arXiv:1201.4459v1 [cs.DS] 21 Jan 2012

An efficient parallel algorithm for the longest path
problem in meshes

Fatemeh Keshavarz-Kohjerdi*

Department of Computer Engineering,
Islamic Azad University, North Tehran Branch, Tehran, Iran.

Alireza Bagheri®

Department of Computer Engineering & IT,
Amirkabir University of Technology, Tehran, Iran.

*Corresponding author: fatemeh.keshavarzQ@Qaut.ac.ir
b ar_bagheri@aut.ac.ir

Abstract

In this paper, first we give a sequential linear-time algorithm for the longest
path problem in meshes. This algorithm can be considered as an improve-
ment of [13]. Then based on this sequential algorithm, we present a constant-
time parallel algorithm for the problem which can be run on every parallel
machine.

Keywords: grid graph, longest path, meshes, sequential and parallel
algorithms.
MSC: 05C'45; 05C'85; 05C'38.

1. Introduction

The longest path problem, i.e. the problem of finding a simple path with
the maximum number of vertices, is one of the most important problems in
graph theory. The well-known NP-complete Hamiltonian path problem, i.e.
deciding whether there is a simple path that visits each vertex of the graph
exactly once, is a special case of the longest path problem and has many
applications [5, [7].

Only few polynomial-time algorithms are known for the longest path
problem for special classes of graphs. This problem for trees began with
the work of Dijkstra around 1960, and was followed by other people [2, (9,

Preprint submitted to Elsevier January 24, 2012

http://arxiv.org/abs/1201.4459v1

16, 118, 22]. In the area of approximation algorithms it has been shown that
the problem is not in APX, i.e. there is no polynomial-time approximation
algorithm with constant factor for the problem unless P=NP [9]. Also, it has
been shown that finding a path of length n —n¢ is not possible in polynomial-
time unless P=NP [12]. For the backgrround and some known result about
approximation algorithms, we refer the reader to |1, 16, 24].

A grid graph is a graph in which vertices lie only on integer coordinates
and edges connect vertices that are separated by a distance of once. A solid
grid graph is a grid graph without holes. The rectangular grid graph R(n,m)
is the subgraph of G* (infinite grid graph) induced by V(m,n) = {v | 1 <
vy, <m, 1 <wv, <n}, where v, and v, are respectively = and y coordinates of
v (see Figure [M). A mesh M(m,n) is a rectangular grid graph R(m,n). Grid
graphs can be useful representation in many applications. Myers [19] suggests
modeling city blocks in which street intersection are vertices and streets are
edges. Luccio and Mugnia [17] suggest using a grid graph to represent a two-
dimensional array type memory accessed by a read/write head moving up,
down or across. The vertices correspond to the center of each cell and edges
connect adjacent cells. Finding a path in the grid corresponds to accessing
all the data.

Itai et al. [11] have shown that the Hamiltonian path problem for general
grid graphs, with or without specified endpoints, is NP-complete. The prob-
lem for rectangular grid graphs, however, is in P requiring only linear-time.
Later, Chen et al. [3] improved the algorithm of [11] and presented a parallel
algorithm for the problem in mesh architecture. There is a polynomial-time
algorithm for finding Hamiltonian cycle in solid grid graphs [15]. Also, the
authors in [23] presented sufficient conditions for a grid graph to be Hamilto-
nian and proved that all finite grid graphs of positive width have Hamiltonian
line graphs.

Recently the Hamiltonian cycle (path) and longest path problem of a grid
graph has received much attention. Salman et al. [21] introduced a family
of grid graphs, i.e. alphabet grid graphs, and determined classes of alphabet
grid graphs that contain Hamiltonian cycles. Islam et al. [10] showed that the
Hamiltonian cycle problem in hexagonal grid graphs is NP-complete. Also,
Gordon et al. |8] proved that all connected, locally connected triangular
grid graphs are Hamiltonian, and gave a sufficient condition for a connected
graph to be fully cycle extendable and also showed that the Hamiltonian
cycle problem for triangular grid graphs is NP-complete.

Moreover, Zhang and Liu [25] gave an approximation algorithm for the

2

Figure 1: The rectangular grid graph R(8,7).

longest path problem in grid graphs and their algorithm runs in quadratic
time. Also the authors in |13] has been studied the longest path problem
for rectangular grid graphs and their algorithm is based on divide and con-
quer technique and runs in linear time. Some results of the grid graphs are
investigated in [14, 20].

