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Abstract High latencies in FPGA reconfiguration are known as a major overhead
in run-time reconfigurable systems. This overhead can be reduced by merging mul-
tiple data flow graphs representing different kernels of the original program into a
single (merged) datapath that will be configured less often compared to the separate
datapaths scenario. However, the additional hardware introduced by this technique in-
creases the kernels execution time. In this paper, we present a novel datapath merging
technique that reduces both the configuration and execution times of kernels mapped
on the reconfigurable fabric. Experimental results show up to 13% reduction in the
configuration and execution times of kernels from media-bench workloads, compared
to previous art on datapath merging. When compared to conventional high-level syn-
thesis algorithms, our proposal reduces kernels configuration and execution times by
up to 48%.
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1 Introduction

Reconfigurable Computing (RC) systems rely on the efficient execution of compu-
tational intensive kernels using reconfigurable hardware. Current RC systems out-
perform conventional High-Performance Computers (HPC) due to their ability to
customize the Field Programmable Gate Array (FPGA) resources according to the
changing application requirements [1, 2]. Many scientific, multimedia, and commu-
nication applications have been reported in the literature as highly suitable for RC
acceleration; especially in the HPC field, the number of industrial systems employing
FPGA is steadily growing and their capabilities are constantly improving. In the vast
majority of such systems, several kernels with high degree of parallelism are mapped
to the FPGA as hardware accelerators (modules). The FPGA resources, however, are
limited and often all modules cannot co-exist in the reconfigurable fabric at the same
time. Hence, modules should be reconfigured on the FPGA at run-time to utilize the
reconfigurable hardware during program execution. This process is referred as Run-
Time Reconfiguration (RTR) [3].

Although RTR has the benefit of accelerating more modules than the reconfig-
urable fabric can fit at the same time, it introduces the reconfiguration time overhead.
The time required for configuring the FPGA can potentially jeopardize the achieved
acceleration in RTR systems. The configuration time can be efficiently hidden by us-
ing techniques such as configuration pre-fetching for applications where static sched-
ule of the kernel loops is available in advance [4]. Such fully predictable applications,
however, form only a small subset of the total class of applications suitable for RC
acceleration. Therefore, it is important to consider techniques that reduce the config-
uration time overhead in a more generic scenario.

The dominating part of the configuration time is the time taken to load the new
configuration bit-stream into the FPGA memory [4]. The configuration time is pro-
portional to the length of the configuration bit-stream, and the speed of the configu-
ration interface [5]. Reducing the length of the configuration bit-stream consequently
reduces the module configuration time [6]. Previously, techniques such as configura-
tion bit-stream compression have been proposed for reducing the configuration time.
These techniques, however, introduce additional decompression penalties during the
configuration process.

Another approach for reducing the configuration time is High Level Synthesis
(HLS) [7, 8]. The basic idea used here is resource sharing by multiple Data Flow
Graphs DFG1 in order to minimize the configuration overhead. To this end, in [9],
each DFG is synthesized by a special HLS algorithm that exploits intra-DFG resource
sharing. In this way, multiple datapaths are produced for the execution of DFGs.
Likewise, in datapath merging technique, two or more DFGs are merged based on
inter-DFG resource sharing, in order to produce a single merged datapath [8]. The
advantage comes from the fact that a single merged datapath effectively supports the
functionality needed by two or more different datapaths and as a result the configura-
tion time can be avoided. To quantify the efficiency of merged datapaths the Module
Aggregate Time (TA) that consists of both, the configuration time and the execution

1Data Flow Graph: is a graph which represents the data dependencies between the operations in a kernel.
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time of the corresponding kernels is used. A trade-off exists between the merged
datapath configuration time and the execution time of the kernels [10].

In the previous work mentioned above, TA is not used as the optimization ob-
jective, neither the overall effect of the datapath configuration time and the kernel
execution time in TA reduction are considered.

Therefore, in this paper, we present a novel datapath merging technique, which
reduces TA by effective trade-off between the merged datapath configuration time
and the execution time of the kernels. This is done by introducing Minimal Aggregate
Time Clique (MAT-Clique) which is equivalent to the maximal clique problem [11].
Therefore, finding MAT-Clique is an NP-complete problem. We have addressed this
by using a modified version of the Branch & Bound algorithm and as it will be shown
in this paper; this technique can indeed reduce TA.

The reminder of this paper is organized as follows. In Sect. 2, datapath merging
is introduced and its influence on configuration time reduction is discussed. Relevant
related work is presented and properly classified. Section 3 introduces the influence
of datapath merging on TA. The proposed datapath merging technique is explained in
Sect. 4. The evaluation results are presented in Sect. 5, and finally Sect. 6 concludes
the discussion.

