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Abstract Recent technological advances in commodity server architectures, with
multiple multi-core CPUs, integrated memory controllers, high-speed interconnects,
and enhanced network interface cards, provide substantial computational capacity,
and thus an attractive platform for packet forwarding. However, to exploit this avail-
able capacity, we need a suitable software platform that allows effective parallel
packet processing and resource management. In this paper, we at first introduce an
improved forwarding architecture for software routers that enhances parallelism by
exploiting hardware classification and multi-queue support, already available in re-
cent commodity network interface cards. After evaluating the original scheduling al-
gorithm of the widely-used Click modular router, we propose solutions for extending
this scheduler for improved fairness, throughput, and more precise resource manage-
ment. To illustrate the potential benefits of our proposal, we implement and evalu-
ate a few key elements of our overall design. Finally, we discuss how our improved
forwarding architecture and resource management might be applied in virtualized
software routers.
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1 Introduction

Recent advances in server technology promise significant speedups to applications
amenable to parallelization. Router workloads appear ideally suited to exploit these
advances, which has led to a renewed interest in the applicability of software routers.
Software routers offer several advantages, like a familiar programming environment
and ease of extensibility, which offers the potential to serve as a single platform onto
which one can consolidate many network functions typically implemented by vari-
ous middleboxes. Examples are the single server-based routers running open-source
router software as offered by Vyatta [1]. which have even been touted as cheaper al-
ternatives to other commercial routers. However, the limitation of software routers
has always been performance. Which is why the possibility of leveraging recent
server advances to further the reach of software routers has been of high interest
[2–5].

The recent trajectory of server advances has been of growing the available resource
capacity through increased parallelism. Multi-core CPUs increase the available CPU
resources; multiple memory controllers integrated in the CPU sockets increase the
available memory capacity; multiple I/O links and PCIe buses do the same for I/O
and—importantly, high-speed point-to-point interconnects offer high-capacity access
between components.

However, precisely because the underlying hardware is parallel, achieving high
performance will rely greatly on our ability to distribute packet-processing well
across the available resources (not unlike routing across a network—the more al-
ternate routes, the more a routing algorithm has to work to make sure the network
capacity is well exploited). Traditionally, this is the job of the scheduler to decide
which set of tasks are assigned to which cores and when (if at all) tasks must be
moved between cores.

One of the major points of software routers is that they can simultaneously sup-
port very different forms of packet processing, with different resource characteris-
tics, on a single hardware architecture. For example, one can imagine having multi-
ple customers—for one we are performing encryption, and for the other deep packet
inspection. Since certain operations are more expensive (in terms of the server re-
sources they consume) than others we want to make sure that each customer receives
a fair access to the server resources. In general, this requires proper abstractions for
flexible and efficient flow differentiation as well as resource allocation. While we
also need scheduling techniques that make good use of the resources so as to achieve
high performance, and can also support various scenarios of fair resource sharing and
isolation.

In this paper, we observe that neither traditional forwarding architectures nor tra-
ditional schedulers are ideally suited to our task, for the following reasons: (1) Tra-
ditional forwarding architectures are not capable of taking advantage of recent server
advances (e.g. multiple I/O links, hardware classification, and multi-queueing in the
network interface cards), and thus are limited in exploiting the highest performance
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achievable. (2) Schedulers are CPU centric. This can be problematic since one of the
distinguishing features of a packet-processing workload is that it stresses more than
just the CPU. This becomes even more likely as the number of cores increases re-
sulting in bottleneck potentially being any of the CPU, the memory, or the I/O, and
hence being “fair” in terms of CPU may not mean an adequate solution. (3) Sched-
ulers fail to take into account the heterogeneity in workloads. (4) Schedulers also fail
to consider the basic question of whether we can accurately measure the resource
consumption for different packets/flows in a dynamically changing workload. We
cannot hope to allocate resources appropriately if we cannot first accurately account
for their consumption.

To this aim, we approach the limitations from two directions. On the one hand, we
propose an improved forwarding architecture that outperforms, in terms of through-
put and latency, the traditional way of packet forwarding, while it also provides ad-
ditional advantages for resource management and scheduling. We then focus on un-
derstanding the limitations of traditional schedulers and on quantifying their impact,
thus identifying the requirements for an improved scheduler design.

The paper is organized into the following sections. In Sect. 2, we discuss the lim-
itations of traditional forwarding architectures and propose an architecture that over-
comes these limitations. Section 3 focuses on the resource management, while Sect. 4
describes how the proposed forwarding architecture and resource management exten-
sions might be applied in virtualized software routers. Finally, Sect. 5 concludes the
paper.

2 Forwarding architectures

In this section, at first, we analyze the shortcomings of the traditional forwarding
architecture widely used in commodity software routers and propose an improved
forwarding architecture that outperforms, in terms of throughput and latency, this tra-
ditional way of packet forwarding, while it also provides additional advantages for re-
source management. Our proposed architecture builds on the observation that recent
network interface cards (NICs) [6] provide multiple receive and transmit queues to
support server virtualization, but these multi-queue NICs can also be used to achieve
better parallelism, and hence improve resource management and scheduling in the
forwarding engine of software routers.

Before going into the details of the forwarding architectures, we briefly overview
the server architecture and software environment we used to implement our exten-
sions and carry out our measurements.

2.1 Server architecture

The hardware environment we use for our study is a dual-socket 2.8 GHz Intel Ne-
halem server [7], since it implements the most recent advances in server architec-
ture. Figure 1 illustrates the high-level architecture of our server. Multiple process-
ing cores1 are arranged in “sockets”; our server has two sockets with four cores per

1We use the terms “CPU,” “core” and “processor” interchangeably.
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Fig. 1 Server architecture based on point-to-point inter-socket links and integrated memory controllers

socket. All cores in a socket share the same 8 MB L3 cache, while every core also
has on its own a 256 KB L2 and a 64 KB L1 cache. A memory controller is in-
tegrated within each socket and connects to a portion of the overall memory space
via a memory bus. The use of multiple sockets with integrated memory controllers
means that memory accesses are non-uniform (NUMA). Dedicated high-speed point-
to-point links serve to connect the two sockets directly, as well as to connect each
socket to the I/O hub. Finally, the I/O hub connects to the NICs via a set of PCIe
buses. Our server has 2 PCIe1.1 ×8 slots which we populate with 2 NICs, each hold-
ing two 10 Gbps ports [6]. These network cards can provide us upto 32 transmit
(Tx) and 64 receive (Rx) queues, while they support both the Receive Side Scaling
(RSS) [8] as well as the Virtual Machine Device queue (VMDq) [9] mechanisms for
distributing the arriving packets into the desired Rx queues.

