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Abstract—We develop multi-path reservation algorithms for in-
advance scheduling of large file transfers in connection-oriented
optical networks. Specifically, to schedule a single file transfer
to complete at the earliest possible time, a new max-flow based
greedy algorithm(GOS) and four variants that adapt the k-
shortest paths and k-disjoint paths algorithms are proposed.
Meanwhile, to find an earliest-finishing schedule for a batchof
file transfers, a linear programming based algorithm(BATCH)
is developed. Extensive experiments using both real world and
random networks show that our GOS algorithm provides a
good balance among maximum finish time, average finish time,
and computational complexity. Although our BATCH algorithm
results in the smallest maximum finish time, this algorithm
has a significantly larger computational requirement than our
other algorithms. GOS yields file transfer schedules with similar
maximum finish time and reduces average finish time while having
a significantly less computational requirement.

I. I NTRODUCTION

The rapid development of high speed optical networks has
enabled a variety of e-Science applications that are both data
intensive and geographically distributed. These applications,
which include data mining, data consolidation and alignment,
storage, visualization and analysis [1], generate large amounts
of data (order of terabytes to petabytes) and require these
data to be transferred across the network. For example, sim-
ulation data sets produced by a supercomputer may need to
be archived in a remote storage center and later analyzed
by a different supercomputer that is located at a third site.
When the overall job run time is considered, the file transfer
time may become a major bottleneck because this time may
become unbounded due to network congestion and failures.
Thus, dedicated connections, especially dedicated bandwidth
channels, are essential to offer (i) large capacities for massive
data transfer operations, and (ii) dynamically stable bandwidth
for monitoring and steering operations. The importance of
dedicated connection capabilities has been recognized, and
there are several ongoing network research projects that develop
such capabilities [2], [3]. In addition, production networks at
the national and international scale with such capabilities are
being deployed in Internet2 [4]. These networks usually have a
sufficiently small-sized backbone that it is practical to employ
centralized management on the network’s bandwidth, including
user requests scheduling, path identification and bandwidth
allocation.

Consider a scenario where a large number of files have to
be transferred from multiple sources to multiple destinations.
Each file corresponds to a transmission between a single pairof
nodes. The objective is to minimize the transfer time of all files

across the dedicated optical network, which we callEarliest
Finish Time File Transfer Problem(EFTFTP). In this paper,
we develop and evaluate algorithms to solve this problem. We
consider two fundamentally different approaches to schedule
file transfers: (i)Online Scheduling (EFT-Online) in which
file transfer requests are scheduled one by one, in the order
of their arrival without the knowledge of any future requests
and (ii) Periodic Batch Scheduling (EFT-Batch) in which
requests are collected/batched in a centralized scheduler; the
collected/batched requests are scheduled as a group with certain
periodicity. The periodicity may be defined in terms of time
(say, every 15 minutes), or number of batched requests (say,
whenever 10 file transfer requests have been batched) or a
combination of these two metrics (say, the the smaller of 15
minutes and the time required to batch 10 transfer requests), and
so on. Online scheduling is a special case of batch scheduling if
scheduling is done whenever one job arrives (batch size=1).Our
simulations show that ourGOS algorithm results in a slightly
larger finish time than does periodic batch scheduling. However,
ourGOS algorithm requires significantly less computation time
and has better performance with respect to the mean finish time
of the file transfers.

The rest of the paper is organized as follows. In Section II,
we describe related work. Our network model and terminology
are detailed in III. In Section IV, we present the greedy
algorithm for online scheduling and prove that this algorithm
minimizes the finish time of the current file transfer being
scheduled. Four variants of this greedy online algorithm are
also proposed in Section IV. These variants aim to reduce
computation time with limited increment in finish time. A
linear programming formulation for periodic batch scheduling
is developed in Section V. This formulation minimizes the
finish time of the entire request pack, i.e. the last completed file
transfer of the batch. In Section VI, we evaluate our online and
batch algorithms together with thek-shortest paths algorithm
of [5] and thek-disjoint paths algorithm of [6]. Finally, we
conclude in Section VII.

II. RELATED WORK

Generally, bandwidth reservation systems operate in one of
two modes [7]:

(a) In on-demand scheduling, bandwidth is reserved for a
time period that begins at the current time.

