T16) do not introduce any new ap-
plication of RB, and therefore cannot increase either d1(T ) or d2(T ).

Remark 4.5. We could generalize the notion of “detour” by considering any sequence
A1, . . . , An of occurrences of the same formula such that: (i) A1 is the conclusion of
an introduction, (ii) An is the major premise of an elimination, (iii) for all i such that
1 < i ≤ n, Ai is an immediate successor of Ai−1 resulting from an application of RB.
Such a sequence is a detour of level n. An example of detour of level 2 is given in Fig-
ure 5. However, observe that such higher level detours cannot occur in RB-canonical
proofs, for An would be at the same time the conclusion of an application of RB and a
premise of an inference rule. Hence, elimination of higher level detours is a side-effect
of transforming proofs into RB-canonical ones. Another kind of “indirect” detour is
shown in Figure 6 and is related to the possibility of simulating introductions via elimi-
nations and RB, as illustrated in Figure 3. Again, the reduction to RB-canonical proofs
has the effect of eliminating this kind of indirect detours.

Definition 4.6. Given a C-intelim proof T , an application of RNC is canonical in T if
it is not the case that its premises are both conclusions of introductions. A C-intelim
proof is RNC-canonical if it contains no non-canonical applications of RNC.
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Non-canonical applications of RNC can be removed by means of the the transfor-
mations (T17)–(T20) (for i = 1, 2).

T0
Ai

A1 ∨A2

T1
¬A1

T2
¬A2

¬(A1 ∨A2)

f

;

T0
Ai

Ti
¬Ai

f

(T17)

T0
¬Ai

¬(A1 ∧A2)

T1
A1

T2
A2

A1 ∧A2

f

;

Ti
Ai

T0
¬Ai

f

(T18)

T0
¬A1

A1 → A2

T1
A1

T2
¬A2

¬(A1 → A2)

f

;

T1
A1

T0
¬A1

f

(T19)

T0
A2

A1 → A2

T1
A1

T2
¬A2

¬(A1 → A2)

f

;

T0
A2

T2
¬A2

f

(T20)

By the complexity of an application of RNC with premisesA and ¬A, we mean the log-
ical complexity of A. Again, the removal of a non-canonical application of RNC may
introduce a new non-canonical application, but the complexity of the latter is always
lower. So, let d4(T ) be sum of the complexities of the non-canonical applications of
RNC in T and equal to 0 when all the applications of RNC are canonical. Each of the
transformations (T17)–(T20) decreases d4(T ) until its value drops to 0.

Lemma 4.4. Any C-intelim proof of A depending on Γ can be transformed into an
RNC-canonical C-intelim proof ofA depending on ∆ ⊆ Γ, by means of any sufficiently
long sequence of applications of (T17)–(T20) and with no increase in the size or depth
of the proof.

Remark 4.6. Observe that applications of (T17)–(T20) do not introduce new appli-
cations of RB, nor do they introduce new detours30, and so cannot increase any of the
parameters d1(T )–d3(T ).

Definition 4.7. Given a C-intelim proof T , an application of XFQ is canonical in T if
(i) its conclusion is not f, and (ii) its conclusion is not the premise of an application of
an inference rule. A C-intelim proof is XFQ-canonical if it contains no non-canonical
applications of XFQ.

30Recall that in C-intelim RNC is a structural rule and not an elimination rule; the rules for unsigned
formulae are intended as practical proxies for their signed versions. See the discussion in Section 3.
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Remark 4.7. Observe that if a proof of A depending on Γ is XFQ-canonical and RB-
canonical: (i) it may contain only applications of XFQ with A itself as conclusion (ii)
applications of XFQ may occur only as the last step in one of its 0-depth components.

The notion of XFQ-canonical proof makes it apparent that, in RB-canonical proofs,
the only use of XFQ consists, in fact, in showing that the assumptions are inconsistent,
given that this rule can be applied only as the last step of a 0-depth component that
immediately follows an application of RNC.

Any C-intelim proof can be turned into one that is XFQ-canonical by repeatedly
applying the following transformations:

T1
f

f

;
T1
f

(T21)

T1
f

C

D

;

T1
f

D

(T22)

T1
f

C
T2
D

E

;

T1
f

E

(T23)

As before, the transformations (T22) and (T23) can be applied, respectively, for any
instance C/D of a one-premise inference rule, any instance C,D/E of a two-premise
inference rule. They eventually yield a proof in which the conclusion of XFQ is never
used as premise of an intelim rule or of RNC. This implies that all applications of XFQ
are followed only by applications of RB. Note that the final proof will have the same
conclusion as the original one and depend on a subset of the original assumptions.

Given a subtree T ′ of T , let dncXFQ(T ′) be equal to 0 if T ′ does not end with an
application of XFQ; otherwise let it be equal to the number of occurrences of formulae
below the root of T ′ that result from applications of inference rules. Then, we define
d5(T ) as follows:

d5(T ) =
∑

T ′∈Sub(T )

dncXFQ(T ′) (6)

Observe that each application of the transformations (T21)–(T23) yields a tree T ′ such
that d5(T ′) < d5(T ). Thus:

Lemma 4.5. Any C-intelim proof of A depending on Γ can be transformed into an
XFQ-canonical C-intelim proof of A depending on ∆ ⊆ Γ, by any sufficiently long
sequence of applications of (T21)–(T23) and with no increase in the size or depth of
the proof.
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DEFINITIONS OF d1–d5

• d1(T ) = 〈m,n〉, where

– m is the maximum value of dncRB for a subtree of T and n is the
number of of subtrees for which the value of dncRB is maximum;

– dncRB(T ′), for any subtree T ′ of T , is equal to zero if T ′ ends with
an application of RB, and equal to the total number of applications of
RB in T ′ if T ′ ends with an application of an inference rule;

– 〈m,n〉 < 〈m′, n′〉 iff m < m′ or m = m′ and n < n′;

• d2(T ) = number of redundant applications of RB in T ;

• d3(T ) is equal to 0 if there are no detours; otherwise to the sum of the
complexities (i.e., number of the logical operators) of all detours occurring
in T ;

• d4(T ) is equal to 0 if all the applications of RNC in T are canonical, oth-
erwise to the sum of the complexities of the non-canonical applications of
RNC in T ;

• d5(T ) =
∑

T ′∈Sub(T ) dncXFQ(T ′), where

– Sub(T ) is the set of all subtrees of T ;

– dncXFQ(T ′) is equal to 0 if T ′ does not end with an application of
XFQ; otherwise to the number of occurrences of formulae below the
root of T ′ that result from applications of inference rules.

Table 4: Transformation parameters.

Remark 4.8. Observe that any application of (T21)–(T23) does not introduce new ap-
plications of RB; nor does it introduce new detours or new non-canonical applications
of RNC, and so cannot increase any of the parameters d1(T )–d4(T ).

Definition 4.8. We say that a C-intelim proof T is quasi-normal if all of the following
conditions are satisfied:

• T is RB-canonical, RNC-canonical and XFQ-canonical,

• T contains no redundant applications of RB,

• T contains no detours.

The definitions of d1(T )–d5(T ) given above are summarized in Table 4. Now, let

d(T ) = 〈d1(T ), d2(T ), d3(T ), d4(T ), d5(T )〉
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and consider the usual lexicographic order on d(T ) for all C-intelim proofs T . The
reader can verify that a transformation that decreases di(T ) for some i < 5, may
increase dj(T ) for some j > i. However, as observed in Remarks 4.3–4.8, transfor-
mations that decrease di(T ) for i > 1, never increase dj for any j < i. So, each of the
transformations (T1)–(T23) decreases d(T ). Hence the repeated application of these
transformations, independently of their order, eventually yields a proof T ′ such that
d(T ′) = 〈〈0, 0〉, 0, 0, 0, 0〉, which is therefore quasi-normal.

Theorem 4.1. Any C-intelim proof of A depending on Γ can be turned into a quasi-
normal C-intelim proof of A depending on ∆ ⊆ Γ, by means of any sufficiently long
sequence of applications of the transformations (T1)–(T23).

Moreover, observe that the transformations (T3)–(T23) that decrease d2–d5 never
increase the size of the proof and do not introduce any new application of RB. Hence,

Theorem 4.2. Any RB-canonical C-intelim proof of A depending on Γ can be turned
into a quasi-normal C-intelim proof of A depending on ∆ ⊆ Γ, by means of any
sufficiently long sequence of applications of the transformations (T3)–(T23) and with
no increase in the size or depth of the proof.

Remark 4.9. If T is a quasi-normal C-intelim proof,

• every subproof of T is also quasi-normal;

• every 0-depth component of T contains at most one application of RNC and at
most one application of XFQ (as the last step).