2 Datapath merging and configuration time

The design flow used for hardware generation in RTR systems can be conceptually
divided into two phases, namely, the synthesis and the configuration phase [9]. Dur-
ing the synthesis phase, suitable parts of an input program represented in a high-level
programming language (i.e., C or Java) are translated to an intermediate represen-
tation. Each kernel is represented by its behavioral specification using a DFG that
represents the order of basic operations and their interdependencies. Then all DFGs
are transformed to a high-level Hardware Description Language (Verilog or VHDL)
and synthesized using existing commercial tools that produce the actual bit-streams
of the corresponding datapaths for the targeted reconfigurable device.

During the synthesis phase, resources needed by several DFGs can be reused
(shared) to reduce the overall hardware cost. This process is performed off-line and
creates coarser grain DFGs representing multiple kernels of the original program
referred as modules in this paper. DFG merging algorithms can be used to target
bit-stream size minimization.

In the second (configuration) phase, the bit-stream is loaded into the configura-
tion memory of the reconfigurable device. Since in RTR systems this is performed at
run-time, the bit-stream configuration time directly affects the RTR systems perfor-
mance. Such configurations must be performed as efficiently and quickly as possible.
This is to prevent the benefit gained by the hardware acceleration is eclipsed by the
configuration time overhead [12].

2.1 Datapath merging

Assume that a DFG, G = (V ,E) corresponds to a kernel, where V is the set of ver-
tices representing the basic operations and E is the set of edges defining the paths
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Fig. 1 Merging G1 and G2 to
create MD

between operations. A vertex vi ∈ V contains basic operation performed by a hard-
ware unit (e.g., specific functional unit, or registers to store variables) that has a set of
input ports p. An edge e = (vi, vj ,p) ∈ E, defines the data transfer from the vertex
vi to the input port p of vertex vj . Vertex weight, T (vi) represents the hardware unit
cost of a vertex vi ∈ V .

A merged datapath (MD) = (V ′,E′), corresponding to two or more DFGs Gi =
(Vi,Ei), i = 1 . . . n, is a directed graph. A vertex v′ ∈ V ′ represents merged vertices
vj ∈ Vj and an edge e′ = (u′, v′,p′) ∈ E′ represents merged edges ej ∈ Ej where
j ∈ J ⊆ {i, . . . , n}.

Figure 1 depicts simple, motivating example of datapath merging where DFGs G1
and G2 are combined and MD is created. In this figure, v1 ∈ G1 and u1 ∈ G2 cannot
be combined, consequently they remain in MD without any modification. A mul-
tiplexer is employed in the left input port of the vertex v3/u3 to select the correct
input operand. v2 ∈ G1 and u2 ∈ G2 perform the same function (division) and can be
mapped onto a single functional unit since the two DFGs are never coexisting at the
same time. Then these vertices can be combined to create v2/u2 in MD. Similarly,
v3 ∈ G1 and u3 ∈ G2 are merged into v3/u3. In this case, there is no need for a mul-
tiplexer in the right input port of u3/v3 ∈ MD to select the input operands. Therefore,
the edges v2, v3 and u2, u3 are merged and, the edge (v2/u2, v3/u3) is created in MD.

The aim of datapath merging is to combine a number of DFGs in order to create a
multimode datapath (module). This is an efficient method for reducing certain costs
such as area usage, power consumption, or configuration time reduction in embedded
systems and DSP applications [13–15].

On the other hand, resource sharing increases the hardware latency, and we have to
consider trade-offs between hardware latencies and the implementation complexity
[16]. In general, traditional HLS is not efficient for datapath merging in reconfig-
urable systems. However, combining DFGs in steps using maximum weighted clique
can efficiently improve this [17, 18].

2.2 Related work

We can categorize previous works on configuration time reduction into two groups.
The first group targets configuration time overhead at the synthesis phase, whereas
the second group aims at reducing this overhead during the actual configuration.
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In the first group, several works have been reported in the literature. A heuristic
scheduling algorithm, which utilizes reconfigurable datapath components, has been
presented in [19]. In this case, the resulting schedule is shortened so that the gain
in execution clock cycles compensates the configuration time overhead. In [20], the
execution order of the modules is rearranged to reduce the number of configura-
tions, and hence minimize the configuration overhead. Also, [21] and [22] present
algorithms to partition and schedule the modules and reduce the configuration time.
In these algorithms, the configuration time overhead of each individual partition is
considered. However, these approaches cannot be applied to many real applications
where the kernel schedule is not known in advance. In [23], Boden et al. present
an HLS technique targeting RTR systems which employs resource sharing to reduce
the reusable design parts of the hardware implementation. Afterwards, in [24], they
present GePaRD which is an approach to high level synthesis of self-adaptive sys-
tems, based on Partially Reconfigurable (PR) FPGAs. Although reducing reusable
design parts decreases configuration time, this technique targets specific partitioned
FPGA and is not generally applicable.

