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Abstract. Let O be the class of odd involutive FLe-chains which admit finitely many

idempotent elements. The price for describing the structure of such a rich class as O in

[26] by such simple mathematical objects as linearly ordered abelian groups was that the

related construction method, called partial lex product was quite complex. But in order

to describe the structure of O, even the notion of partial lex products is not sufficiently

general. One more tweak is needed, a slightly even more complex construction, called

partial sublex product, introduced here.
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1. The error

The main result of [26] (hereinafter the original statement) falsely states
that every algebra in O can be constructed by applying finitely many times
the partial lex product construction using totally ordered abelian groups.
However, it holds true that (hereinafter the correct statement) every algebra
in O can be constructed by applying finitely many times the partial sublex
product construction using totally ordered abelian groups. In the sequel we
explain why the original statement is false, we introduce the partial sublex
product construction, and show what modifications are needed in [26] to
obtain the correct statement. Knowledge of notions in [26] will be assumed.
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Why is it that the original statement cannot hold true? An insight can
be gained from the synthesis of the following three observations.

1. Let A and B be totally ordered abelian groups and let G = A
→× B

be their lexicographic product. We are interested in characterizing sub-
groups of G. Clearly, if A1 ≤ A and B1 ≤ B then A1

→× B1 ≤ G, but
not all subgroups of G are of that form. For example, if A = B then G
has a subgroup over {(x, x) : x ∈ A}. This subgroup lies ‘diagonally’ in
the direct decomposition A

→×B of G1, and Birkhoff’s famous subdirect
representation theorem is exactly about such diagonal situations, in gen-
eral.

2. The universe of the group part of the partial lex products A = XZV

→→×Y
and B = XV

→⇀× Y is equal to V × Ygr, so it is never diagonal.

3. We shall shortly prove in Proposition B.2 that one can freely replace the
group part of an odd involutive FLe-algebra by any other lattice-ordered
abelian subgroup of it (e.g. by a diagonal one), thus obtaining another
odd involutive FLe-algebra.

It follows that if we replace the group part of an odd involutive FLe-algebra
by a diagonal subgroup of it, then we get an odd involutive FLe-algebra
which cannot be constructed by the partial lex product construction. Since
this procedure does not change the number of idempotent elements of the
algebra, a more general construction is needed to describe the class O.

Where is the error in the proof of the original statament? Formally, the
argument in the last sentence of the proof of Lemma 6.2 is the invalid one.
The proof of Lemma 6.2 cannot be fixed, since the very last statement of
it, namely that Xgr ∼= β(Xgr)

→× kerβ, is false, in general: given a linearly
ordered abelian group G and a convex subgroup C of it, G is not necessarily
isomorphic to G/C

→× C. It is shown by the fact that in general G cannot
even be embedded into G/C

→× C, see [25, Example 4.5.2]. Since Lemma 6.2
was used in the one-step decomposition lemmas (in Lemmas 9.4 and 10.2),
and since these were applied in the proof of the main representation theo-
rem (Theorem 11.1), the main representation theorem and its corollary, the
generalization of Hahn’s embedding theorem in Corollary 11.5, have to be
changed slightly.

1We shall use this term to mean that the universe of the subalgebra is not the direct
product of the universe of a subalgebra of A and the universe of a subalgebra of B.
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2. How to Fix the Error

We present the necessary changes to be made in [26] to obtain the correct
statement. The main contribution (the novelty) of the present corrigendum
is the fixing of Lemma 6.2, which will be done in Lemma B.4. That aside,
the modifications listed below are only to carry over the difference between
Lemma 6.2 and Lemma B.4 throughout the introduction and the proof of
the original statement.

• Change the word “lexicographic” to “sub-lexicographic” in the Introduc-
tion (two instances). Change the word “lexicographic” to “sublex” in the
abstract (two instances), in the title of Section 4, in the section before
Remark 4.5, in the sentence before Theorem 11.1, and in Remark 11.2.

• Add the following to the end of Definition 1.2:

The lexicographic product A
→× B of two FLe-chains A and B is an FLe-

chain over the lexicographic product of their respective universes such that
all operations are defined coordinatewise.