In this paper, we present a sequential and a parallel algorithms for finding
longest paths between two given vertices in rectangular grid graphs (meshes).
Our algorithm has improved the previous algorithm [13] by reducing the
number of partition steps from O(m + n) to only a constant.

The organization of the paper as follow: In Section 2, we review some
necessary definitions and results that we will need. A sequential algorithm
for the longest path problem is given in Section 3. In Section 4, a parallel
algorithm for the problem is introduced which is based on the mentioned
sequential algorithm. Conclusions is given in Section 5.

2. Preliminary results

In this section, we give a few definitions and introduce the correspond-
ing notations. We then gather some previously established results on the
Hamiltonian and the longest path problems in grid graphs which have been
presented in [3, [11, [13].

The two-dimensional integer grid G* is an infinite graph with vertex set of
all the points of the Euclidean plane with integer coordinates. In this graph,
there is an edge between any two vertices of unit distance. For a vertex v
of this graph, let v, and v, denote x and y coordinates of its correspond-
ing point (sometimes we use (v, v,) instead of v). We color the vertices of
the two-dimensional integer grid as black and white. A vertex v is colored
white if v, + v, is even, and it is colored black otherwise. A grid graph G
is a finite vertex-induced subgraph of the two-dimensional integer grid. In
a grid graph G, each vertex has degree at most four. Clearly, there is no

3

==

Figure 2: A Hamiltonian cycle for the rectangular grid graph R(5,4).

edge between any two vertices of the same color. Therefore, G, is a bipartite
graph. Note that any cycle or path in a bipartite graph alternates between
black and white vertices. A rectangular grid graph R(m,n) (or R for short)
is a grid graph whose vertex set is V(R) = {v |1 <wv, <m, 1 < v, < n}.
In the figures we assume that (1,1) is the coordinates of the vertex in the
upper left corner. The size of R(m,n) is defined to be mn. R(m,n) is called
odd-sized if mn is odd, and it is called even-sized otherwise. In this paper
without loss of generality, we assume m > n and all rectangular grid graphs
considered here are oddxodd, evenxodd and evenxeven. R(m,n) is called
a n-rectangle.

The following lemma states a result about the Hamiltonicity of even-sized
rectangular graphs.

Lemma 2.1. [3] R(m,n) has a Hamiltonian cycle if and only if it is even-
sized and m,n > 1.

Figure 2] shows a Hamiltonian cycle for an even-sized rectangular grid
graph, found by Lemma 2.1l Every Hamiltonian cycle found by this lemma
contains all the boundary edges on the three sides of the rectangular grid
graph. This shows that for an even-sized rectangular graph R, we can always
find a Hamiltonian cycle, such that it contains all the boundary edges, except
of exactly one side of R which contains an even number of vertices.

Two different vertices v and v’ in R(m,n) are called color-compatible if
either both v and v’ are white and R(m,n) is odd-sized, or v and v" have
different colors and R(m,n) is even-sized. Let (R(m,n),s,t) denote the
rectangular grid graph R(m,n) with two specified distinct vertices s and t.
Without loss of generality, we assume s, < t,.

(R(m,n),s,t) is called Hamiltonian if there exists a Hamiltonian path be-
tween s and ¢ in R(m,n). An even-sized rectangular grid graph contains
the same number of black and white vertices. Hence, the two end-vertices
of any Hamiltonian path in the graph must have different colors. Similarly,
in an odd-sized rectangular grid graph the number of white vertices is one
more than the number of black vertices. Therefore, the two end-vertices of

4

any Hamiltonian path in such a graph must be white. Hence, the color-
compatibility of s and t is a necessary condition for (R(m,n),s,t) to be
Hamiltonian. Furthermore, Itai et al. [11] showed that if one of the following
conditions hold, then (R(m,n),s,t) is not Hamiltonian:

(F1) R(m,n) is a l-rectangle and either s or ¢ is not a corner vertex (Figure

B(a)

(F2) R(m,n) is a 2-rectangle and (s,t) is a nonboundary edge, i.e. (s,t) is
an edge and it is not on the outer face (Figure B(b)).

(F3) R(m,n) is isomorphic to a 3-rectangle grid graph R'(m,n) such that s
and t is mapped to s’ and t' and all of the following three conditions
hold:

1. m is even,

2. s’ is black, t' is white,

3. s, =2and s}, <t (FigureBl(c)) or s, # 2 and s}, < t,, —1 (Figure
Bi(d)).

