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Abstract The primary goal of the secure socket layer protocol (SSL) is to provide
confidentiality and data integrity between two communicating entities. Since the most
computationally expensive step in the SSL handshake protocol is the server’s RSA
decryption, it is introduced that the proposed secret exchange algorithm can be used
to speed up the SSL session initialization. This paper first points out that the previous
batch method is impractical since it requires multiple certificates. It then proposes a
unique certificate scheme to overcome the problem. The optimization strategy, which
is based on the constrained model considering the user requirements-aware security
ranking, focuses on the optimal result in different public key sizes. It is also intro-
duced that the parameter is optimized when integrating user requirements for Internet
QoS, such as the stability of the system and the tolerable response time. Finally, the
proposed algorithm is evaluated to be practical and efficient through both analysis
and simulation studies.

Keywords Quality of Service (QoS) · SSL handshake · Optimization strategy ·
Security ranking

1 Introduction

The secure socket layer protocol (SSL) protects communications by encrypting mes-
sages with a secret key negotiated in the SSL handshake protocol [1]. How to offer
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some Quality of Service (QoS) that may be satisfied with web users has become a
new issue.

Web-based applications rely on the HTTPS protocol to guarantee security and
privacy in transactions ranging from e-banking, e-commerce, and e-procurement to
those that deal with sensitive data, such as career and identity information [2]. The
SSL protocol allows the server and the client to authenticate each other and to negoti-
ate an encryption algorithm and cryptographic keys before transmitting and receiving
the first byte of data [3]. However, such a protocol needs intensive computational re-
sources due to the cost of public-key operations [4].

In the web context, one of the main factors is the direct consequence of expensive
public-key operations performed by servers as part of each SSL handshake. Since
most SSL-enabled servers use RSA, the burden of performing many costly decryption
operations can be very detrimental to the server performance.

For example, a typical Pentium server (running Linux and Apache) can handle
about 322 HTTP connections per second at full capacity, but only 24 SSL connec-
tions per second; and a Sun 450 (running Solaris and Apache) fell from 500 to 3
connections per second [5]. There are several ways to improve the performance of
the SSL handshake protocol:

1. Hardware: Obviously, a specific circuit can improve the performance. This solu-
tion may not be a good solution for small or medium-sized servers [6].

2. Session Caching: The cache allows subsequent connections to resume an earlier
TLS session, and thus, to reuse the result of an earlier computation. Research has
suggested that, indeed, session caching helps to improve the web server perfor-
mance [1]. However, the cache technology has no help to speed up the session
setup.

3. Software: Many algorithmic approaches for speeding up SSL’s performance on a
web server are presented in the literature [7–13]. They are designed for heavily-
loaded web servers handling many concurrent SSL sessions. However, these
schemes ignore the satisfaction of the user requirements for QoS, such as the sta-
bility of the system and the tolerable response time.

Being aware of the computational imbalance between clients and server in the SSL
handshake protocol, we propose a secret exchange algorithm to overcome the prob-
lem. The starting point of the proposed scheme is a technique due to the batch RSA
decryption [14, 15]. This paper adapts the certificate mechanism so as to provide the
SSL setup with a unique certificate issued by the Certificate Authority (CA). This
paper also proposes the constrained model integrating the user-perceived quality into
secure web server design [16, 17]. This paper also optimizes the batch size by the con-
strained model, which meets the user requirements-aware security ranking focusing
on the optimal result in different public key sizes. In addition, the proposed scheme
uses the approximate analytical solution of the mean response time to optimize the
batch size of the server. It is designed for heavily-loaded web servers handling many
concurrent SSL sessions. Notice that a preliminary version of this paper appeared in
the paper [18].

The rest of the paper is organized as follows: Section 2 describes the secret ex-
change algorithm in the SSL handshake protocol. The proposed constrained model
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of the QoS-aware optimization strategy is presented in Sect. 3. The QoS-aware opti-
mization algorithm is presented in Sect. 4. Section 5 validates the proposed solutions
through both analysis and simulation studies, and Sect. 6 concludes the paper.