• Add the following to the end of Example 3.2:

Moreover, it turns out that in order to describe the class of odd involutive
FLe-chains having finitely many idempotent elements in its full generality,
it is also possible to take such subalgebras of the group-part of the con-
structed algebra which are not the direct products of their projections. It
motivates the most general construction, called partial sublex products in
Definition B.3.

• Replace the first sentence of the paragraph after Definition 4.1 by the
following:

Next, we introduce a construction, called partial lexicographic product (or
partial lex product, or partial lex extension) with four slightly different vari-
ations in Definition 4.2. This definition lays the foundation for the most
general construction in Definition B.3, needed for our structural description
purposes.

• Add the following after the proof of Theorem 4.4:

Definition B.1. We introduce the following notation. Let A1, A2 and D
be FLe-algebras, and let D ≤ A1

→× A2. If ν, the projection operation
to the first coordinate maps D onto A1, that is, if ν(D) = {a1 ∈ A1 :
there exists(a1, a2) ∈ D} = A1 then we denote this by
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D ≤ν A1

→× A2.

If D is only embedded into A1

→× A2 such that for its image ϕ(D) it holds
true that ϕ(D) ≤ν A1

→× A2, then we denote this by

D ↪→ν A1

→× A2.

Next, we introduce the construction for the key result of the paper, called
partial sublex product (or partial sublex extension). Consider an odd involu-
tive FLe-algebra (X, ≤, ∗◦, →∗◦, t, f). Recall that the invertible elements of X
are in Xgr. Our plan is to take a subalgebra H of Xgr, and to consider the
set

Y = (X \ Xgr) ∪ H.

Then:

Proposition B.2. Y is a nonempty subuniverse of X.

Proof. Y is closed under multiplication. Indeed, the product of a ∈ Y
by a non-invertible element b ∈ X \ Xgr is non-invertible: if c = a ∗◦ b
were invertible then t = c−1 ∗◦ c = c−1 ∗◦ (a ∗◦ b) = (c−1 ∗◦ a) ∗◦ b would hold
and thus c−1 ∗◦ a would be the inverse of b, contrary to assumption. Hence
Y ∗◦ (X \ Xgr) ⊆ X \ Xgr. Therefore,

Y ∗◦ Y = Y ∗◦ [(X \ Xgr) ∪ H]
= [Y ∗◦ (X \ Xgr)] ∪ (Y ∗◦ H)
⊆ (X \ Xgr) ∪ ([(X \ Xgr) ∪ H] ∗◦ H)
= (X \ Xgr) ∪ ((X \ Xgr) ∗◦ H) ∪ (H ∗◦ H)
⊆ (X \ Xgr) ∪ ((X \ Xgr) ∗◦ Y ) ∪ (H ∗◦ H)
⊆ (X \ Xgr) ∪ (X \ Xgr) ∪ H
= Y

,

and we are done. Y is clearly closed under the residual complement operation
′ of X, and hence under →∗◦, too. Finally, t ∈ Y since t ∈ H ⊆ Y , and hence
f = t′ ∈ Y , too.

These considerations lead to:

Definition B.3. Adapt the notation of Definition 4.2. Let A = XZV

→→× Y

and B = XV

→⇀× Y. Recall that A = (V × Y ) ∪ (Z × {
}) ∪ (X × {⊥}),
B = (V × Y ) ∪ (X × {
}), and that the group part Agr of A, as well as

the group part Bgr of B is the group V
→×Ygr which is the subalgebra of A

and of B over V × Ygr in both cases. Let

H ≤ν V
→× Ygr. (B.1)
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Replace Agr in A and Bgr in B by H to obtain AH and BH, respectively.
More formally, let

AH = H ∪ (V × (Y \ Ygr) ∪ (Z × {
}) ∪ (X × {⊥}) ,

BH = H ∪ (V × (Y \ Ygr)) ∪ (X × {
}).

Then, from Proposition B.2 it follows that AH and BH are closed under
all operations of A and B (including the residual complement operation),
respectively, and thus AH is a subalgebra of A over AH , and BH is a subalge-
bra of B over BH by Theorem 4.4. Therefore, AH and BH are odd involutive
FLe-algebras. As explained in Section 1, these cannot be constructed by the
partial lex product construction, in general.