Also by [11] for a rectangular graph R(m,n) with two distinct vertices s and
t, (R(m,n),s,t) is Hamiltonian if and only if s and ¢ are color-compatible
and R(m,n), s and t do not satisfy any of conditions (F'1), (F'2) and (F'3).
In the following we use P(R(m,n), s,t) to indicate the problem of finding a
longest path between vertices s and ¢ in a rectangular grid graph R(m,n),
L(R(m,n),s,t) to show the length of longest paths between s and ¢ and
U(R(m,n),s,t) to indicate the upper bound on the length of longest paths
between s and ¢.

The authors in [13] showed that the longest path problem between any
two given vertices s and t in rectangular grid graphs satisfies one of the
following conditions:

(CO) s and t are color-compatible and none of (F1)- (F3) hold.

(C1) Neither (F1) nor (F2*) holds and either

1. R(m,n

) is even-sized and s and ¢ are same-colored or
2. R(m,n) is odd-sized and s and t are different-colored.

(C2) 1. R(m,n) is odd-sized and s and ¢ are black-colored and neither
(F1) nor (F2*) holds, or

s s
o] [] [] o] [] o] [] o] [] o] [] o] [] o] [)
s t t

[] % [] o] [] o] [] o] [] o] [] o]

o] [] o] [] o] [] o] []

() (b) (©) (@)

Figure 3: Rectangular grid graph in which there is no Hamiltonian path between s
and t.

2. s and t are color-compatible and (F3) holds.

Where (F2*) is defined as follows:
(F2*) R(m,n) is a 2-rectangle and s, = t, or (s, =t, — 1 and s, # t,).
They also proved some upper bounds on the length of longest paths as fol-

lowing:
.

ty — Sy + 1, if (F'1),
max(ty + S, 2m —t, — s, +2), if (F2%),
U(R(m,n),s,t) = < mn, if (C0),
mn — 1, if (C1),
mn — 2, if (C2).

\

Theorem 2.1. [13] Let U(R(m,n),s,t) be the upper bound on the length
of longest paths between s and t in R(m,n) and let L(R(m,n),s,t) be the
length of longest paths between s and t. In a rectangular grid graph R(m,n),
a longest path between any two vertices s and t can be found in linear time
and its length (i.e., L(R(m,n),s,t)) is equal to U(R(m,n),s,t).

3. The sequential algorithm

In this section, we present a sequential algorithm for finding a longest
path between two vertices in rectangular grid graphs. This algorithm is the
base of our parallel algorithm which is introduced in Section 4. First, we
solve the problem for 1-rectangles and 2-rectangles.

Lemma 3.1. [13] Let P(R(m,n),s,t) be a longest path problem with n = 1
orn =2, then L(R(m,n),s,t) = U(R(m,n),s,t).

S S
o S t o @;:i.:;j @

(c) (d)

Figure 4: (a) Longest path between s and ¢ in a 1-rectangle, (b) Longest path between s
and t in a 2-rectangle, (¢) and (d) A path with length 2m and 2m — 1 for a 2-rectangle,
respectively.

Proof. For a 1l-rectangle obviously the lemma holds for the single possible
path between s and t (see Figure [(a)). For a 2-rectangle, if removing s
and t splits the graph into two components, then the path going through
all vertices of the larger component has the length equal to U(R(m,n), s, t)
(see Figure B(b)). Otherwise, let s* be the vertex adjacent to s and ¢ be the
vertex adjacent to t such that s; # s, and t;j # t,. Then we make a path
from s to s and a path from ¢ to ¢ as shown in Figure @(c), (d), and connect
s’ to t by a path such that at most one vertex remains out of the path as
depicted in this figure. O

From now on, we assume that m > n > 2, so one of conditions (C0),
(C1) and (C2) should hold. Following the technique used in [3] we develop
an algorithm for finding longest paths.

Definition 3.1. [13] A separation of a rectangular grid graph R is a parti-
tion of R into two disjoint rectangular grid graphs R; and Rs, i.e. V(R) =
V(R1) UV(Ry), and V(Ry) NV (Ry) = 0.

Definition 3.2. [11] Let v and v’ be two distinct vertices in R. If v, < 2
and v/, > m — 1, then v and v are called antipodes.

