In-Advance Path Reservation For File Transfers In
e-Science Applications

Yan Li, Sanjay Ranka and Sartaj Sahni
Department of Computer and Information Science and Engimge
University of Florida, Gainesville, Florida 32611
Email: {yanli, ranka, sahni@cise.ufl.edu

Abstract—We develop multi-path reservation algorithms for in- across the dedicated optical network, which we &adrliest
advance scheduling of large file transfers in connection-éented Finish Time File Transfer ProblendEFTFTP). In this paper,
optical networks. Specifically, to schedule a single file tmsfer o geyvelop and evaluate algorithms to solve this problem. We

to complete at the earliest possible time, a new max-flow bage . .
greedy algorithm(GOS) and four variants that adapt the k- consider two fundamentally different approaches to sclkeedu

shortest paths and k-disjoint paths algorithms are proposed. file transfers: (i)Online Scheduling (EFT-Online) in which
Meanwhile, to find an earliest-finishing schedule for a batchof file transfer requests are scheduled one by one, in the order

file transfers, a linear programming based algorithm(BATCH) of their arrival without the knowledge of any future request
is developed. Extensive experiments using both real world ral and (i) Periodic Batch Scheduling (EFT-Batch)in which

random networks show that our GOS algorithm provides a . .
good balance among maximum finish time, average finish time, requests are collected/batched in a centralized schedbker

and computational complexity. Although our BATC'H algorithm ~ collected/batched requests are scheduled as a group wiéince
results in the smallest maximum finish time, this algorithm periodicity. The periodicity may be defined in terms of time

has a significantly larger computational requirement than air (say, every 15 minutes), or number of batched requests (say,
other algorithms. GOS yields file transfer schedules with similar \ynenever 10 file transfer requests have been batched) or a
maximum finish time and reduces average finish time while havig S .
a significantly less computational requirement. cqmblnatlon of these two_ metrics (say, the the smaller of 15
minutes and the time required to batch 10 transfer requestd)
|. INTRODUCTION so0 on. Online scheduling is a special case of batch schegitilin
The rapid development of high speed optical networks hasheduling is done whenever one job arrives (batch siz&xdr).
enabled a variety of e-Science applications that are both daimulations show that ouzOS algorithm results in a slightly
intensive and geographically distributed. These apptinat larger finish time than does periodic batch scheduling. Hewe
which include data mining, data consolidation and aligntnerour GO.S algorithm requires significantly less computation time
storage, visualization and analysis [1], generate largeusnts and has better performance with respect to the mean finigh tim
of data (order of terabytes to petabytes) and require thexfethe file transfers.
data to be transferred across the network. For example, simThe rest of the paper is organized as follows. In Section II,
ulation data sets produced by a supercomputer may needav®describe related work. Our network model and terminology
be archived in a remote storage center and later analyzed detailed in Ill. In Section IV, we present the greedy
by a different supercomputer that is located at a third sitalgorithm for online scheduling and prove that this aldorit
When the overall job run time is considered, the file transfeminimizes the finish time of the current file transfer being
time may become a major bottleneck because this time msgheduled. Four variants of this greedy online algorithe ar
become unbounded due to network congestion and failuraso proposed in Section IV. These variants aim to reduce
Thus, dedicated connections, especially dedicated baltidwicomputation time with limited increment in finish time. A
channels, are essential to offer (i) large capacities fossima linear programming formulation for periodic batch schéuayl
data transfer operations, and (ii) dynamically stable badth is developed in Section V. This formulation minimizes the
for monitoring and steering operations. The importance f€ifish time of the entire request pack, i.e. the last comgléte
dedicated connection capabilities has been recognized, aransfer of the batch. In Section VI, we evaluate our onliné a
there are several ongoing network research projects thetafe batch algorithms together with theshortest paths algorithm
such capabilities [2], [3]. In addition, production netksrat of [5] and the k-disjoint paths algorithm of [6]. Finally, we
the national and international scale with such capatslifee conclude in Section VII.
being deployed in Internet2 [4]. These networks usuallyeteav
sufficiently small-sized backbone that it is practical topboy Il. RELATED WORK
centralized management on the network’s bandwidth, inctud)))
user requests scheduling, path identification and bantwidt Generally, bandwidth reservation systems operate in one of
allocation. two modes [7]:
Consider a scenario where a large number of files have {a) In on-demand scheduling, bandwidth is reserved for a
be transferred from multiple sources to multiple destorai time period that begins at the current time.
Each file corresponds to a transmission between a singl®pair(b) In in-advance scheduling, bandwidth is reserved for a
nodes. The objective is to minimize the transfer time of &dkfi time period that begins at some future time.