It has been beneficial to introduce the partial lex product construction in
its full generality for demonstrating the constructional power of it. However,
an important particular instance is if Y is cancellative, and this is all that
we need in the sequel. Then Y \ Ygr = ∅ and hence AH and BH become
simpler:

AH = H ∪ (Z × {
}) ∪ (X × {⊥}) , BH = H ∪ (X × {
}).

This way both definitions become independent of V since we can also equiv-
alently assume

H ≤ Z
→× Y

instead of (B.1), where in the type II case Z = Xgr. For this case (when
Y is cancellative) we are going to use the following notation: X(

Z
→→×Y

)
H

for AH, and X(
Xgr

→⇀×Y
)
H

for BH, and will call them the type I partial sub-

lexicographic (shortly sublex) product of X, Z, Y and H, and the type II
partial sublex product of X, Y and H, respectively.

• In Section 5 in the “Sketch of the main theorem” part replace the two
item 3’s by the following, respectively.

3. Finally we will recover X, up to isomorphism, as the type I partial
sublex product of γ(β(X)), γ(β(XE

τ≥u)), kerβ, and a subgroup G of

γ(β(XEc

τ≥u))
→× kerβ, in Section 9.

3. Finally we will recover X, up to isomorphism, as the type II partial
sublex product of Xτ≥u, XT

τ≥u, kerβ, and a subgroup G of XTc

τ≥u

→×kerβ,
in Section 10.



S. Jenei

• In the first sentence of the subsequent paragraph replace “(either type
III or IV in Sections 9 and 10, respectively)” by “(either type I or II in
Sections 9 and 10, respectively)”.

• Now comes the main contribution in correcting the error mentioned in
Section 1. Insert the following to the beginning of Section 6.

An abelian group A is called divisible if for any g ∈ A and n positive
integer there exists a ∈ A such that a ∗◦ . . . ∗◦ a︸ ︷︷ ︸

n

= g. For any abelian group A

there exists a minimal divisible abelian group A containing A. A is uniquely
determined up to isomorphism and called the divisible hull (or injective hull)
of A ([24]). The proof of the next lemma (unlike the rest of the paper) is
written in the usual additive notation of the theory of abelian groups.2

Lemma B.4. Let G be a linearly ordered abelian group (denote its group
operation by +) and C be a convex subgroup of G. Then G ↪→ν G/C

→×C.

Proof. Consider L = 〈G,C〉. It is straightforward to check that the linear
order ≤ of G extends to a linear linear order of L by letting, for x, y ∈ L,
x ≤L y iff lkg + lkc ≤ klh + kld, where x = g + c, y = h + d, g, h ∈ G,
c, d ∈ C, k, l ∈ Z

+, kc, ld ∈ C. Indeed,

• ≤L is well-defined.
If x ∈ L then since L = 〈G,C〉, there exist g ∈ G and c ∈ C such
that x = g + c. Since c ∈ C, there exists a positive integer k such that
kc ∈ C. Analogously, for y ∈ L, there exists h ∈ G, d ∈ C, and a positive
integer l such that y = h + d and ld ∈ C. Since kc, ld ∈ C and C ⊆ G,
it follows that kc, ld ∈ G. Therefore, referring to g, h ∈ G, it follows that
lkg + lkc, klh + kld ∈ G, and hence it makes sense to compare them by
≤, the linear order of G.
Assume that it also holds that x = g1 + c1 and k1c1 ∈ C and assume that
it also holds that y = h1 + d1 and l1d1 ∈ C. Then, as above, l1k1g1 +
l1k1c1, l1k1h1+ l1k1d1 ∈ G. We need to verify that lkg+ lkc ≤ klh+kld if
and only if l1k1g1 + l1k1c1 ≤ k1l1h1 +k1l1d1. If lkg + lkc ≤ klh+kld then
lkl1k1(g + c) ≤ lkl1k1(h+d), then lkl1k1(g1 + c1) ≤ lkl1k1(h1 +d1). Since
l1k1(g1+c1), l1k1(h1+d1) ∈ G, it follows that l1k1(g1+c1) ≤ l1k1(h1+d1).
The other direction is analogous.