Definition 3.3. [3] Partitioning a rectangular grid graph R into five disjoint
rectangular grid subgraphs R; — R5 that is done by two horizontal and two
vertical separations are called peeling operation, if the following two condi-
tions hold:

1. s,t € R and s and t are antipodes.

2. Each of four rectangular grid subgraphs R; — R, is an even-sized rect-
angular grid graph whose boundary sizes are both greater than one, or
is empty.

Generally the two vertical separation of a peeling are done before the two
horizontal separation. However, for an oddxodd or oddxeven rectangular
grid graph with s, = ¢,, this order is reversed in order to guarantee that the
boundary sizes of R3 and R, are greater than one. Figure Bl shows a peeling
on R(15,11) where s is (6,5) and ¢ is (8,9).

The following lemma can be obtained directly from Definition 3.3.

R . Rs : R,
O @ O e:0 @ O e O:e O e O e O
e O o oéo o e o ogo e O e O o
o e o oéo e O o o?o o e 0O e O
e O o ogo o e o o%o e O e O o
o e o ooféooo o e O e O
e O o oéo R oio e O @ O o
o e o oéo e O o o?o o e 0O e O
e O o ogo o e o o%o e O e O e
o e 0 0 @ 0 2 cie o ® 0 ® 0
e O o ooo]%oooo e O @ O o
o e o oéo b o o?o o e 0O e O

Figure 5: A peeling on R(15,11).

Lemma 3.2. [3] Let R5(ns5, ms) be the resulting rectangular grid subgraph of
a peeling on R(n,m), where s,t € V(R5). Then

1. s,t remain the same color in Ry as in R; and

2. Rs has the same parity as R, that is, ms mod 2 =m mod 2, and ns
mod 2 =n mod 2.

Definition 3.4. A peeling operation on R is called proper if |Ry| + |Ra| +
|Rs| + |R4| + U(Rs,s,t) = U(R(n,m),s,t), where |R;| denotes the number
of vertices of R;.

Lemma 3.3. For the longest path problem P(R(n,m),s,t), any peeling on
R(m,n) is proper if:

1. The condition (C0) holds and m mod 2 = nmod 2 (i.e. R(m,n) is
even X even or odd X odd), or

2. One of the conditions (C1) and (C2) hold and R(m,n) is even X odd
or odd x odd.

Proof. The lemma has been proved for the case that (C0) holds (see |3]). So,
we consider conditions (C1) and (C2). From Lemma[3.2] we know that s and
t are still color-compatible, and we are going to prove that P(Rs(ms, ns), s, t)
is not in cases F'1 and F2*.

By Lemma[3.2] when R(m,n) is an odd x odd rectangular grid graph, Rs(ms, ns)
is also an odd x odd rectangular grid graph, s and ¢ have the same color as
in R, and hence Rs(ms,ns) is not a 2-rectangle. If Ry is a 1-rectangle, then
s, = t, or s, =t, and then we have the two following cases:

Casel. (C1) holds and both s and ¢ are different color. In this case, one
of s, and t, (s, and t,) is even and the other is odd. Considering that s and
t are antipodes and Rj is oddxodd, one of s and ¢t must be at the corner and
exactly one of the vertex goes out of the path.

Case2. (C2) holds and both s and ¢ are black color. In this case, all s,,
sy, t, and t, are even. Hence, vertices s and t are before corner vertices and
exactly two vertices go out of the path.

In the similar way, when R(m,n) is an even X odd rectangular grid graph
((C1) holds), Rs(ms,ns) is also an even x odd rectangular grid graph, and
hence Rs(ms,ns) is not a 2-rectangle. If Rs is a 1-rectangle, then s, = t,.
In this case, s, and t, are both odd or even. Hence, s or t are at the corner
and exactly one vertex goes out of the path.

Therefore by Theorem 211 U(Rs5(ms,ns),s,t) = U(R(m,n),s,t) and any
peeling of R(m,n) is always proper. O

Nevertheless, a peeling operation in an even X even rectangular grid graph
R(m,n) may not be proper, and U(R5(ms,ns),s,t) # U(R(m,n),s,t), see
Figure [6] where the dotted-lines represent a peeling operation. In the two
following cases a peeling operation is not proper:

(F1') s is black, s, is even (or odd), t, = s, + 1 and s, # t,
(F2') s is white, s, is even (or odd), t, = s, — 1 and s, # t,;

Lemma 3.4. For the longest path problem P(R(n,m),s,t), where R(m,n)
is an even X even rectangular grid graph, a peeling operation on R(m,n) is
proper if and only if P(R(n,m),s,t) is not cases in (F1') and (F2').