On-demand scheduling is a special case of in-advance sehedineret; is a time andp; is a bandwidth. The tuples in a TB
ing: the time interval between the request’s arrival anddtsial list are in increasing order df. If (¢;,0;) is a tuple of T B]l]
starting time is zero. On-demand scheduling, which is @ibic (other than the last one), then the bandwidth availablerdoili
supported by Multiple Protocol Label Switching (MPLS) [8] afrom ¢; to ¢;41 is b;. When(¢;, b;) is the last tuple, a bandwidth
layer 3 and by Generalized MPLS (GMPLS) [9] at layers 1 araf b; is available frony; to co. Each TB list can be represented

2, is supported by CHEETAH, DRAGON, and UCLP. Typicahs an array using dynamic array resizing method as described
algorithms for on-demand scheduling can be found in [10h [19] or as a linked list.

[11]. In-advance scheduling is supported by Geantll, OSGAR Let T' = [Ty, T4, -], To < T1 < ---, be the union of
USN and Enlightened network. The corresponding algorithrtise time component of thg&;, b;) tuples in the TB lists of all
are described in [12]-[15]. links in the network. We refer t@" as theglobal time list

Although much of the research on bandwidth schedulidyis easy to see that the available bandwidth on each link of
has focused on reserving a single simple path for a specifidé network is unchanged in the intervdl, 7;1). Figure 1
bandwidth request, it is well known that using multiple gathshows the TB lists for 2 links. For this simple example, assum
improves the utilization of the available network resosrcéhese are the only two links in the network. The TB list for the
[16]. The multi-path reservation problem is formulated 46] first link is [(0, 5), (1,2), (2,5)] and that for the second link is
as a network flow problem with the objective of minimizind(0,5), (1.5,3), (2, 5)]. The global time list for our example is
link congestion. Algorithms for delay-constrained filertsfer [0, 1, 1.5, 2]. In the interval [0,1), the available bandwidth on the
using multiple paths are proposed in [17]. The multi-pattwo links is 5 whereas in the interval [1,1.5), the first lin&sh
file transfer scheme is considered with both link utilizatioan available bandwidth of 2 while the second link's avagabl
constraints and path length constraints in [18]. A maximufandwidth is 5, and neither of links’ bandwidth changes imith
concurrent flow formulation is used in [6] to solve the larde fi this basic interval.
transfer problem with fixed start and end times; the objectiv
is to maximize network throughput. [18] also develops linea
programming models to maximize the network throughput
and proposes two heuristics for multi-path routing. Thet firs
heuristic, k-Shortest Paths (KSP), uses theshortest paths
algorithm of [5] to computek not necessarily disjoint paths Q05 1 15 2 25 3 350 05 1 s 2 25 3 %
from the source to the destination. The scheduling of the file @
transfer is restricted to thedepaths. The second heuristic;
Disjoint Paths (KDP), computek disjoint paths from source
to destination by eliminating the links contained in presty
computed paths before computing the next path; each path

6 6
5 5
4 4
3 3
2 2
1 1
0 0

TB List: ((0, 5), (1, 2), (2, 5) TB List: ((0, 5), (1.5, 3), (2,5))
Global Time list: (0, 1, 1.5, 2)
Basic Intervals: [0, 1), [1, 1.5), [1.5, 2) and [2, Inf)

computation generates the shortest path in the remainiig ne Fig. 1. Basic intervals
work. Experimental results reported in [6] indicate thatsi _ _ _ _
heuristics result in a network throughput similar to what is The intervals[Ty, 1%), [T1,12), --- in the global time list

obtained from the linear programming formulation albeit gdre referred avasic intervals At any time within a certain

a much reduced computation cost. In Section 1V, these tfgsic interval, each edge has a constant amount of available
heuristics are used by us to develop variants of 6@ bandwidth. Basic intervals obtained from the global timst li

algorithm. can be ordered using the relationslipd) < [c,d) iff b < ¢
(note that the basic intervals of a global time list are digjo
[1l. NETWORK MODEL AND TERMINOLOGY and thata < b for each basic intervdk, b)).

