Document downloaded from:

http://hdl.handle.net/10251/38905

This paper must be cited as:

Belloch Rodriguez, JA.; Gonzalez, A.; Martinez Zaldivar, FJ.; Vidal Macia, AM. (2011).
Real-time massive convolution for audio applications on GPU. Journal of Supercomputing.
58(3):449-457. doi:10.1007/s11227-011-0610-8.

The final publication is available at

http://link.springer.com/article/10.1007%2Fs11227-011-0610-8

Copyright
Pyng Springer Verlag (Germany)

Noname manuscript No.
(will be inserted by the editor)

Real-Time massive convolution for audio applications on GPU
Massive convolution on GPU

Jose A. Belloch- Alberto Gonzalez -
F.J. Martinez-Zaldivar - Antonio M. Vidal

Received: date / Accepted: date

Abstract Massive convolution is the basic operation in multicharaustic signal pro-
cessing. This field has experienced a major developmenténtegears. One reason for this
has been the increase in the number of sound sources usegliapk applications available
to users. Another reason is the growing need to incorpomatedffects and to improve the
hearing experience. Massive convolution requires highprding capacity. GPUs offer the
possibility of parallelizing these operations. This altous to obtain the processing result in
much shorter time and to free up CPU resources. One impasgect lies in the possibility
of overlapping the transfer of data from CPU to GPU and viasavith the computation,
in order to carry out real-time applications. Thus, a sysithef 3D sound scenes could be
achieved with only a peer-to-peer music streaming envientrasing a simple GPU in your
computer, while the CPU in the computer is being used forrotieks. Nowadays, these
effects are obtained in theaters or funfairs at a very higét,aequiring a large quantity
of resources. Thus, our work focuses on two mains pointseseribe an efficient massive
convolution implementation and to incorporate this taskeal-time multichannel-sound
applications.

Keywords Massive convolution Multichannel audio processing-FT - GPU -

1 Introduction

A basic operation in multichannel acoustic signal processs Massive Convolution. It
consists in carrying out simultaneously many convolutiohdifferent audio channels. This
provides a multichannel convolution that allows to achieith different filters well known
acoustic effects like: 3D spatial sound, crosstalk caatieth, room compensation [1], loud-
speakers equalization, etc. [2].

Jose A. Belloch, Alberto Gonzalez, F.J. Martinez-Zadiv
Institute of Telecommunications and Multimedia Applicats
Universidad Politecnica de Valencia Tel.: +34-96-38776g773008
E-mail: jobelrod@iteam.upv.e$agonzal,fimartin @dcom.upv.es

Antonio M. Vidal
INCO2-DSIC, Universidad Politecnica de Valencia (Spain)
E-mail: avidal@dsic.upv.es

Up to now, most of these effects could be achieved only intérear funfairs, always
using very powerful computers and consuming a large amduetergy. The use of GPU
(Graphics Processing Unit) makes possible to achieve #maseing effects saving energy,
and also, to obtain them in a personal computer even fasiguré-1), as can be seen at
[3] and [5], where some experiments comparing performancgatution in CPU and GPU
have already been carried out using OpenGL [8].

Fig. 1: Effects which require plenty of resources can beeaed using a GPU.

However, in spite of obtaining good performance using a GR& fact of transferring
data from/to the CPU to/from GPU avoids the execution of-tieaé applications. In this ar-
ticle, an algorithm with a pipeline structure is developetich allows to perform a massive
acoustic real-time convolution. As analyzed in this agtichassive convolution requires the
calculation of several FFT simultaneously. There are warilibraries that implement effi-
cient FFT algorithms. They allow to obtain the Discrete kenifransform of a signal either
in a CPU (like MKL [9] or IPP [10]) orin a GPU (like CUFFT [11]&m NVIDIA).

Multichannel convolution applications are not only basad=&T, but also they require
more operations like multiplications among signals. Heiitds crucial to configure a data
structure suitable for exploiting both CUFFT NVIDIA libraand different parallel opera-
tions. The paper is organized as follows. Section 2 desstife convolution algorithm and
how it can be developed over a GPU. In Section 3, an efficiett @ilementation of mas-
sive convolution is presented. Section 4 analyzes the edioce of a possible real-time
application. Finally, some conclusions are presented ai&e5.