When a peeling operation is not proper it can be made proper by adjustment
the peeling boundaries. In that case, if Ry, Ry, R3 and R4 are empty, then

9

Ry _: Ry Ry . Rs Ry _:Rs
: 8 :
Ry ; Rs: Ry o so. ! 7 [o
3. [Bs1 . s iy
t S
T ;R; l R, R
(a) (b) (c) (d)
Figure 6: Rectangular grid graph in which a peeling operation is not proper.
Ry : Ry R ;R R : R
R, et T% :
Rl Serernnnnn : :
: piost Pioe.
’ t o] o] g [] E S [] ; t
Ry LR, Ry
(a) (b) (c) (d)
Figure 7:

Rs is 2-rectangle that is in case (F2*). Therefore, without loss of generality,
we assume Ry, Ry, R3 or Ry is not empty. If rectangular grid subgraphs R3
and R4 are empty, then we move one column (or two columns when R; or Ry
is a 2-rectangle) from R; or Ry to Rs such that Ry or Ry is still even-sized
rectangular grid graphs; see Figure [[(a). If Ry, Ry, R3 and R4 (or R3 and
R4) is not empty, then we move one row (or two rows when Rs or Ry is
2-rectangle) from R3 or Ry to Rs (Figure [[(b)), or move the bottom row to
R, (Figure[D(c)) or move the upper row to R3 (Figure[f(d)), such that R3 or
R, is still even-sized rectangular grid graphs.

After a peeling operation on R(m,n), we construct longest paths in
Rs(ms,n5). Consider the following cases for Rs(ms, ns):

ms, s < 3.

(a
(

(c

(d) my is even and nj; is odd, and either ms > 4 or ny > 5.

b) ms,ns are even, and either ms > 4 or ng > 4;
) ms,ns are odd, and either ms > 5 or ny > 5;

For case (a), we showed that when n = 1,2 the problem can be solved easily.

10

Figure 8 For n = m = 3, (a) s and t are white, then there is Hamiltonian path,
(b) s and ¢ have different colors, then there is a path with U(R, s,t) = mn—1 and
(c) s and t are black, then there is a path with U(R, s,t) = mn — 2.

For m,n = 3 the longest paths of all the possible problems are depicted in
Figure [(the isomorphic cases are omitted).
For cases (b), (c) and (d) we use the definition of trisecting.

Definition 3.5. [3] Two separations of Rj; that partition it into three rect-
angular grid subgraphs RZ, R. and RI" is called trisecting, if
(i). R: and R are a 2-rectangle, and

(i1). s € V(RE) and t € V(RE).

A trisecting can be done by two ways horizontally and vertically. If
mys < 4 or ms,ns > 4, then trisecting is done horizontally, if n; < 4, then
trisecting is done vertically.

Definition 3.6. A corner vertex on the boundary of Rf (resp., Rf) facing
7 is called a junction vertex of Rf (resp., RL) if either

(i) The condition (C0) holds and it has different color from s and ¢, or

(ii) One of the conditions (C'1) or (C2) hold and U(RY, s, p)+U (RZ, m, m’)+

U(RL,q,t) = U(R(m,n),s,t). Where p is one of the corner vertices of

¢, q is one of the corner vertices of RE, and m and m’ are two of the
corner vertices of RY" facing Rf and Rf, respectively.

11

Figure 9: A trisecting on R(6,6).

In Figure[@, p; and ps, ¢1 and ¢, mq, ma, ms and my are junction vertices
in R, Rt and RY", respectively. Existence of junction vertices has been
proved for condition (CO0) in [3], in this paper we only consider conditions
(C1) and (C2).

Lemma 3.5. Performing a trisecting on Rs, where m,n > 3, assuming
condition (C1) or (C2) holds, if ns = 4, and s and t facing the common
border of R and R, then there is no junction vertez for R and R, otherwise
R: and RE have at least one junction vertex.