These servers represent the next-generation replacement for the widely deployed
Xeon servers, i.e., these servers conform to the informal notion of a “commodity”
server.

Our server runs Linux 2.6.24.7 with the Click Modular Router [10] in polling
mode—i.e., the CPUs poll for incoming packets rather than being interrupted. We
use Click to perform the packet forwarding and processing functions of our router
as it has been shown to offer a good tradeoff between ease of programming and
performance.

Click is a modular software architecture that offers a flexible approach for imple-
menting software routers on Linux and FreeBSD. We use Click only in the Linux
kernel-mode due to the need for the best performance we can get from our archi-
tecture. From a high-level perspective the Click implementation consists of packet
processing elements and packet queues, connected in a data-flow like configuration.
Elements include the code for performing a packet processing function. A number
of elements can be connected in any structure and order needed. Typically, a config-
uration will have a set of input, forwarding, and output elements, each separated by
packet queues.
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Fig. 2 Experimental configuration

In addition, Click supports multi-threading inside the Linux kernel [11], that is,
different elements in the same configuration can be scheduled on separate cores, pro-
viding an excellent platform for developing and experimenting with our forwarding
and resource management methods. To further justify our choice of Click over native
Linux, we refer to the results reported in [12] that show how limited the standard
Linux kernel is, as far as its ability of effectively parallelizing the packet forwarding
process, and then of exploiting the overall capacity of multi-core systems.

Figure 2 illustrates the topology of our experimental configuration. In our experi-
ments, we used two servers, one acted as traffic generator while the other as the actual
router. With regard to the generated traffic, we use a synthetic workload of min-sized
(64 B) packets as it stresses the system the most.

For performance measurements, we instrument our server with a proprietary per-
formance tool similar to Intel VTune [13] and somewhat to Oprofile [14].

2.2 Traditional forwarding architecture

Figure 3 illustrates the packet forwarding configuration used in traditional software
routers with single-queued NICs [15]. In this configuration, a separate input process
(INx ) and output process (OUTx ) is needed to move the packets between the Rx and
Tx rings and the packet processing part (PPx ) of the software. Besides polling the
packets in, the input process also classifies the packets and determines to which flows
the packets belong to, and places them into the appropriate down-stream queue where
the packet waits to be processed by the packet processing and forwarding function(s).

After a packet gets scheduled to be processed by the next “stage” (i.e., PPx ),
which in the simplest case includes manipulating the TTL and checksum field of the
IP header and modifying the link-level header, it gets enqueued into the second down-
stream queue where it again waits until all the packets in front of it are removed by
the output process, and the output process gets scheduled to dequeue the given packet
and move it to the output queue of the card.

The disadvantages of this configuration can easily be spotted: (1) to forward a
packet it needs to be processed by three separate software sections, thus it waits
three times to be scheduled, resulting in high latency; (2) besides high latency, the
throughput is also going to be unavoidably below what might be achieved by the given
hardware architecture: on the one hand, because scheduling and context-switching
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Fig. 3 Traditional software routers’ forwarding architecture

of the three different processes (input, packet processing/forwarding, and output) are
introducing extra cycles needed to forward a packet, while on the other hand for load-
balancing purposes the three different processes handling a packet might be executed
on different cores, and as a consequence the packets have to “switch cores” either
via the shared last level cache (L3 in our architecture) or even worse, via the main
memory; (3) in the case of flow-based resource management, as classification of the
packets only happens after a packet has gone through the expensive input operations,
and the input process has no control over which flow’s packet to poll in next, it is
practically impossible to guarantee a flow-based service, while the configuration is
also exposed to DoS attacks; (4) resources need to be allocated very carefully to
the schedulable processes, in order to avoid under-utilization by allocating resources
in an unbalanced way to the processes, resulting in unnecessarily high packet loss.
For example, allocating too many resources to the input processes results in a high
number of packets which pile up and eventually are dropped from the queues down-
stream of the input processes; (5) last but not least, contention over the input and
output ports occurs when separate cores want to access the same port at the same
time.

2.3 Proposed forwarding architecture

A packet-processing workload involves moving lots of packets from input to out-
put ports besides also undertaking different packet processing functions required.
The question is how should we distribute this workload among the available cores to
make optimum use of our multi-core architecture. With this aim, the three main objec-
tives of our proposed architecture are basically: (1) to entirely bind all the operations
needed to forward a packet to a single CPU core; (2) to achieve better parallelism
in the execution; (3) and to create a configuration that allows us to more accurately
measure the cost of forwarding and thus to more easily and accurately distribute the
computational load among all the resources in the system. We discuss the first two
objectives in more detail in this section, while the third one in Sect. 3.
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Fig. 4 Proposed software router forwarding architecture

We propose two broad changes to face the previously described challenges and
to overcome the drawbacks of traditional forwarding architectures. First, we extend
the Click architecture to leverage the multiple hardware queues available on mod-
ern NICs. For this, we developed a lock-free device driver for 10 Gbps multi-queue
NICs and extended the Click modular router with multi-queue support both on the
input (PollDevice) and output (ToDevice) side. Our multi-queued Click extension al-
lows us to bind our extended polling and sending elements to a particular HW queue
(as opposed to a particular port). As shown in [16], the use of multiple Rx and Tx
queues and how the forwarding paths are distributed across the cores is key to im-
prove both the throughput as well as the latency of our software router, while it also
helps to perform more accurate resource management, as it will be demonstrated in
the remainder of the paper. The second change is that we extended the ToDevice
element so that it can receive packets from an up-stream Click element without the
need of an internal packet queue in the forwarding configuration and without the need
of scheduling it separately, further simplifying the complexity of the forwarding ar-
chitecture as well as the scheduling computations (i.e., we extended the ToDevice
element with a push input and took care that the batching of packets still works in the
extended version, also).