5 Intermediate conclusions
We have introduced the C-intelim system and argued that it is better suited than Gentzen-
style natural deduction to represent naturally the inferences of classical logic. The main
technical contribution so far is a set of transformations that can turn, independently of
the order in which they are applied, any C-intelim proof into a quasi-normal one. What
have we achieved through the notion of quasi-normal proof? Not only is this notion a
convenient step towards the normalization result that will be presented in the sequel,
but it is also interesting in its own right. Quasi-normal proofs avoid trivially redundant
applications of RB and trivially redundant applications of inference rules (detours).
Moreover, the applications of RB are pushed down at the end of the proof-tree, so that
their conclusion is always the conclusion of the whole proof and their role consists in
gradually discharging the virtual assumptions made in the properly inferential com-
ponents that we called “0-depth components” (see Figure 4). In this way we make a
clear separation between the applications of inference rules and the application of RB
that allows us to define the depth of an argument in a straightforward way, although
this notion will show its full significance only in Section 6, when the notion of normal
proof will be introduced. Furthermore, in each 0-depth component, RNC is applied
at most once, and also XFQ is applied at most once as the last step, allowing us to
“infer”, if only in a Pickwickian sense, the conclusion of the whole proof as a result of
the inconsistency of the assumptions.
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In the Gentzen tradition, it is part of the logical folklore to identify analytic proofs
— i.e., proofs that enjoy the (weak) subformula property — with normal proofs and the
latter with proofs that contain no “detours” – i.e., no obviously redundant sequences of
applications of inference rules. However, it is well-known that, for some infinite sets
of classically valid inferences, analytic proofs can be exponentially longer than non-
analytic ones, e.g., proofs in Frege systems or in the sequent calculus with cut. Here
we clearly distinguish between analyticity on the one hand and absence of detours
on the other. Quasi-normal proofs are proofs that, albeit being non-analytic, can be
legitimately regarded as containing no trivial “detour”. It is easy to see that such proofs
can polynomially simulate Frege system (see Section 10), for which the existence of a
polynomial upper bound on proof length has not been disproved yet. Hence, as far as
the length of proofs is concerned, the restriction of C-intelim to quasi-normal proofs is
among the most powerful proof systems for classical propositional logic. As we shall
see, the set of formulae that can be used as RB-formulae, that we have called the virtual
space in the comment to Definition 4.2, may be bounded in a variety of ways without
loss of completeness. The strictest way of bounding it when generating a proof of A
from Γ consists in allowing as RB-formulae only atomic formulae that occur in Γ∪{A}.
A more liberal restriction consists in allowing only subformulae of the formulae in
Γ ∪ {A}. Shorter proofs can be obtained by further liberalizing the composition of
the virtual space allowing for proofs that do not enjoy the subformula property, but in
which the virtual space is still bounded. In quasi-normal proofs RB is, at the same
time, the only rule that may bring about violations of the subformula property and the
only rule that increases the depth of the reasoning process. In C-intelim the transition
from analytic proofs to non-analytic (possibly shorter) ones depends only on the way
in which we bound the virtual space, i.e. on the set of formulae that are allowed as
RB-formulae. Once the virtual space is suitably bounded, the transition from easier
proofs to more difficult ones depends only on the depth at which applications of RB
are required.

6 Normal proofs
As mentioned in the introduction, for Gentzen the importance of the normalization
theorem consisted mainly in the fact that normal proofs enjoy the subformula property
to the effect that in the search for proofs we can restrict our attention to inference steps
whose conclusion is a “component” either of the assumptions or of the conclusion.
This involves a drastic reduction of the search space that is crucial for the purpose of
automated deduction. In the case of propositional logic, this search space is finite for
each putative inference, paving the way for decision procedures. We know now that
“analytic proofs”, i.e., those that enjoy the subformula property are not always shorter
than non-analytic ones, and may be exponentially longer for certain infinite classes
of inferences. For this reason we attached a special importance to quasi-normal proofs
that do not enforce the subformula property while still avoiding trivial detours. We now
turn to the notion of normal proof, which is simply a quasi-normal proof in which RB is
applied only to (weak) subformulae either of the premises or of the conclusion. Given
this restriction, the resulting proof will be shown to enjoy the subformula property.
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For every formula A, a subformula of A is defined inductively as follows: (i) A is
a subformula of A, (ii) for every binary operator ◦, if B ◦C is a subformula of A, then
so are B and C, (iii) if ¬B is a subformula of A, then so is B; (iv) nothing else is a
subformula of A. A is a proper subformula of B if A is a subformula of B, but B is
not a subformula of A. A is an immediate proper subformula of B, if A is a proper
subformula of B and it is not a proper subformula of any proper subformula of B. We
shall often say just immediate subformula as an abbreviation for “immediate proper
subformula”.

We say that B is a weak subformula of A if either B is a subformula of A or
B = ¬C for some subformula C of A.

Remark 6.1. Notice that the relation “A is a weak subformula ofB” is not, in general,
transitive. A simple counterexample is given by the triple ¬¬A,¬A,A.

Finally, we say that A is a proper weak subformula of B if A is a weak subformula
of B, but B is not a weak subformula of A. For example, A is a weak subformula of
¬A, but not a proper weak subformula; ¬A is a weak subformula of A and of ¬¬A,
but not a proper weak subformula of either. On the other hand, both A and ¬A are
proper weak subformulae of A ∧B, of ¬A ∧B, of ¬(A ∧B), etc.

Remarks 6.2. Observe that:

1. The relation “A is a proper weak subformula ofB” is transitive: ifA is a proper
weak subformula of B and B is a proper weak subformula of C, then A is a
proper weak subformula of C;

2. the minor premise of an elimination is always a proper weak subformula of its
major premise;

3. the conclusion of an elimination is always a proper weak subformula of its major
premise;

4. a premise of an introduction is always a proper weak subformula of its conclu-
sion;

Recall that C is an RB-formula of a C-intelim tree T if C and ¬C are the virtual
assumptions discharged by some application of RB in T .

Definition 6.1. Given a C-intelim proof T of A depending on Γ, we say that an ap-
plication of RB in T is analytic if its RB-formula is a subformula of some formula in
Γ ∪ {A} (or, equivalently, both the virtual assumptions discharged by this application
are weak subformulae of some formula in Γ ∪ {A}).

Definition 6.2. We say that an application of RB is atomic if its RB-formula is atomic,
i.e., the virtual assumptions discharged by it have the form p and ¬p for some atomic
p.

Definition 6.3. A C-intelim proof T is normal if it is quasi-normal and every applica-
tion of RB in T is analytic. It is atomically normal if it is normal and every application
of RB in T is atomic.
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Note that a quasi-normal 0-depth C-intelim proof, i.e., one that contains no appli-
cations of RB, is by definition (atomically) normal.

Remark 6.3. If T is a(n atomically) normal C-intelim proof, every subproof of T is
also (atomically) normal.

Definition 6.4. We say that a C-intelim proof T of A depending on Γ has the weak
subformula property (WSFP) if every formula occurring in T is either an occurrence
of f or a weak subformula of some formula in Γ ∪ {A}.

Theorem 6.1. If T is a normal 0-depth proof ofA depending on Γ, andB is a formula
occurring in T , then eitherB ∈ Γ∪{A}, orB = f, orB is a proper weak subformula
of some formula in Γ ∪ {A}.

Proof. Suppose T is a normal 0-depth proof of A depending on Γ. Let ∆ be the set of
all formulae C occurring in T such that (i) C /∈ Γ ∪ {A}, (ii) C 6= f, and (iii) C is
not a proper weak subformula of any formula in Γ ∪ {A}. Let us assume that ∆ 6= ∅
and take a formula D in ∆ of maximum complexity. Since D /∈ Γ, D occurs in T
as conclusion of an application of an intelim rule or of a falsum rule. It cannot be the
conclusion of an application of RNC, otherwise D = f and f /∈ ∆ by definition of ∆.
Moreover, since T is normal, it is XFQ-canonical. Thus, D cannot be the conclusion
of an application of XFQ, otherwise it should be equal to the conclusionA of T , which
does not belong to ∆ by definition of ∆.

Furthermore, D cannot be the conclusion of an elimination. To see this, observe
that the major premise of this elimination cannot be in Γ ∪ {A}, otherwise, by Re-
mark 6.2.3, D would be a proper weak subformula of a formula in Γ ∪ {A} and there-
fore would not belong to ∆. Moreover, this major premise cannot be a proper weak
subformula of a formula in Γ ∪ {A}, because in this case, by Remarks 6.2.1 and 6.2.3,
D would also be a proper weak subformula of some formula in Γ ∪ {A} and therefore
would not belong to ∆. Hence the major premise of the elimination should be a for-
mula in ∆ of greater complexity than D, against the assumption that D is a formula of
maximum complexity in ∆.

Hence, D can only be the conclusion of an introduction. Since D 6= A, D must be
used in T as premise of some intelim rule or of some of the falsum rules. SinceD 6= f,
it cannot be used as premise of XFQ. Moreover, it cannot be used as major premise of
an elimination rule, otherwise D would be a detour, against the assumption that T
is normal (and so contains no detours). Furthermore, it cannot be used as premise of
RNC, because in this case the complementary premise, call itD′, could also be only the
conclusion of an introduction, for the same reasons asD; but this is impossible because
T is normal and therefore RNC-canonical (it is not the case that both the premises of
an application of RNC are both conclusions of an introduction). Finally, it cannot be
used as minor premise of an elimination, otherwise, by Remark 6.2.2, D would be a
proper weak subformula of the major premise. So, either this major premise belongs
to Γ∪{A} and then, by Remark 6.2.1, D would be a proper weak subformula of some
formula in Γ ∪ {A}, in which case D would not belong to ∆; or the major premise
of this elimination would be a formula in ∆ of greater complexity than D, against the
assumption that D is a formula in ∆ of maximum complexity.
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Thus, D, must be used as premise of an introduction. But this is impossible, be-
cause, by Remark 6.2.4, D would be a proper weak subformula of the conclusion of
this introduction. So, either this conclusion belongs to Γ ∪ {A} and, by Remark 6.2.1,
D would be a proper weak subformula of some formula in Γ ∪ {A}, in which case D
would not belong to ∆, or the conclusion of this introduction would be a formula in
∆ of greater complexity than D, against the assumption that D is a formula in ∆ of
maximum complexity . Hence, ∆ must be empty.

The above theorem immediately implies the following:

Corollary 6.1 (WSFP of 0-depth proofs). Every normal 0-depth C-intelim proof has
the WSFP.

Remark 6.4. Note that if T is a quasi-normal proof of A depending on Γ, whose 0-
depth components are T1, . . . , Tn, every 0-depth component Ti is a normal proof of
A depending on Γi ∪ ∆i, where Γi ⊆ Γ and ∆i are virtual assumptions that are
subsequently discharged in T by applications of RB.

By virtue of the exclusion of detours, the structure of each 0-depth component of a
normal C-intelim proof is determined quite sharply.

Definition 6.5. Given a 0-depth proof T of A depending on Γ, an intelim walk of
T is a sequence A1, . . . , An of occurrences of formulae such that (i) A1 ∈ Γ, (ii) for
1 ≤ i < n,Ai is a premise of an application of an intelim rule withAi+1 as conclusion;
(iii) An is either the conclusion A of T , or the minor premise of an elimination or a
premise of an application of RNC.