Proof. Consider Figure [[0(a) and (b), where ns = 4 and two vertices s
and ¢ facing the common border R and Rf. In this case, the only two
vertices py and ¢; may be junction vertices. By Theorem 211 there exists a
Hamiltonian path from s to py and from ¢; to ¢t in RS and RE, respectively,
and U(RE, s,p2) + U(RL, ¢1,t) # U(R(m,n), s, t). Hence, neither RS nor R
has a junction vertex at all. Now for other cases, we show that R and R}
have at least one junction vertex.

In case (b), s and t have the same color (white or black), and two corner
vertices on the boundary of Rf (resp., RE) facing Ry* are different color and
also R{" is a k—rectangle that k is empty or k£ > 2 and even. We consider
the following three cases for s and ¢:

Case 1. Both s and t are the corner vertices on the boundary of R; and
RL facing RY"; see Figure [[0(c). By Theorem [ZT] there exists a Hamiltonian
path from s to ps and from ¢; to ¢t in Rf and RE, respectively, and a path
from mg to my which does not pass through a vertex in R}'. Therefore,
U(RE, s,p2)+U(RE, m3, ma)+U(RE, q1,t) = U(R(m,n), s,t) and hence both
R and R have a unique junction vertex.

Case 2. s is the corner vertex on the boundary of R: facing RL'; see Figure
I0(d). By Theorem 21|, there exists a Hamiltonian path from s to ps, from
¢1 to t and a path from mgs to mo which does not pass through a vertex, or a
Hamiltonian path from s to ps, form ms to my4 and a path from ¢, to ¢t which

12

Figure 10: A trisecting on R(6,6), R(6,4).

does not pass through a vertex. Therefore, U(RE, s, p2) + U(RZ*, mg, ma) +
U(RL, q1,t) = U(R(m,n), s, t) and U(RE, s, p2)+U (R, ma, my)+U(RE, g, t) =
U(R(m,n),s,t) and hence R has a unique junction vertex and R} have two
junction vertices (the same argument is also applied to t). In this case, where
ns = 4, both RE and RE have a unique junction vertex; see Figure [[0(e).

Case 3. s and t are not the corner vertices on the boundary of R and
R facing RY; see Figure [I0(f). By Theorem 2] there exists a Hamilto-
nian path from s to p;, m; to m3 and a path from ¢; to ¢t which does not
pass through a vertex, or a Hamiltonian path from s to p;, from ¢s to ¢ and
a path from m; to m4 which does not pass through a vertex, or a Hamil-
tonian path form msy to my, from ¢» to t and a path from s to p, which
does not pass through a vertex. Therefore, U(Rg, s, p1) + U(RZ*, my, m3) +
U(RL, q1,t) = U(R(m,n),s,t), URE, s,p1) + U(RE, my, my) + U(RE, qa, t) =
U(R(m,n),s,t)and U(RE, s, p2)+U(RE, ma, my)+U(RE, g2, t) = U(R(m, n), s,t)
and hence both Rf and Rf have two junction vertices.

In case (c), s and t are black or different color, and two corner vertices
on the boundary of Rf (resp., Rf) facing RI* are black and also RY" is a
k—rectangle that £ > 1 and odd. There are three cases for s and ¢:

Case 1. Both s and t are the corner vertices on the boundary of R; and
RL facing RY'; see Figure [Ila). Then s and ¢ are black. By Theorem 2.,
there exists a path from s to py, from ¢; to ¢ which does not pass through a
vertex in R and RE, respectively, and a Hamiltonian path from mg to ms in

13

RZ*. Therefore, U(RE, s, p2)+U (R, m3, ma)+U(RE, q1,t) = U(R(m,n), s, t)
and hence both Rf and Rf have a unique junction vertex.

Case 2. s is the corner vertex on the boundary of R facing R{*, then s is
black and ¢ is black or white; see Figure[II((b). By Theorem 2], there exists a
path from s to pe and from ¢; (or go) to ¢, where t is black, which does not pass
through a vertex, and a Hamiltonian path from and my to my4 (or from mg3 to
ms), or a Hamiltonian path from ¢; (or ¢2) to t, where t is white and my to my
(or from m3 to ms) and a path from s to p, which does not pass through a ver-
tex . Therefore, U(RE, s, p2)+U(RY, m3, ma)+U(RE, q1,t) = U(R(m,n), s, t)
and U(Rg, s, p2) + U(R5 ,ma, myg) +U(RE, q2,t) = U(R(m,n), s, t) and hence
R: has a unique junction vertex and RE have two junction vertices (the same
argument is also applied to t). In this case, where ns = 5, both RS and R a
unique junction vertex; see Figure [[1](c).