Figure 4 shows our proposed forwarding architecture we created by using our ex-
tended Click elements. In this configuration, we have k input and k output queues,
where k represents the number of CPU cores in the system (4 in the example in
Fig. 4), or in a flow-based scenario k might represent the number of separate packet
flow classes the router provides service for. When packets arrive on a network card,
some of their Ethernet and/or IP header fields are looked up and a hash function de-
cides into which queue they are placed. In the most widely-used case (i.e., Receive
Side Scaling, RSS [8]), the packets are distributed in the available input queues based
on a hash function, which function also ensures that packets belonging to the same
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Fig. 5 Examples of basic packet processing functionalities

flow end up in the same input queue, thus avoiding packet reordering within a flow.
In addition, packets can also be placed in the queues based on specific values of some
header fields, thus providing a flow-based separation of the packets and supporting
distinguished (QoS) packet processing. For example, by using VMDq [9] the packets
can be classified by their destination MAC address, and a recently released com-
modity Ethernet Controller chip [17] supports Rx queue assignment based, among
others, on L2 Ethertype, L3/L4 5-tuple or even TCP SYN bit fields, and also makes
it possible to filter on any 2-byte tuple in the first 64 bytes of the packet.

To forward a packet at the front of a given input queue the multi-queue PollDevice
element (i.e., the IN element in Fig. 4) needs to be scheduled at first. As a conse-
quence, this input element polls the packet in from the queue and pushes it down
for processing to the subsequent packet processing elements (represented by the PPx

rectangle in Fig. 4). After the packet has been processed by these elements, it gets fi-
nally pushed to our modified multi-queue ToDevice element, which moves the packet
to the associated HW queue’s Tx ring, from where the packet is DMAed directly to
this hardware queue on the NIC without the interaction of the CPU, before finally
transmitted out on the wire. In this configuration we need to only schedule every
packet once (via the IN element) and after that the packets are forwarded in one step
regardless of which output port they are routed to (the arrows among the IN, PP, and
OUT elements represent simple function calls). This has a number of advantages that
we discuss in parallel with the evaluation of the architecture in Sect. 2.4.

In Fig. 5, we show two practical examples of what the packet processing part
(PPx ) of the forwarding path might consist of in the case of IPsec encryption and IP
routing.

2.4 Evaluation

In order to illustrate the importance and advantages of our forwarding architecture,
we created some simple experiments shown in Figs. 6, 7, 8, and 9. In all of these ex-
periments, we performed only minimal forwarding, that is, traffic arriving at port i is
directly forwarded to a pre-determined port j—there is no routing-table lookup nor
any other form of packet processing. This minimal forwarding configuration is impor-
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Fig. 6 Effect of packets
switching cores VS they are
processed all the way by the
same core

Fig. 7 2-phase VS 1-phase
forwarding mechanism

tant, because it only uses the minimal subset of operations that any packet-processing
application incurs, and because there is no additional processing, the difference in for-
warding rates of the different experiments clearly represent the impact of the changes
we have applied to the forwarding paths. (Note, that we have labeled every element
in Figs. 6, 7, 8, and 9 with the identity of the core processing that element.)

In [16], we have demonstrated how the input and output processing parts of the
forwarding paths should be allocated to cores, and how hardware multi-queueing
should be exploited for improved performance and parallelism. For completeness,
we summarize and expand on these principles here.

With the experiments shown in Fig. 6, we demonstrate the significant performance
loss that occurs when multiple CPU cores are involved in the forwarding of the pack-
ets. In both scenarios (A and B), we had two forwarding paths, but in scenario A a
separate core is polling the packets from the input port than the one that is pushing
them out to the output port.
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Fig. 8 Advantage of multiple
transmit (Tx) queues

In scenario A, we ran two experiments, in the first case (A1) the two cores were
residing on two separate sockets, thus not sharing any common cache, while in the
second case (A2) they were on the same socket sharing the same L3 cache. In sce-
nario B , we allocated the cores such that the same core is doing all the work for one
forwarding path, while the second core for the other forwarding path, thus keeping
the packets in the same L1 cache. As the results on the bar-graph show, the through-
put is very low when the packets have to cross cores via the main memory (A1), it
increases to approximately twice as high when packets cross via the L3 cache (A2),
while it more than triples when the packets are forwarded exclusively by a single
core (B).

With the experiments in Fig. 7, we demonstrate the performance gain that comes
from using our 1-phase forwarding mechanism (experiment B) as opposed to the
traditional 2-phase mechanism (experiment A). There are two factors that contribute
to the increased performance. On the one hand, we have to schedule every packet only
once instead of twice, while on the other, packets do not have to be enqueued into and
then dequeued from an internal software queue. Both of these factors also contribute
to a lower latency, which unfortunately we are not able to measure accurately due to
the lack of an accurate latency measuring device.2

The experiment in Fig. 7 showed the performance improvement gained by enforc-
ing packets to stay on the same core and by using the proposed 1-phase forwarding
mechanism. However, this configuration seems unrealistic in the sense that every for-
warding path has only one output port where its packets can leave the router. To
overcome this, we have to make sure that every core has parallel access to every out-
put port, which can simply be achieved by using multiple output queues on every
port. More precisely, we have to allocate k queues on every output port, where k

represents the number of cores in the system. The k queues are needed to avoid con-

2With Click, we were able to measure the average time a packet spends in the internal queue under high
load, which is approx. 8600 cycles (3 µs), but we could not measure the latency gain of reducing the
scheduling iterations from two to one per packet.
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Fig. 9 Advantage of multiple
receive (Rx) queues

tention among different cores accessing the same output port, and to make sure that
whichever core has polled a packet in is able to push it out without the need of an
internal queue and a second scheduling phase. In Fig. 8, we show how important it is
to have multiple output queues in order to avoid contention and to be able to keep the
packets on the same core for all the time. As the bar-graph shows, the performance
improvement is well above 100%.

As just illustrated, having multiple output queues helps to keep packets on the
same core and to avoid output port contention, but the input ports are still unshared,
which can lead to load-balancing problems. For example, some cores might be under-
utilized while others might be overloaded due to unbalanced arrival traffic. In addi-
tion, if we have more cores than ports the packet processing has to be pipelined to
exploit all the available cores, like in Fig. 9(A), which can result in core switching
and a difficult resource allocation problem. To overcome these problems, we also
need multiple input queues. By allocating k queues on every input port we can make
sure that every core has parallel access to every input port, and thus it significantly
simplifies the resource management. The results in Fig. 9 demonstrate how impor-
tant multiple input queues are for high-performance packet forwarding. That is, the
throughput, in terms of packet rate, more than doubles in our simple configuration,
due to the fact that the load of forwarding the packets can more efficiently be dis-
tributed among the available cores, and packets do not have to cross cores; they are
processed entirely by the same core. This also enables us to use our modified output
element, further reducing the overhead of packet forwarding in software.