2 Multichannel convolution on GPU

Multichannel convolution consists in carrying out manyaations of different channels
simultaneously. Depending on the desired audio effedigréifit combinations can be re-
quired: different filters applied to a sound source (FigureoRe filter applied to several
sound sources, or different filters applied to differentrgbsources. In order to understand
how multichannel convolution is organized, it is importémtescribe the one channel con-
volution first.

Let us considex an input audio signah an acoustic filter (unit-impulse response) and
the desired output audio signal of our syst&mnM andL = N+ M — 1 [6] will be the lengths
of x, h andy respectively. The execution of the convolution using a GRWlustrated in
Figure 3. In spite of the parallelism in operations that GRfdre, the transfer time penalty
prevents us from running a real time application in a GPU.ddwer, if the signak consists
of several channels, then multiple convolutions would lpied. On the other hand, if a
CPU is used to implement a massive convolution, all our nessuwould be used and no
more applications could be run at the same time.

\Q — I:D e ‘ é‘

<\ I:I] Processing

Fig. 2: Different filters applied to a sound source for audiproduction through loudspeak-
ersin aroom

Transfer Calculate Calculate Multiply Calculate Transfer
x and h »| X=FFT(x) »| H=FFT(h) —>|elementwis »| y=IFFT(Y) —> y
CPU->GPU Y=X*H GPU->CPU

Fig. 3: Steps in order to calculate convolution of signadsdh on GPU.

2.1 Algorithm for long signals

In a real-time application, the length of signatannot be known a priori. Techniques are
available to fragment the signal, and obtain the convatutbthe whole signal from the
convolution of each fragment. One of these techniques igdaverlap-save [7] and it
performs as follows:

1. Fragments of samples are taken, whelrds some power of two, larger thav (length
of h) and at least 512 [7].

2. In the first fragment, the firdfl — 1 samples will be padded with zeros.

3. From the second and following fragments, the st 1 samples will be duplicated
from the lastM — 1 samples of the previous fragment, see at the top of Figure 6.

4. Following the steps of the previous subsectigin], yi[n], y2[n], ..., are obtained as
the result of the convolution of[n], x1[n], x2[n], ..., withh respectively, see Figure 4.

5. From each fragment result, the fitdt— 1 samples will not be valid values and will
therefore be eliminated, see Figure 5.

3 Implementation on GPU

The operation described in Section 2 is applied over evgnesifragment. CUFFT NVIDIA
FFT library allows to execute multiple FFT 1D at the same tiffigerefore, it is possible
to obtain as many FFT 1D as rows of a given matrix. In order fgaxthis property, it

is necessary to configure a matrix signal with all the sigreatg Figure 6 illustrates the
formation of this signal matrix. CUDA toolkit versions [12hable the use CUFFT [11]
with the propertyconcurrent copy and execution. Therefore, the latency of transferring data
from the CPU to the GPU and vice versa can be overlapped by waitign time. This will
enable not only high speedup of the convolution, but alsouide of real-time applications.

L L

(I ———— ey ———— [T

h[n]
L L

CELT T — %=FrTeo—> Yo=Xoh— yo=FFET 00— [[T [[[[[[[[[]]
X[N] Yo[n]

EET LTI — *=Frrog— YexiH— yeeFFT) — [[[[[[[[[[[]]]
xi[n] yin]

EET LTI T — *eFPTos— YemXeH—> youFFT) — [[[[[[[[[[[]]]
x[n] y2[n]

Fig. 4: Convolution of each fragment is calculated follogvithe convolution theorem [6].

KL

Yo[n]

LTI

1 yiln]

| KL ITTTT
y2[n]

' |

' |

[T I T P P I I T
yln]

Fig. 5: As long as convolutioned fragments are obtaineqyuilgignaly is being formed.

L L
—> L 7>
(xi[n])
T T T T T TP T T T T T T TTT 710
/H = | b
)
raang I ”
Matrix Configuration
M-1 M-1
ISR

Fig. 6: A signal matrix is built from signal parts.