)) File transfer requests are characterized by a 5-tuple
We assume that the network is represented as a dlrecﬁgd d

h h node of thi h devica?’ i, fi, Ai, S;) wheres; is the source location of the file
graphG = (V, E). Each node of this graph represents a deviGhay is to pe transferredt, is the destination to which the file

such as a switch for Iaye_rs 1-2 and a router for layer 3; ati"gj 0 be sentf, is the size of the file:4; is the time when
each edge represents a link such as SONET or Ethernet. ith file transfer request is made; afdg which is the time

link has arated capacity which is the maximum number of at which the file becomes available for transfer, specifies th

bytes of data that may flow Fhrough thellink per second. V\éearliest time at which the file transfer may begin. We may
assume that the rated capacity of each liniGofs more than _.cime thatt. < S and if A — S.. the scheduler performs
0. At any specific instance, the available bandwidth on a i -demand s::h_edljling ’ v

may be less than its rated capacity because of pre-scheduled

traffic. When developing a bandwidth reservation systene, on IV. ONLINE SCHEDULING

must decide on the representation of time. The options are tdNVe propose five online file transfer scheduling algorithms.
either consider time as divided into equal size slots as medorhe first is a greedy algorithm that employs network flows to
in [12], [13] or to consider time as being continuous as in [1ininimize the finish time of the file transfer being scheduled.
[14]. For space efficiency and accuracy as explained in [€], Whe remaining four are adaptations of this optimal greedy
use the continuous time model in this paper. In this model, thlgorithm. These adaptations ukeshortest paths ak-disjoint
status of each link is maintained using a time-bandwidth listpaths to reduce the complexity of the scheduling algoritbum,
(TB list) T'B|!] that is comprised of tuples of the forfn;,b;), yield little in maximum finish time.

Gos(i, G)

{

Construct the current global time it from the

TB lists;

Delete fromT all T; < S;;
Insert.S; andoo into 7' and relabel the members @f in

ascending order beginning with the lalig);

rfs = fi /[remaining file size
j=0; //basic interval index;
whi |l e (rfs > 0)

{

Let N be the network derived frormt by assigning
to each link a capacity equals to its available
bandwidth in the basic interval’;, Tj41),

Remove the links with) capacity fromN;

maxFlow = Max flow from s; to d; in V;

mazxTime = min{T; + rfs/maxFlow,T;i1};

size = (maxTime — Tj) * mazFlow;

Schedule the transfer afze bytes fromT; to
maxTime using the max flow links;

Update the TB lists of the max flow links;

rfs — = size,;

Jj++

Fig. 2. Greedy online scheduling algorith6iO S

A. Greedy Algorithm

Let the finish time of a file transfer schedule constructed
by GOS be ft. Note thatft is the value ofmaxTime when
GOS terminates. We show, by contradiction, that is the
earliest possible time at which this file transfer can coneple
Suppose there is another transfer schedflefor the same
request that completes the transfer by tifite < ft. Let ¢ be
such thatT, < ft < T,4+, (all global time references in this
proof are to times as relabeled B0 S) and letq’ be such that
Ty < ft' < Ty 4+1. Note thatg’ < ¢. If ¢’ < ¢, then there is a
basic intervak. < ¢ such that the amount gf; scheduled for
transfer in intervak by scheduleS is more than that scheduled
for transfer inu by theGOS schedule. This isn’t possible since
the GOS schedule transfers the maximum possible amount in
each basic interval prior tg. If ¢’ = ¢, then sinceft’ < ft,
the amount scheduled for transfer Byfrom T, to ft’ is less
than that scheduled for transfer by t6€).S schedule froni,
to ft, or the flow used by th&OS schedule aftefl; cannot
be the maximum flow. Hence, there must be a basic interval
u < ¢ = ¢' in which more off; is scheduled for transfer by
than by theGO.S schedule. As noted earlier, this isn’t possible.
Hence, there is no transfer sched$levith f¢' < ft.]