2 The multiplicative notation would make the notation of the proof of Lemma B.4
much more complicated, e.g. writing ((gk)n)m instead of mnkg.
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• ≤L extends ≤. If x, y ∈ G then x = x + 0C , y = y + 0C , and 0C = 1 · 0C .
Therefore, if x ≤ y then 1 · 1 · x + 1 · 1 · 0C ≤ 1 · 1 · y + 1 · 1 · 0C and it is
equivalent to x ≤L y.

For the coming proof of reflexivity, antisymmetry, transitivity, and linearity
of ≤L let x, y, z ∈ L such that

x = g + c, g ∈ G, c ∈ C, k is a positive integer, and kc ∈ C,

y = h + d, h ∈ G, d ∈ C, l is a positive integer, and ld ∈ C,

z = u + e, u ∈ G, e ∈ C, m is a positive integer, and me ∈ C.

• reflexivity of ≤L: if x ∈ L then kkg + kkc ≤ kkg + kkc holds since ≤ is
reflexive, yielding x ≤L x.

• antisymmetry of ≤L. x ≤L y implies lkg + lkc ≤ lkh + lkd and y ≤L x
implies lkh + lkd ≤ lkg + lkc. Hence lkg + lkc = lkh + lkd, and thus
x = g + c = h + d = y.

• transitivity of ≤L: x ≤L y implies lkg + lkc ≤ lkh + lkd and thus

lkmg + lkmc ≤ lkmh + lkmd,

whereas y ≤L z implies lmh + lmd ≤ lmu + lme and thus

lkmh + lkmd ≤ lkmu + lkme.

By the transitivity of ≤ it follows that lkmg + lkmc ≤ lkmu + lkme, and
since kmg + kmc, kmu + kme ∈ G, it implies kmg + kmc ≤ kmu + kme
which is equivalent to x ≤L z.

• linearity of ≤L: for x, y ∈ L, either lkg + lkc ≤ lkh + lkd or lkh + lkd ≤
lkg + lkc must hold by the linearity of ≤. Therefore, x ≤L or y ≤L x
holds, respectively.

Since ≤L, the total order on L extends ≤, the total order on G, in the rest
of this proof we shall denote ≤L simply by ≤.
C is convex in L: Let x, y ∈ C and a ∈ L such that x < a < y. There
exist n,m ∈ Z

+ such that nx,my ∈ C, there exist g ∈ G, d ∈ C such
that a = g + d, and there exists k ∈ Z

+ such that kd ∈ C. It follows
that C � kmnx − nmkd < nmkg < knmy − nmkd ∈ C and nmkg ∈ G.
Since C is convex in G, it yields nmkg ∈ C thus ensuring g ∈ C and hence
a = g + d ∈ C.
Since C is a divisible subgroup of L, and divisible subgroups are known to
be direct summands [23], there exists M ≤ L such that L = M⊕C. Both M
and C, being subsets of L, are linearly ordered by the ordering of L, giving
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rise to consider the lexicographic ordering on M ⊕ C. It coincides with ≤.
Indeed, let x, y ∈ L with x = a + c, y = b + d, a, b ∈ M , c, d ∈ C. Contrary
to the statement assume that x is larger than y in the lexicographic order.
Then either a = b and c > d which contradicts to x ≤ y, or a > b. In the
latter case C � d − c ≥ a − b ≥ 0 ∈ C follows from x ≤ y, yielding a − b ∈ C
since C is convex in L. Therefore a − b ∈ M ∩ C = {0}, hence a = b, a
contradiction.

Therefore, L = M
→× C. By the first isomorphism theorem for ordered

abelian groups, M ∼= L/C. In addition, L/C ∼= G/C since ϕ is a natural
order isomorphism from G/C to L/C given by ϕ(g+C) = g+C: ϕ is is well-
defined and injective since C ⊆ C and since cosets of subgroups are known
to be either disjoint or equal; ϕ is surjective, too, since for L � a = g + c,
g ∈ G, c ∈ C it holds true that ϕ(g + C) = g + C = a − c + C = a + C
since C ⊆ C; and finally, ϕ trivially preserves addition and the ordering.
Summing up, G ≤ L = M

→× C ∼= G/C
→× C, that is, G ↪→ G/C

→× C. To
see that the projection operation of M

→× C to the first coordinate maps G
onto M let a ∈ M . Since M ≤ L = 〈G,C〉, a = g + c for some g ∈ G and
c ∈ C. Therefore, the unique decomposition of g is g = a − c and hence its
projection to the first coordinate is a.