2 Secret exchange algorithm in the SSL handshake protocol

The proposed scheme in this paper focuses on the parameter optimization-based tech-
nology, which is a software-only approach for speeding up SSL’s performance on a
web server. The starting point of the proposed scheme is a technique due to using the
batch RSA decryption. Being aware of the computational imbalance between clients
and server in the SSL handshake protocol, we proposed algorithms to overcome the
problem.

The following Algorithms 1 and 2 are secret exchange algorithms of the SSL hand-
shake at the server side and the client side, respectively. When using small public ex-
ponent e1 and e2, it is possible to decrypt two cipher texts for approximately the price
of one [14]. This technology facilitates more favorable load distribution by requiring
the clients to perform more work (as part of encryption) and the server to perform
commensurately less work, thus leading to better SSL throughput at the server.

In the standard SSL protocol, each client encrypts a 48-byte pre-master secret as
the encryption exponent, and the server decrypts the cipher text independently so as
to get the pre-master secret. Algorithm 1 obtains the pre-master secret from multiple
clients and hence, improves the performance significantly.

The parameter b is the size of multi-clients for aggregate decryption. The public
key is made of two integers 〈N,e〉. The value e is called the encryption exponent.
Given b, distinct and pairwise relatively prime public keys e1, . . . , eb, all share a
common modulus N = pq . The N is the product of two large primes p and q . The
security parameter n is the bit length of the public modulus N , and k is the bit length
of the bigger of ei at Steps 1–5 of Algorithm 1. Furthermore, we have b encrypted
messages v1, . . . , vb , and further results v′

1, . . . , v
′
b , one encrypted with each key at

Steps 3–8 of Algorithm 2. An e′
i is defined as each client’s sibling’s exponent. After

we perform Step 10 of Algorithm 1, we call Algorithm 2 and receive the message
including cipher text v1, . . . , vb and v′

1, . . . , v
′
b from each client. At Step 19 of Algo-

rithm 1, quantities subscripted by L or R refer to the corresponding value of the left
or right child of the node, respectively.

At Steps 16–21 of Algorithm 1, we combine the individual encrypted messages vi

to form, at the root of the batch tree, the value v = ∏b
i=1 v

e/ei

i , where e = ∏b
i=1 ei .

At Steps 16–20, the first b/2 values of “Currentnode.ciphertext” are computed by
v′

1, . . . , v
′
b because the left child and the right child of “Currentnode” are leaves. The

number of external nodes is equal to b − 1.
Using the binary tree construction, we are working from the leaves to the root.

At every internal node, each encrypted message vi is placed (as v) in the leaf node
labeled with its corresponding ei . The root node v’s value is percolated up the tree
using the following recursive step, applied at each internal node at Steps 16–21 of
Algorithm 1. EL,ER are the left child and the right child of each product of the
internal node at Step 17 of Algorithm 1.
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Algorithm 1 Secret exchange algorithm at the server side
1: Given b distinct and pairwise relatively prime public keys e1, . . . , eb

2: //all sharing a common modulus N = pq , relatively prime to φ(N) = (p − 1)(q − 1).
3: //n is the bit length of the public modulus N and k is the bit length of the bigger of ei .
4: Construct a full binary tree Td which is called the decryption tree with leaves labeled
5: e1, . . . , eb ;
6: Input: e1, . . . , eb

7: Output: a full binary tree Td , mi 1 ≤ i ≤ b

8: Construct a message including ei and the information e′
i

about sibling’s exponent for
9: each client, where 1 ≤ i ≤ b;

10: call Algorithm 2; upon receiving the message including cipher text vi and v′
i

from each
11: client, where 1 ≤ i ≤ b;
12: //Compute two middle values, exponent and ciphertext, at each
13: //internal node of T _d repeating this computation recursively. The number of external
14: //nodes is equal to b − 1. The computation phase is to generate the product