The complexity of algorithmGOS is determined by the
complexity of the max flow algorithm that is used as well as
by the number of basic intervals in the global time list. The
complexity of the push-relabel max flow algorithm described
in [20] is O(n?®), wheren is the number of vertices in the
network flow graph. For networks with few edges, the sparse
graph network flow algorithm of Sleator and Tarjan (see [20],
for example) may be used. The complexity of this algorithm is

Our greedy online algorithmzOSS, schedules a file trans- O(nmlogn), wherem is the number of links in the network.

fer (s;,di, fi, A;, S;) by examining the basic intervals in theWhe”_ sc_heduling_ theth file transfer, the size of the global_
network's current global time list in increasing order. ThdMe listis O(i), since each previously scheduled request will
examination begins with the basic interval that includestiime :) i ;
S;. In each examined interval, we transfer as much of the fighd end time. So, the complexity ¢fOS is O(”BZ)_ when

as is possible. This maximum amount can be determined usii§ Push-relabel max flow algorithm is used anthmilogn)

a max-flow algorithm (see [20], for example). The examimatioVNen the sparse graph max flow algorithm is used. Since typica
of basic intervals stops when af] bytes of the file have been COMPUter networks are generally sparse and have Oxily)
scheduled. Figure 2 gives our greedy online algoritli6),S, ' ‘
to schedule theth request. This algorithm uses a subgrapfPmPplexity ofO(nilogn) for GOS.

N of G comprised only of the links that have some available

bandwidth in the current basic interval. We use the tenax
flow linksto denote those edges & that have a non-zero We incorporate the idea behind KSP and KDP scheduling [6]
flow in the max flow solution forN. Also, sincemazFlow
may be zero in some basic intervals, care needs to be takefile transfer. In the KSP and KDP adaptationgS, when
when programming algorithr&OS to avoid a divide by zero scheduling the requeét;, d;, f;, 4;, S;), rather than work with
error when computing fs/max Flow.

Theorem 1:If G has a path frons; to d;, then Algorithm

GOS schedules théth file transfer requests;, d;, fi, Ai, Si)
so as to complete at the earliest possible time.

Proof: From the following facts (ay7 has a path fromns;
to d;, (b) the rated capacity of each link 6f is more than 0,
(c) the last basic interval of the global time list alwaysesds
to oo , and (d) the available bandwidth of each link is its ratesince the paths are not disjoint, we still need to run @®@S
capacity during this last basic interval, it follows thaetimax algorithm on the network formed by thegepaths. However,
flow from s; to d; in the last basic interval is non-zero and ssince the size of the network being considered is smaller, ru
the remaining file size f s can always be scheduled for transfetime is reduced.

in this last basic interval. Henc&0S is able to schedule every For both the KSP and KDP adaptations we define a static
file transfer request.

increase the size of global time list by at most 2: job’s start

links, using the sparse graph max flow algorithm results in a

B. Variants

into algorithmGOS so as to reduce the time it takes to schedule

the entire network graptir as is done by=OS, we work with

the subgraph defined by tlepaths froms; to d;. In the case of
the KDP adaptation, since tliepaths are disjoint the max flow
from s; to d; in any basic interval is easily seen to be the sum
of the minimum available capacity of a link on each of the
paths. So, we avoid running a complex network flow algorithm
to determine the max flow. In the case of the KSP adaptation,