Therefore, the configured signal matrix of Figure 6 wRhiows andL columns could be
considered as a buffer, which is being built as the incomindjasamples arrive. The first
M — 1 values of one row will coincide with the lakst — 1 values of the previous row, except
for the first configured matrix at the algorithm beginning w&dirstM — 1 values from the
first row will be zeros. The lag¥l — 1 samples from the last row of the matrix will be kept
in an internal buffer in order to occupy the fifgt— 1 positions of the next matrix to be
filled. The unit-impulse respongewill have been sent to the GPU before sending the first

matrix. As shown in Figure 4, and described in sections 2 gneét&orh will be padded
with zeros up td- samples (length of each fragment of sigrglthen a FFT will be carried
out obtaining vectoH, and finally an elementwise multiplication with each fragmef X
(x in the frequency domain) will be done.

To carry out operations on GPU, since sigra$ configured as a matrix, ammatrix
must be also configured. It consistsRfeplications of vectoh. Over the GPU, FFT func-
tion from the CUFFT library is applied to both matrices, tl@nelementwise multiplication
is done between them (Figure 7), and finally, the inverse kfittfon from CUFFT is ap-
plied again over the result matrix. Thus, time samples gbaisignal are obtained.

h-matrix (time domain) H-matrix (frequency domain)
R R parallel
ffts 1D
B —_—
L L

-

M Zero

Multiplication

x-matrix (time domain X-matrix (frequency domain)

R R parallel
ffts 1D,

—_~— > —~— >
— L — L
M-1 M-1

Fig. 7: FFT function from CUFFT library is applied to signahtrix and h-matrix, then an
elementwise multiplication is done between them.

3.1 Scalability from one channel to multichannel
It is obvious that the hearing effects explained previowsignot be represented by either

one filter or a single signal. Thus, when dealing with a steigoal (two audio channels) or
maybe with a four-channel audio signal, resources will lsesth as shown in Figure 8.

3.2 Pipelined Algorithm

Theconcurrent copy and execution property enables multichannel convolution using a four-
stages pipelined model. This model uses the asynchronaasfér of matrix signals from

Fragments Matrix signal x (2 channels) Fragments Matrix signal x (4 channels)

Channel 1

Channel L |

Channel 2

Channel 3 —»|

Channel R >

Channel 4 —»|

Fig. 8: The signal matrix on the left shows 2-channel resesitaring, whereas the signal
matrix on the right shows 4-channel resource sharing

CPU to GPU and vice versa while other tasks are executed all@ain [12] it is recom-
mended to use differestreamsin order to execute different tasks. In our case, the value of
streams is between 1 andRteam 0 is not recommended for asynchronous operations.
At the beginning of the algorithm, h-matrix is configured es@ht to the GPU. Then,
the first buffer begins to be built. As in [4], we use a bufferesof 32 x 512. We will call
this buffer: A-buffer. Using asynchronous transfer, whiitduffer is sent to GPU bgtream
1, another buffer, B-buffer, is built simultaneously Blyeam 2. Then, stream 1 executes
the computations described in previous subsections battveeatrix and A-buffer (signal
matrix), while B-buffer is transferred from CPU to GPU Hyeam 2, and a new buffer (C-
buffer) is built bystream 3. Finally, a new D-buffer is built bystream 4, while C-buffer is
transferred from CPU to GPU kgiream 3, execution in GPU is carried out on B-Buffer by
stream 2 and A-buffer is transferred back to CPU &tyeam 1. A rebuilding of output signals
(Section 2.1) from different channels are carried out onuffds, then output signals are
obtained. Afterwards, A-buffer is used again. Thus, foufdrs (A, B, C and D) are being
used cyclically. Figure 9 shows all the stages with the tieguired by each of them. It
must be pointed out that, the block called "Rebuilding sighlegins once the whole buffer
is back to CPU in order to avoid race condition. So, transie€PU and rebuilding go in
the same block in the algorithm. Also, time blocks of "Getr&igMatrix” and "Rebuilding
Signals” (Figure 9) include latency times of samples cagatdrom external buffer A/D and
delivered to external buffer D/A respectively, as it can bersin [14], data-sheet of AC97
SoundMAX audio codec.