15: //v = ∏b
i=1 v

e/ei

i
mod N , where e = ∏b

i=1 ei .
16: for(j = 1 to b − 1)do{
17: EL ←leftchild.exponent; ER ←rightchild.exponent; Currentnode.exponent← EL ×

ER ;
18: L ←leftchild.ciphertext; R ←rightchild.ciphertext;
19: If (j ≤ (b/2)) Currentnode.ciphertext← v′

2j−1 × v′
2j

20: else Currentnode.ciphertext← LER × REL ;}
21: v ←rootnode.ciphertext; e ←rootnode.exponent;
22: //The value of v and e is simply the result associated with the root

23: Compute m ← v1/e mod N = ∏b
i=1 v

1/ei

i
mod N ; e ← ∏b

i=1 ei

24: //m is the plaintext of root node of T _d . e is the exponent of root node of T _d .

25: //The next step is to break up the product m to obtain the plaintext mi = v
1/ei

i
with

26: //repeating this computation recursively from the root node.
27: for(i = 1 to b − 1) do{
28: Compute X while ((X = 0 mod EL) and (X = 1 mod ER )==true);
29: XL ← X/EL; XR ← (X − 1)/ER ;
30: mR ← mX/(v

XL

L
· vXR

R
); mL ← m/mR ;}

31: // The values of vL and vR are simply the results associated with the ciphertext of
32: // a node, which stored at Steps 16–20. Here, vL and vR are the ciphertexts of the left

child and the right child of current node.
33: return mi ; 1 ≤ i ≤ b

Algorithm 2 Secret exchange algorithm at the client side
1: Input: ei , e′

i
2: Output: v′

i
, vi

3: Create plaintext mi(0 < mi < N);
4: //upon receiving the message including ei ;
5: Compute vi = m

ei

i
mod N 1 ≤ i ≤ b.

6: //upon receiving the message including e′
i

which is the sibling’s exponent value of ei ;

7: Compute v′
i
= v

e′
i

i
mod N ;

8: Construct message including v′
i
, vi for server.

9: return
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The root node contains v = ∏b
i=1 v

e/ei

i at Step 21 of Algorithm 1. The eth root of

this v is extracted. We store v1/e = ∏b
i=1 v

1/ei

i as m in the root node at Step 23 of
Algorithm 1. The Steps 27–34 are to break up the product m to obtain the plaintext
mi = v

1/ei

i with repeating this computation recursively from the root node.

3 Unique certificate scheme in the SSL handshake protocol

Our unique certificate method is to reuse the message ServerHello in the protocol.
For simplicity, we only show the related processes and the modified information in
the standard SSL handshake protocol (see Fig. 1).

The following procedure is the unique certificate scheme for the SSL handshake
protocol: (1) The clients send a client hello massage, which includes cipherspects to
the server and create random nonce rc , respectively. Here, the cipherspects specify
the bulk data encryption algorithm, the MAC algorithm, and the cryptographic at-
tributes [3]. (2) The server responds with a server hello message that includes server’s
public-key certificate and a random nonce rs . In this improvement, ei and e′

i are actu-
ally a part of ServerHello.random. The server only needs to send unique certificates
to all the clients. (3) The clients choose a secret random 48-byte pre-master secret
m1 and m2 by inputting values m1, m2, rc, rs into hash function f (). It then encrypts
mi with ei , which is different from the server’s public key, and attaches the cipher
text to a client key exchange message that is sent to the server. (4) The server decrypts
the pre-master secret m1 and m2 simultaneously using Algorithm 1, and uses it to
compute the shared master secret s1 and s2, respectively. The client will verify the
certificate as usual, but encrypt the pre-master secret with received ei , instead of the
public exponent in the certificate. Therefore, no extra charge is required, and it is easy

Fig. 1 Unique Certificate Scheme for a partial handshake
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to manage the certificate. On the other hand, since the certificate is used to prove the
owner who knows the factors of the RSA modulus N only, this adaptation does not
undermine the security strength of the SSL protocol.