2.5 Dealing with overloaded Tx queues

As demonstrated in this section, our proposed forwarding architecture enables full
parallelization of the resources, while it also improves performance by simplifying
the basic structure of the forwarding paths, made possible by hardware multi-queues.
However, the architecture in this form, as a consequence of the modified output ele-
ment, is not equipped with the ability to deal with overloaded output ports. That is,
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in the case a Tx queue on the network interface card is full, we cannot push any more
packets to it, but because we have the packet already polled out from the Rx queue
of the incoming interface, we cannot use that buffer to store the packet until the Tx
queue gets, at least partially, emptied. The only thing we can do in such a case, is to
throw the packet away (i.e., free its socket buffer in the memory). To overcome this
problem, we propose to integrate an auxiliary packet queue into the output element
and only enqueue packets in it which could not be moved to the hardware Tx queue
(i.e., to the queue’s Tx ring, from where the packets are going to be DMA-ed, with-
out the interaction of the CPU, to the Tx queue on the card). This extension differs
from the original forwarding mechanism (as shown in Fig. 7(A)) in the sense that
the queue is only used when the output is overloaded and packets cannot be moved
directly to it. However, as we have removed the output element from the scheduling
chain, we have to make sure that whenever there are packets in this queue, the system
makes sure that those packets are removed as soon as there is space in the Tx queue of
the interface. To this end, we exploit the timer function available in the kernel-mode
Click.

The flowcharts in Fig. 10 illustrate the process of enqueuing and removing packets
from the auxiliary queue. That is, packets are enqueued whenever a packet cannot
be pushed to the Tx ring belonging to the overloaded Tx queue, while packets are
removed from the queue either when the timer expires or when a new packet is about
to be pushed to output queue and there is space in it. In this latter case, the packets
residing in the auxiliary queue are moved to the output at first in order to maintain
packet order, and the newly forwarded packet is only pushed to the output when all
the packets from the auxiliary queue have been removed; if this is not possible, it gets
enqueued into the auxiliary queue as well.

3 Resource management

In the previous section, we showed the throughput and latency gains one can achieve
with our proposed forwarding architecture. In this section, we are going to discuss
the other advantages the architecture has to offer from the perspective of resource
management.

The objective of proper resource management in software routers is to provide
flexible and efficient flow differentiation, resource allocation, and scheduling in order
to ensure fair resource sharing, isolation, as well as high performance. In Sect. 2.4,
we demonstrated that we can achieve efficient flow differentiation by using hardware
classification and multi-queueing available in current NICs. In this section, we show
how the current Click scheduler and resource allocator might be improved by pro-
viding a more predictable system behavior, a guaranteed service (i.e., a guaranteed
packet rate and/or bandwidth), higher per-flow and overall throughput and better fair-
ness amongst the forwarding paths competing for the same resources.

3.1 Resource management in click

In Click, the base unit of scheduling are the Tasks. A Task is considered to be a chain
of elements, which practically compose a part of a forwarding path (FP), that are
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traversed by a packet within a single scheduling step and it starts with an explicitly
schedulable element. These explicitly schedulable elements have a so called run_task
function that is called upon scheduling, after which the element executes its packet
processing function(s) and hands the packet over to the next element downstream in
the router configuration. Thus, these other elements are scheduled implicitly, by call-
ing either their push or pull functions (i.e., they do not have any run_task function).
A packet is processed and handed over to the next element until it either ends up in a
Click queue inside the configuration or in one of the output ports’ (or output queues’)
Tx ring. In these cases, the CPU is released and another element within the same
thread, with a run_task function, at the front of a Task, is scheduled. These schedu-
lable elements are responsible for either the input (e.g., PollDevice, FromDevice) or
output processing (e.g., ToDevice) or for unqueueing the packets from an internal
Click queue (e.g., Unqueue, RatedUnqueue, etc.). Note that in our proposed forward-
ing architecture the PollDevice element (i.e. INXY in Fig. 4) is the only schedulable
element.

The CPU scheduler currently implemented in Click is based on the Proportional-
Share (PS) Stride scheduling algorithm [18]. The implemented scheduler holds the
following, mainly positive, characteristics that also apply to most PS schedulers in
general:

• Each task reserves a given amount a resources (represented in Tickets in the Stride
scheduling algorithm as well as in Click) and it is guaranteed to receive at least
this amount of resources when it is not idle. In general, PS schedulers, resources
reserved for a Task usually mean a given number of CPU cycles-per-second. In
current Click, the reserved resources mean the number of cycles it takes to execute
a Task. Hence, because in Click the Tasks are non-preemptive they can hold the
CPU, and thus put load on the other resources (e.g., memory and I/O), as long as
they need, regardless of how long it takes to execute them. As a consequence, Tasks
in Click with the same amount of tickets are scheduled equally often, but because
of their different resource needs they consume different amounts of the different
resources. This way of scheduling results in an unfair resource usage, for which
we propose a solution below.

• An idle Task cannot “save tickets” to use it when it becomes active.
• For work-conserving purposes, tickets unused by idle Tasks are distributed among

the active Tasks within the same thread. These active Tasks are not charged for
these extra resources.

• To do a context-switch between Tasks is an expensive operation, therefore it is
recommended to avoid scheduling an idle Task if possible. To this aim, Click im-
plements an adjust_ticket mechanism, that dynamically changes the actual ticket
value of a Task between 1 and its allocated ticket value (1024 by default) in corre-
lation with the number of packets processed recently by the Task in question.

All the Tasks within the same kernel thread are co-scheduled relative to each
other’s share of the CPU (i.e., a Task’s Ticket relative to all the other Tasks’ Tickets
that run within the same kernel thread). That is, if all the Tasks have the same Ticket
they are scheduled equally often, and in practice this resembles to that of a Round
Robin scheduler. However, if a Task has different amount of Tickets it will be sched-
uled in proportion to its Ticket value relative to other Tasks Ticket value. That is, if



Improved parallelism and scheduling in multi-core software routers

one Task has twice as many Tickets as another one it will be scheduled twice as often.
This method is realized by using a virtual time line, and the time a Task should be
scheduled to run again is calculated in the following manner:

NEXT_TIME = CURRENT_TIME + (1/TICKET ∗ CONSTANT_NUMBER)

The Tasks are scheduled in a serial order, always running the one with the low-
est virtual time value. Tasks running on separate CPUs (i.e., within separate kernel
threads) have no influence on each other, as they are put into separate working queues
and are scheduled separately.3

As far as resource allocation is concerned, Click currently provides two mecha-
nisms for that. On the one hand, it lets the user to statically define which Task should
be run within which kernel thread. This method is useful for experimentation, but it
is very limited when it comes to dynamic resource management in real forwarding
scenarios. On the other hand, Click also provides a method where the recent CPU us-
age of every Task is measured, and based on this measurement the Tasks (if needed)
are redistributed among the available threads for load-balancing purposes.