The second group focused on the optimization of the configuration process of
reconfigurable units. Some researchers employed caching to decrease the configura-
tion time [4]. However, spatial and temporal locality is not yet proven or widely ac-
cepted replacement policy principle for RTR systems. Many proposals for reducing
the FPGA configuration time are based on shortening the bit-stream size. By doing
so, compression methods have achieved suitable results for reducing the bit-stream
length [12]. Although these methods are able to reduce the configuration time of RTR
systems, performing them is costly due to the computational intensive decompression
task. It is desirable that module’s bit-stream’s length is reduced at the system level
(e.g., by HLS tools) while the hardware structures are generated in order to avoid
these additional costs. Datapath merging has been shown as an effective HLS method
for configuration time reduction [8]. Shannon and Diessel [25] show that graph merg-
ing can considerably reduce the configuration time. The merging process, however,
introduces additional multiplexers in the merged datapath that will increase the hard-
ware latency. Thus, by significant amount of kernel iterations, this may influence the
overall execution time of a module. This disadvantage was considered in [10] where a
method to create high-speed merged datapaths is proposed. This technique, however,
cannot efficiently reduce TA in RTR systems.

In this paper, we aim at reducing both, configuration and execution overheads in
RTR systems by presenting a novel datapath merging method that efficiently mini-
mizes TA.

3 Module aggregate time (TA) in datapath merging

TA is the overall time, required to instantiate, and perform the kernels functionality
implemented by a single module. In RTR systems, TA consist of the module configu-
ration time (TC) and the module execution time (TE). Therefore,

TA = TC + TE. (1)
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Table 1 Abbreviations and
notation Abbreviation Explanation

or notation

Te Kernel execution time

Tclk Maximum delay of the DFG stages

TE Module execution time

TC Module configuration time

TA Module aggregate time

�TE Reduction in module execution time

�TC Reduction in module configuration time

�TA Reduction in module aggregate time

TF Configuration time of hardware units

TI Configuration time of the interconnect

Tf Functional unit configuration time (register)

Tmux Configuration time of a multiplexer

W Configuration time reduction

MD Merged Datapath

MMD Module-Aggregate-Time-Merged Datapath

Gc Compatibility Graph

MAT-clique Minimal Aggregate Time Clique

MAX-clique Maximum Weighted Clique

Bound-clique Bounded Execution Time Clique

C-HLS Conventional HLS

The communication time of the module will change the absolute values of the exper-
iment but will not impact the relative results. Therefore, for simplicity in our work,
we do not consider the module communication time in TA.

Datapath merging technique shortens TC , but introduces additional multiplexers
in the newly created MD, which on their turn will increase TE . Kernels mapped to
the reconfigurable hardware are usually heavily executed loops, therefore, any slight
increase in a single iteration will consequently impact TE (this is the total execution
time of all iterations). This makes the number of kernel iterations important factor to
consider in the merging method.

For sake of easy understanding, Table 1 summarizes the abbreviations and nota-
tions used in the rest of this paper.

Consider scheduled DFG with G corresponding to a kernel K , which can be exe-
cuted in a number of time stages. As illustrated in (2), Te is the kernel execution time,
N is the number of iterations of K , and Tclk is the maximum delay of the separate
time stages in G. By using pipelining for G, TE for n kernels in a module will be the
aggregate of all individual Te. Therefore,

Te = NTclk, TE =
n∑

i=1

Tei
=

n∑

i=1

NiTclki
. (2)
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Since RTR systems are used to accelerate the computational intensive kernels and
those have significant number of iterations, we can safely ignore the time of prologue
and epilog stages of the pipeline. This is the reason those times can be safely ignored
in the above equation.

After merging DFGs Gi , i = 1 . . . n in the module, a pipelined merged datapath
MD is created. If the maximum delay of the MD pipeline stages (single clock cycle)
is T ′

clk , then Te and TE can be presented as

Te = NT ′
clk, TE =

n∑

i=1

NiT
′
clki

. (3)

TC is the required time to configure MD in the reconfigurable unit, that is,

TC = TF + TI (4)

where TF = ∑
∀v′∈V ′ Tf (v′) is the overall configuration time of the hardware units,

and TI = ∑
∀v′∈V ′ Ti(MUX) is the total configuration time of the MD interconnect.

Tf (v′) is the configuration time of a functional unit or a register allocated to v′, while
Ti(MUX) represents the configuration time of the additional multiplexers used at the
input ports of each vertex v′ [10].

3.1 Reduction of Module Aggregate Time (�TA) in datapath merging

The main objective in our datapath merging algorithm is to reduce TA. According
to (1), TA compromises TC and TE , while according to (4), TC compromises TF ,
and TI . Therefore, to reduce TA, all the components, i.e., TF , TI , and also TE have
to be simultaneously considered.

Figure 2 shows an example of merging DFGs that motivates our proposal. Each
hardware unit and interconnect (the multiplexer) has its own configuration time.
In Fig. 2(a), five simple DFGs, namely, G1 . . .G5 are illustrated. These DFGs are
merged in consecutive steps, while TC is reduced. As shown in Fig. 2(b), two DFGs
G1 and G2 are combined and the merged datapath MD1 is produced, while TC is
reduced.