4 Constrained model of QoS-aware optimization strategy

The optimization strategy, which is based on the constrained model considering the
user requirements-aware security ranking, focuses on the optimal result in different
public key sizes.

Lemma 1 Algorithm 1 can generate the b decryption results in O(log2 b ×
(
∑b

i=1 log2 ei) + log2 N) modular multiplications and O(b) modular divisions.

Proof According to Step 23 of Algorithm 1, m ← v1/e = ∏b
i=1 v

1/ei

i mod N , with

e = ∏b
i=1 ei , the algorithm can get the result in O(log2 N) modular multiplications,

which is equivalent to one RSA decryption.
Using the full binary tree as a guide, working from the leaves to the root, for

constructing the serial number for every exponent of the leaves, the binary length of
the serial number is equal to �log2 b�. In other words, the depth of the leaves is equal
to �log2 b�.

According to Step 27 of Algorithm 1, the algorithm takes the recursive result
from the left child and right child, and the result associated with this node is
mR ← mX/(v

XL

L · v
XR

R ). The computation phase is to break up the product m to

obtain the plaintext mi = v
1/ei

i , which we wish to decrypt simultaneously.
Note that vl and vr have already been computed and stored, as the left and right

branch values of the root, during the tree-based computation of m at Steps 12–22
of Algorithm 1. By definition, X is the unique solution ((X = 0 mod EL) and
(X = 1 mod ER) == true). Note that log2 X < log2 e and XL ← X/EL; XR ←
(X −1)/ER , we can get log2 XL + log2 XR < log2 X < log2 e with e = ∏b

i=1 ei [14].
Because the depth of the leaves is equal to �log2 b�, for every plaintext result

mi = v
1/ei

i , every node contributes at most �log2 b� bits to the appropriate exponents

in the computation of mX , v
XL

L , and v
XR

R recursive result.
Because the binary length of exponent ei is 	log2 ei
, Steps 25–33 of Algorithm 1

can generate the following b results in O(log2 b(
∑b

i=1 log2 ei)) modular multiplica-
tions or O(log2 b log2 e) modular multiplications with e = ∏b

i=1 ei .

To solve for mR ← mX/(v
XL

L · vXR

R ), we divide v
XL

L · vXR

R by mX , the number of
modular divisions required is O(b).

At all, Algorithm 1 can generate the b results:
m

1/e1
1 (modN), m

1/e2
2 (mod N), . . . ,m

1/eb

b (mod N)

in O(log2 b(
∑b

i=1 log2 ei) + log2 N) modular multiplications and O(b) modular
divisions.

Then, Lemma 1 is proved. �
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Theorem 1 Choosing the batch size b, which satisfies 2 ≤ b ≤ n

(log2 n)2 , and choosing

the ei exponents to be polynomial in n, we get O((log2 n)2 + n) modular multipli-
cations and O( n

(log2 n)2 ) modular divisions. Here, n is defined as the binary length of

modulus N .

Proof We can easily get 	log2 N = n
, where n is defined as the binary length of
modulus N .

We can easily get n

(log2 n)2 < n, because n is a positive number and n > 2.

Also, because the function log2 x increases with x, we can get log2
n

(log2 n)2 <

log2 n. Because of choosing the batch size b, which satisfies 2 ≤ b ≤ n

(log2 n)2 , we

can derive log2 b ≤ log2
n

(log2 n)2 and log2 b(
∑b

i=1 log2 ei) + log2 N ≤ log2
n

(log2 n)2

(
∑b

i=1 log2 ei + log2 N).
Due to Lemma 1, where

∑b
i=1 log2 ei = log2 e and log2 N = n, it can be described

as:
log2

n

(log2 n)2 (
∑b

i=1 log2 ei + log2 N) < log2 e(log2 n) + n.

By choosing the ei exponents to be polynomial in n, thus, e < n, the following
equation is derived as:

log2 e(log2 n) + n < (log2 n)2 + n.
Then, Theorem 1 is proved. �

The constrained model considering the user requirements-aware security ranking
is proposed based on Theorem 1. We optimize the batch size b for a specific mod-
ulus size, and obtain better results for smaller batches if the modulus is relatively
small. According to Theorem 1, the batch size is optimized as log2

n

(log2 n)2 in this

constrained model.