(b) In in-advance scheduling, bandwidth is reserved for a
time period that begins at some future time.
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On-demand scheduling is a special case of in-advance schedul-
ing: the time interval between the request’s arrival and itsactual
starting time is zero. On-demand scheduling, which is typically
supported by Multiple Protocol Label Switching (MPLS) [8] at
layer 3 and by Generalized MPLS (GMPLS) [9] at layers 1 and
2, is supported by CHEETAH, DRAGON, and UCLP. Typical
algorithms for on-demand scheduling can be found in [10],
[11]. In-advance scheduling is supported by GeantII, OSCARS,
USN and Enlightened network. The corresponding algorithms
are described in [12]–[15].

Although much of the research on bandwidth scheduling
has focused on reserving a single simple path for a specified
bandwidth request, it is well known that using multiple paths
improves the utilization of the available network resources
[16]. The multi-path reservation problem is formulated in [16]
as a network flow problem with the objective of minimizing
link congestion. Algorithms for delay-constrained file transfer
using multiple paths are proposed in [17]. The multi-path
file transfer scheme is considered with both link utilization
constraints and path length constraints in [18]. A maximum
concurrent flow formulation is used in [6] to solve the large file
transfer problem with fixed start and end times; the objective
is to maximize network throughput. [18] also develops linear
programming models to maximize the network throughput
and proposes two heuristics for multi-path routing. The first
heuristic, k-Shortest Paths (KSP), uses thek-shortest paths
algorithm of [5] to computek not necessarily disjoint paths
from the source to the destination. The scheduling of the file
transfer is restricted to thesek paths. The second heuristic,k-
Disjoint Paths (KDP), computesk disjoint paths from source
to destination by eliminating the links contained in previously
computed paths before computing the next path; each path
computation generates the shortest path in the remaining net-
work. Experimental results reported in [6] indicate that these
heuristics result in a network throughput similar to what is
obtained from the linear programming formulation albeit at
a much reduced computation cost. In Section IV, these two
heuristics are used by us to develop variants of ourGOS
algorithm.

III. N ETWORK MODEL AND TERMINOLOGY

We assume that the network is represented as a directed
graphG = (V, E). Each node of this graph represents a device
such as a switch for layers 1-2 and a router for layer 3; and
each edge represents a link such as SONET or Ethernet. Each
link has arated capacity, which is the maximum number of
bytes of data that may flow through the link per second. We
assume that the rated capacity of each link ofG is more than
0. At any specific instance, the available bandwidth on a link
may be less than its rated capacity because of pre-scheduled
traffic. When developing a bandwidth reservation system, one
must decide on the representation of time. The options are to
either consider time as divided into equal size slots as is done
in [12], [13] or to consider time as being continuous as in [1],
[14]. For space efficiency and accuracy as explained in [7], we
use the continuous time model in this paper. In this model, the
status of each linkl is maintained using a time-bandwidth list
(TB list) TB[l] that is comprised of tuples of the form(ti, bi),

whereti is a time andbi is a bandwidth. The tuples in a TB
list are in increasing order ofti. If (ti, bi) is a tuple ofTB[l]
(other than the last one), then the bandwidth available on link l
from ti to ti+1 is bi. When(ti, bi) is the last tuple, a bandwidth
of bi is available fromti to ∞. Each TB list can be represented
as an array using dynamic array resizing method as described
in [19] or as a linked list.

Let T = [T0, T1, · · · ], T0 < T1 < · · · , be the union of
the time component of the(ti, bi) tuples in the TB lists of all
links in the network. We refer toT as theglobal time list.
It is easy to see that the available bandwidth on each link of
the network is unchanged in the interval[Ti, Ti+1). Figure 1
shows the TB lists for 2 links. For this simple example, assume
these are the only two links in the network. The TB list for the
first link is [(0, 5), (1, 2), (2, 5)] and that for the second link is
[(0, 5), (1.5, 3), (2, 5)]. The global time list for our example is
[0, 1, 1.5, 2]. In the interval [0,1), the available bandwidth on the
two links is 5 whereas in the interval [1,1.5), the first link has
an available bandwidth of 2 while the second link’s available
bandwidth is 5, and neither of links’ bandwidth changes within
this basic interval. 6