4 Results

Two main tests have been carried out to verify massive catieol on GPU. The first test
concerns the speed-up achieved when the pipelined algoatiFigure 9 is compared with
a basic convolution algorithm, shown in Figure 3, using aaig and an impulse-response
h made up of 176400 samples and 220 coefficients respectMatysize of the configured
signal matrixx was 32 x 512 elements. The time employed using basic algoigh 3330
ms whereas in the pipelined algorithm is 625.92 ms . Theeafsing the last configuration,
the time spent can be halved.

The most significant test resolves around the number of aclbmnels that can be
managed by a GPU to carry out a massive convolution. In a ireal audio application,
transfer and computation on GPU must spend less time thengfile sample’s data buffer.
This time depends on the rate of the incoming samples, whabisn as sample frequency.
CD quality has an audio sample frequency of 44.1 kHz. It méhas44100 samples per

[Streamo]
i o
Different Time 2 Filter
Stages =
h
Filter Transfer h
CPU>GPU
configuration| 0.055 ms
Obtain
matricH on
ot on | ESEamE
Transfer h 0.083
.083 ms
CPU->GPU Signal
Marix
- Abuffer
Execution e
inGPU | 0052 m Transter
I S
CPU>GPU| Signal
CUFFT of h Abuor | Matrix
Bbuffer | s
GetSignal Exeoution [Siream3]
9 inGPU ™ 7rangior
Matrix 2792 ms 9.37 ms Abutor | oo | g
buffer Tanster [E2O | U
ranster oufter TR
eposcry [Becuton
Transfer Abuffer | inGP Transfer
3 s B-buffer signal
CPU->GPU| 0.083 ms CPU->GPU o
Rebuilding Couffer | Matrix
buffer Signals | Transfer D-buffer
GPU->CPU || Execution
Execution Eoutier (K] he:: Transter
2 Signal . bufer_| cpu-GPU
inGPU | 0.167 ms Matrx | Rebuiding Dbater
buffer Acbuffer | Signals | Transfer
GPU->CPU | Execution
Transfer Cbuffer | in
Transfer o] signal " D-buffer
GPU->CPU| 0.083 ms D" | Marx | Rebuiding
Abuffer | Signals | Transfer
buffer Execution e 1 % GPU->GPU
inGPU ™ Trangfor D-bufer
Rebuiding | Daufer | oy Gy rebiing
D-but ng
Signals ms Transfer < Signals
GPU->GPU | Execution
Debuffer | inGPU
. buer signal
Rebuilding oo Matrix
Signals Adbuer

Fig. 9: Pipeline algorithm using differestreams provided by theconcurrent copy and exe-
cution property of GPU. On the left side, times spent by all stagah@flgorithm

channel arrive within one second. Taking into account thatsample of one channel arrives
every 1/44100 s, different numbers of channels can be mdnagea GPU, depending on
the buffer size.

Figure 9 shows that time spent on the algorithm (fill buffeansfer CP&:-GPU, com-
puting, transfer CP¥=-GPU, empty buffer) is 9.37 ms. This number comes from the sum
of all the steps executed by os&eam taking into account some conflicts among adjacent
streams when more than a transfer CRLUGPU exists simultaneously, as documentation
from NVIDIA [13] explains. The same algorithm has been inmpémted sequentially and
executed using a core of CPU intel i7, spending 14.98 ms.

Real samples in one row of the buffer matrix will be- (M — 1) because firsM — 1
samples will be zero or duplicated (In our test, 293 sampldsch arrive at 1/44100 s
each). Table 1 shows that processing on GPU allows managing 46 audio channel
simultaneously using a matrix buffer of 32 x 512. If one rowtled buffer were dedicated
to one channel, then, the executing time of 9.37ms would fuyeighan the filling buffer
time of 6.6 ms thus the application would not work properlyéal-time. Many incoming
samples would not be processed because the A-buffer (FiJweuld not be available to
be filled of samples.