5 QoS-aware optimization algorithm

Let the decryption time of Algorithm 1 in the SSL handshake time be Tb .
The performance analysis of Algorithm 1 can be divided as multiplication at Steps

16–20, exponentiation at Steps 21–24, and division computation phases at Steps 27–
33.

We can estimate the cost of e = ∏b
i=1 ei is (b−1)n2. The cost of computing 1/e is

(b−1)n2. The main computation cost is exponentiation cost (3k −2)n2 +o(n2) with
the exponent ei , where the bit length of ei is k. The whole cost in the multiplication
phase is b((3k/2) + 3) + o(n2).

In the exponentiation computation phase, Steps 21–24 cost 3n3 + n2 + o(n2).
In the division phase, Step 31 mainly includes one exponentiation cost b(3bk −

2)n2 + o(n2) and two exponentiation cost (3(b − 1)k − 2)n2 + o(n2). Step 31 also
includes one inversion of n-bit integers. Inversion of n-bit integers is equivalent to 20
modular multiplications. The cost of modular multiplication of two n-bit integers can
be estimated as 2n2 + 2n [15, 18].
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The whole cost in Algorithm 1 is estimated as 3n3 + n2(44b + 3b3 − 1) + o(n2).
As a result, the decryption time of Algorithm 1 Tb is estimated as:

(
3n3 + n2(44b + 3b3 − 1)

b(3n3 + n2)

)

bTrsa =
(

3n + (44b + 3b3k − 1)

b(3n + 1)

)

bTrsa (1)

Since Tb is the majority of the service time, the batching service time of the server
τ is Tb roughly.

Lemma 2 To satisfy the client’s requirement for the stability of the system, the de-
cryption time in SSL handshake Tb is less than the batch size multiplied by the mean
Poisson distributed arrival time interval when the time in the Batch Queue Model
M/D/1, thus:

τ ≈ Tb < b/λ (2)

Proof Let Xi (i = 1,2 . . . . . .) be the arrival time interval of two consecutive requests,
and Y be the time interval of b consecutive requests. Batch Queue Model M/D/1 has
been described in our previous work [18].

If the system achieves the stability when the time t → ∞ for the M/D/1 queue
model, Tb < E(Y ), where E(Y) is the expected value of Y . Because Xi is a random
variable with independent identical distribution, the average arrival time interval of b

consecutive requests is:

E(Y) = E

(
b∑

i=1

Xi

)

= bE(Xi) = b/λ (3)

Then, Lemma 2 is proved. �

Lemma 3 In the Batch Queue Model M/D/1, to satisfy the client’s requirement for
the stability of the system, thus, Tq < b/2λ.

Proof In the Batch Queue Model M/D/1, the value of Tq is derived following the
equation:

Tq =
(

1 − e−λτ

1 − e−λτ + e−1.5λτ

)

Tr =
(

eλτ − 1

e−λτ − 1 + e−0.5λτ

)

Tr

=
(

1

1 + 1
(eλτ −1)e0.5λτ

)

Tr, (4)

where Tr = 0.5τ ; due to Lemma 2, it can be easily described as:

Tq =
(

0.5τ

1 + 1
(eλτ −1)e0.5λτ

)

<

(
1

1 + 1
(eb−1)e0.5b

)( b

2λ

)
(5)
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It can be easily described as when b ≤ 2,

0.944 ≈ 1 + 1

(e2 − 1)e0.5∗2
≤ 1 + 1

(eb − 1)e0.5b
< 1. (6)

Then, the value bound of the upper limit of Tq is estimated as [0.944b/2λ,b/2λ].
Then, Lemma 3 is proved. �

Tolerable response time (TRT) is defined as the delay time a client can tolerate
between a request for a secure web page and receiving the page [16–19]. The real
response time (RRT) is the interval between the receipt of the end of transmission of
an SSL-based inquiry message and the beginning of the transmission of a response
message to the station originating the SSL handshake.