TB List: ((0, 5), (1, 2), (2, 5) TB List: ((0, 5), (1.5, 3), (2,5))

Global Time list: (0, 1, 1.5, 2)

Basic Intervals: [0, 1), [1, 1.5), [1.5, 2) and [2, Inf)

0123456 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 0123456 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5
Fig. 1. Basic intervals

The intervals[T0, T1), [T1, T2), · · · in the global time list
are referred asbasic intervals. At any time within a certain
basic interval, each edge has a constant amount of available
bandwidth. Basic intervals obtained from the global time list
can be ordered using the relationship[a, b) < [c, d) iff b ≤ c
(note that the basic intervals of a global time list are disjoint
and thata < b for each basic interval[a, b)).

File transfer requests are characterized by a 5-tuple
(si, di, fi, Ai, Si) where si is the source location of the file
that is to be transferred;di is the destination to which the file
is to be sent;fi is the size of the file;Ai is the time when
the ith file transfer request is made; andSi, which is the time
at which the file becomes available for transfer, specifies the
earliest time at which the file transfer may begin. We may
assume thatAi ≤ Si and if Ai = Si, the scheduler performs
on-demand scheduling.

IV. ONLINE SCHEDULING

We propose five online file transfer scheduling algorithms.
The first is a greedy algorithm that employs network flows to
minimize the finish time of the file transfer being scheduled.
The remaining four are adaptations of this optimal greedy
algorithm. These adaptations usek-shortest paths ork-disjoint
paths to reduce the complexity of the scheduling algorithm,but
yield little in maximum finish time.
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GOS(i, G)
{

Construct the current global time listT from the
TB lists;

Delete fromT all Ti ≤ Si;
InsertSi and∞ into T and relabel the members ofT in

ascending order beginning with the labelT0;
rfs = fi; //remaining file size
j = 0; //basic interval index;
while (rfs > 0)
{

Let N be the network derived fromG by assigning
to each link a capacity equals to its available
bandwidth in the basic interval[Tj , Tj+1),

Remove the links with0 capacity fromN ;
maxFlow = Max flow from si to di in N ;
maxT ime = min{Tj + rfs/maxF low, Tj+1};
size = (maxT ime− Tj) ∗ maxFlow;
Schedule the transfer ofsize bytes fromTj to

maxT ime using the max flow links;
Update the TB lists of the max flow links;
rfs − = size;
j + +;

}
}

Fig. 2. Greedy online scheduling algorithmGOS

A. Greedy Algorithm

Our greedy online algorithm,GOS, schedules a file trans-
fer (si, di, fi, Ai, Si) by examining the basic intervals in the
network’s current global time list in increasing order. The
examination begins with the basic interval that includes the time
Si. In each examined interval, we transfer as much of the file
as is possible. This maximum amount can be determined using
a max-flow algorithm (see [20], for example). The examination
of basic intervals stops when allfi bytes of the file have been
scheduled. Figure 2 gives our greedy online algorithm,GOS,
to schedule theith request. This algorithm uses a subgraph
N of G comprised only of the links that have some available
bandwidth in the current basic interval. We use the termmax
flow links to denote those edges ofN that have a non-zero
flow in the max flow solution forN . Also, sincemaxFlow
may be zero in some basic intervals, care needs to be taken
when programming algorithmGOS to avoid a divide by zero
error when computingrfs/maxF low.

Theorem 1:If G has a path fromsi to di, then Algorithm
GOS schedules theith file transfer request(si, di, fi, Ai, Si)
so as to complete at the earliest possible time.

Proof: From the following facts (a)G has a path fromsi

to di, (b) the rated capacity of each link ofG is more than 0,
(c) the last basic interval of the global time list always extends
to ∞ , and (d) the available bandwidth of each link is its rated
capacity during this last basic interval, it follows that the max
flow from si to di in the last basic interval is non-zero and so
the remaining file sizerfs can always be scheduled for transfer
in this last basic interval. Hence,GOS is able to schedule every
file transfer request.