Definition 6.6. If T is a 0-depth proof of A depending on Γ, a normal intelim walk of
T is an intelim walk of the form

A1, . . . , Am, . . . , Am+n,

with m ≥ 1 and n ≥ 0, where

1. if m > 1, for i < m, Ai is the major premise of an elimination and the subse-
quence A1, . . . , Am is called the E-part of the intelim walk; if m = 1, we say
that the E-part is empty;

2. if n > 0, for m < i ≤ m + n, Ai is the conclusion of an introduction and the
subsequence Am, . . . Am+n is called the I-part of the intelim walk; if n = 0, we
say that the I-part is empty;

3. Am is called the minimum formula of the normal intelim walk.

A normal intelim walk is complete if its last formula is either a premise of RNC or the
conclusion A of the proof.

Examples 6.1. Both the immediate subproofs of the C-intelim proof in Figure 1 are
0-depth proofs. The normal intelim walks of the lefthand subproof are the following
sequences: A (two copies, both the E-part and the I-part are empty); A→ ¬B,¬B (I-
part empty); B ∨ C,C (I-part empty); ¬(C ∧ ¬B),¬¬B,B (I-part empty, complete);
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A→ ¬B,¬B (I-part empty, complete). In the right-hand subproof the normal intelim
walks are: ¬G → D,¬¬G,G (I-part empty, complete); E ∨ F → ¬D,¬D (I-part
empty); ¬A (both E-part and I-part empty); A∨E,E,E ∨F . In each of the C-intelim
proofs of Figure 1, both immediate subproofs are 0-depth; the left branch of the first
subproof is a complete normal intelim walk and its minimum formula is ¬B; the only
branch of the second subproof is a normal intelim walk whose E-part is empty and its
minimum formula is ¬A.

The proof of the following lemma is left to the reader.31

Lemma 6.1. If T is a 0-depth normal proof, then

• every branch of T contains a normal intelim walk;

• at least one branch of T contains a complete normal intelim walk;

• the minimum formula of a normal intelim walk is a weak subformula of all the
formulae in it; if the E-part is non-empty, the minimum formula is a proper weak
subformula of all the formulae preceding it in the walk; if the I-part is non-empty
the minimum formula is a proper weak subformula of all the formulae following
it in the walk.

Theorem 6.2 (WSFP of normal proofs). If T is a normal C-intelim proof, then T has
the WSFP.

Proof. Let T1 . . . , Tn be the 0-depth components of T . By Remark 6.4, every 0-depth
component of T is normal. Recall that in a normal proof, every formula occurring in T
occurs also in some of its 0-depth components, since all the conclusions of applications
of RB are equal to the conclusion of all 0-depth components. Thus, for every formulaB
occurring in T , there is a 0-depth component Ti of T such that, by Theorem 6.1, either
B is in Γi ∪∆i ∪ {A} or B = f, or B is a proper weak subformula of some formula
in Γi ∪∆i ∪ {A}, where Γi are the assumptions of Ti that are left undischarged in T
and ∆i are the virtual assumptions subsequently discharged in T . If T is normal, every
formula in ∆i is a weak subformula of a formula in Γi ∪ {A}. So, either (i) B = f, or
(ii) B ∈ Γi ∪∆i ∪ {A} and so B is a weak subformula of a formula in Γi ∪ {A}, or
(iii) B is a proper weak subformula of some formula in Γi ∪∆i ∪ {A}. Since all the
formulae in ∆i are weak subformulae of some formula in Γi ∪ {A}, it is not difficult
to verify, that if B is a proper weak subformula of C and C is a weak subformula of
D, then B is a weak subformula of D. Hence, B must be a weak subformula of some
formula in Γi ∪ {A}.

Lemma 6.2. If T is a quasi-normal C-intelim proof of A and all the non-atomic ap-
plications of RB in T are analytic, then all the atomic applications of RB in T are also
analytic, i.e. T is normal.

Proof. Let T be a quasi-normal C-intelim proof of A depending on Γ such that all
the non-atomic applications of RB in T are analytic. We now show that T cannot

31Note that what we call “branch” in this paper is called “thread” in [Prawitz, 1965].
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contain any non-analytic atomic applications of RB and, therefore, T is normal. For
this purpose we prove, by induction on k, that every k-depth subproof of T is normal.

By Remark 6.4, every 0-depth subproof of T is normal. For k > 0, assume that
every subproof of T of depth k−1 is normal. We show that under this assumption every
k-depth subproof is also normal. Since k > 0, any k-depth subproof either ends with
a non-atomic application of RB (which is by hypothesis analytic, so that the proof is
normal) or has the following form, for some atomic p:

[p]1

T1
A

[¬p]2
T2
A

1,2
A

(7)

Suppose, ex absurdo, that this atomic application of RB is non-analytic, i.e. that p does
not occur in Γ ∪ {A}. By inductive hypothesis, we know that for some Γ1,Γ2 ⊆ Γ:

• T1 is a normal proof of A from Γ1 ∪ Λ1 ∪ {p},

• T2 is a normal proof of A from Γ2 ∪ Λ2 ∪ {¬p},

where Λ1 and Λ2 are the sets of virtual assumptions that are still undischarged in T1
and T2 respectively.

Since T is quasi normal, it contains no redundant applications of RB, and so neither
p nor ¬p are vacuously discharged in (7). Thus, p must be used as premise of some
application of an inference rule in T1 and ¬p as premise of some application of an
inference rule in T2. By its logical form, p cannot be used in T1 as major premise
of an elimination. If it is used as minor premise of an elimination, p would occur in
the major premise and the latter would not be a weak subformula of some formula in
Γ1∪Λ1∪{p}∪{A}, for every formula in Λ1 is either an atomic formula, or the negation
of an atomic formula, or is a weak subformula of some formula in Γ1 ∪ {A1}. But this
is impossible, since, by inductive hypothesis, T1 is normal and, by Theorem 6.2, it has
the WSFP.

Moreover, p cannot be used as premise of an introduction, for the conclusion of
this introduction would not be a weak subformula of any of the formulae in Γ1 ∪ Λ1 ∪
{p} ∪ {A}, which would again contradict the hypothesis that T1 is normal and has the
WSFP. So, p must be used in T1 as premise of some application of the falsum rules. It
is impossible that p is used as premise of XFQ, for we have stipulated that f cannot
occur in the assumptions. Hence, p can be used only as premise of an application of
RNC in T1. But, in this case, the other premise ¬p cannot result from the application
of an elimination, otherwise T1 would not have the WSFP, against the hypothesis that
it is normal. Nor can it result from an application of XFQ, because normal proofs are
XFQ-canonical. So, ¬p should belong to Λ1 and the application of RB in (7) would
be redundant (see Definition 4.4 and Example 4.1) against the hypothesis that T is
quasi normal, which implies that it contains no redundant applications of RB. Thus, it
is impossible that p is an atomic formula that does not occur in Γ∪{A}. Therefore, all
applications of RB in T are analytic and T is normal.
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Any C-intelim proof can be turned into an (atomically) normal one. by repeatedly
applying the following transformations:32

[A ∨B]1

T1
C

[¬(A ∨B)]2

T2
C

1,2
C

;

[A]1

A ∨B
T1
C

[B]3

A ∨B
T1
C

[¬A]2 [¬B]4

¬(A ∨B)
T2
C

3,4
C

1,2
C

(T24)

[A ∧B]1

T1
C

[¬(A ∧B)]2

T2
C

1,2
C

;

[A]1 [B]3

A ∧B
T1
C

[¬B]4

¬(A ∧B)
T2
C

3,4
C

[¬A]2

¬(A ∧B)
T2
C

1,2
C

(T25)

[A→ B]1

T1
C

[¬(A→ B)]2

T2
C

1,2
C

;

[B]1

A→ B
T1
C

[A]3 [¬B]2

¬(A→ B)
T2
C

[¬A]4

A→ B
T1
C

3,4
C

1,2
C

(T26)

[¬A]1

T1
B

[¬¬A]2

T2
B

1,2
B

;

[A]1

¬¬A
T2
B

[¬A]2

T1
B

1,2
B

(T27)

For every C-intelim tree T , let g(T ) be defined as follows:

g(T ) =

](A) if T ends with a non-analytic application of RB and A is the
RB-formula of this application

0 otherwise,
(8)

where ](A) denotes the logical complexity of (the total number of occurrences of log-
ical operators in) A.

Note that, in general, these transformations increase the size of the proof. More-
over, they may introduce new detours; for example in (T24) it may be the case that
A ∨ B or ¬(A ∨ B) or both are used in T1 or T2 as major premises of eliminations.
They may also introduce new non-canonical applications of RNC.

32The reader can compare them to the ones used in [Tennant, 1990], pp. 95–96.
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Let
d0(T ) = 〈m,n〉 (9)

where m is the maximum value taken by g for a subtree of T , and n is the number of
subtrees for which the value of g is maximum. Consider again the usual lexicographic
order on d0. If the transformations above are applied to a subtree T ′ that ends with
a non-analytic application of RB for which the value of g is maximum, each transfor-
mation step decreases d0(T ) until its value drops to 〈0, 0〉, which means that all the
applications or RB are either analytic (the RB formula is a subformula of the premises
or of the conclusion) or non-analytic and atomic.

Remark 6.5. If the transformations (T24)–(T27) are applied to arbitrary subtrees,
with no side condition, the index d0 may not always decrease. However, it never in-
creases, and it can be shown that eventually it reaches the minimum value 〈0, 0〉 in a
finite number of steps. Hence, there is a finite sequence of transformation steps, no mat-
ter to which subtrees they are applied, that yields a tree in which all the applications of
RB are either analytic or atomic.