Theorem 2 In the Batch Queue Model M/D/1, to satisfy the client’s requirement for
tolerable response time, RRT < T RT , thus, ⇒ b < 0.4(λ × T RT + 1).

Proof The mean real response time (RRT ) is denoted as the sum of Tq , Tc, and the
Tb .

In the Batch Queue Model M/D/1, the value bound of the upper limit of Tq is
estimated as b/2λ derived from Lemma 3 (refer to (6)).

The value bound of the upper limit of Tb is estimated as b/λ derived from
Lemma 2 (refer to (2)).

Tc is the mean time of waiting for the other client in the same batching, which is
easily derived that the max value of Tc is (b − 1/λ).

On the other hand, it is supposed that the solution of b should satisfy the ap-
proximate bound, which is derived from Lemma 2, Lemma 3, and described as the
following equation:

RRT = Tq + Tc + Tb <
b

2λ
+ (b − 1)

λ
+ b

λ
< T RT ⇒ b < 0.4(λ × T RT + 1) (7)

Then, Theorem 2 is proved. �

Combining the user requirements for QoS, such as security ranking, the stability
of the system, and tolerable response time, these strategies aim to optimize the para-
meter b, which is the size of multi-clients for aggregate decryption in Algorithm 1.
QoS-aware optimization algorithm satisfies these strategies in this paper.

According to Theorem 2, the initial value of b is estimated at Step 4 of Algorithm 3
with T RT and λ as input values. According to Theorem 1, b is estimated at Step 5
with PKS as input value. If the condition of the optimal batch cannot be satisfied,
the algorithm has the ability to fall back on conventional_RSA_decryption(), which
is the decryption with plain RSA, which is described at Step 9 and Step 18. The
computation of Tb is performed using (1) at Step 12. Step 11 sorts b to satisfy the
max solution of Tb < b/λ according to Lemma 2 in the descending order from the
upper limit computing at Step 7 to two. The computation of Tb_real is performed by
executing Algorithm 1.
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Algorithm 3 QoS-aware optimization algorithm
1: Input: λ, T RT , PKS

2: Output: Optimal_b, Tb , Tb_real, Speedup, Speedup_real

3: // Compute the initial value of b

4: initial_b ← ∫
(0.4(λ × T RT + 1)); (refer to Eq. (7))

5: n ← PKS; estimate_b ← � n
(log2 n)2 �

6: if (estimate_b < initial_b)
7: then{initial_b ← estimate_b; Successfind ← false;}
8: if (initial_b <= 1)
9: then{do conventional_RSA_decryption(); return;}

10: b ← initial_b;
11: while (b! = 1) do{

12: Tb = (
3n+(44b+3b3k−1)

b(3n+1)
)bTrsa (refer to Eq. (1))

13: if (Tb ≤ b/λ)
14: then{Optimal_b ← b; Successfind ← true; break; }
15: elseif(Tb > b/λ)
16: then b ← b − 1; }
17: if (initial_b <= 1)
18: then {do conventional_RSA_decryption(); return; }
19: call Algorithm 1; Compute Tb_ real
20: Speedup ← b(3n+1)

3n+(44b+3b3k−1)
; (refer to Eq. (1))

21: Speedup_real ← bTrsa/Tb_real;
22: return;

6 Validation of analytical models and performance evaluation study

6.1 Validation of analytical models

The analytical results and simulation results are executed on a machine with an Intel
Pentium IV processor clocked at 3.20 GHz and 1 GB RAM. Specifically, this paper
performs the simulation of the SSL handshake secret exchange algorithm with very
small public exponents, namely, e = 3,5,7,11,13,17, etc. It is assumed that the
value (T RT ) is equal to 1 second and 8 seconds as examples both in the analytical
model and simulation. It is assumed that the values of the public key sizes (PKS)
are equal to 512, 1024, and 2048 bit lengths as examples both in the analytical model
and simulation.