Let the finish time of a file transfer schedule constructed
by GOS be ft. Note thatft is the value ofmaxT ime when
GOS terminates. We show, by contradiction, thatft is the
earliest possible time at which this file transfer can complete.
Suppose there is another transfer schedule,S, for the same
request that completes the transfer by timeft′ < ft. Let q be
such thatTq ≤ ft < Tq+1 (all global time references in this
proof are to times as relabeled byGOS) and letq′ be such that
Tq′ ≤ ft′ < Tq′+1. Note thatq′ ≤ q. If q′ < q, then there is a
basic intervalu < q such that the amount offi scheduled for
transfer in intervalu by scheduleS is more than that scheduled
for transfer inu by theGOS schedule. This isn’t possible since
the GOS schedule transfers the maximum possible amount in
each basic interval prior toq. If q′ = q, then sinceft′ < ft,
the amount scheduled for transfer byS from Tq to ft′ is less
than that scheduled for transfer by theGOS schedule fromTq

to ft, or the flow used by theGOS schedule afterTq cannot
be the maximum flow. Hence, there must be a basic interval
u < q = q′ in which more offi is scheduled for transfer byS
than by theGOS schedule. As noted earlier, this isn’t possible.
Hence, there is no transfer scheduleS with ft′ < ft.

The complexity of algorithmGOS is determined by the
complexity of the max flow algorithm that is used as well as
by the number of basic intervals in the global time list. The
complexity of the push-relabel max flow algorithm described
in [20] is O(n3), wheren is the number of vertices in the
network flow graph. For networks with few edges, the sparse
graph network flow algorithm of Sleator and Tarjan (see [20],
for example) may be used. The complexity of this algorithm is
O(nm log n), wherem is the number of links in the network.
When scheduling theith file transfer, the size of the global
time list is O(i), since each previously scheduled request will
increase the size of global time list by at most 2: job’s start
and end time. So, the complexity ofGOS is O(n3i) when
the push-relabel max flow algorithm is used andO(nmi log n)
when the sparse graph max flow algorithm is used. Since typical
computer networks are generally sparse and have onlyO(n)
links, using the sparse graph max flow algorithm results in a
complexity ofO(n2i log n) for GOS.

B. Variants

We incorporate the idea behind KSP and KDP scheduling [6]
into algorithmGOS so as to reduce the time it takes to schedule
a file transfer. In the KSP and KDP adaptations ofGOS, when
scheduling the request(si, di, fi, Ai, Si), rather than work with
the entire network graphG as is done byGOS, we work with
the subgraph defined by thek paths fromsi to di. In the case of
the KDP adaptation, since thek paths are disjoint the max flow
from si to di in any basic interval is easily seen to be the sum
of the minimum available capacity of a link on each of thek
paths. So, we avoid running a complex network flow algorithm
to determine the max flow. In the case of the KSP adaptation,
since the paths are not disjoint, we still need to run theGOS
algorithm on the network formed by thesek paths. However,
since the size of the network being considered is smaller, run
time is reduced.

For both the KSP and KDP adaptations we define a static
and a dynamic variant. In thestatic variantthe cost of a link is
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defined to be its rated capacity (alternatively, some other non-
changing cost may be assigned) In thedynamic variant, links
are assigned a cost each time a scheduling request arrives and
the k shortest paths to use are computed using these newly
assigned link costs. The cost assigned to a link in the dynamic
variant is proportional to the fraction of its rated capacity
that has been committed from the current time to the finish
time of the last finishing file transfer so far scheduled in the
network. The static and dynamic variants of the KSP and KDP
adaptations ofGOS are referred to as KSP-S, KSP-D, KDP-S,
and KDP-D, respectively.

V. PERIODIC BATCH SCHEDULING ALGORITHM

In periodic batch scheduling, requests are collected/batched
in a centralized scheduler and scheduled as a group with certain
periodicity. The periodicity may be defined in terms of time
(say, every 15 minutes), in terms of number of requests batched
(say, whenever 10 file transfer requests have been batched),a
combination of these two metrics (say, the earlier of 15 minutes
and the time required to batch 10 transfer requests), and so on.

We develop a 2 step algorithm to optimally (i.e., minimize
the maximum finish time) schedule a set of file transfer
requests. The two steps are:

Step 1: Determine the minimum finish time,
minFinishT ime.