Although this latter method provides more sophisticated resource management
than the static method, it still lacks a number of significant features, such as, it does
not take into account the cache hierarchy, it only measures the recent cycle usage of
the Tasks also including in the measurements the cycles used when the Task was prac-
tically idle and consumed only a few cycles, while it does not maintain any statistics
about the real cost of forwarding a packet by any given Task. In addition, it does not
use any other metric, besides CPU cycles, to describe a Task.

3.2 Resource guarantees

In order to guarantee that all the forwarding paths get access to the amount of re-
sources they are entitled to and no more,4 the total cost of each forwarding path must
be monitored and the CPU scheduling parameters tuned accordingly. Note that we
need to monitor the cost of each forwarding path regularly to ensure that the current
CPU scheduling adjustments reflect the recent resource usage of all the forwarding
paths, including the ones where the per-packet processing cost can vary significantly
depending on the character of the packet in question. To this end, we extended Click’s
original CPU scheduler by adding the ability to measure the cost of each forwarding
path and adjusting the weight of each of them according to their costs, thus achieving
fair CPU scheduling.5 In addition, we can also change the quantity of CPU resources

3Of course, Tasks running on separate CPU cores might have effect on each other’s operation in the case the
cores, the Tasks are run on, share some other resource (e.g., cache memory, network interface card, etc.) but
such factors are out of focus of the Click scheduler. To deal with cache contention one might incorporate a
method similar to that of proposed in [19] into the Click scheduler, but for now such modifications are out
of the focus of this paper.
4Unless, of course, there are more resources available, in which case Tasks can use more as long as they do
not adversely affect the operation of others. This way of scheduling is called work-conserving scheduling.
5Note that the resource consumption for forwarding a packet can only be measured when the packet exits
the forwarding path and control is returned to the Click scheduler.
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Fig. 11 Resource usage with the current Click scheduler

that the given FPs are entitled to. The following pseudo-code describes the procedure
the Tickets are calculated based on the Tasks’ cost and weight values.

Procedure of calculating the Tickets of Tasks based on their cost and weight values:
VARIABLES:
N The number of Tasks in the thread
Wi Weight of Task i (i = 1, . . . ,N) (defined by the administrator)

Wi = 1.0 by default
Ci Cost of Task i (i = 1, . . . ,N) (measured on by the system)
Ti Ticket value of Task i (to be calculated)
DTV = 1024 Default Ticket Value

begin
Ctotal = 0
for all i in N do

Ctotal+ =Ci

for all i in N do
Ti = DTV ∗ Ctotal/(N ∗ Ci) ∗ Wi

end

In an attempt to mitigate the different forwarding costs associated with different
packets, whilst the sampling frequency is tunable, we sampled at a rate of one in every
twenty packets to balance the sampling overhead against the fidelity of the measure-
ments. To illustrate the scheduling properties of the configurable virtual forwarding
plane, we ran an experiment using a configuration with three FPs sharing the resource
of a single CPU, where two of the FPs were identical and the third one included a
few expensive Click elements to increase the cost of forwarding a packet. Results in
Fig. 11(A) show that when using the default Click scheduler we achieved the same
forwarding rate for each of the FPs (approximately 440 Kpps), meaning that the CPU
was not shared equally as the more expensive FP managed to forward the same num-
ber of packets per second as the others. Figure 11(B) illustrates the throughput of the
FPs when our scheduler extension was used to load-balance the FPs’ CPU usage. The
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results show that load-balancing works properly, since the packet rate of the expen-
sive FP decreased while that of the other two FPs increased; it takes approximately
40% more CPU cycles to forward a packet by FP1 than by FP2 and FP3. Figure 11(C)
shows that weighted fair-sharing is working in our extended scheduler as well. In this
experiment, we left the share of the expensive FP at 1/3 of the total, while moved 1/3
of FP2’s resources to that of FP3, thus FP3 was entitled to twice as much resources
(i.e., 44%) than FP2 (i.e., 22%). As we can see, FP1 kept its rate where it was in
Fig. 11(B), but FP3 increased by about 50%, while FP2 dropped approximately with
the same rate.

3.3 Scheduling based on different resources

In previous work [2, 3, 5], we have shown that in multi-core architectures the bottle-
neck of packet processing can as easily be at the memory or I/O as at the CPUs, and
hence resource allocation needs to be able to handle the case where any of these is the
scarce resource and not the CPU. Therefore, we find it necessary to not only measure
the CPU cycles used by the Tasks, but also other metrics describing the utilization
of resources, like memory and I/O bandwidth, cache miss rates at any level of the
cache hierarchy, instructions-per-second, etc. and then use these metrics for resource
allocation and scheduling calculations. To this end, we use performance monitoring
counters to determine the utilization of the resources. These hardware counters are
commonplace on modern processors, they are very low overhead counters and were
originally introduced for profiling and performance analysis and are therefore suit-
able for our purposes, that is, to measure the cost of forwarding a packet on multiple
resources. In our hardware architecture, every Hyper-Thread (there are two Hyper-
Threads per core when Symmetric Multi-Threading is enabled) possesses 3 fixed and
4 customizable counters, but there are over 500 events these counters can measure,
using time-division multiplexing. Scheduling memory or I/O resources is not as sim-
ple as scheduling CPU cycles. However, in scenarios where the memory or I/O has
become the bottleneck, we can adjust the CPU scheduler’s parameters so as to ensure
a fair memory access rate by controlling the forwarding paths’ CPU resources, for
example, if a forwarding path is scheduled to use CPU resources less often it will
access the memory and/or I/O less often, also.

One additional great advantage of our proposed forwarding architecture is that it
makes it possible to measure the resource utilization of packet forwarding very accu-
rately and cost effectively. This comes from the fact that every packet is forwarded
from the input to the output port in one “go” and on a single core, that is, we have
to read and store the values of the counters only once per packet and only on a sin-
gle CPU. To get the correct resource utilizations we recommend to reset the counters
just before a Task gets scheduled and read them just after the Task finishes running
or take the difference of two consecutive readings taking care of occasional counter
overflows.