Table 1 validates the result of Optimal_b, described by the constrained model of
the QoS-aware optimization strategy. It is assumed that T RT is equal to 1 s in the
analytical model and simulation. Due to small arrival rates, b is almost uniformly cal-
culated by our analytical model. Since arrival rates are small (i.e., λ < 2), there is very
little opportunity to batch, and therefore, the solution of b is relatively small. Even at
a higher arrival rate, the analytical result and simulation result are very close to each
other. The solution of the optimal batch size is increased with λ, both in the analytical
model and simulation when λ < 30 (i.e., PKS = 1024 bits), approximately. Other-
wise, RRT is not increased, obviously. The solution of b is decreased with λ when
λ > 60 (i.e., PKS = 1024 bits), approximately. The solution of b cannot satisfy the
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Table 1 Optimal batch size in
constrained model validation λ/PKS Optimal_b

Analytical model Simulation results

512 1024 2048 512 1024 2048

1 – – – – – –

2 2 2 2 2 2 2

3 2 2 2 2 2 2

4 3 3 3 3 3 3

5 4 4 4 4 4 4

10 8 8 6 8 8 6

20 8 10 6 8 10 6

30 8 10 6 8 10 6

40 8 10 – 8 10 –

50 8 10 – 8 10 –

60 8 6 – 8 6 –

70 8 6 – 8 6 –

80 8 6 – 8 6 –

90 6 5 – 6 5 –

100 6 5 – 6 5 –

user requirements for the stability of the system; in other words, the solution of b

cannot satisfy Tb ≤ b/λ according to Lemma 3 when λ > 37.5, approximately (i.e.,
PKS = 2048 bits).

But, with a non-batching system, it becomes unstable when λ > 1/Trsa =
1/0.16 = 6.25 for 2048-bit keys due to the fact that a non-batching system becomes
unstable when λ > τ .

6.2 Performance evaluation

The simulation result of the RSA decryption time Trsa with a larger public exponent,
namely e = 65537, is about 16, 32, and 130 ms with public modulus N that is 512
bits in length, 1024 bits in length, and 2048 bits in length, respectively, and is tested
using reiterative results.

The multi-factor RSA [12] can expect a theoretical speedup of around 2.25 with
n = pqr and 3.38 for n = p2q . Experiments show the real speedup to be around 1.73
and 2.3, respectively. Rebalanced RSA offers a theoretical speedup of 3.6, but the
actual speedup is 3.2 for 1024-bit keys. Specifically, d is chosen to be close to n such
that both d mod (p − 1) and d mod (q − 1) are small integers [12]. The resulting
public exponent e also becomes close to n, which is much larger than typical values
(i.e., e = 3,17, or 65537). It is in fact so large that Microsoft Internet Explorer (IE)
cannot accept it; SB (Shacham and Boneh) scheme [10] offers a speedup factor of
2.5 for 1024-bit keys. The downside is obvious because CAs charge per certificate
regardless of whether the certificate is for the same site or not. It also ignores the
satisfaction of the user requirements for QoS, where the batch size is equal to four.

Our algorithm offers a speedup factor of 2.76 (Table 2) for a 1024-bit key, which is
used in the SSL handshake protocol frequently. Typically, b is equal to 6 for optimal
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Table 2 Speedup of decryption
time validation b/PKS Speedup of decryption time

Speedup Speedup_real

512 1024 2048 512 1024 2048

2 1.81 1.90 1.95 1.78 1.83 1.90

4 3.68 3.05 3.42 3.21 2.93 3.39

6 2.10 2.80 3.82 2.01 2.76 3.80

8 1.28 2.18 3.47 1.14 2.09 3.39

Fig. 2 Mean response time validation over batch size

performance when 60 < λ < 80, approximately (Table 1). Obviously, our scheme
not only achieves a better speedup factor, but also overcomes these disadvantages of
the previous schemes. All the methods are backward compatible with standard RSA.
Also, all speedup methods discussed are based on 1024-bit RSA and are relative to
the cost of performing plain RSA decryptions.