and a dynamic variant. In theatic variantthe cost of a link is

defined to be its rated capacity (alternatively, some otlogr n within the basic interval. Then all the jobs in the batchk’
changing cost may be assigned) In thenamic variantlinks can be finished byft. Now, T; < ft < T;4. If ft > T3,
are assigned a cost each time a scheduling request arrides amn FinishTime = ft. However, whenft = T;, it is possible
the k shortest paths to use are computed using these netdycomplete the file transfers in an interval< i. So, using
assigned link costs. The cost assigned to a link in the dymarttie LP model, we can conduct a binary search over the basic
variant is proportional to the fraction of its rated capgacitintervals to determine the value ofinFinishTime.
that has been committed from the current time to the finishEquations 1 through 7 give our LP model to find
time of the last finishing file transfer so far scheduled in theiin FinishTime within [T}, T;11). In this formulation,ft €
network. The static and dynamic variants of the KSP and KD}, T} ;1) denotes the time by which all file transfers complete.
adaptations oOS are referred to as KSP-S, KSP-D, KDP-S¢/ (¢) is the amount of file transferred for requgst F on
and KDP-D, respectively. link (I,k) € E in the basic intervaj. b;;(¢q) is the bandwidth
available on link(l,k) in the basic intervaly. Equation 2
ensures that for each transfer requgst F, for each node
In periodic batch scheduling, requests are collecteddieattc | that is neither the source nor the destination node, and for
in a centralized scheduler and scheduled as a group withicerieach basic interva§, 0 < ¢ < 4, the amount of filej that
periodicity. The periodicity may be defined in terms of tim¢eaves nodé equals the amount that enters this node; i.e., nodes
(say, every 15 minutes), in terms of number of requests bdtclother than the source or destination may not create or stiee d
(say, whenever 10 file transfer requests have been batchedind data cannot be buffered at these nodes for transferein lat
combination of these two metrics (say, the earlier of 15 t@&su basic intervals. Equation 3 requires the source node ofestqu
and the time required to batch 10 transfer requests), andi.so pto send a neff; units of file j out over all permissible basic
We develop a 2 step algorithm to optimally (i.e., minimizéntervals and requires the destination node to receive afinet
the maximum finish time) schedule a set of file transfemits. Equations 4 and 5 ensure that the amount of traffic on

V. PERIODIC BATCH SCHEDULING ALGORITHM

requests. The two steps are: each link in each basic interval does not exceed the availabl
Step 1: Determine the minimum finish time, capacity of any link in any basic interval. Equation 6 ensure
minFinishTime. that file transfer amounts are non-negative in permissiafch
Step 2: Determine a file transfer schedule that achieves thitervals and Equation 7 ensures that the file transfer atsoun
minimum finish time. are 0 in non-permissible basic intervals.

One may verify that each solution to Equation 2 through 7
defines a valid file transfer schedule for all requestg’iand
min f’f (1) that the finish time of this schedule is at mgst Further, the
subjectto Y fila)— Y. filq inclusion of Equation 1 determines the minimum finish time
k:(Lk)EE k(b EE under the constraint that no file transfer may take place in
Vj eFVIeV,l#s,l#dj,0<q<i (2) intervalsq > 4. Also, Equations 2 through 7 have no feasible
solution iff the file transfers cannot be scheduled so as to

Z Z flk Z sz complete by timerl; ;.

4=0 k:(Lk)EE () EE As noted above, a binary search over the basic intervals is
f; |f l—s: needed to determine the interval whergnFinishTime is
{ Jf i 1 — dJ‘ Vi€ F (3) located and also exact valuemfin FinishTime. This requires
J -

, to solveO(log N) LPs, whereN is the number of file transfers
S @) S b(Ty) * Ty = Ty) V(L k) € ;g <i (4) previous scheduled in the basic intervals 0.

Jer Although thef{}c (q)s that determinewin FinishTime define
Zflk) <b(Ty) = (ft—T;),V(, k) € (5) a file transfer schedule that achieves this finish time, these
JEF fi.(¢)s may define a transfer schedule that includes cycles.
f(q) > 0,[Ty, Tyi1] €[S}, Tya],V(, k) € E,Yj € F (6) That is, we have portions of a file being moved from nade