To demonstrate the resource usage of different scheduling principles (i.e., default
Click, fair CPU, and fair memory scheduling),6 we at first measured the resource

6Scheduling based on other metrics might be used as well.
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Fig. 12 Resource usage with the current Click scheduler

utilization of different workloads. In the second step, we calculated the resource usage
of the demonstrated scheduling principles based on the previously measured resource
utilizations. The workloads we use for evaluations in the remainder of this section are
the followings:

(1) Minimal forwarding (FWD): This is the same application that we used in
Sect. 2.4, that is, traffic arriving at port i is directly forwarded to a pre-determined
port j—there is no routing-table lookup nor any other form of packet processing.

(2) IP routing (RTR): We implement full IP routing including checksum calculations,
updating headers and performing a longest-prefix-match lookup of the destina-
tion address in an IP routing table. For this latter, we use Click’s implementation
of the popular D-lookup algorithm [20] and, in keeping with recent reports, a
routing table size of 256 K entries. For synthetic input traffic, we generate pack-
ets with random destination addresses so as to stress cache locality for IP lookup
operations.

(3) IPsec packet encryption (IPsec): Every packet is encrypted using AES-128 en-
cryption, as is typical in VPNs.

(4) CRC calculation (CRC): 32 bit CRC is calculated over the whole packet and
appended to the end of it.

Our selection represents commonly-deployed packet-processing applications that
are fairly diverse in their computational needs. For example, minimal forwarding
stresses memory and I/O; IP routing additionally references large data structures;
encryption is CPU-intensive; while CRC is memory-intensive.

Figure 12 shows the achieved packet rates and resource utilization with 64 B
packets of three different forwarding paths/workloads (FWD, RTR, and IPsec) co-
scheduled on the same CPU by the default Click scheduler. As this default scheduler
does not take into account any cost parameters, the FPs are considered to be equal and
are scheduled equally often, thus resulting in the same throughput. However, as every
FP uses different amounts of resources their individual resource consumption are
significantly unbalanced and unfair. To overcome this fairness issue, Figs. 13 and 14
show the packet rates and resource consumptions in the case of a fair CPU and a fair
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Fig. 13 Resource usage with fair CPU scheduling

Fig. 14 Resource usage with fair memory scheduling

memory scheduler, respectively. As the graphs show, the packet rate of the cheaper
workloads (i.e., FWD and RTR) increases while for IPsec it decreases accordingly to
their CPU and memory needs.

As one might notice, all the resources except the one the scheduling is based on
are unbalanced. Although, it is possible to devise a scheduling algorithm that equally
balances the load over multiple resources, we find it unnecessary. The main reason
for this is that in a real-time scenario there will be always one resource at a given time
that is mainly responsible for the contention. Although, this resource might change
over time due to the change of the arriving traffic to the FPs, it is simpler and more
efficient to equip the scheduler with the ability to schedule the Tasks based on differ-
ent resources, but base the scheduling on only one at a time, instead of all of them,
including the ones below their saturation point. That is, in an overload scenario if we
schedule and fair-share the saturated resource, we ensure that the saturated resource
is used equally, which might result in unequal usage of the other resources, but as
they are still below their saturation point, this unequal resource usage will not cause
any performance drop for any of the FPs.
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Fig. 15 The advantage of batch processing in software

3.4 Granularity and frequency

In Figs. 13 and 14, we showed the effect of scheduling the Tasks based either on their
CPU cycle or memory bandwidth consumption. The question “how this might be im-
plemented?” comes naturally. One part is, what we have already described previously,
to measure the resource consumption of every Task, while the other is to set when the
packets should be scheduled. Scheduling a packet happens via the Task that is allo-
cated to the hardware input queue the packet resides in. For this latter part, we have
two tools available, one is the Ticket value of the Tasks while the other is the BURST
value of the schedulable elements standing at the front of the Tasks (i.e., PollDevice,
or INXY in Fig. 4). In the current implementation, both of these parameters are static
(i.e., Ticket = 1024, BURST = 8), but with some simple extensions it is possible to
set them dynamically by the scheduler. The Ticket value is the parameter that directly
represents how often a Task should be scheduled relative to the others. The higher
this value is the more often the Task is going to be scheduled (in a linear proportion).
The BURST value is the parameter for batching. That is, when a schedulable element
is scheduled it processes as many packets as there are available up to the value of the
BURST parameter. The advantage of batching is well-known; it reduces the overhead
of context-switching, and thus improves the performance.

To demonstrate how significant batching is in Click, we ran experiments with min-
imal forwarding workload and 64 B packets with different batching values. Figure 15
shows the performance gain as the function of the increasing batching value. Be-
sides demonstrating the performance gain, this set of experiments also helps us to
determine the exact cost of context-switches. Using linear-regression, we found that
it takes approximately 6100 cycles to perform a context switch in Click on our ma-
chines, which includes recalculating the virtual time when the currently finished Task
should be run again, putting the Task in the right place of the working queue and fetch
the next Task from this working queue and run it. The cost of the context-switch is
important to know for accurate resource management, as this value has to be included
in the cost of forwarding a packet.

However, it is important to note that with batch processing of the packets, we de-
crease the responsiveness of the system and make the scheduling granularity coarser,
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which might not be favorable after a certain point. That is, the administrator of the
system needs to determine a maximum value, preferably in terms of CPU cycles,
for how long a Task can keep the resources when it is scheduled, in order to avoid
too coarse switching of Tasks resulting in poor responsiveness. Let R represent this
maximum value. To this end, we recommend to determine the highest burst rate for
every Task and use that burst rate every time the Task gets scheduled. The maxi-
mum allowed burst value of every Task can be determined according to the following
equation:

BURST i =
⌊

R − CCS

CCi

⌋
;

where CCS indicates the cost of a context-switch (i.e., 6100 cycles in our case), and
CCi

the CPU cost of Taski .