Lemma 6.3. Any C-intelim proof of A depending on Γ can be transformed into a
C-intelim proof of A depending on ∆ ⊆ Γ where all the applications of RB are either
analytic or atomic by means of any sufficiently long sequence of applications of (T24)–
(T27)

Now, recalling the definitions of d1–d5 given in Table 4, let

d(T ) = 〈d0(T ), d1(T ), d2(T ), d3(T ), d4(T ), d5(T )〉

and consider the usual lexicographic order on d(T ) for all C-intelim proofs T . By
inspection of the transformations (T1)–(T27), the reader can verify that each trans-
formation that decreases di(T ) for any i < 4, may increase dj(T ) for some j > i.
However, no transformations that decreases di(T ) for i > 0, can ever increase dj for
any j < i. So, each of the transformations (T1)–(T27) decreases d(T ). Hence, the
repeated application of these transformations, independently of their order, eventually
yields a proof T ′ such that d(T ′) = 〈〈0, 0〉, 〈0, 0〉, 0, 0, 0, 0〉. Note that such a proof
is quasi-normal (because the value of d1 is equal to 〈0, 0〉 and the values of d2–d4 are
all equal to 0. Moreover, all the applications of RB in it are either analytic or atomic.
Then by Lemma 6.2 above, the proof is normal.

Theorem 6.3. Any C-intelim proof of A depending on Γ can be transformed into a
normal C-intelim proof of A depending on some ∆ ⊆ Γ by means of any sufficiently
long sequence of applications of the transformations (T1)–(T27).

If we are interested in atomically normal proofs and not just in normal ones, all we
need to do is change the definition of g(T ) in (8) as follows:

g(T ) =

](A) if T ends with a non-atomic application of RB and A is the
RB-formula of this application

0 otherwise.
(10)

Then it is not difficult to adapt the previous arguments to show:
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Theorem 6.4. Any C-intelim proof of A depending on Γ can be transformed into an
atomically normal C-intelim proof of A depending on some ∆ ⊆ Γ by means of any
sufficiently long sequence of applications of the transformations (T1)–(T27).

Restricting to normal proofs has several advantages over restricting to atomically
normal proofs. Not only are normal proofs shorter in general, but they also allow for
a notion of k-depth normal deducibility from a set of formulae (A is k-depth normally
deducible from Γ if there is a k-depth normal proof of A depending on ∆ ⊆ Γ) that
is structural, i.e., it is invariant under uniform substitutions of atomic formulae with
arbitrary ones.

Indeed, we suggest that the depth of a normal proof provides a natural measure of
the “difficulty” of the reasoning process represented by the proof. It reflects the maxi-
mum number of nested uses of “virtual information” (i.e., the assumptions discharged
by an application of RB) in a proof. From the computational viewpoint, this idea is
confirmed by the fact that, as we shall see in Section 10, k-depth normal deducibility
is a tractable problem.

7 The contamination problem
Let us say that two formulae are syntactically disjoint if they share no atomic formula.
Two sets Γ and ∆ are syntactically disjoint if every formula of Γ is syntactically disjoint
from every formula of ∆. In what follows we shall write “Γ ‖ ∆” for “Γ is syntactically
disjoint from ∆”.

It is routine to show that the following holds by classical semantics:

Theorem 7.1. For every Γ and ∆, if

1. ∆ ‖ Γ ∪ {A}, and

2. Γ ∪∆ `C A,

then at least one of the following holds true:

• Γ is consistent and Γ `C A,

• Γ is inconsistent and Γ `C A;

• ∆ is inconsistent and ∆ `C A.

This holds for every (possibly empty) Γ,∆. The special case in which ∆ is empty
is trivial.

In the special case in which Γ is empty, the theorem implies that:

Corollary 7.1. If ∆ ‖ {A}, then ∆ `C A if and only if either A is a tautology or ∆ is
inconsistent.

The contamination problem is the problem that arises in classical natural deduction
when:
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• for some non-empty ∆ such that ∆ ‖ Γ ∪ {A}, with A 6= f, we have a natural
deduction proof of A depending33 on Γ ∪∆, or

• for some non-empty ∆,Γ such that ∆ ‖ Γ, we have a natural deduction proof of
f depending on Γ ∪∆.

In the first case, it may be that Γ 0C A, in which case, by classical semantics, ∆
is inconsistent and assumptions that are totally unrelated either to the conclusion or
to Γ play an active role in the proof, via a practically meaningless use of ex-falso
quodlibet,34 to obtain a conclusion that could not have been otherwise obtained from
Γ. Or it may be that Γ `C A, in which case the assumptions in ∆, besides being
unrelated, are also clearly unnecessary to obtain the conclusion. In the second case,
either ∆ or Γ must be inconsistent on their own and, again, unrelated and redundant
assumptions are used to obtain the proof of f. In any case such a proof violates a basic
relevance condition that can indeed be satisfied by a better-behaved natural deduction
proof, except for one distinguished case in which all of the following hold true:

1. Γ is empty,

2. ∆ is inconsistent and cannot be partitioned into two syntactically disjoint subsets,

3. the conclusion A is not equal to f and is obtained from ∆ by means of an ex-
falso (or better ex-contradictione) inference.

The simplest example is the inference p,¬p/q displayed in (1). While such inferences
cannot be expunged from any complete system for classical logic, we can easily obtain
from them proof that ∆ is inconsistent, that is a proof of f depending on ∆. In view
of various applications of natural deduction (see the concluding section on this point)
it would be useful to come up with a notion of normal proof that avoids incurring the
contamination problem whenever possible, i.e. with the only exception of inferences
satisfying the three conditions specified above, in which case, however, a refutation can
be promptly obtained.

Definition 7.1 (Contaminated proofs). Given a natural deduction system S, we say
that an S-proof π of A depending on Γ is contaminated if one of the following two
conditions hold:

1. A 6= f and for some non-empty ∆ ⊆ Γ, ∆ ‖ (Γ \∆) ∪ {A};

2. A = f and for some non-empty ∆ ⊂ Γ, ∆ ‖ (Γ \∆).

In both cases we call ∆ a contaminating set for π.

Definition 7.2 (R-contaminated proofs). We say that π is redundantly contaminated
(R-contaminated for short) if (i) π is contaminated and (ii) there is a contaminating set
∆ for π such that either ∆ ⊂ Γ or ∆ 0 f.

33By this we mean that all the assumptions are actually used in the deduction tree.
34This is a Pickwickian way of putting it. See Footnote 9 above.
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A→ B

C ¬C

f

A

B

C ¬C

f

B

D ¬D

f

E E → ¬B

¬B

f

Figure 7: R-contaminated normal proofs in Prawitz’s natural deduction.

Note that our definition implies that any contaminated refutation of Γ (a proof of
f depending on Γ) is always R-contaminated. Proofs that are contaminated but not
R-contaminated correspond to the exceptions discussed above that cannot be expunged
by any natural deduction system that is complete for classical logic.35

Can we suitably restrict the notion of an acceptable natural deduction proof so
as to deliver only proofs that are not R-contaminated? The notion of normal proof
put forward in [Prawitz, 1965] is not sufficient for this purpose. The trees shown in
Figure 7 represent R-contaminated proofs that are normal in Prawitz’s sense (assuming
that B and E are atomic to satisfy the restriction on the fC rule, see [Prawitz, 1965,
Chapter III]). 36 On the other hand, we shall show, in the next section, that normal C-
intelim proofs are never R-contaminated. Let us now focus on the “exceptional” proofs
that are contaminated but not R-contaminated. These are proofs of A depending on a
non-empty Γ ‖ {A} in which A 6= f and Γ cannot be partitioned into syntactically
disjoint subsets. We shall show later on that for a normal proof T this situation obtains
only when T “contains”, in a well-defined sense, a proof of f depending on the same
set Γ of assumptions that can be easily extracted from it. We have already commented
in the introduction that while such proofs cannot be excluded from a complete system
for classical logic, since they express classically valid inferences, they are devoid of any
practical value and that their only epistemic significance consists in revealing that the
assumptions are inconsistent and therefore, from a classical logic perspective, cannot
be used to make any reasonable inference at all.37 This seems a good reason to call
such proofs improper.

Definition 7.3. The notion of proper normal proof is defined inductively as follows:

• A normal 0-depth proof T is proper if its last step is not an application of XFQ
(so T contains no applications of XFQ);

35They can be expunged if we switch to a paraconsistent system, such as the one that results from re-
stricting to the proper normal proofs introduced in Definition 7.3 or from a classical extension of the system
discussed in Tennant [1987].

36Note that neither can such proofs be turned into proofs of f depending on the same set of assumptions.
37This view is shared, of course, by all the advocates of relevance logic. However, with the notable

exceptions of Timothy Smiley and Neil Tennant, most of them argue that disjunctive syllogism should be
rejected as well as the ex-falso rule, given the role played by the latter in the proof of the former within the
framework of Gentzen-style natural deduction. By contrast, disjunctive syllogism is a primitive rule in the
C-intelim system.
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• for k > 0, a normal k-depth proof

T =

[B]
T1
A

[¬B]
T2
A

A

is proper if at least one of its immediate subproofs T1 and T2 is proper.

It follows from the above definition that a normal C-intelim proof T is proper if
at least one of its 0-depth components contains no application of XFQ. Observe that
every normal refutation of Γ (i.e., a proof of f depending on Γ) is proper. This follows
from the fact that normal proofs are XFQ-canonical (Definition 4.6). Thus, XFQ can
be applied only as the last step of one of its 0-depth components.

Let the height of a formula-tree be the maximum length of its branches.

Lemma 7.1. If T is an improper normal proof of A depending on Γ, then T can be
transformed into a normal refutation T ′ of Γ such that:

1. depth(T ′) = depth(T ),

2. h(T ′) = h(T )− 1.

Moreover, the computational cost of the transformation is linear in the number of ap-
plications of XFQ in T .

Proof. If T improper, then all its 0-depth components (see Definition 4.3) end with an
application of XFQ. Hence, each 0-depth component contains, as a strict subproof, a
normal proof of f depending on the same assumptions. Then all the virtual assump-
tions occurring in the 0-depth components can be discharged by applying RB with f,
instead of A, as conclusion.