It is assumed that T RT is equal to 8 seconds in Fig. 2. Figure 2 shows that RRT

is almost linear when λ is relatively small. This is due to the fact that RRT = Tq +
Tc + Tb (refer to (7)). When λ is relatively small, the main contribution to RRT is
made by Tc (i.e., λ = 10, PKS = 1024 bits). It is evident that the time Tc is increased
linearly with b. Tb is also increased with b. Therefore, RRT is also increased with b

when λ is relatively large (i.e., λ = 80, PKS = 1024 bits).
Figure 3 illustrates the analytical mean response time RRT, comparing our simula-

tion results and that of the SB (Shacham and Boneh) scheme (i.e. T RT = 1 PKS =
1024 bits). When λ is approximately equal to 30, RRT reaches its maximum, which
is equal to 828 ms, approximately, whereas the value is less than 1 second and de-
creased with λ when using optimal batch size b (see Fig. 3). In the SB scheme, RRT

behaves poorly, especially when λ does not exceed 10 requests/sec (see Fig. 3). When
λ is larger than 10 and less than 100, approximately, the performance of our scheme
and the SB scheme are all satisfied with the clients’ requirement of tolerable response
time. However, it is shown that the solutions of b (Table 1) are larger than four. That
means the optimal scheme can submit more decryption requests to decryption device
than the SB scheme. The analytical and simulation results of RRT shows that our
scheme behaves nicely.
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Fig. 3 Mean response time
validation over client’s tolerable
response time

Fig. 4 Mean response time speed against non-batching scheme

A non-batching system becomes unstable when λ > 1/Trsa = 1/0.032 = 31.25
for 1024-bit keys. When the non-batching system is stable, the mean response time
T ′ can be estimated as (8) [18]. The mean service time τ ′ is deterministic in the non-
batching in the M/D/1 queue model. Since Trsa is the majority of the service time,
the mean service time τ ′ of the server is roughly Trsa :

T ′ = τ ′ + τ ′
(

τ ′λ
2(1 − τ ′λ)

≈ Trsa + Trsa

(
Trsaλ

2(1 − Trsaλ)

))

(8)

Figure 4 (T RT = 8) illustrates the comparison of the mean response time of our
scheme with non-batching scheme. The vertical axis in each graph is the mean re-
sponse time over the batch size divided by the mean response time with non-batching
scheme. The optimal batch size in our scheme is equal to 10 when λ = 30. The
speedup of the mean response time is an optimal one that is equal to 6.69, approxi-
mately. The optimal batch size in our scheme is equal to 2 when λ = 2. The speedup
of the mean response time is an optimal one that is equal to 1.94, approximately. It
is clear that with the optimal batch size, our scheme has significant advantages while
costing less.
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7 Conclusion

This paper proposes the secret exchange algorithm in the SSL handshake protocol.
This paper also proposes a method of assigning the set of public exponents ei only
using the unique certificate in the SSL handshake protocol. Combining the user re-
quirements for Quality of Service (QoS), such as security ranking, the stability of
the system, and the tolerable response time, these strategies aim to optimize the pa-
rameter b, which is the size of multi-clients for aggregate decryption. The parameter
optimization-based SSL handshake is a viable option for secure communications.
Currently, we mainly investigated this work based on the Internet with a high speed
client/server computing paradigm. This paper also proposes an optimization strategy
based on the constrained model considering the user requirements-aware security
ranking. Other optimization strategies are based on the constrained model consider-
ing the users’ requirements for the stability of the system and the client’s requirement
for the tolerable time. These optimal strategies focus on the optimal result in differ-
ent public key sizes. Combining the users’ requirements for Quality of Service (QoS),
there are many factors which should be considered in real web application develop-
ment. The evaluation criterion of web service’s performance is not only restricted to
the response time and the throughput when the server handles SSL requests. In our
future work, we will consider establishing more evaluation criterion of web service’s
performance and propose optimal strategies combing more users’ requirements for
Quality of Service.
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