• Replace in item 4 of Lemma 6.2 the part “and (qua linearly ordered
abelian groups) Xgr

∼= β(Xgr)
→× kerβ” by “and (qua linearly ordered

abelian groups) Xgr ↪→ν β(Xgr)
→× kerβ.” and replace the last 20 lines

of the proof of Lemma 6.2 (starting with “By Hahn’s theorem . . . ”) by
the sentence “Lemma B.4 ends the proof.”

• Replace item 3 in Lemma 9.4 by

3. X ∼= Y(
Z

→→×kerβ

)
G

for some G ≤ V
→× kerβ.

• Replace the proof of item 3 in Lemma 9.4 by

3. Denote the embedding Xgr ↪→ν β(Xgr)
→× kerβ of Lemma 6.2 by δ =

(β|Xgr
, ζ). Define a mapping α : X → YZV

→→× kerβ by

α(x) =

⎧⎨
⎩

(γ(β(x)), ζ(x)) if x ∈ Xτ<u

(γ(β(x)), 
) if x ∈ XT
τ≥u

(γ(β(x)), ⊥) if x ∈ Xτ≥u \ XT
τ≥u

. (B.2)

First we verify that α indeed maps into YZV

→→× kerβ. By Definition 4.2

YZV

→→× kerβ is equal to (V × kerβ) ∪ (Z × {
}) ∪ (Y × {⊥}) which, by
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items 1 and 2 of Lemma 9.4, is equal to

(γ(β(XEc

τ≥u)) × kerβ) ∪ (γ(β(XE
τ≥u)) × {
}) ∪ (γ(β(X)) × {⊥}) .

If x ∈ Xτ<u then γ(β(x))
(9.1)
= γ(β(
[x])) hence α(x)

(B.2)
= (γ(β(x)), ζ(x))

is in γ(β(XEc

τ≥u)) × kerβ. If x ∈ XT
τ≥u then α(x)

(B.2)
= (γ(β(x)), 
) ∈

γ(β(XE
τ≥u))×{
}. If x ∈ Xτ≥u\XT

τ≥u ⊂ X then α(x)
(B.2)

= (γ(β(x)), ⊥)

is in γ(β(X)) × {⊥}.

Using that γ, β, and ζ are homomorphisms (hence they preserve the
order), ζ is strictly increasing (since δ is an embedding), and that 
 and
⊥ are the top and bottom elements in the second coordinate, respec-
tively, it is straightforward to verify that α is strictly increasing. There-
fore, α preserves the ordering and α is injective. A straightforward ver-
ification using Definition 4.2/A and Table 3 shows that α preserves the
monoidal operation, too. Indeed,

• if x, y ∈ Xτ<u then x∗◦ y ∈ Xτ<u holds by Lemma 5.4. Adding that

β, γ, ζ are homomorphisms, it follows that α(x ∗◦ y)
(B.2)

= (γ(β(x ∗◦
y)), ζ(x∗◦y)) = (γ(β(x)), ζ(x)) ∗◦γ (γ(β(y)), ζ(y))

(B.2)
= α(x) ∗◦γ α(y).

• if x ∈ Xτ<u and y ∈ XT
τ≥u then x ∗◦ y ∈ XT

τ≥u holds by Table 3(2,6)

and Table 3(2,3). Adding the absorbing property of 
, see Def-

inition 4.2/A, it follows that α(x ∗◦ y)
(B.2)

= (γ(β(x ∗◦ y)), 
) =

(γ(β(x)), ζ(x)) ∗◦γ (γ(β(y)), 
)
(B.2)

= α(x) ∗◦γ α(y).
• if x ∈ Xτ<u and y ∈ Xτ≥u \ XT

τ≥u then y ∈ Xτ≥u \ XT
τ≥u holds

by Table 3(2,4). Adding the absorbing property of ⊥, see Defi-

nition 4.2/A, it follows that α(x ∗◦ y)
(B.2)