. to nodeb and back to node, for example, in the same basic
Fi(@) = 0,7y, Tya] € 185, Tya). ¥ K) € BV € F - (7) interval. While these cyclic flows do ncF))t negatively impaue t
For the first step, we construct a global time list from theverall finish time, they affect available bandwidth capaci
TB lists of all links as before and then construct the bas&nd so negatively impact our ability to schedule file trarsfe
intervals from this global time list. The basic interVal, T; ;) in future periods.
is referred to simply as basic interval To determine the In Step 2, we overcome the deficiencies of the file transfer
minimum finish time, we use a linear programming (LP) modekchedule obtained from Step 1 by using a slightly different
to determine, for a specified basic intervathe minimum time LP formulation in Equations 8 through 13. In this formula-
within this basic interval by which it is possible to complettion, we minimizes the sum of th¢} (¢) values across all
all file transfers in the given request set This LP model basic intervals. The valu& = minFinishTime computed
will have no feasible solution for basic intervalsf it isn’t in Step 1 is used to limit the file transfers’ start and end
possible to complete the file transfer by tinigé,;. In this times. We also useé to denote the basic interval for which
case,minFinishTime must lie in a basic intervay > i. T; < minFinishTime < T;41. It is obvious that the solution
Suppose the value of LP’s objective functighis a valid time to Equation 9 though 13 may contain no cycle, or it can not be

-G0S —-GOs

optimal, since we can always remove the cycles and produce e
better solution if any cycle exists. -

We note that while the LP of Equations 1 through 7 is solved -
for O(log N) times, Equations 8 through 13 are solved only
once. The above two-step periodic batch scheduling alguarit

is referred to as algorithnBatch. o ar x5 1oz 4 6 o w e m om @ owm
(a) Request Density (b) Network Size

Fig. 3. Maximum finish time for online scheduling.

min SN @ ®
q=0

jeJ (Lkyegg=0 ™ ~Gos]
subjectto > file)— > flilq . s ///
k:(l,k)EE E(kDEE KoP-D T
Vie FYie ViI#s;,l#d;,0<¢<i (9) == o
(fila) - fia) = BRI R
q;) k:(l,Xk):eE Ik k:(l%eE ki (a) Request Densities (b) Network Sizes
fi if 1 = s, Fig. 4. Run time of online scheduling algorithms
J) ;
{ i = d, VjeF (10)
Zflk) < bu(Ty) * (Ty1 — Ty),Y(l, k) € E,g <i (11) In our experiments, theGOS algorithm results in the
JEF smallest maximum finish time consistently and the two KDP
fi(q) > 0,[T,, Tys1] C [S;, U], V(I k) € E,¥j € F (12) algorithms generally outperform the two KSP algorithms, as
T, Tys S ULY(Lk) € E,Yje F (13 shown in Flgure_s 3b. Interestingly, we also noucpak point
f““(Q) 0.1 1 €155, ULV F) J (13) where the relative performance ¢fOS peaks with respect
VI. EXPERIMENTAL EVALUATION to the remaining online algorithms. This phenomenon can be

In this section, we measure the performance of the 5 greegplained as follows: when the workload is smallQS is
online algorithms of Section IV and the periodic batch algdllowed to provide each job with more bandwidth than KSP
rithm of Section V. For our experiments, we used the 1Bnd KDP does with little impact on succeeding requests. So,
node Abilene network [21], the 16-node MCI network [10the performance gap increases with request density. Howeve
and several randomly generated topologies. The bandwédthMhen more requests arrive within the same time interval,
155Mbps for all links in the Abilene network and 100Mbpghe file transmission processes are more overlapped, As for
in the MCI network. The random topologies have 100 to 50605, providing more for the current job would cause more
modes and link bandwidths that are randomly selected fram tigsource deficit for the late arriving jobs. Hence, when the
set{50Mbps (OC1), 155Mbps (OC3), 620Mbps (OCJL2yhe request density grows larger than theak point GOS suffers
linear programming problems were solved using the CPLEXore than other algorithms and cannot outperform the other
package on Intel based workstations. For the KSP and K@gorithms as much as before.
variants ofGOS, we setk, the number of paths, to 16. This When we varied the network size from 100 nodes to 500
setting is consistent with the results of [6] and our own ltesu nodes, againO.S' consistently yields the smallest maximum