Step 2: Determine a file transfer schedule that achieves this
minimum finish time.

min ft (1)

subject to
∑

k:(l,k)∈E

f j
lk(q) −

∑

k:(k,l)∈E

f j
kl(q) = 0

∀j ∈ F, ∀l ∈ V, l 6= sj , l 6= dj , 0 ≤ q ≤ i (2)
i

∑

q=0

(
∑

k:(l,k)∈E

f j
lk(q) −

∑

k:(k,l)∈E

f j
kl(q)) =

{

fj if l = sj

−fj if l = dj
∀j ∈ F (3)

∑

j∈F

f j
lk(q) ≤ blk(Tq) ∗ (Tq+1 − Tq), ∀(l, k) ∈ E, q < i (4)

∑

j∈F

f j
lk(i) ≤ blk(Ti) ∗ (ft − Ti), ∀(l, k) ∈ E (5)

f j
lk(q) ≥ 0, [Tq, Tq+1] ⊆ [Sj , Tq+1], ∀(l, k) ∈ E, ∀j ∈ F (6)

f j
lk(q) = 0, [Tq, Tq+1] * [Sj , Tq+1], ∀(l, k) ∈ E, ∀j ∈ F (7)

For the first step, we construct a global time list from the
TB lists of all links as before and then construct the basic
intervals from this global time list. The basic interval[Ti, Ti+1)
is referred to simply as basic intervali. To determine the
minimum finish time, we use a linear programming (LP) model
to determine, for a specified basic intervali, the minimum time
within this basic interval by which it is possible to complete
all file transfers in the given request setF . This LP model
will have no feasible solution for basic intervalsi if it isn’t
possible to complete the file transfer by timeTi+1. In this
case,minFinishT ime must lie in a basic intervalq > i.
Suppose the value of LP’s objective functionft is a valid time

within the basic intervali. Then all the jobs in the batchF
can be finished byft. Now, Ti ≤ ft ≤ Ti+1. If ft > Ti,
minFinishT ime = ft. However, whenft = Ti, it is possible
to complete the file transfers in an intervalq < i. So, using
the LP model, we can conduct a binary search over the basic
intervals to determine the value ofminFinishT ime.

Equations 1 through 7 give our LP model to find
minFinishT ime within [Ti, Ti+1). In this formulation,ft ∈
[Ti, Ti+1) denotes the time by which all file transfers complete.
f j

lk(q) is the amount of file transferred for requestj ∈ F on
link (l, k) ∈ E in the basic intervalq. blk(q) is the bandwidth
available on link (l, k) in the basic intervalq. Equation 2
ensures that for each transfer requestj ∈ F , for each node
l that is neither the source nor the destination node, and for
each basic intervalq, 0 ≤ q ≤ i, the amount of filej that
leaves nodel equals the amount that enters this node; i.e., nodes
other than the source or destination may not create or store data
and data cannot be buffered at these nodes for transfer in later
basic intervals. Equation 3 requires the source node of request
j to send a netfj units of file j out over all permissible basic
intervals and requires the destination node to receive a netfi

units. Equations 4 and 5 ensure that the amount of traffic on
each link in each basic interval does not exceed the available
capacity of any link in any basic interval. Equation 6 ensures
that file transfer amounts are non-negative in permissible basic
intervals and Equation 7 ensures that the file transfer amounts
are 0 in non-permissible basic intervals.

One may verify that each solution to Equation 2 through 7
defines a valid file transfer schedule for all requests inF and
that the finish time of this schedule is at mostft. Further, the
inclusion of Equation 1 determines the minimum finish time
under the constraint that no file transfer may take place in
intervalsq > i. Also, Equations 2 through 7 have no feasible
solution iff the file transfers cannot be scheduled so as to
complete by timeTi+1.

As noted above, a binary search over the basic intervals is
needed to determine the interval whereminFinishT ime is
located and also exact value ofminFinishT ime. This requires
to solveO(log N) LPs, whereN is the number of file transfers
previous scheduled in the basic intervalsi ≥ 0.

Although thef j
lk(q)s that determineminFinishT ime define

a file transfer schedule that achieves this finish time, these
f j

lk(q)s may define a transfer schedule that includes cycles.
That is, we have portions of a file being moved from nodea
to nodeb and back to nodea, for example, in the same basic
interval. While these cyclic flows do not negatively impact the
overall finish time, they affect available bandwidth capacity
and so negatively impact our ability to schedule file transfers
in future periods.