In the next step, G3 is merged to MD1 to produce MD2. In this case, a multiplexer
is added to the input port of a vertex a2/b2/c2 that will increase TE . To merge a vertex
d2 ∈ G4 onto a vertex a2/b2/c2 ∈ MD2, the increase in TI (increase in multiplexer
configuration time by using MUX4-1 instead of MUX2-12) becomes bigger than the
reduction in TF . Therefore, in this step no vertex is merged onto MD3, hence TC is
not reduced. In the same way, G5 is merged onto MD3 to reduce TC and MD4 is
created.

Figure 2(c) illustrates two possible merged datapaths (MMD and MMD′) resulting
from the combination of the resources inside MD4. It is clear that TC of MMD and
MMD′ are shorter than the TC of MD4. TC of MMD is shorter than the TC of MMD′

2The multiplexors are 16 or 32 bits wide.
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Fig. 2 (a) Five simple DFGs to merge, (b) merging DFGs in steps, (c) producing the merged datapath
with least TA

because two functional units (square root) have been merged in MMD. However, us-
ing MUX4-1 instead of MUX2-1 will impact TE of MMD compared to MMD′. There-
fore, TA for the merged datapaths MMD and MMD′ heavily depends on the number of
kernel iterations. It means that, when the number of kernel iterations increases, there
is a trade-off between the two conflicting factors. More precisely, the module con-
figuration time reduction (�TC) and the increase in module execution time (�TE)

have to be balanced. This observation holds for every step of the datapath merging
process.

From the above observations, we conclude that if we merge DFGs only when con-
sidering the hardware unit configuration time (TF ), the interconnect configuration
time (TI ), the kernel execution time (Te), and TA can be efficiently reduced. There-
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fore, in this paper, we present a new approach referred to as Module-Aggregate-Time-
Merged Datapath (MMD).

MMD is a merged datapath with minimal TA to instantiate a module and execute
the kernels implemented in it.

The rest of the section formalizes �TC and �TE , resulting from merging DFGs,
to explain our datapath merging technique.

After merging vertices vj , j = 1 . . .m from DFGs Gi , i = 1 . . . n, a vertex v′ is
created in the MMD. Moreover, for each input port of v′ which has more than one
incoming edge, a multiplexer is added to the MMD for selecting the correct input
operand.

Thus, the configuration time reduction (w) for the merging process is

w =
∑

j

Tf

(
vj

) − (
Tf (v′) + Tmuxp

)
. (5)

In this equation, Tf (vj ) and Tf (v′) represent the Tf for a vertex vj ∈ Gj and for
a vertex v′ ∈ MMD respectively, while Tmuxp is the multiplexer configuration time.
According to this equation, w is proportional to Tf and Tmuxp.

After merging the edges, the number of multiplexers at the input ports of vertex v′
is decreased [18]. Therefore, the multiplexer’s size is reduced and the Tmuxp drops.
Hence, w obtained by merging the edges is equal to the reduction in multiplexer
configuration time (�Tmuxp), for k number of ports. That is,

w = k × �Tmuxp (6)

�TC after merging vertices and edges from different DFGs is equal to the aggregate
of w as result of the merging vertices and edges. That is,

�TC =
∑

w. (7)

Now, if we designate the increase in TE as �TE then

�TE =
n∑

i=1

NiT
′
clki

−
n∑

i=1

NiTclki
=

n∑

i=1

Ni�Tclki
. (8)

In (8), �Tclk represents the increase in the delay of the time stage after merging
DFGs. We define the reduction in TA as �TA which is given as

�TA = �TC − �TE. (9)

For a significant number of kernel iterations N , the trade-off between the two con-
flicting factors �TC and �TE has to be solved. According to (9), in order to reduce
TA, we should maximize �TA. Thus, the problem can be defined as:

Given a module with n DFGs Gi , i = 1 . . . n, corresponding to different kernels,
merge all Gi to create MMD, such that �TA is maximal.



Efficient datapath merging for the overhead reduction of run-time 645

To efficiently reduce TA, we maximize �TA during the datapath merging se-
quences (see the example in Fig. 2), while �TE and �TC are also considered. In
the next section, we describe our proposal in more detail.

4 The proposed datapath merging method

At run-time, during program execution a number of modules are to be configured
and executed on the reconfigurable hardware. Since the separate kernels in a module
will be executed consecutively, we base our approach on the fact that only one of the
implemented DFGs will be active at a given time. Hence, during datapath merging,
resources across DFGs can be shared without introducing resource conflicts. Based
on the trade-off between �TC and �TE , we can implement MMD for arbitrary num-
ber of kernel iterations, such that a number of different implementations of MMD are
made available. The operating system can select at run-time the most suitable imple-
mentation based on the system dynamic state [26]. Therefore, we have to reduce TA

for each implementation of the MMD.
Merging all DFGs at the same time is an NP-hard problem [17]. The researcher

in [27] used Linear Programming (LP) algorithm to solve the problem. However,
an LP algorithm does not converge where the number of nodes in DFGs increases
[8, 27]. Therefore, we use a greedy algorithm somehow similar to the one described
in [8]. This is implemented by using the compatibility graph that returns the merged
datapath close to an optimal solution.