5 Conclusions

The concurrent copy and execution CUDA property allows to configure a pipelined algo-
rithm, which can be used for carrying out a massive convatutr his algorithm offers much
better performance than the classical algorithm of the @lomion over GPU. The main
advantage is that it is a scalable algorithm, even when tbeniing signalx has several
channels or there is more than one filter or effect to be choig over the signals.

Table 1: Number of possible audio channels in the applinatging a matrix buffer of 32 x
512

Number of Occupacy ofrows Time employed Use of GPU (%) Atmlity

channels per channel filling buffer
1 32 212.6 ms 4.4% Yes
2 16 106.3 ms 8.8% Yes
4 8 53.15ms 17.6% Yes
8 4 26.9ms 35.2% Yes
16 2 13.2ms 70.5% Yes
32 1 6.6 ms 141% No

As the results show, GPU lets dealing with 16 audio chaniéih this pipelined algo-
rithm it is clear that, with only one GPU, applications like 8patial sound can be achieved.
Moreover the use of a single GPU provides energy saving Usedie large computers used
nowadays in funfairs or theaters would no longer be requmatkvelop audio applications.

Furthermore, using GPU frees up CPU resources, providitigroperformance and
more importantly, opening up a new way of implementing awgiplications where GPUs
have not previously been used before.

Acknowledgements This work was partially supported by the Spanish Ministel&oCiencia e Innovacion
(Projects TIN2008-06570-C04-02 and TEC2009-13741), ehsidad Politecnica de Valencia through PAID-
05-09 and Generalitat Valenciana through project PROMEPBE@9/2013

References

1. S. Spors, R. Rabenstein, W. Herbordt, Active listeningntacompensation for massive multichannel
sound reproduction system using wave-domain adaptiveitfifteJ. Acoust Soc. Am., vol 122, pag 354-
369, (2007)

2. Y. Huang, J.Benesty and J. Chen, Generalized crosstatietation and equalization using multiple loud-
speakers for 3D sound reproduction at the ears of multipteriers, IEEE Int. Conference on Acoustics,
Speech and Signal Processing page 405-408, Las Vegas, W088)(2

3. B. Cowan, and B. Kapralos. Spatial sound for video gamdsvatual environments utilizing real-time
GPU-based convolution. In Proceedings of the ACM FutureRI@08 International Conference on the
Future of Game Design and Technology. Toronto, Ontarioa@anNovember 3-5, (2008).

4. J.A. Belloch, A. M. Vidal, F.J.Martinez-Zaldivar and AoBzalez, Multichannel acoustic signal process-
ing on GPU, Procedings of the 10th International Conferemc€omputational and Mathematical Methods
in Science and Engineering, Vol 1, Pg 181-187, Almeria, Bphine 26-30, (2010).

5. Brent Cowan and Bill Kapralos. GPU-Based One-Dimensi@aavolution for Real-Time Spatial Sound
Generation. Scholary Journals, ISSN 1923-2691, Vol 3, N@®)9).

6. S.S. Soliman, D.S.Mandyam and M.D. Srinath, Continuaus Riscrete Signals and Systems, Prentice
Hall, ISBN:0135184738 (1997)

7. AV. Oppenheim A.S.Willsky and S.Hamid Nawab, Signalsd aisystems, Prentice Hall,
ISBN:0138147574

8. openGL: “http://www.opengl.org/”

9. MKL library: “http://software.intel.com/en-us/intehkl/”

10. MKL library: “http://software.intel.com/en-us/irtgp/”

11. CUFFT library: “http://developer.download.nvidiams/compute/cuda/3/toolkit/docs/
CUFFT_Library_3.1.pdf”

12. CUDA Toolkit 3.1: “http://developer.nvidia.com/olsfécuda 3_1_downloads.html”

13. CUDA Toolkit 3.2: “http://developer.nvidia.com/olfécuda 3_1_downloads.html”

14. Datasheet of AC97 SoundMAX Codec: “http://www.xilingm/products/boards/mI505/
datasheets/87560554AD1981Bpdf”