Figure 8 shows an example of an improper normal proof with its associated normal
refutation. Note that a proper normal proof does not need to depend on a consistent
set of premises. A trivial example of a proper normal proof depending on inconsistent
premises is the following:

A ¬A

A ∧ ¬A
(11)

8 Variable sharing and non-contamination
We shall now show that normal C-intelim proofs are never R-contaminated and that
proper normal proofs are never contaminated, so that they enjoy the variable-sharing
property, except for the case in which their conclusion is f. We start with a lemma on
0-depth proofs.

Lemma 8.1. For every non-empty Γ and every A, there is no 0-depth proper normal
proof of A depending on Γ such that A 6= f and Γ ‖ {A}.
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A→ B [A]1

B

A→ ¬B [A]1

¬B

f

D

¬A→ C [¬A]2

C

¬A→ ¬C [¬A]2

¬C

f

D
1,2

D

A→ B [A]1

B

A→ ¬B [A]1

¬B

f

¬A→ C [¬A]2

C

¬A→ ¬C [¬A]2

¬C

f
1,2

f

Figure 8: Transforming an improper normal proof of D into a normal refutation.

Proof. Let T be a 0-depth proper normal proof of A depending on Γ. Being proper, T
contains no applications of XFQ. Moreover, if A 6= f, it also contains no application
of RNC. By Lemma 6.1, at least one branch of T is a complete normal intelim walk.
So, there are four cases: (i) the E-part and the I-part are both empty; then the minimum
formula is the only element of the walk and the whole proof T is a trivial one-node
proof of A depending on A; (ii) the E-part is non-empty and the I-part is empty, in
which case the minimum formula is equal to the conclusion A and a proper weak
subformula of some assumption in Γ; (iii) the E-part is empty and the I-part is non-
empty, in which case the minimum formula is at the same time one of the assumptions
in Γ and a proper weak subformula of the conclusion A; (iv) neither the E-part nor the
I-part are empty, in which case the minimum formula is a proper weak subformula both
of some assumption in Γ and of the conclusion A. In all cases the minimum formula
of the complete intelim walk is at the same time a weak subformula of some formula
in Γ and of A. Hence, Γ ∦ {A}.

It follows that in a normal 0-depth proof T of A depending on a non-empty Γ, if
Γ ‖ {A}, either A = f or T is improper, that is, the proof ends with an application of
XFQ. In either case Γ is inconsistent.

Corollary 8.1. For every non-empty Γ and every A, if there is a normal 0-depth proof
of A depending on Γ such that Γ ‖ {A}, then Γ is inconsistent.

Notice that there are no 0-depth proofs of a tautology depending on the empty
set of assumptions. Despite this, 0-depth deducibility is a Tarskian consequence rela-
tion. The same absence of tautologies is shared by other logics based on informational
notions, such as Kleene’s 3-valued and Belnap’s 4-valued logics. Interestingly, the
0-depth logic, like intuitionistic logic, admits of no finitely-valued characteristic ma-
trix.38 However, it admits of an intuitive semantics based on a non-deterministic matrix

38See [D’Agostino et al., 2013] where this result is proven for a different, tableau-like, variant of C-intelim.
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that (to the best of our knowledge) was first discussed by W.V.O. Quine in order to fix
what he called the “primitive meaning of the logical operators” [Quine, 1973, §20].39

We are now in a position to show that the variable sharing property applies to proper
normal proofs of arbitrary depth.

Theorem 8.1 (Variable-sharing property). If T is a proper normal proof of A 6= f
depending on Γ, then Γ ∦ {A}.

Proof. Observe that, every 0-depth component of T is a 0-depth proper normal proof
of A depending on Γ′ ∪ ∆ such that Γ′ ⊆ Γ and ∆ is the set of virtual assumptions
introduced in this 0-depth component that are subsequently discharged. By Lemma 8.1,
each 0-depth component has the variable sharing property. SinceT is normal, all the
formulae in ∆ are weak subformulae of some formula in Γ ∪ {A}.

Although proper normal proofs are not complete for classical logic, they are com-
plete for the set of valid inferences from consistent sets of assumptions, since if there
is no proper normal proof of A depending on Γ, then Γ must be inconsistent, in that
any improper proof, by Lemma 7.1, “contains” a refutation of Γ. As shown above, they
also enjoy the variable sharing property. Indeed, the system of deduction that accepts
as admissible only proper normal proofs has close connections with Tennant-style rel-
evance logic [Tennant, 1984, 1987]. However, it is hard to take it, as it stands, as a
well-behaved system of relevance logic. For example, there is a proper normal proof of
(A∨B)∧B depending on A and ¬A, which is only one breadth away from A,¬A/B.
It must be noticed, however, that there is no proper normal proof that is also atomically
normal. The connection between our approach and Tennant-style relevance logic will
be investigated in a future paper.

Theorem 8.2 (Weak non-contamination). if T is a normal proof of A depending on Γ,
then T is not R-contaminated.

Proof. First, note that if there is a contaminating ∆ such that the first disjunct of condi-
tion (ii) in Definition 7.2 is false, that is, Γ itself is contaminating for T , then the other
disjunct must also be false, for in such a case ∆ = Γ ‖ {A} and, by Theorem 8.1,
T is improper. Hence, every 0-depth component of T ends with an application of
XFQ. Such an improper proof can be easily turned into a refutation of Γ = ∆ (see
Lemma 7.1) and so ∆ ` f. Hence, to show the theorem it is sufficient to show that
there is no contaminating ∆ properly included in Γ.

To spare on parentheses, we shall assume throughout this proof that “\” binds more
tightly than “∪”. The proof is by induction on the height of T (the maximum length of
a branch of T ) denoted by h(T ).

Base: h(T ) = 1. Then T is a one-node formula tree representing a proper normal
proof of A depending on A. Then, trivially, T is non-contaminated.

Step: h(T ) = k > 1. The theorem holds for every normal proof T ′ such that
h(T ′) < k. We show that it holds also for T . There are several cases depending on the
last step of T .

39See [D’Agostino, 2014, 2015] for an in-depth discussion including soundness and completeness results.
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Case 1: the last step of T is an application of XFQ. Then, since in a normal proof
XFQ can be applied only as the last step in a 0-depth component, depth(T ) = 0, T is
improper and has the following form:

T1
f

A

By inductive hypothesis T1 is not R-contaminated and so, by Definition 7.1, there is
no ∆ ⊂ Γ such that ∆ ‖ Γ \ ∆. Hence, there is no contaminating ∆ for T properly
included in Γ and T is not R-contaminated.

Case 2: the last step of T is an application of an introduction rule, then depth(T ) =
0. We discuss only the sub-cases in which the introduction rule is one of those involving
∨, the others being similar. So, T has one of the following forms:

T1
A

A ∨B

T1
B

A ∨B

T1
¬A

T2
¬B

¬(A ∨B)

For the first two sub-cases, let Γ be the set of all the assumptions of T . By inductive
hypothesis, T1 is not R-contaminated. Suppose, ex-absurdo, that T is R-contaminated,
i.e., there is a non-empty ∆ ⊂ Γ such that

∆ ‖ Γ \∆ ∪ {A ∨B}

Then
∆ ‖ Γ \∆ ∪ {A} and ∆ ‖ Γ \∆ ∪ {B},

and so in both cases T1 would be R-contaminated against the inductive hypothesis.
As for the third sub-case, let Γ1 and Γ2 be, respectively, the sets of all the assump-

tions of T1 and T2. By inductive hypothesis, neither T1 nor T2 are R-contaminated.
Moreover, they are both proper, given that T is. Suppose now, ex-absurdo that T is
R-contaminated, i.e., ∆ ‖ Γ \ ∆ ∪ {¬(A ∨ B)} for some non-empty ∆ ⊂ Γ. Let
∆1 = Γ1 ∩∆ and ∆2 = Γ2 ∩∆. Then:

∆1 ‖ Γ1 \∆1 ∪ {¬A} and ∆2 ‖ Γ2 \∆2 ∪ {¬B}.

Since ∆ is a non-empty proper subset of Γ, then either ∆1 is a non-empty proper subset
of Γ1 or ∆2 is a non empty proper subset of Γ2. To see this, first observe that, since
T1 and T2 are both 0-depth proper normal proofs and their conclusions are different
from f, neither ∆1 = Γ1, nor ∆2 = Γ2, otherwise Γ1 ‖ {¬A} or Γ2 ‖ {¬B}, against
Lemma 8.1. Moreover, suppose ∆1 (∆2) is empty. Then, since ∆ ⊂ Γ, ∆2 (∆1)
cannot be empty and must be a proper subset of Γ2 (Γ1). Therefore, at least one of T1
and T2 is R-contaminated against the inductive hypothesis.

Case 3: the last step of T is an application of an elimination rule, then depth(T ) =
0. We discuss only the sub-cases in which the elimination rule is one of those involving
∨, the others being similar. So, T has one of the following forms:

T1
A ∨B

T2
¬A

B

T1
A ∨B

T2
¬B

A

T1
¬(A ∨B)

¬A

T1
¬(A ∨B)

¬B
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Consider the first sub-case. By inductive hypothesis neither T1 nor T2 are R-contaminated.
Moreover, they are both proper, since T is. Suppose ex absurdo that T is R-contaminated,
i.e, there is some non-empty ∆ ⊂ Γ such that

∆ ‖ Γ \∆ ∪ {B}.

Let Γ1 and Γ2 be, respectively, the assumptions of T1 and T2. Let also ∆1 = Γ1 ∩∆
and ∆2 = Γ2 ∩∆. Then

∆1 ‖ Γ1 \∆1 ∪ {B} and ∆2 ‖ Γ2 \∆2 ∪ {B}.

By Corollary 6.1, A ∨ B is a subformula of some formula C ∈ Γ1 ∪ {B}. Clearly
it is not a subformula of B; moreover C cannot occur in ∆, otherwise ∆ would not
be syntactically disjoint from {B}. Hence, C occurs in Γ \∆ and ∆ ‖ {C}; so both
∆1 ‖ {C} and ∆2 ‖ {C}. Given that A ∨B is a subformula of C, ∆1 ‖ {A ∨B} and
∆2 ‖ {¬A}. Then,

∆1 ‖ Γ1 \∆1 ∪ {A ∨B} and ∆2 ‖ Γ2 \∆2 ∪ {¬A}.