Hence, in the datapath merging technique proposed in this paper, DFGs Gi , i =
1 . . . n from the module are combined in several steps. For each step of datapath
merging, excluding the final step, DFGs are merged together one by one. At each
step, Gi is merged onto the MD while �TA is maximized. During the final stage, the
resources in the last MD are combined together thus creating MMD.

For all steps of the datapath merging, except of the final step, all merging pos-
sibilities for combining vertices and edges between MD and the Gi are considered.
Then in the final step, all merging possibilities inside MD are also considered and
MMD is created. The compatibility graph represents the merging possibilities. Note
that the compatibility graph used here resembles the one used by the merging method
as described in [18].

Now, we define compatibility graph, Gc = (N,A), as an undirected weighted
graph where,

• Each node n ∈ N corresponds to:
Merging a vertex vj ∈ G and a vertex vj ∈ MD to create a vertex (v′), in order
to modify MD or, merging an edge ei ∈ G and another edge ej ∈ MD to create
the edge e′ = (u′, v′,p′) in order to modify MD. This is applicable to all steps,
excluding the final step.
Merging vertices vi, vj , . . . , vk ∈ MD to create a vertex v′ in MMD, or merging
edges ei, ej , . . . , ek ∈ MD to create an edge e′ in MMD, where it does not merge
two vertices from a DFG together. This is applicable to the final step only.
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Fig. 3 Gc is the compatibility graph for input MD. (a) Creating MMD where �TE = 0. (b) Creating
MMD where �TE � �TC

• Each arc, a = (n,m) ∈ Gc , illustrates that the nodes n and m are compatible.3

• The nodes weight, w, represents the configuration time reduction, as described in
Sect. 3.1.

In Fig. 3, Gc illustrates the compatibility graph for merging vertices inside MD.
Consider two nodes n1 = (c1, e1) and n4 = (c1, e3), chosen together from Gc for
datapath merging. This will result in merging a vertex c1 ∈ G3 onto two vertices
e1 ∈ G5 and e3 ∈ G5. Therefore, these nodes are not compatible and there is no arc
between n1 and n4 in Gc.

Next, when Gc has been created, we determine the number of compatible nodes
in Gc (paired adjacent nodes) that maximizes �TA. This is done by defining Minimal
Aggregate Time Clique (MAT-Clique). In brief, MAT-clique is a clique in Gc that has
minimal TA for m kernels corresponding to G, i = 1, . . . ,m.

4.1 Minimal Aggregate Time Clique (MAT-Clique)

Choosing compatible nodes from Gc = (N,A), is the process of searching a com-
pletely connected the subgraph in Gc , which is called clique in the Graph theory
[11]. Clique weight is the total weights of all clique nodes. In our case, the node
weights in Gc are the configuration time reductions (w). Consequently, the weight
of the clique is equal to �TC , resulting from the datapath merging corresponding to

3In the compatibility graph Gc = (N,A), two nodes n = (v1, u1) ∈ Gc and m = (v2, u2) ∈ Gc are com-
patible while v1 �= v2 if and only if u1 �= u2. This means that the merges indicated by the two nodes of Gc

are compatible if they do not merge two vertices from a DFG together.
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the clique. The maximum weighted clique (MAX-Clique) is a clique in Gc where
the total weight of its nodes is larger than any other clique in Gc. Therefore, weight
of MAX-clique gives the maximum achievable �TC . It means using MAX-clique to
merge DFGs maximizes �TC at each step of the datapath merging, and creates a MD
with minimal TC [8].

However, in this paper, we are going to reduce TA, thus we maximize �TA in
each step of the datapath merging process, namely, by searching for a clique in Gc

that maximizes �TA.

Definition 1 Given a compatibility graph Gc for DFGs, Gi , i = 1, . . . ,m, at each
step of the datapath merging process, the MAT-clique is a clique in Gc that has
minimal TA for m kernels corresponding to G, i = 1, . . . ,m.

According to (9), and assuming that a kernel has a single iteration, the TE will be
negligible compared to TC , thus �TA = �TC and MAT-clique = Max-clique. There-
fore, our problem is equal to determining the Max-clique in Gc. After merging the
resources in MD as shown in Fig. 3, which corresponds to merging Gi , i = 1, . . . , n,
two MMD can be created based on the number of kernel iterations. In this way, two
pairs of vertices and two edges from MD have been merged together in order to create
MMD. Figure 3(a) shows the MMD whenever the kernel loops have single iteration.
In this case, determining the MAT-clique from the compatibility graph Gc, is equal
to determining the MAX-clique from Gc and MMD is created using this clique.