File transfer requests were synthetically generated. Edtmish time (Figure 3a). The advantagesta®.S to all the other
request is described by the 5-tuple (source node, destinatilgorithms keep increasing when we increase network size.
node, file size, request arrive time and start time). ThecurThis is becaus€/OS generally consumes more bandwidth for
and destination nodes for each request were selected ustagh file transfer. As the network size increases, more ressu
a uniform random number generator. The file size is uriwe available forGOS, which accelerates file transfer even
formly distributed between 10GB and 100GB. The time amnore. However, the amount of available bandwidth for other
which the request was made followed a Poisson distributipath variants is limited by the-path. Hence, their performance
and the arrival rate (request density) varied from 0.05 to T@nnot be improved as much &%S.
requests/time unit. The requested start time was set to e thFigure 4 shows the run time of our online algorithms as a
time at which the request was made plus a random lag. EacHwiction of request density and network size. Althoug®.S
our experiments started with a clean network (i.e., no ixjst takes more time than other algorithms, its run time, less tha
scheduled transfers) and simulated the job arrival profmss one second per request even when request density is 10meq/ti
1000 time units. So, for example, with a request density of it in a 100-node network, is still acceptable. When the
requests/time unit, one run of our experiment would processtwork size grows to 500 nodes, the average process time
approximately 5000 requests. for each request is still less than 3 seconds in our simulatio

We used the max finish time, i.e. the time when all file We compared the performance of the periodic batch schedul-
transfers in the sequence finish as the performance metré&. Tng algorithm Batch of Section V and ouGOS algorithm in
performance metric was normalized so that the finish time ftwo environments: 1) single slice scheduling (SSS) [6],heac
the GOS transfers is 100. The run time of an algorithm isequest has the same valueShfand in the second environment;
measured in milliseconds. 2) multi slice scheduling (MSS), different requests mayehav

——Greedy

Batch-10 %
90 | —#+=Batch-50 9
—+Batch-ALL 92

—+—Greedy
Batch-10

computation time by sacrificing on maximum finish time and
mean finish time may be obtained using one of the proposed
four GOS variants. Of these K DP — D works best. Our
current BATCH scheduler minimizes the maximum finish

75 —+—Batch-50
—<Batch-ALL

(a) Random,SSS (b) Random,M S'S

Batch and GOS maximum finish times vs. request densities
and 100-node random network.

Fig. 5.
Abilene

n

2000000 10000000

——Greedy

1800000

1600000 Batch-10
—+—Batch-50

1400000

—<Batch-ALL
1200000

1000000
800000
600000
400000
200000

0

1000000

100000

——Greedy
Batch-10

—+Batch-50

—=Batch-ALL

(1]

10000

1000
2 a 6 8 10 2 a 6 s 10

(@) SSS (b) MSS

3
Fig. 6. Batch andGOS run times vs. request densities in 100 nodes random[
networks [4]

(5]

(2]

different S;s. In both cases7OS schedules the requests onel®l
by one and in the order in which they arrive whilgatch
schedules jobs whenever a preset numbeof requests has [7]
been accumulated or when a preset time interval (in our case
10 units of time) has elapsed.

Figures 5 gives thé'S'S and M S.S maximum finish time for [8]
GOS andm— Batch scheduling withn = 10, 50, and 100. The]
finish time of theBatch schedule has been normalized by the
results of GOS. Generally, batch scheduling results in small€ro]
maximum finish times thaid7OS. In large random networks, 11]
batch scheduling results in maximum finish times that areu'ab(g
10-20% less than those obtained 6Y)S. As expected, the [12]
finish time of batch scheduling reduces as we increase

Figures 6 compares the time taken by théch andGOS 13
algorithms to compute the transfer schedules. When theegtqu
density is low,Batch takes 20 times as much time as taken by
GOS. This difference decreases as the density increases g
when the request density is 10 requests/time uitich takes
only about 10-40% more time thadO.S does.