Since T1 and T2 are both proper and their conclusions are different from f, neither
∆1 = Γ1, nor ∆2 = Γ2, otherwise Γ1 ‖ {¬A∨B} or Γ2 ‖ {¬A}, against Lemma 8.1.
As in the previous case, it can be easily shown that, either ∆1 is a non-empty proper
subset of Γ1 or ∆2 is a non-empty proper subset of Γ2, and so at least one of T1 and
T2 is R-contaminated, against the inductive hypothesis. The proof is similar for the
second sub-case.

As for the third sub-case, suppose there is a non-empty ∆ ⊂ Γ such that

∆ ‖ Γ \∆ ∪ {¬A}.

By Corollary 6.1, ¬(A ∨ B) is a weak subformula of some formula C ∈ Γ ∪ {¬A}.
Clearly it is not a weak subformula of ¬A. Again, C cannot occur in ∆, otherwise ∆
would not be syntactically disjoint from {¬A}. Thus C occurs in Γ \ ∆. Since ∆ ‖
Γ\∆, then ∆ ‖ {C} and, therefore, ∆ ‖ {¬(A∨B)}. Hence, ∆ ‖ Γ\∆∪{¬(A∨B)}
and so T1 is R-contaminated, against the inductive hypothesis. The fourth sub-case is
similar to the third.

Case 4: the last step of T is an application of RNC. Then depth(T ) = 0 and T has
the following form:

T1
B

T2
¬B

f
where, by inductive hypothesis, neither T1 nor T2 are R-contaminated. Moreover, they
are both proper, given that T is, and B 6= f. Suppose, ex absurdo, that T is R-
contaminated. This means that there is a non-empty ∆ ⊂ Γ such that

∆ ‖ Γ \∆.

Let Γ1 and Γ2 be, respectively, the assumptions of T1 and T2. Let also ∆1 = Γ1 ∩∆
and ∆2 = Γ2 ∩∆. Then,

∆1 ‖ Γ1 \∆1 and ∆2 ‖ Γ2 \∆2.
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By Theorem 6.1, either B ∈ Γ or B is a proper weak subformula of some formula
C ∈ Γ. In either case, B is a weak subformula of some C ∈ Γ. Now, either C ∈ ∆ or
C ∈ Γ \∆.

In the first case, it follows that {B} ‖ Γ \∆. Therefore:

{B} ‖ Γ1 \∆1 and {¬B} ‖ Γ2 \∆2.

Therefore:

Γ1 \∆1 ‖ ∆1 ∪ {B} and Γ2 \∆2 ‖ ∆2 ∪ {¬B},

Observing that ∆1 = Γ1 \ (Γ1 \∆1) and ∆2 = Γ2 \ (Γ2 \∆2),

Γ1 \∆1 ‖ Γ1 \ (Γ1 \∆1) ∪ {B} and Γ2 \∆2 ‖ Γ2 \ (Γ2 \∆2) ∪ {¬B},

As in the previous cases, given that T1 and T2 are both 0-depth proper normal proofs,
it can be easily shown, using Lemma 8.1, that either Γ1 \ ∆1 is a non-empty proper
subset of Γ1 or Γ2 \∆2 is a non-empty proper subset of Γ2, and so at least one of T1
and T2 is R-contaminated, against the inductive hypothesis.

In the second case, it follows that {B} ‖ ∆. Therefore:

{B} ‖ ∆1 and {¬B} ‖ ∆2.

Hence:
∆1 ‖ Γ1 \∆1 ∪ {B} and ∆2 ‖ Γ2 \∆2 ∪ {¬B}.

Again, this implies that at least one of T1 and T2 is either improper (by Lemma 8.1) or
R-contaminated, against the inductive hypothesis.

Case 5: The last step of T is an application or RB. Then T is a k-depth proof of A
depending on Γ with k > 0 and has the following form:

[B]
T1
A

[¬B]
T2
A

A

By inductive hypothesis neither T1 nor T2 are R-contaminated. Let Γ1,Γ2,∆1,∆2

be defined as usual. Suppose that T is R-contaminated, that is, for some non-empty
∆ ⊂ Γ we have that:

∆ ‖ Γ \∆ ∪ {A}, (12)

and therefore:

∆1 ‖ Γ1 \∆1 ∪ {A} and ∆2 ‖ Γ2 \∆2 ∪ {A}. (13)

Since both T1 and T2 are normal, and so all the applications of RB are analytic, B
is a subformula of some C ∈ Γ ∪ {A}.

Now, either C ∈ ∆ or C ∈ Γ \∆ ∪ {A}. In the first case, by (12),

{B} ‖ Γ1 \∆1 ∪ {A} and {¬B} ‖ Γ2 \∆2 ∪ {A}.
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It follows that:

∆1 ∪ {B} ‖ (Γ1 ∪ {B}) \ (∆1 ∪ {B}) ∪ {A} (14)

and
∆2 ∪ {¬B} ‖ (Γ2 ∪ {¬B}) \ (∆2 ∪ {¬B}) ∪ {A}. (15)

Observe that both ∆1 ∪ {B} and ∆2 ∪ {¬B} are non-empty. Moreover, since ∆ is a
proper subset of Γ it cannot be the case that both ∆1 = Γ1 and ∆2 = Γ2, otherwise
it should be ∆ = Γ. Thus, at least one of T1 and T2 is R-contaminated against the
inductive hypothesis.

In the second case, it follows from (12) that ∆ ‖ {B}, and so:

∆1 ‖ {B} and ∆2 ‖ {¬B}. (16)

Therefore, by (13),

∆1 ‖ (Γ1 ∪ {B}) \∆1 ∪ {A} and ∆2 ‖ (Γ2 ∪ {¬B}) \∆2 ∪ {A}. (17)

Now, at least one of ∆1 and ∆2 is non-empty. Moreover ∆1 (∆2) is by definition
a subset of Γ1 (Γ2) and, by (16), does not contain B (¬B). Therefore, either ∆1

is a non-empty proper subset of (Γ1 ∪ {B}) or ∆2 is a non-empty proper subset of
(Γ2∪{¬B}). Hence, at least one of T1 and T2 is R-contaminated, against the inductive
hypothesis.

Putting together Lemma 7.1, Theorem 8.1 and Theorem 8.2 we have shown that:

Corollary 8.2 (Non-Contamination Property). If T is a normal proof of A depending
on Γ, either T is non-contaminated or T is improper and can be turned in linear time
into a non contaminated proof of f depending on Γ.

9 C-intelim tableaux
The format of C-intelim proofs that we have presented so far, where proofs are trees
with the conclusion as root and the assumptions as leaves, allows for easy compari-
son with Gentzen-style natural deduction, which exhibits the same formal structure.
Although very perspicuous, this format involves a good deal of redundancy in the rep-
resentation of proofs. Whenever a formula, which can be inferred from the assump-
tions, is used more than once as a premise of further inferences, its proof tree has to
be replicated, as in Figure 1, where the derivation of ¬B from A and A → ¬B is re-
peated twice. We shall therefore shift to a different format, that we call here C-intelim
tableaux, that provides a more concise representation of arguments and an easier im-
plementation of the RB-rule, bringing the format of C-intelim proofs closer to that
of Smullyan’s [Smullyan, 1968] or KE tableaux [D’Agostino and Mondadori, 1994],
with the notable difference that C-intelim tableaux can represent direct proofs as well
as refutations. A C-intelim tableau can be easily turned into a C-intelim natural deduc-
tion proof in the standard format. Readers who find the latter more perspicuous as a
presentation of proofs, could look at the content of this section as a step towards the
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1 (A ∨B)→ ¬(C ∨D) Assumption
2 A Assumption
3 (A ∧ E)→ C Assumption
4 A ∨B ∨I1 (2)
5 ¬(C ∨D) → E1 (1,4)
6 ¬C ¬∨ E1 (5)
7 ¬D ¬∨ E2 (5)
8 ¬(A ∧ E) → E2 (3,6)
9 ¬E ¬∧ E1 (8,2).

Figure 9: A C-intelim sequence.

development of efficient automated proof search procedures for the natural deduction
system of the previous sections. On the other hand, readers who are more familiar with
Smullyan’s tableaux and KE may look at C-intelim tableaux as an extension of KE that
includes also introduction rules and allows for direct proofs as well as for refutations.

In this new format the application of the intelim rules is sequential: their premises
do not occur on adjacent branches, but on the same branch as the conclusion and any-
where above it. Moreover, as will be seen below, there is no need for explicit falsum
rules such as RNC and XFQ. As a result, 0-depth proofs, i.e., the ones involving no
application of the discharge rule RB, can be represented as intelim sequences.

Definitions 9.1 (C-intelim sequence). A C-intelim sequence is a sequence of formu-
lae such that each formula is either (i) an assumption, or (ii) the conclusion of the
application of an intelim rule to preceding formulae.

A C-intelim sequence based on Γ is a C-intelim sequence such that all its assump-
tions belong to Γ.

A C-intelim sequence is closed if it contains both A and ¬A for some formula A,
otherwise it is open.

The array of formulae in Figure 9 is a C-intelim sequence based on the set {(A ∨
B) → ¬(C ∨D), A, (A ∧ E) → C}. The sequence starts by listing the assumptions
and each subsequent formula is obtained by an application of an intelim rule to pre-
ceding formulae. In this example, for the reader’s convenience, the full justification of
each formula in the sequence is specified on its right. In the sequel the justification will
be omitted and left to the reader. (Therefore numbering the formulae will no longer be
required.) Note that the change of format implies that an intelim sequence may well
contain idle occurrences of formulae, namely occurrences of formulae other than the
last one that are not used as premises of a rule application, such as the one in step 7.
This is not possible when 0-depth proofs are represented as formula-trees as in the pre-
vious sections, where all the formula occurrences in the tree, except for the end formula
occurring at the root, are used as premises of some rule application. When a proof is
completed, such idle formulae can be simply removed without affecting soundness. It
may well be that removing an idle formula makes idle some of the premises used to
obtain it, which can be, in turn, removed until no idle formula is left in the tree.