3.5 Unified input elements

As we just demonstrated in Sect. 3.4, reducing the number of context-switches (i.e.,
performing batch processing) results in a significant performance improvement, due
to the fact that performing a context-switch takes a high number of CPU cycles. To
this end, we propose another modification to the forwarding architecture in order to
further decrease the number of context-switches and to improve the architecture’s
performance. By looking at the proposed architecture in Fig. 4, one can see that
there are multiple schedulable input elements accessing separate input queues that
are executed on the same core (e.g., IN00 and IN01, or IN10 and IN11). By extend-
ing our input element with the ability to poll packets from multiple queues residing
on separate network interface cards, we managed to further reduce the number of
schedulable elements, and as a consequence the number of context switches needed
to forward packets from multiple input ports. With this modification, the reduction
in the number of schedulable elements is in the order of X, where X represents the
number of different interfaces a unified, multi-input element polls packets from.

Figure 16 shows the forwarding architecture with the unified input elements. In
this example, similarly as before, we have two input and two output ports processed
by four cores. As a consequence of having two input ports, the number of schedula-
ble elements becomes half of what it was before (see Fig. 4). In order to demonstrate
the advantage of our unified input element, we ran experiments comparing its perfor-
mance with that of the originally proposed element in Sect. 2.3. In these experiments,
we had four interfaces being polled by a single core, in the first case using four
single-input elements, while in the second case using a single multi-input element.
We ran these experiments with increasing batching value and calculated the perfor-
mance improvement in terms of packet rate increase. Figure 17 shows the increase in
packet rate of the configuration with the unified element compared to the one with the
single-input elements. As we can see, the performance gain varies between 20% and
30%, depending on the batching value for this four interface scenario. However, with
higher number of interfaces, we expect to have a bigger performance improvement,
due to the more significant decrease in the number of schedulable elements as well
as context-switches per packets processed.
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Fig. 16 Proposed forwarding path architecture with unified input elements

Fig. 17 Improvement in
percentage with four interfaces
polled by one core

In Fig. 18, we illustrate in a simple way how this performance improvement is
achieved. The top line represents the time it takes to process eight batches of packets
from four interfaces with the configuration using the originally proposed, non-unified
input elements. To perform this task, we need four input elements (i.e., PollDevice el-
ement), one for every interface. The second line illustrates the time needed to process
the same eight batches of packets from four interfaces, but now by the unified input
element with multiple inputs, one per interface. In our unified input element to move
from one interface to another in order to poll packets in, is a very simple and cheap
operation, while to do the same with the single-input elements, it becomes a signif-
icantly more expensive operation. That is, it costs us a whole context-switch, which
is approximately 6,100 cycles on our experimental machine, as reported before. As
the number of packets polled in a batch increases, the difference in performance be-
tween the single-input and multi-input configuration decreases. However, as we saw
in Fig. 17 even with a batching value of 32, the difference is 20% with only four ports.
Now, it can also be easily seen why the performance improvement would increase
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Fig. 18 Illustrating the time it takes to process eight batches of packets

with a higher number of interfaces being polled by a single multi-input element. On
the other hand, as we have no control over the arriving traffic patterns, we cannot
make sure that there will always be a high number of packets in every queue, or any
number of packets at all. Thus, when there are a low number of packets present in the
input queue(s) of one (or more) interface(s), the ratio of CPU cycles spent on actual
packet processing over the cycles spent with context-switches decreases, resulting in
decreased performance with the non-unified configuration. This is also confirmed by
the results in Fig. 17, where the lower batching value scenarios could also be inter-
preted as there had been only a lower number of packets in the input queues of some
interfaces.

3.6 Co-scheduling principle

Today’s general purpose operating systems adapt timeslice-based multi-processor
scheduling to be aware of resource contention and take steps to mitigate it. This
means that timeslices need to start at the same time on each core, thus such schedulers
require synchronization across all the cores.

As described above, the Click Tasks cannot be preempted, eliminating the possibil-
ity of timeslice-based scheduling. This has the advantage of better resource utilization
compared to timeslice-based scheduling. Namely, when in the latter case a process
terminates earlier than when its timeslice would have finished, the given CPU is going
to be idle for the remaining time of the timeslice. In Click’s scheduler, the resources
are handed back as soon as a Task finishes processing the packets. However, because
of the lack of synchronized timeslices across all the cores, it is virtually impossible to
have a global scheduler that can accurately co-schedule exact Tasks running on sepa-
rate cores, which might lead to unpredictable system behavior as there is no control
over what tasks, with what characteristics are going to run at the same time.

To overcome this unpredictability, we propose to co-schedule Tasks with the same
or similar characteristics on the same core (Principle #1), thus ensuring that the given
core is always using approximately the same amount of shared resources (i.e., mem-
ory, cache, I/O) regardless which Task is running at a given time.

To demonstrate the importance of this co-scheduling principle, we ran three exper-
iments, each with 4 forwarding paths, 2 IPsec and 2 CRC, distributed on 2 cores, each
Task (FP) being allocated 50% of the CPU resources, emulating a scenario where the
CPU is the bottleneck. Figure 19 illustrates the total memory and I/O utilization for
the three experiments (as well as the CPU utilization, but because both cores were
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Fig. 19 Resource utilizations when complying and when not complying with Principle #1

running at 100% all the time, this has less relevance). The first bars (called “50/50”)
are the baseline numbers, in which experiment the two IPsec FPs were sharing a
core, and the two CRC FPs were sharing the other. The arriving packet rate for every
FP was identical and consisted of only 1024 B packets. In the second experiment
(called “20/80 Similar”), the FP-to-core allocation was the same, but on both cores
one of the FPs received only 25% of the other FPs packet rate, resulting in a 20/80
resource usage due to the proportional-share scheduling mechanism. As the results
show, the total memory and I/O utilization has not changed, due to the fact that the
Tasks sharing the same core have the same resource usage characteristics. In the third
experiment, we allocated one IPsec and one CRC FP to every core and generated
20% of the traffic on both cores to the IPsec FP, while 80% to the CRC. As the results
show, because the CRC workload has different characteristics (higher memory and
less CPU needs) it used more memory and because of the higher packet rate more
I/O bandwidth as well. This phenomenon can be critical in the case when the CPU is
the resource saturating at first, but the memory is near its saturation point as well, and
when the arriving traffic pattern changes the bottlenecked resource might fluctuate
between CPU and memory.7

3.7 Utilizing hyper-threading

Recent Intel processors support the Hyper-Threading (HT) Technology [21] (a.k.a
Simultaneous Multi-Threading (SMT)), delivering thread level parallelism for more
efficient use of the resources and higher processing throughput. Our server archi-
tecture supports two threads per core, thus in total 16 threads. The key behind the
improved performance of Hyper-Threading is the ability to fetch instructions from
multiple threads in a cycle, thus instructions from more than one thread can be ex-
ecuted in any given pipeline stage at a time. However, to really see improvement in
the performance with SMT switched on, we found that careful resource allocation