= (γ(β(x ∗◦ y)), ⊥) =

(γ(β(x)), ζ(x)) ∗◦γ (γ(β(y)), ⊥)
(B.2)

= α(x) ∗◦γ α(y).
• if x, y ∈ XT

τ≥u then x ∗◦ y ∈ XT
τ≥u holds by Table 3(3,3),

Table 3(3,6) and Table 3(2,6), hence, α(x∗◦y)
(B.2)

= (γ(β(x∗◦y)), 
) =
(γ(β(x)), 
) ∗◦γ (γ(β(y)), 
)
(B.2)

= α(x) ∗◦γ α(y).
• if x ∈ XT

τ≥u and y ∈ Xτ≥u \ XT
τ≥u then x ∗◦ y ∈ Xτ≥u \ XT

τ≥u holds
by Table 3(3,4) and Table 3(6,4). Adding the absorbing property of
⊥, it follows that
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α(x ∗◦ y)
(B.2)

= (γ(β(x ∗◦ y)), ⊥) = (γ(β(x)), 
) ∗◦γ (γ(β(y)), ⊥)
(B.2)

=
α(x) ∗◦γ α(y).

• if x, y ∈ Xτ≥u\XT
τ≥u then x∗◦y ∈ Xτ≥u\XT

τ≥u holds by Table 3(1,1)

and Table 3(4,4). Adding the absorbing property of ⊥, it follows that

α(x ∗◦ y)
(B.2)

= (γ(β(x ∗◦ y)), ⊥) = (γ(β(x)), ⊥) ∗◦γ (γ(β(y)), ⊥)
(B.2)

=
α(x) ∗◦γ α(y).

Moreover, (6.4), (7.3) and claim (4) in Proposition 8.2 shows the preser-
vation of the residual complement, under α. In complete analogy to the
way we proved the preservation of the implication under β in (6.5),
we can verify the preservation of the implication under α, too. Finally,
it is clear that α maps the unit element of X to the unit element of
YZV

→→× kerβ: since t ∈ Xτ<u, by (B.2) α(t) = (γ(β(t)), ζ(t)) holds
and homomorphisms map unit elements to unit elements. Summing
up, α is an injective homomorphism, that is, an embedding of X into
YZV

→→× kerβ. Therefore, to conclude the proof of item 3, it remains to

prove that α is almost onto: if an element of YZV

→→× kerβ is not invert-
ible then it is the α-image of a suitable chosen x ∈ X. Indeed, since the
product operation of YZV

→→× kerβ is defined coordinatewise by Defini-

tion 4.2, invertible elements of YZV

→→× kerβ are of the form (a, b) where

(a, b) ∈ YZV

→→× kerβ and both a and b are invertible. By Definition 4.2

YZV

→→× kerβ is equal to

(V × kerβ) ∪ (Z × {
}) ∪ (Y × {⊥}) .

All elements of V and kerβ are invertible, since V is a subgroup by
Definition 4.2 and kerβ is a convex hull of the subgroup kerβ (see item 4

in Lemma 6.2). Therefore, if an element of YZV

→→× kerβ is not invertible
then it is either of the form (a,
) where a ∈ Z, or the form (a,⊥)
where a ∈ Y . Consider (a,
) where a ∈ Z. By item 2 of Lemma 9.4,
Z = γ(β(XE

τ≥u)). Therefore, a = γ(β(x)) for some x ∈ XE
τ≥u. By letting

y =
{

x if x ∈ XT
τ≥u


[v] if x = ⊥[v] ∈ XB
τ≥u

we obtain α(y) = α(x)
(B.2)

= (γ(β(x)), 
) = (a,
) if x ∈ XT
τ≥u and

α(y) = α(
[v])
(B.2)

= (γ(β(
[v])), 
)
(9.1)
= (γ(β(⊥[v])), 
) = (γ(β(x)),

breaktop) = (a,
) if x = ⊥[v] ∈ XB
τ≥u, and we are done. Consider (a,⊥)
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where a ∈ Y . By item 1 of Lemma 9.4, Y = γ(β(X)), hence a = γ(β(x))
for some x ∈ X. By letting

y =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⊥[x] if x ∈ Xτ<u

x if x ∈ Xτ≥u \ XT
τ≥u

⊥[v] if x = 
[v] ∈ XTc

τ≥u

x↓ if x ∈ X
Tps

τ≥u

we obtain α(y) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(⊥[x])
(B.2)