Observe also that each intelim sequence based on Γ can be easily turned into a 0-
depth C-intelim proof of its last formula depending on some subset ∆ of Γ, provided
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that all idle occurrences of formulae are first removed from the sequence.
In this new format, the Rule of Bivalence (RB) is a branching rule that splits an

intelim sequence into two branches as follows (depending on whether it is used for
signed or unsigned formulae):

...

T A


 JJ

F A

...

A
�� TT

¬A

So, deductions are again represented as trees, except that these trees now grow upside-
down, like analytic tableaux. When a deduction tree is expanded in this way we say
that RB has been applied to the formula A and that A is the RB-formula of this ap-
plication of RB. Each application of this rule introduces, on each of the two branches,
an extra assumption that we call virtual assumption to distinguish it from the actual
assumptions displayed at the beginning, in such a way that exactly one of these two
virtual assumptions must be true as a consequence of the classical Principle of Biva-
lence. This is the only branching rule of the system.

In the following definition we use the expression “tree of formulae” as an abbrevi-
ation of “tree whose nodes, except possibly the root, are labelled with formulae”. (The
special case when the root is unlabelled will be used to represent proofs from the empty
set of assumptions, as will be explained below.)

Definition 9.1. A C-intelim tableau is a tree of formulae such that each formula oc-
currence is either (i) an actual assumption, or (ii) results from previous formula oc-
currences in the same branch by an application of an intelim rule, or (iii) is one of the
complementary virtual assumptions introduced by an application of the branching rule
RB.

A C-intelim tableau based on a set Γ of formulae is a C-intelim tableau such that
all its actual assumptions belong to Γ.

Observe that each branch of a C-intelim tableau based on Γ is an intelim sequence
based on Γ∪∆ where ∆ is the set of virtual assumptions introduced by the applications
of RB in that branch. We say that a branch of a C-intelim tableau is closed when it
contains both A and ¬A for some formula A, otherwise we say that it is open. A C-
intelim tableau is closed when all its branches are closed, otherwise it is open. Then
the notion of C-intelim tableau proof can be defined as follows:

Definition 9.2. A C-intelim tableau proof of A from Γ is an intelim tableau T based
on Γ such that A occurs in each open branch of T .

Observe that this definition allows us to dispense with XFQ and implies that, if
there are no open branches, T is a C-intelim proof of any formula A from Γ.

Definition 9.3. A C-intelim tableau refutation of Γ is a closed C-intelim tableau based
on Γ.
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Let us write Γ `IET A if there is C-intelim tableau proof of A from Γ. Being
essentially an alternative way of representing C-intelim proofs, C-intelim tableaux are
complete for classical logic:

If A is a classical consequence of Γ, then Γ `IET A.

Examples of C-intelim tableau proofs based on non-empty sets of assumptions are
shown in Figure 10. The first one is a proof of G that contains a closed branch, and an
open branch ending in G that correspond, respectively, to the left and right subproofs
of the proof in Figure 1. Closed branches are marked with the symbol ×. It is cus-
tomary to list all the actual assumptions at the beginning starting from the root. Proofs
from the empty set of assumptions are represented by trees with an unlabelled root as
illustrated in Figure 11. The first example shows how the introduction rules can be
used to simulate the truth-table method. The second example shows how to represent a
typical pattern of proof ex-absurdo. C-intelim tableaux can be naturally used as a refu-
tation system, like resolution or semantic tableaux, as well as a system of direct proof.
In fact, if we disallow the introduction rules, we obtain the system KE (Mondadori
[1988a], D’Agostino and Mondadori [1994]), which is a variant of analytic tableaux
(but essentially more efficient).40 On the other hand if we disallow the elimination
rules we obtain the system KI (Mondadori [1988b, 1995], D’Agostino [1999]), which
can be regarded as a proof-theoretical version of the truth-table method (but essentially
more efficient).41 Using both introduction and elimination rules allows for shorter42

and more natural deductions that require fewer applications of the discharge rule RB.
Note that C-intelim tableaux directly correspond to proofs in the conventional for-

mat of the previous sections that are both RB and XFQ canonical, i.e., such that all
the applications of RB and XFQ have been pushed downwards. If one wants to allow
for proofs that are not RB-canonical, then the RB rule could take the following format,
which is closer, in spirit, to the Jas̀koswski-Fitch style of natural deduction:43

...

A
...

B

¬A
...

B

B
...

In the tree format, on the other hand, a branch corresponds to a 0-depth component
in an RB-canonical and XFQ-canonical proof. In general an RB-canonical and XFQ

40As shown in D’Agostino and Mondadori [1994], KE can p-simulate analytic tableaux but analytic
tableaux cannot p-simulate KE. In fact, analytic tableaux cannot even p-simulate the truth-tables (D’Agostino
[1992]).

41The truth-table method cannot p-simulate KI (Mondadori [1995]).
42But not essentially shorter, for both KI and KE can p-simulate C-intelim (D’Agostino [1999]).
43A similar way of using RB in the context of KE-style natural deduction is explored in Indrzejczak

[2010].
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A→ ¬B

B ∨ C

¬(C ∧ ¬B)

A ∨ E

(E ∨ F )→ ¬D

¬G→ D

A

¬B

C

¬¬B

×



 JJ
¬A

E

E ∨ F

¬D

¬¬G

G

(A ∨H)→ B

¬(¬A ∧ C)

(B ∨D)→ (E → G)

(B ∨D)→ (¬G→ E)

¬(C ∧D)→ (F → G)

¬C → (¬F → (A ∨ C))

A ∨H

B

B ∨D

E → G

¬G→ E

E

G

�� TT
¬E

¬¬G

G

## cc
¬(A ∨H)

¬A

¬C

¬(C ∧D)

F → G

¬F → (A ∨ C)

F

G

�� TT
¬F

A ∨ C

C

×

A→ B

A→ ¬B

A

B

¬B

×

�� TT
¬A

Figure 10: C-intelim tableaux. Each branch is an intelim sequence.
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A

A ∨ ¬A

�� @@
¬A

A ∨ ¬A

¬(A ∧ ¬A)
�� @@

A ∧ ¬A

A

¬A

×

Figure 11: C-intelim tableau proofs from the empty set of assumptions.

canonical C-intelim proof of depth k corresponds to a C-intelim tableau that contains
at most k nested applications of the RB rule (i.e., such that the maximum number of
virtual assumptions in a branch is k). However, the applications of RNC and XFQ are
no longer necessary, since they are absorbed by the notion of closed branch and by
the definition of C-intelim tableau proof. A path in a C-intelim tableau T is a finite
sequence of nodes such that the first node is the root of T and each subsequent node
occurs immediately below the previous one (so, a branch is a maximal path). A path is
closed if it contains occurrence of both B and ¬B for some formula B.

The notion of quasi-normal C-intelim proof is replaced by a much simpler (and
somewhat stronger) notion of non-redundant C-intelim tableaux.

Definition 9.4. A C-intelim tableau proof T of A from Γ (refutation of Γ) is non-
redundant if the following conditions are satisfied:

1. T contains no idle occurrences of formulae;

2. no branch of T contains more than one occurrence of the same formula;

3. no branch of T properly contains a closed path.

The reader can verify that the two conditions 2 and 3 are sufficient to ensure that
a non-redundant C-intelim tableau contains no detours, where detours are defined as
before (see Definition 4.5) and that every non-redundant C-intelim tableau can be eas-
ily represented as a quasi-normal C-intelim proof, adding applications of RNC and,
possibly, of XFQ at the end of each 0-depth component resulting from a closed branch.
The notion of non-redundant C-intelim tableau, however, is stronger than the notion of
quasi-normal C-intelim proof, in that it removes redundancies that are not purged by
the notion of quasi-normal proof. For example, the following:

A A→ A

A
(18)

is a quasi-normal C-intelim proof (since it contains no application of RB it is also
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trivially normal). However, its translation into a (one-branch) C-intelim tableau:

A
A→ A
A

(19)

is redundant because it violates condition 2 in Definition 9.4. The only non-redundant
version of the above C-intelim proof is the trivial one containing only one occurrence of
A. The procedure to turn a C-intelim tableau into a non-redundant one is quite trivial:

1. if a branch properly contains a closed path, remove all the nodes following the
closed path;

2. remove, one by one, all idle formulae and all repetitions of the same formula in
a branch; if the idle or repeated formula is a virtual assumption introduced by
an application of RB, we must remove also the whole subtree below the sibling
node.

The elimination of idle or repeated occurrences of a formula in a branch may turn some
previously used occurrences of formulae into idle ones; but at each reduction step the
size of the tree decreases, and so the procedure terminates in a number of steps that is
linear in the size of the initial tableau.

Example 9.1. An example of the procedure described above is illustrated in Figure 12.
This is an expansion of the example in Figure 9. The leftmost tree is a proof of the same
conclusion from the same assumptions. However, here the occurrence of ¬D is not
idle, because it is used as premise of modus ponens to obtain ¬E at the end of the left
branch. On the other hand the virtual assumption on the right branch is idle, so we
have to remove it together with all the whole subree below the sibling node. Thus, we
obtain the intelim sequence in the center. Now, the occurrence of ¬D has turned idle as
in Figure 9, so we can just remove it to obtain the rightmost non-redundant C-intelim
tableau.

Definition 9.5. A C-intelim tableau proof or refutation is normal if it is non-redundant
and all applications of RB in it are analytic. It is atomically normal if it is normal and
all applications or RB are atomic.

Note that a normal C-intelim tableaux proof of A from Γ can be easily turned to
a normal C-intelim proof of A depending on Γ which is essentially identical, except
for the format and for the applications of RNC and, possibly, XFQ at the end of its
0-depth components (whenever the latter correspond to a closed branch). However, the
opposite is not true because some normal C-intelim proofs may fail to fully satisfy the
non-redundancy condition.