When the number of kernel iterations is significant, we must calculate �TE and
subtract it from �TC to obtain �TA at each stage of our datapath merging process.
Figure 3(b) represents the case when the numbers of kernel iterations increases. MAT-
clique is different from MAX-clique in this case. By using this clique, vertices c1 and
e1 from MD have been merged to create a vertex c1/e1 in MMD′. In order to avoid
using MUX4-1 (which results in TE increase), Fig. 3(b) presents a scenario where
the vertices a2/b2/c2 and d2/e2 are not merged. Therefore, determining the MAT-
clique is similar to searching for MAX-clique. Thus, we have changed the algorithm
of MAX-clique to determine the desired MAT-clique.

Determining the MAX-clique is a well-known problem in graph algorithms. It is
proved to be an NP-Complete problem [28]. In order to find a solution, the Branch and
Bound algorithm can be employed [29]. The Branch and Bound algorithm chooses
an efficient method to select nodes and predicts bounds for quick backtracking. It
assumes only positive weights for the nodes of the input graph.

However, in the Gc of the proposed technique, although some nodes correspond-
ing to the merged vertices may have negative weights, the nodes corresponding to the
merged edges have only positive weights and the final result will be positive. This
implies that, in our proposal, the nodes of Gc have signed integers as weights.

The proposed algorithm for finding the MAT-Clique is an improved version of
the algorithm in [29] and uses similar optimizations as indicated in their algorithm
to reduce the problem search space. More precisely, we have made the following
modifications to the algorithm presented in [29]:

1. Our algorithm adds the negative weight vertices to the clique at the end of each
branch to support the signed integer weight for the nodes. This way, we subtract
�TE from �TC within each merging step and �TA is calculated.
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Fig. 4 Pseudocode of the proposed algorithm to determine MAT-Clique

2. The algorithm applies two bounds (see Fig. 4) for TA to the proposed Branch &
Bound algorithm to reduce the problem space.
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Fig. 5 The proposed algorithm to determine MMD

The proposed MAT-Clique function, shown in Fig. 4, determines the MAT-Clique
in the input graph Gc . At the beginning, the function sorts all nodes of Gc based
on the nodes’ weight and a sorted set S is created that contains all nodes. By using
continue growing subsets of S incrementally, from the smallest subset to the biggest
one, the recursive function Cliquer is called for each subset of S. Each time the
Cliquer is called, it searches all the cliques in Gc , which might be the MAT-Clique.

The bounds are used to cut the branches and limit the problem space to obtain the
MAT-Clique. It searches the branches to find a clique which leads us to the maximal
�TA. The obtained clique of each branch is compared to Mt and the one which
maximizes �TA is saved in Mt . When the main loop is completed, the MAT-clique
will be in Mt .

4.2 The proposed datapath merging algorithm

We merge DFGs in steps. The MAT-Clique function presented above is employed to
search the nodes and edges in Gc, which should be merged in each step. Below, the
pseudocode of the proposed datapath merging algorithm is shown in Fig. 5. In the
first step, the datapath merging function in Fig. 5 is called. In this function, the DFGs
are merged one by one in a loop. The First DFG is considered as MD. In each loop
iteration, Gc between MD and the next DFG, Gi , is created by using the function
Create-Compatibility-Graph. This function is based on the first definition of the Gc

that shows all merging possibilities between the vertices (or edges) from Gj and the
vertices (or edges) from MD. Then the function MAT-Clique creates the MAT-Clique
in Gc and stores it in Mt .

The function Reconstruct-Merged-Datapath uses Mt to reconstruct MD and to
modify MD for the next step of the loop. This way, Mt is used to add the vertices and
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edges of the Gi onto MD and reconstruct it. These steps are repeated for merging all
DFGs to MD. The MD obtained by DPM function is the result of the first stage to
merge DFGs.

In the second stage, Gc is created by using the function Create-Compatibility-
Graph. Gc is created based on the second definition of compatibility graph, which
shows the merging possibilities among the vertices and edges inside the MD. After
that, the function MAT-Clique creates MAT-Clique in Gc and stores it in Mt . At the
end, Mt is used to merge the vertices and the edges in MD to produce the MMD.

In each step of the proposed datapath merging method where �TC ≤ �TE (that
means �TA ≤ 0), there is not a MAT-Clique in that step of the algorithm. So, the
function MAT-Clique returns a null value to avoid increase in TA. Using the proposed
algorithm, the DFGs corresponding to kernels in the module are merged and the
desired merged datapath with minimal TA will be produced.

5 Experimental results

In order to investigate the effectiveness of our technique and its associated high level
synthesis algorithm, we performed experiments using some well-known workloads
from the media-bench suite [30]. Enough experimental evidence exists to support
the fact that there are some kernels (computational intensive loops) in each program
of the media-bench, which have the largest contribution to the benchmark execu-
tion time [17]. The characteristic of the kernels makes them suitable for mapping
on reconfigurable unit in RTR system. Each program was compiled using the GCC
compiler [31], and was profiled to determine which kernels contributed most to the
overall program execution time.