= (γ(β(⊥[x])), ⊥)
(9.1)
= (γ(β(x)), ⊥) = (a,⊥)

if x ∈ Xτ<u

α(x)
(B.2)

= (γ(β(x)), ⊥) = (a,⊥)
if x ∈ Xτ≥u \ XT

τ≥u

α(⊥[v])
(B.2)

= (γ(β(⊥[v])), ⊥)
(9.1)
= (γ(β(
[v])), ⊥) = (γ(β(x)), ⊥) = (a,⊥)

if x = 
[v] ∈ XTc

τ≥u

α(x↓)
(B.2)

= (γ(β(x↓)), ⊥)
(9.1)
= (γ(β(x)), ⊥) = (a,⊥)

if x ∈ X
Tps

τ≥u

and we are done.

• Replace the second part of the last sentence before Proposition 10.1 (from
“and finally we will recover . . . ”) by the following.

and finally we will recover X, up to isomorphism, as a type II partial sublex
product of Xτ≥u, XT

τ≥u, kerβ and a suitable chosen G ≤ XTc

τ≥u

→× kerβ.

• Replace item 3 in Lemma 10.2 by

3. X ∼= (Xτ≥u)(
XT

τ≥u

→⇀×kerβ

)
G

for some

G ≤ XTc

τ≥u

→× kerβ.

• Replace the proof of item 3 of Lemma 10.2 by the following.

3. By the previous claim and by claim (3) in Proposition 10.1,

(Xτ≥u)(XTc
τ≥u)

→⇀× kerβ
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is well-defined. Referring to Lemma 6.2, let δ = (β|Xgr
, ζ) denote the

embedding Xgr ↪→ν β(Xgr)
→× kerβ. Define a mapping α : X →

ZV

→⇀× kerβ by

α(x) =
{

(
β(x), ζ(x)) if x ∈ Xτ<u

(x, u) if x ∈ Xτ≥u
.

α is clearly injective.

• Then, in the same proof, replace all (three) instances of kerβ by kerβ,
as detailed below:

Denote the monoidal operation of (Xτ≥u)(XTc
τ≥u)

→⇀× kerβ by � = (∗◦, ∗◦).

Denote the residual complement of (Xτ≥u)(XTc
τ≥u)

→⇀× kerβ by ′� .
Since α preserves multiplication and residual complements, and since both
X and (Xτ≥u)(XTc

τ≥u)
→⇀× kerβ are involutive, . . .

• Replace the last sentence of the proof of Lemma 10.2 by the following.

Therefore, α is an embedding of X into (Xτ≥u)(XTc
τ≥u)

→⇀× kerβ, hence into

(Xτ≥u)(XT
τ≥u)

→⇀× kerβ . Summing up, X ∼=
(
(Xτ≥u)(XT

τ≥u)
→⇀× kerβ

)
G

for

some G ≤ XTc

τ≥u

→× kerβ.

• Replace Theorem 11.1 along with its proof by the following.

Theorem 11.1. If X is an odd involutive FLe-chain, which has only n ∈ N,
n ≥ 1 positive idempotent elements then it has a partial sublex product
group representation, that is, for i = 2, . . . , n there exist totally ordered
abelian groups H1, Hi, Gi, Zi−1 along with ιi ∈ {I, II} such that X ∼= Xn,
where for i ∈ {2, . . . , n},

X1 = H1 and Xi =

⎧
⎪⎨
⎪⎩

Xi−1
(
Zi−1

→→×Gi

)
Hi

if ιi = I

Xi−1
(
Xi−1gr

→⇀×Gi

)
Hi

if ιi = II
.