The proofs of Theorem 6.2, Theorem 6.3 and Theorem 8.2 can be easily adapted to
yield the following:

Theorem 9.1. If T is a normal C-intelim tableaux, then T has the WSFP.

Theorem 9.2. Every C-intelim tableau proof of A from Γ (refutation of Γ) can be
transformed into a(n atomically) normal one of A from some ∆ ⊆ Γ.
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(A ∨B)→ ¬(C ∨D)

A

(A ∧ E)→ C

A ∨B

(E ∨ F )→ ¬D

¬(C ∨D)

¬C

¬D

¬(A ∧ E)

¬D → ¬E

¬E

,, ll
¬(¬D → ¬E)

¬E

(A ∨B)→ ¬(C ∨D)

A

(A ∧ E)→ C

A ∨B

(E ∨ F )→ ¬D

¬(C ∨D)

¬C

¬D

¬(A ∧ E)

¬E

(A ∨B)→ ¬(C ∨D)

A

(A ∧ E)→ C

A ∨B

(E ∨ F )→ ¬D

¬(C ∨D)

¬C

¬(A ∧ E)

¬E

Figure 12: Turning a redundant C-intelim tableau into a non-redundant one.
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Theorem 9.3. If T is a normal C-intelim tableaux, then T is not R-contaminated.

The depth of a C-intelim tableau T is simply the maximum number of virtual as-
sumptions occurring in one of its branches.

Definition 9.6. T is a proper normal C-intelim tableau proof of A based on Γ if T
is normal C-intelim tableau proof of A based on Γ and T is open (at least one of its
branches is not closed).

Again, the proof of the next theorems is parasitic on the proof of their analogues
for C-intelim proofs (namely, Theorem 8.1 and Corollary 8.2).

Theorem 9.4. If T is a proper normal C-intelim tableau proof ofA from Γ andA 6= f,
then Γ ∦ {A}.

Theorem 9.5 (Non-contamination property). If T is a normal C-intelim tableau proof
of A from Γ, then T is non-contaminated or improper (i.e., a closed tableau for Γ).

One can consider a restricted version of the C-intelim rules that automatically gen-
erates normal tableaux (except at most for the presence of idle occurrences of formu-
lae), by requiring that, in the attempt to prove A from Γ:

• an inference rule can be applied in a branch only if its conclusion does not al-
ready occur in the branch;

• RB can be applied in a branch only (i) if neither of the virtual assumptions intro-
duced by it already occurs in the branch, and (ii) the RB formula is a subformula
either of one of the premises in Γ or of the conclusion A;

• a closed branch cannot be further expanded.

A tableau T constructed in accordance with these restrictions can be easily turned into
a normal one by simply removing all idle occurrences of formulae (if any) and then, if
required, into a normal C-intelim proof in the upward tree format of Section 1.

10 The complexity of C-intelim proofs
Let QNC-intelim be the restriction of C-intelim to quasi-normal proofs.

Theorem 10.1. QNC-intelim can p-simulate Frege systems.

Hint. As the reader can verify, the negation of any instance A of any axiom scheme
of a typical complete axiomatic systems for classical propositional logic admits of a
0-depth C-intelim refutation. So, by means of an application of RB one can obtain a
proof of A as follows:

[A]1

[¬A]2

T
f

A
1,2

A
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Moreover, given that Modus Ponens, as an inference rule, is a rule of C-intelim, the
corresponding rule of proof ` A→ B,` A/` B and can be simulated as follows:

[A→ B]3 [A]1

B

[¬A]2

T1
f

B
1,2

B

[¬A→ B]4

T2
f

B
3,4

B

where T1 and T2 are 0-depth refutations in most (if not all) known Frege systems. In
general they are normal refutations whose depth is bounded above by a fixed constant
k depending on the Frege system.44

Consider now normal C-intelim tableaux. Since the introduction rules can be easily
simulated by means of eliminations and applications of RB, it is not difficult to show
that the subsystem of C-intelim tableaux consisting only of RB and the elimination
rules, which amounts to the KE system of D’Agostino and Mondadori [1994], can
linearly simulate C-intelim tableaux and vice versa. Since KE can p-simulate the cut-
free Gentzen sequent calculus, but not vice versa [D’Agostino and Mondadori, 1994],
it immediately follows that:

Theorem 10.2. C-intelim tableaux can p-simulate cut-free Gentzen systems, but cut-
free Gentzen systems cannot p-simulate C-intelim tableaux.

Let us write Γ `IET
k A to mean that there is a normal C-intelim tableau proof of

A from Γ of depth ≤ k, and Γ `IET
k f to mean that there is a normal refutation of

Γ of depth ≤ k. In [D’Agostino et al., 2013, D’Agostino, 2015] it is shown that each
`IET
k is a tractable approximation to classical propositional logic that converges to it

for k →∞.

Theorem 10.3. For each k ∈ N, whether or not Γ `IET
k A can be decided in time

O(nk+2), where n is the total number of occurrences of symbols in Γ ∪ {A}.

Let NC-intelim be the restriction of C-intelim to normal proofs and NC-intelimk be
the restriction of NC-intelim in which only proofs of depth ≤ k are allowed. Given
the correspondence between NC-intelim proofs and C-intelim tableaux discussed in
Section 9, it follows from the results above that proof search in NC-intelimk is feasible.

11 Conclusions
We have carried out a detailed proof-theoretical study of a system of natural deduction
for classical propositional logic, the C-intelim system, that considerably departs from
the standard Gentzen-style approach in that classical logic is not characterized by a
system of intelim rules that extend the rules that represent the intuitionistic meaning of

44The depth would no longer be bounded above by a fixed constant for atomically normal refutations.
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the logical operators, but directly by means of rules that are faithful to their classical
interpretation. As a result, the typical symmetries of classical logic are not lost, no
intelim rule involves the discharge of assumptions and the only discharge rule is the one
that expresses the classical Principle of Bivalence (often called “Classical Dilemma”
Tennant [1990]). We have shown sets of transformations that, independently of the
order in which they are applied, yield respectively quasi-normal proofs — i.e. non-
analytic proofs that, yet, contain no trivial detours — and normal proofs that are fully
analytic and enjoy the (weak) subformula property. We have also introduced proper
normal proofs, that avoid bizzarre uses of the ex-falso quodlibet principle, and enjoy
the variable sharing property. We have also shown that our notion of normal proof
paves the way for the proof of a non-contamination theorem that does not hold if the
standard notion of normal proof in classical Gentzen-style natural deduction is adopted.
This result shows that a weak relevance property that holds for classical logic, i.e., the
existence of non-contaminated proofs except for trivial cases in which the proof is more
aptly described as a refutation of the assumptions, is automatically enforced by the
restriction to normal proofs. Next, we have presented a different format for C-intelim
proofs that is more suitable to provide a more concise representation of proofs and
to implement proof-search algorithms, highlighting the connection between C-intelim
and certain variants of the method of semantic tableaux. Finally we have stated some
complexity facts about C-intelim and in particular that the notion of k-depth C-intelim
deducibility provides a hierarchy of tractable approximations to classical propositional
logic. This approach to tractable depth-bounded reasoning will be extended to first-
order logic in a subsequent paper, by incorporating some ideas from Hintikka [1972].

We maintain that our results are useful in a variety of application areas. In par-
ticular, a key application area of increasing prominence is the use of argumentation
theory to formalise individual agents, and distributed, non-monotonic reasoning. Typi-
cally, arguments are classical logic proofs possibly augmented by defeasible inference
rules [Modgil and Prakken, 2013]. Evaluation of the interacting (attacking and counter-
attacking) arguments determines those that are justified, and the conclusions of these
justified arguments identify the inferences from the theory that supplies the assump-
tions for constructing the arguments. Two key reasons for the increasing prominence
of argumentation theory are that: 1) its characterisation of non-monotonic reasoning, in
terms of argument and counter-argument, is intuitively understandable to human users
familiar with everyday principles of debate and discussion; 2) it paves the way for
practical applications of individual and distributed non-monotonic reasoning accom-
modating both computational and human agents.

The perspicuity of natural deduction makes it an obvious proof-theoretic choice
for constructing the deductive parts of arguments, especially in light of argumentation
theory’s aim to make computational reasoning transparent for human inspection and
interaction.45 We suggest that our more natural representation of classical proofs (as
compared with standard Gentzen-style classical natural deduction) further supports this
rationale for natural deduction representations of the deductive parts of arguments.

Moreover, as explored in D’Agostino and Modgil [2016, 2018], our formulation
of NC-intelimk proofs has important implications for practical applications of argu-

45This is also an underlying motivation for the use of natural deduction in [Kakas et al., 2018].
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mentation, and more generally for applications of logic to modelling the inferential
behaviour of non-ideal agents. Firstly, the computational tractability of constructing
k-depth proofs can be exploited for use by real-world agents with limited inferential
capabilities; each increase in depth naturally equates with the inferential resources that
agents deploy in constructing proofs. Indeed, D’Agostino and Modgil [2018] show that
key rationality postulates for argumentation [Caminada and Amgoud, 2007, Caminada
et al., 2012], previously shown only under the assumption that agents have unbounded
resources, are in fact satisfied for agents reasoning to any given depth k. Secondly, eval-
uation of arguments yields counterintuitive results, and violates rationality postulates,
if arguments include assumptions that are redundantly used in deriving the conclusion,
i.e., arguments that are contaminated. For example, a redundant assumption may in-
appropriately be accounted for in determining the weight/strength of an argument and
hence its evaluation. Now, the standard approach to solving this problem is to ensure
that arguments are not contaminated by verifying that an argument is valid only if it
satisfies the stronger property that no proper subset of its assumptions suffices to en-
tail the conclusion. Clearly this is computationally impractical. Hence, there are good
practical and theoretical reasons for ensuring that only non-contaminated arguments
are delivered by a natural deduction proof theory. Again, D’Agostino and Modgil
[2018] show that all rationality postulates hold when arguments are formalised as NC-
intelimk proofs, and without requiring that one checks that the arguments’ assumptions
are subset minimal.
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