7The saturation point of the resources can be determined by benchmark experiments.
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Fig. 20 Performance improvement when complying with Principle #2

is needed in the case of a parallelized software router architecture. Our finding is
that Tasks with more diverse (or complementary) characteristics executed on adja-
cent threads8 result in more significant performance improvement than Tasks with
similar characteristics (Principle #2). Figure 20 shows the results of our experiments
on this. In these experiments, we had 4 FPs, 2 IPsec, and 2 RTR, and 2 cores each
with 2 threads, thus 4 threads in total. In the first case (called “Similar”), we allocated
the identical FPs to the adjacent threads, while in the second case (called “Comple-
mentary”) one thread on every core was executing an IPsec FP, while the other a RTR
FP. The left graph in Fig. 20 shows the packet rate for every FP, while the right graph
shows the improvement in the packet rate of the Complementary experiment over
the Similar one in percentage. As we can see for the IPsec FPs, the improvement is
nearly 30%, for the RTR it is nearly 12%, while the total packet rate improvement is
slightly above 12%. This improvement comes from the fact that the adjacent threads
were executing workloads with different characteristics (i.e., a CPU-intensive IPsec,
and a less CPU-intensive, but more memory-intensive RTR), and while their instruc-
tions were stressing separate resources the parallelism provided by Hyper-Threading
managed to more efficiently utilize these resources (i.e., while the RTR workload was
waiting for data to be fetched from the memory the IPsec workload managed to carry
on with execution in parallel).

4 Forwarding architecture’s applicability in virtual routers

Over the last years, several publications appeared indicating the increased interest in
router virtualization [5, 22–26], and in the potential that all of this might be carried
out on ×86 commodity hardware without moving back in performance compared to
commercial routers’ performance.

The benefits of virtual routers (VR) are obvious: a single hardware platform can
simultaneously perform independent routing for multiple networks in a manner that

8We call the two threads running in parallel on the same core “adjacent threads.” Some literature call them
“physical” and “logical” threads.
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Fig. 21 Multiple Virtual Networks on top of a single physical infrastructure built with Virtual Routers

permits independent management, full administrative control, as well as potentially
full customization of the virtual networks. A practical example for this is a number
of small businesses within the same building sharing the same router, each manag-
ing its own slice of the router. In addition, virtual routers can also be a substrate for
innovation in network architecture design, thus enabling the evolution of the Inter-
net. Virtual routers can also induce different service models by allowing the physical
network to be decoupled from the providers, and making it possible to virtualize an
entire network. For example, Fig. 21 illustrates a fraction of a network that consists
of virtual routers shared by two service providers. Each of the providers has a slice of
the routers’ resource: they access a set of dedicated queues on the network interface
cards, and manage a dedicated fraction of the available CPU and memory resources.
By ensuring adequate isolation among the virtual routers running on top of the same
physical hardware, traffic forwarded by any of the virtual routers has no influence on
the operation of the others.

The authors in [3] and [5] propose a VR architecture, where the forwarding planes
are separated from the control planes and are run near the physical devices, all ex-
ecuted in the privileged driver domain of the Xen Virtual Machine Monitor [27],
while the control planes are running separately in the virtualization domains of Xen
as illustrated in Fig. 22.

The advantage of moving all the forwarding paths into a single driver domain near
the device drivers is that there is no performance degradation compared to the hard-
ware’s native performance, what is usually so significant with network virtualization
as demonstrated in [28]. However, with this we lose the isolation and fairness pro-
vided by the virtual domains, which we are able to gain back with our proposed for-
warding architecture and resource management. To this end, we only have to realize
the analogy between the architecture proposed in Sects. 2.3 and 3.5, and the virtual-
ized forwarding architecture introduced in [3] and [5]. That is, consider Fig. 16, where
every input and output queue, schedulable input and packet processing elements, as
well as every output element designated with a separate shade can be considered as a
separate virtual router’s forwarding engine. That is, every VR has a slice from every
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Fig. 22 A well-performing virtual router architecture

input and output port, it can realize any packet processing function inside the PPx

part, and the resource allocation and scheduling can be carried out the same way as if
the forwarding paths were paths with guaranteed service, thus ensuring a guaranteed
amount of resources as well as isolation among the virtual forwarding engines. In ad-
dition, exploiting the VMDq (Virtual Machine Device Queue) [9] support in current
NICs further justifies the architecture’s applicability in virtual routers. That is, the
VMDq mechanism classifies the arriving packets based on their destination MAC ad-
dress, which address can be used to identify the virtual router the packet flow belongs
to and the packet can be placed into the input queue allocated to that given virtual
router. The intermittent thick line in Fig. 21 illustrates how a packet flow crosses a
network via a set of virtual routers belonging to the same service provider. The pack-
ets upon entering the network are placed into the appropriate input queue belonging
to the given provider’s virtual router on the given ingress router in the network. The
packets are polled in by the virtual router’s forwarding engine, they are processed by
it and their next hop router is determined; after which the proper destination MAC
address is set to ensure the packets end up in the input queue of the same provider’s
virtual router on the next-hop router. Finally, the packets are placed into the dedi-
cated output queue of the virtual router on the interface connected to the next-hop
router. The provider’s next-hop virtual routers are performing the same operation on
the packet flow until they reach their final destination or leave the provider’s network.

5 Conclusion

The performance of modern multi-core commodity architectures clearly indicates
its viability for high performance packet forwarding. However, as we demonstrated
in this paper, a software router platform has to be designed in a way that provides
effective parallelism and proper resource management for workloads with diverse
resource characteristics.
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Our proposed forwarding architecture enables full parallelization of the resources,
while it also improves performance by simplifying the basic structure of the forward-
ing paths, made possible by hardware multi-queues.

Our results in Sect. 3 clearly indicate that we need to pay attention to the uti-
lization of multiple resources, and not only the CPU, when allocating resources to
different workloads. For predictable system behavior, we identified Principle #1, rec-
ommending to co-schedule workloads with similar characteristics within the same
thread, while for improved performance co-schedule workloads with different char-
acteristics on adjacent hyper-threads (Principle #2). Our proposed architecture is also
capable of performing flow-based packet processing, while it can also be used as a
forwarding plane of virtualized software routers.
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