Notice that Theorem 11.1 claims isomorphism between X and Xn hence
Xn and consequently for i = n − 1, . . . , 2, the Xi’s are claimed implicitly to
exist (to be well-defined). By Definition B.3, using that (Xi)gr = Hi holds
for i ∈ {1, . . . , n}, it is necessarily that

for i = 2, . . . , n,Zi−1 ≤ Hi−1,Hi ≤ Zi−1

→× Gi and
for i = 2, . . . , n, if ιi = II then Hi−1 is discretely embedded into Xi−1.
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Proof. Let X = (X, ≤, ∗◦, →∗◦, t, f). Induction by n, the number of idempo-
tent elements in X+. If n = 1 then the only idempotent in X+ is t, hence
Theorem 2.4 implies that (X, ≤, ∗◦, t) is a linearly ordered abelian group H1

and we are done. Assume that the theorem holds up to k − 1 (for some
2 ≤ k < n), and let X be an odd involutive FLe-chain which has k positive
idempotent elements. Since the number of idempotents in X+ is finite, there
exists u, the smallest idempotent above t.

If u′ is idempotent then by Lemma 9.4 (by denoting α = γ ◦ β)

X ∼= α(X)(
α(XE

τ≥u)
→→×kerβ

)
Hi

holds for some Hi ≤ α
(
XEc

τ≥u

) →× kerβ, where α
(
XEc

τ≥u

)
≤ α

(
XE

τ≥u

)
are

subgroups of the odd involutive FLe-chain α(X), and kerβ is a linearly
ordered abelian group. Therefore, if u′ is idempotent then set

Xk−1 = α(X),Zk−1 = α
(
XE

τ≥u

)
,Gk = kerβ, and ιk = I.

If u′ is not idempotent then by Lemma 10.2

X ∼= (Xτ≥u)(
(XT

τ≥u)
→⇀×kerβ

)
Hi

holds for some Hi ≤ XTc

τ≥u

→× kerβ, where XTc

τ≥u ≤ XT
τ≥u are subgroups of

the odd involutive FLe-chain Xτ≥u, and kerβ is a linearly ordered abelian
group. Therefore, if u′ is not idempotent then set

Xk−1 = Xτ≥u,Gk = kerβ, and ιk = II.

By Lemmas 9.4 and 10.2 the number of positive idempotent elements of
Xk−1 (be it equal to either α(X) or Xτ≥u) is one less than that of X.
Therefore, by the induction hypothesis, the theorem holds for Xk−1, that
is, there exist linearly ordered abelian groups H1 and for i = 2, . . . , k − 1,
linearly ordered abelian groups Hi, Gi, Zi−1 along with ιi ∈ {I, II} such
that X1 := H1 and for i ∈ {2, . . . , k − 1}, (11.1) holds.

• In Remarks 11.2 and 11.3, in the paragraph before Corollary 11.5, in
Corollary 11.5, and in the paragraph after Corollary 11.5 replace all
instances of type III, type IV, and lexicographic by type I, type II, and
sublex, respectively.

• In Remark 11.4, after “One can recover X as follows:”after the first three
items insert a fourth item:

4. Replace the group-part of the obtained algebra by a subgroup of it.
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• Delete both instances of “G1 . . . ,Gn”in the paragraph before Corol-
lary 11.5.

• Replace Corollary 11.6 and its proof by

Corollary 11.6. The monoid reduct of any odd involutive FLe-chain which
has only finitely many idempotent elements embeds in the finite lexico-
graphic product H1

→× G�⊥
2

→× . . .
→× G�⊥

n , where H1,G2, . . . ,Gn are the
linearly ordered abelian groups of its group representation.

Proof. By Definition, X(
Z

→→×G
)
H

≤ XZ

→→× G and X(
Xgr

→⇀×G
)
H

≤ X
→⇀× G

hold. Observe that the monoidal reduct of X
→⇀×G embeds into the monoidal

reduct of X
→× G�⊥. Now let an odd involutive FLe-chain, which has only

finitely many idempotent elements, be given. Take its group representation.
Guided by its consecutive iterative steps, in each step consider (Xi−1)

→×
Gi

�⊥ instead of Xi−1
(
Zi−1

→→×Gi

)
Hi

or Xi−1
(
Xi−1gr

→⇀×Gi

)
Hi

.

In the end, this results in the original algebra being embedded into the
lexicographic product H1

→× G�⊥
2

→× . . .
→× G�⊥

n , where H1,G2, . . . ,Gn are
linearly ordered abelian groups of its group representation.

• Finally, add [23], [24] and [25] to the references of [26].
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Ifjúság u. 6.
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