VIl. CONCLUSION (15]

We have developed a greedy online scheduling algorithﬁfél
GOS, that is optimal in the sense that it minimizes the finis
time of the file transfer currently being scheduled. Fourargs
of this algorithm, KSP — S, KSP — D, KDP — S, and 18]
KDP — D have been proposed with the objective of reducir{g
the time required to schedule a file transfer while yieldititel

in finish time. A two-step periodic batch scheduling algumit (19
Batch, that employs binary search and linear programmingg
also has been developed. This algorithm minimizes the maxi-
mum finish time of any file transfer in a batch of file transfer$2!
Our experiments show that o@#OS algorithm can generate
schedules with a maximum finish time slightly larger tharstho
obtained by the periodic batch scheduling algorittitaich.
However,GOS generally takes significantly less computation
time and its schedules have better mean finish time. Hence,
GOS presents a good balance among maximum finish time,
mean finish time, and computation time. Further reduction in

[17]

time but does not explicitly consider the mean finish time. In
the future, we will develop thé&3 AT CH algorithms that also
incorporate the mean finish time as the optimization metric.

ACKNOWLEDGMENT

This research is sponsored, in part, by the National Science
Foundation under grants ITR-0326155 and XXX.

REFERENCES

N. S. Rao, S. M. Carter, Q. Wu, W. R. Wing, M. Zhu, A. Mezzppa,
M. Veeraraghavan, and J. M. Blondin, “Networking for lagesale
science: Infrastructure, provisioning, transport andliapfion mapping,”
in Proceedings of SciDAC Meeting005.

User Controlled LightPath Provisioning, http://ptadiab.crc.ca/uclp.

] DOE UltraScienceNet: Experimental Ultra-Scale Netwdrestbed for

Large-Scale Science, http://www.csm.ornl.gov/ultranet

“Internet2,” http://www.internet2.edu.

J. Y. Yen, “Finding the k shortest loopless paths in a meky in
Management Sciencd971.

K. Rajah, S. Ranka, and Y. Xia, “Scheduling bulk file triers with
start and end times,” ith IEEE International Symposium on Network
Computing and Application2007, pp. 295-298.

E.-S. Jung, Y. Li, S. Ranka, and S. Sahni, “An elvaluatafrin-advance
bandwidth scheduling algorithms for connection-orientegtworks,” in
International Symposium on Parallel Architectures, Algfuns, and Net-
works 2008.

U. Black, MPLS and Label Switching Networks Prentice-Hall Pub.,
2002.

N. Yamanaka, K. Shiomoto, and E. OKEMPLS Technologies CRC
Taylor Francis Pub, 2006.

Q. Ma, P. Steenkiste, and H. Zhang, “Routing high-baidtiwtraffic in
max-min fair share networks,” iACM SIGCOMM 1996, pp. 115-126.
Z. Wang and J. Crowcroft, “Quality-of-service routirfgr supporting
multimedia applications,” iIHEEE JSAC 1996, pp. 1228-1234.

L. Burchard, “On the performance of networks with advameservations:
Applications, architecture, and performance.”Journal of Network and
Systems Managemer005.

R. Guerin and A. Orda, “Networks with advance reseorai The routing
perspective,” inProceedings of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies INFOCQ®IO0, pp.
118-127.

ﬁj S. Sahni, N. Rao, S. Ranka, Y. Li, E.-S. Jung, and N. Kari@&andwidth

scheduling and path computation algorithms for conneatidented
networks,” in Sixth International Conference on Networking (ICN'07)
2007, p. 47.

E.-S. Jung, Y. Li, S. Ranka, and S. Sahni, “Performaneduation of
routing and wavelength assignment algorithms for optieivorks,” in
13th IEEE Symposium on Computers and Communicati®dss.

R. Banner and A. Orda, “Multipath routing algorithmsr foongestion
minimization.” IEEE/ACM Trans. Netwotkvol. 15, pp. 413-424, 2007.
N. S. V. Rao and S. G. Batsell, “Qos routing via multiplathis using
bandwidth reservation.” ilNFOCOM, 1998, pp. 11-18.

Y. Lee, Y. Seok, Y. Choi, and C. Kim, “A constrained mphih traffic
engineering scheme for mpls networks,”@mmunications, 2002. ICC
2002. IEEE International Conference ,ovol. 4, 2002, pp. 2431 — 2436.
S. SahniData structures, algorithms, and applications in C++Silicon
Press, 2005, second Edition.

R. Ahuja, T. Magnanti, and J. OrifNetwork Flows: Theory, Algorithms,
and Applications Prentice Hall, 1993.

“Abilene,” http://abilene.internet2.edu.