For each such kernel, a DFG was generated from the loop body RTL code (GCC
intermediate representation). Using RTL instead of machine instructions permitted us
to extract the loop code after most machine-independent code optimizations, but be-
fore register allocation and the machine-dependent transformations. Moreover, when-
ever possible, procedure integration (automatic in-lining) was applied. The section of
the application code corresponding to a DFG can contain control constructions, such
as “if-then,” “if-then-else,” and “switch.” For simplicity, we did not consider nested
loops. The DFGs were generated using a technique based on if-conversion and using
condition bit vectors. We considered up to three kernels/DFGs for each of the appli-
cations. The resource usage of the control unit in datapath merging is lower than the
control unit in conventional synthesis [20]. Therefore, the control units for the input
DFGs were not taken into account on the investigated merged datapaths.

The vertex’s weights in DFGs are representing the configuration times. So, we
have to calculate hardware unit configuration time (Tf ) and multiplexer configuration
time Tmux to use in the input DFGs in the synthesis techniques and compare the
results of the techniques with each other. After obtaining the bit-streams of hardware
units and multiplexers using ISE 10.2, their configuration times were approximated
as: configuration time = [(size of bit-stream)/(FPGA Virtex5-xcv5vlx configuration
clock frequency)] [5]. The configuration clock frequency 100 MHz was used, in our
experiment.
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To evaluate the results of the proposed datapath merging method, we implemented
three previous HLS techniques, which have been proposed for reduction of the config-
uration overhead in RTR systems. These techniques were compared to the proposed
method, with respect to the reduction in TA in the targeted programs. The former
technique is based on the method presented in [9], which uses a conventional HLS
technique for intra-DFG resource sharing in RTR systems. The second one is a data-
path merging technique in [8] that searches inter-DFG resource sharing for datapath
configuration time reduction in RTR systems. The third technique is the datapath
merging technique in [10] for the overhead reduction in RTR systems that aims at
high-speed merged datapaths.

The first technique in [9] uses conventional HLS and will be referred to as C-HLS.
The second technique in [8] uses the Maximum weighted clique approach to merge
DFGs and is referred to as Max-Clique. The third technique in [10] which uses
Bounded execution time Clique to make high speed merged datapath is referred as
Bounded-Clique. Our approach, which is based on computing the MAT-Clique is re-
ferred to as MAT-Clique.

To implement the C-HLS, the DFGs were scheduled and the mobility of the ver-
tices was calculated. Then the resources in the DFG were shared using the Integer
Linear Programming (ILP) method to create the pipelined datapaths. To apply data-
path merging techniques to the DFGs, initially the DFGs were scheduled and chain-
ing was exploited during scheduling. Later, the algorithms of Max-Clique, Bounded-
Clique, and the MAT-Clique were applied to the DFGs to create the corresponding
pipelined merged datapaths.

We applied the above techniques to three input DFGs corresponding to the kernels
in the Mpeg2-decoder benchmark. There are several possible combination forms for
the DFGs for each iteration of the kernel loops. We considered the same number of
iterations (N) for all kernel loops in the module in each experiment to compare the re-
sults. For each module, the datapaths resulting from applying the conventional HLS to
DFGs were introduced. Then datapath configuration time was estimated as: configu-
ration time = [(size of datapath bit-stream)/(100 MHz)]. Similarly, the merged data-
paths resulting from applying the Max-Clique, Bounded-Clique, and MAT-Clique
were created and their module configuration times (TC) were estimated. Module ex-
ecution times (TE) was achieved based on the N and clock cycle of the pipelined
datapaths for C-HLS, and clock cycle of the pipelined merged datapaths for datapath
merging techniques. Similarly, module aggregate time (TA) was calculated based on
TC and TE . Table 2 presents the results obtained after applying these techniques to
the DFGs of the Mpeg2-decoder program for the various N . In this table TC , TE and
TA are reported for all the techniques where N = 10 up to N = 50000.

As illustrated in this table, for N = 10, TE is much smaller than TC in all tech-
niques. Therefore, in this case, TC is the biggest portion of TA. Besides this, TC in
the MAT-Clique is much shorter than the TC in the C-HLS, and shorter than TC in
the Max-Clique and the Bounded-Clique. As a result, the MAT-Clique had the least
TA compared to the rest.

By increasing N , TC is steady in C-HLS and the Max-Clique techniques. How-
ever, TC increases in the Bounded-Clique and the MAT-Clique techniques. The rea-
son is the trade-off between reduction in module configuration time (�TC) and in-
crease in module execution time (�TE). Nonetheless, the small increase in TC in
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these techniques prevents increase in TE , which results in better TA for the Bounded-
Clique and the MAT-Clique techniques. Although for N = 20000, Bounded-Clique
creates high-speed merged datapath, which has the shortest TE of all techniques, TA

in Bounded-Clique is longer than TA resulting from Max-Clique. However, in this
case, MAT-Clique creates a merged datapath with the minimal TA. For N > 30000,
TA in the Max-Clique and Bounded-Clique is larger than TA in C-HLS. However, due
to the trade-off between �TC and �TE , MAT-Clique performs better than others.