In Step 2, we overcome the deficiencies of the file transfer
schedule obtained from Step 1 by using a slightly different
LP formulation in Equations 8 through 13. In this formula-
tion, we minimizes the sum of thef j

lk(q) values across all
basic intervals. The valueU = minFinishT ime computed
in Step 1 is used to limit the file transfers’ start and end
times. We also usei to denote the basic interval for which
Ti ≤ minFinishT ime ≤ Ti+1. It is obvious that the solution
to Equation 9 though 13 may contain no cycle, or it can not be
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optimal, since we can always remove the cycles and produce a
better solution if any cycle exists.

We note that while the LP of Equations 1 through 7 is solved
for O(log N) times, Equations 8 through 13 are solved only
once. The above two-step periodic batch scheduling algorithm
is referred to as algorithmBatch.

min
∑

j∈J

∑

(l,k)∈E

i
∑

q=0

f j
lk(q) (8)

subject to
∑

k:(l,k)∈E

f j
lk(q) −

∑

k:(k,l)∈E

f j
kl(q) = 0

∀j ∈ F, ∀l ∈ V, l 6= sj , l 6= dj , 0 ≤ q ≤ i (9)
i

∑

q=0

(
∑

k:(l,k)∈E

f j
lk(q) −

∑

k:(k,l)∈E

f j
kl(q)) =

{

fj if l = sj

−fj if l = dj
∀j ∈ F (10)

∑

j∈F

f j
lk(q) ≤ blk(Tq) ∗ (Tq+1 − Tq), ∀(l, k) ∈ E, q ≤ i (11)

f j
lk(q) ≥ 0, [Tq, Tq+1] ⊆ [Sj, U ], ∀(l, k) ∈ E, ∀j ∈ F (12)

f j
lk(q) = 0, [Tq, Tq+1] * [Sj, U ], ∀(l, k) ∈ E, ∀j ∈ F (13)

VI. EXPERIMENTAL EVALUATION

In this section, we measure the performance of the 5 greedy
online algorithms of Section IV and the periodic batch algo-
rithm of Section V. For our experiments, we used the 11-
node Abilene network [21], the 16-node MCI network [10]
and several randomly generated topologies. The bandwidth is
155Mbps for all links in the Abilene network and 100Mbps
in the MCI network. The random topologies have 100 to 500
modes and link bandwidths that are randomly selected from the
set{50Mbps (OC1), 155Mbps (OC3), 620Mbps (OC12)}. The
linear programming problems were solved using the CPLEX
package on Intel based workstations. For the KSP and KDP
variants ofGOS, we setk, the number of paths, to 16. This
setting is consistent with the results of [6] and our own results.

File transfer requests were synthetically generated. Each
request is described by the 5-tuple (source node, destination
node, file size, request arrive time and start time). The source
and destination nodes for each request were selected using
a uniform random number generator. The file size is uni-
formly distributed between 10GB and 100GB. The time at
which the request was made followed a Poisson distribution
and the arrival rate (request density) varied from 0.05 to 10
requests/time unit. The requested start time was set to be the
time at which the request was made plus a random lag. Each of
our experiments started with a clean network (i.e., no existing
scheduled transfers) and simulated the job arrival processfor
1000 time units. So, for example, with a request density of 5
requests/time unit, one run of our experiment would process
approximately 5000 requests.

We used the max finish time, i.e. the time when all file
transfers in the sequence finish as the performance metric. The
performance metric was normalized so that the finish time for
the GOS transfers is 100. The run time of an algorithm is
measured in milliseconds.

3 9 04 4 04 9 05 4 05 9 0 G O SK S P � SK S P � DK D P � SK D P � D9 01 4 01 9 02 4 02 9 03 4 0 0 . 0 5 0 . 1 0 . 2 0 . 5 1 2 4 6 8 1 0
(a) Request Density
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(b) Network Size

Fig. 3. Maximum finish time for online scheduling.4 0 0 0 0 05 0 0 0 0 06 0 0 0 0 07 0 0 0 0 0 G O SK S P ; SK S P ; DK D P ; S01 0 0 0 0 02 0 0 0 0 03 0 0 0 0 0 0 . 0 5 0 . 1 0 . 2 0 . 5 1 2 4 6 8 1 0K D P ; D
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Fig. 4. Run time of online scheduling algorithms