We performed similar experiment for Epic-Decoder and Epic-Encoder programs
from the Media-bench benchmark suite. Each program contains a module consisting
of three DFGs. For each module, �TA was obtained. We calculated the reduction per-
centage in TA after merging DFGs by the techniques. The data in the Fig. 6 is obtained
by comparing the TA and software execution time for Mpeg2-Decoder, Epic-Decoder
and Epic-Encoder programs. Figure 6a illustrates the reduction percentage in TA for
Mpeg2-decoder program. It shows that generally by increasing N , the reduction rate
of TA is slowed down. As illustrated in Fig. 6a, the MAT-Clique shows the biggest
reduction percentage in TA for all values of N . For N > 30000, reduction in TA in
the C-HLS is more than the reduction in TA in the Max-Clique and Bounded-Clique
techniques. For N > 40000, these techniques perform unsatisfactory an increase TA.
The reason is the usage of the multiplexers on the critical path delay of the merged
datapaths that increases TE considerably.

Figure 6b shows the reduction percentage in TA for Epic-Decoder module. As
shown in this figure, the C-HLS has not reduced TA considerably compared to other
techniques (the reduction percentage in TA is close to zero), while the MAT-Clique
shortens TA more than other techniques. As shown in Fig. 6c, the behavior of the tech-
niques for Epic-Encoder program is similar to their behavior for Epic-Decoder and
Mpeg2-decoder programs, in that MAT-Clique performs better than other techniques.
For N > 30000, MAT-Clique and C-HLS have not reduced TA, while Max-Clique
and Bounded-Clique have increased TA.

Merging DFGs in steps, using the compatibility graph, is the fastest solution
for efficient datapath merging [17]. Therefore, we compared the synthesis time of
the proposed Branch and Bound algorithm (MAT-Clique) with the Max-Clique and
Bounded-Clique techniques that both also merge DFGs in steps. Figure 7 shows the
synthesis times of these techniques after being applied to the DFGs of the studied ap-
plications. The DFGs in Empeg2-encoder and G721 modules have higher number of
vertices compared to the DFGs in Epic-decoder, Epic-encoder and Empeg2-decoder
modules.

As illustrated in Fig. 7, the synthesis time of MAT-Clique technique for Epic-
decoder, Epic-encoder, and Empeg2-decoder modules is longer than the synthesis
time of Max-Clique and Bounded-Clique algorithms. Also, the synthesis time of
MAT-Clique for Empeg2-encoder and G721 applications is shorter than the synthe-
sis time of Max-Clique and Bounded-Clique techniques. This means that where the
number of vertices in DFGs increases, adding the bound (for TA) to our Branch and
Bound algorithm can reduce the synthesis time compared to the other two algorithms.
Since datapath merging is an NP-complete problem, the presented results are valuable
and more significant when merging DFGs of considerable sizes.

The results show that the proposed datapath merging algorithm is a valid HLS
method for RTR systems. It significantly reduces TC compared to conventional syn-
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Fig. 6 The reduction
percentage in TA in
Mpeg2-Decoder, Epic-Decoder,
and Epic-Encoder modules for
the algorithms in case of FPGA
Virtex5-xcv5vlx

thesis algorithms and also is better than any previously proposed datapath merging
algorithms. On the other hand, while previously used datapath merging techniques
do not reduce TA for different number of kernel iterations, the proposed datapath
merging technique has successfully performed this task.

6 Conclusions

This paper presented an efficient datapath merging technique for the reduction of
TA (the sum of configuration and overall execution times) of two or more repeti-
tive kernels in RTR systems. The kernels were represented as DFGs with a number
of iterations and merged together to create a merged datapath. We considered the
trade-off between merged datapath configuration time and the execution times of the
corresponding kernel loops to reduce TA. The similarity between the DFGs was rep-
resented as a compatibility graph. Afterward, we mapped our merging solution to the



Efficient datapath merging for the overhead reduction of run-time 655

Fig. 7 Synthesis time of the
MAT-Clique, Bounded-Clique
and the Max-Clique algorithms
to merge DFGs

problem of determining the MAT-Clique from the compatibility graph, which is a
NP-complete. We presented a modified version of the Branch and Bound algorithm
to solve this problem in polynomial time. To evaluate the proposed datapath merging
technique, we applied it to the applications from media-bench suite where Virtex5-
xcv5vlx FPGA device was our target. The results indicate that the proposed datapath
merging technique outperforms the conventional synthesis and all previously pro-
posed datapath merging techniques aimed at RTR systems. Our experiments show
that TA has been reduced by up to 48% compared to the C-HLS techniques, and up
to 13% compared to the previous datapath merging techniques. Moreover, the syn-
thesis time of the proposed datapath merging technique is improved compared to the
previous datapath merging methods, where the DFGs contains significant amount of
nodes. For programs where the module scheduling is completely predictable and is
available beforehand, the configuration time can be effectively hidden by well-known
techniques such as prefetching and will not benefit from the proposed method. Such
programs, however, form a tiny subset of the complete application space and are not
very often used.
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