In our experiments, theGOS algorithm results in the
smallest maximum finish time consistently and the two KDP
algorithms generally outperform the two KSP algorithms, as
shown in Figures 3b. Interestingly, we also notice apeak point
where the relative performance ofGOS peaks with respect
to the remaining online algorithms. This phenomenon can be
explained as follows: when the workload is small,GOS is
allowed to provide each job with more bandwidth than KSP
and KDP does with little impact on succeeding requests. So,
the performance gap increases with request density. However,
when more requests arrive within the same time interval,
the file transmission processes are more overlapped, As for
GOS, providing more for the current job would cause more
resource deficit for the late arriving jobs. Hence, when the
request density grows larger than thepeak point, GOS suffers
more than other algorithms and cannot outperform the other
algorithms as much as before.

When we varied the network size from 100 nodes to 500
nodes, again,GOS consistently yields the smallest maximum
finish time (Figure 3a). The advantages ofGOS to all the other
algorithms keep increasing when we increase network size.
This is becauseGOS generally consumes more bandwidth for
each file transfer. As the network size increases, more resources
are available forGOS, which accelerates file transfer even
more. However, the amount of available bandwidth for otherk-
path variants is limited by thek-path. Hence, their performance
cannot be improved as much asGOS.

Figure 4 shows the run time of our online algorithms as a
function of request density and network size. AlthoughGOS
takes more time than other algorithms, its run time, less than
one second per request even when request density is 10 req/time
unit in a 100-node network, is still acceptable. When the
network size grows to 500 nodes, the average process time
for each request is still less than 3 seconds in our simulation.

We compared the performance of the periodic batch schedul-
ing algorithmBatch of Section V and ourGOS algorithm in
two environments: 1) single slice scheduling (SSS) [6], each
request has the same value ofSi and in the second environment;
2) multi slice scheduling (MSS), different requests may have
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Fig. 6. Batch andGOS run times vs. request densities in 100 nodes random
networks

different Sis. In both cases,GOS schedules the requests one
by one and in the order in which they arrive whileBatch
schedules jobs whenever a preset numberm of requests has
been accumulated or when a preset time interval (in our case
10 units of time) has elapsed.

Figures 5 gives theSSS andMSS maximum finish time for
GOS andm−Batch scheduling withm = 10, 50, and 100. The
finish time of theBatch schedule has been normalized by the
results ofGOS. Generally, batch scheduling results in smaller
maximum finish times thanGOS. In large random networks,
batch scheduling results in maximum finish times that are about
10-20% less than those obtained byGOS. As expected, the
finish time of batch scheduling reduces as we increasem.

Figures 6 compares the time taken by thebatch and GOS
algorithms to compute the transfer schedules. When the request
density is low,Batch takes 20 times as much time as taken by
GOS. This difference decreases as the density increases and
when the request density is 10 requests/time unit,Batch takes
only about 10-40% more time thanGOS does.

VII. C ONCLUSION

We have developed a greedy online scheduling algorithm,
GOS, that is optimal in the sense that it minimizes the finish
time of the file transfer currently being scheduled. Four variants
of this algorithm,KSP − S, KSP − D, KDP − S, and
KDP −D have been proposed with the objective of reducing
the time required to schedule a file transfer while yielding little
in finish time. A two-step periodic batch scheduling algorithm,
Batch, that employs binary search and linear programming,
also has been developed. This algorithm minimizes the maxi-
mum finish time of any file transfer in a batch of file transfers.
Our experiments show that ourGOS algorithm can generate
schedules with a maximum finish time slightly larger than those
obtained by the periodic batch scheduling algorithmBatch.
However,GOS generally takes significantly less computation
time and its schedules have better mean finish time. Hence,
GOS presents a good balance among maximum finish time,
mean finish time, and computation time. Further reduction in

computation time by sacrificing on maximum finish time and
mean finish time may be obtained using one of the proposed
four GOS variants. Of these,KDP − D works best. Our
current BATCH scheduler minimizes the maximum finish
time but does not explicitly consider the mean finish time. In
the future, we will develop theBATCH algorithms that also
incorporate the mean finish time as the optimization metric.
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