Case 3. s and t are not the corner vertices on the boundary of R and
RL facing RE*; see Figure[II(d). By Theorem 2.1] there exists a Hamiltonian
path from s to p, m tom’ and ¢ to t, where s (or t) is white, and a path form
s to p and ¢ to ¢t which does not pass through a vertex where s (or t) is black,
p is p1 or pa, q is ¢ or G2, ™ is my or my and m’ is mg or my. Therefore,
U(R:, s,p) + U(R®,m,m’) + U(RL, q,t) = U(R(m,n),s,t) and hence both
R and R have two junction vertices.

In case (d), if ns > 3, the trisecting is performed horizontally, and the claim
is proved by applying the same argument for case (b); see Figure [1i(e). If
ns = 3, the trisecting is performed vertically and also two corner vertices on
the boundary of Rf facing R;" are black. Therefore, the claim is proved by
applying the same argument for case (c). O]

After trisecting, we construct a longest path in Rf, Rf* and R. between
s and p, m and m’ and ¢ and ¢, respectively. In the case that none of R and
RL have junction vertices (when n; = 4 and both s and ¢ facing the common
border R and R), we construct a longest path in R (resp., Rf) between
s (resp., t) and a none-corner vertex of the boundary facing R (resp., RE);
see Figure At the end, the longest paths in R5 are combined through the
junction vertices; see Figures [I0 and Il

Then we construct Hamiltonian cycles in rectangular grid subgraphs R;
to Ry, by Lemma 2T}, see Figure 3l Then combine all Hamiltonian cycles
to a single Hamiltonian cycle.

Two non-incident edges e; and ey are parallel, if each end vertex of e;
is adjacent to some end vertex of e;. Using two parallel edges e; and ey of

14

Figure 11: A trisecting on R(7,7), R(7,5) and R(6,5).

two Hamiltonian cycles (or a Hamiltonian cycle and a longest path), such as
two darkened edges of Figure [[4f(a), we can combine them as illustrated in
Figure [[4[(b) and obtain a large Hamiltonian cycle.

Combining the resulted Hamiltonian cycle with the longest path of Rj is
done as in Figure [I3

Figure 12: the Longest path in R(6,4).

Considering all of the above, we get the algorithm of finding a longest
path in rectangular grid graphs, as shown in Algorithm [3.11

Consider the pseudo-code of our algorithm in Algorithm B.Il The step 1
dose only a constant number of partitioning, during the peeling operation,
which is done in constant time. The step 2 trisects R; which requires also a
constant number of partitioning. Then finds a longest path in R5 by merging
paths of the partitions which can be done in linear time. The step 3 finds
Hamiltonian cycles of Ry to R4 which is done in linear time. The step 4

15

Ry

Figure 13: Hamiltonian cycles in Ry to Ry.

R
E

(a) (b)

Figure 14: Combining two Hamiltonian cycles.

which combines the Hamiltonian cycles and the longest path requires only
constant time. Therefore, in total our sequential algorithm has linear-time
complexity.

4. The parallel algorithm

In this section, we present a parallel algorithm for the longest path prob-
lem. This algorithm is based on the sequential algorithm presented in the
previous sections. Our parallel algorithm runs on every parallel machine,
we do not need any inter-processor connection in our algorithm. We assume
there are nm processors and they work in SIMD mode. For simplicity, we use
a two-dimensional indexing scheme. Each vertex v of the given rectangular

16

Figure 15: The longest path between s and t.

Algorithm 3.1 The longest path algorithm
procedure LongestPath(R(m,n), s, t)
Step 1. By a peeling operation, R(n,m) partitions into five disjoint rectangular
grid subgraphs Ry to Rs, such that s,t € R5
Step 2. Finding longest path between s and ¢ in Rj.
Step 3. Construct Hamiltonian cycles in rectangular grid subgraphs R to Ry4.

Step 4. Construct a longest path between s and ¢ by combine all Hamiltonian
cycles and a longest path.

grid graph R(m,n) is mapped to processor (v;,v,). Each processor knows
its index, coordinates s and ¢, and m and n.

The peeling phase is parallelized easily, every processor calculates the
following four variables, in parallel [3]:

Se —2; symod 2=0
T =
! sz — 1; otherwise

t,+1; tymod 2=mmod 2
T =
? t. +2; otherwise

{mz’n(sy; t,) —2; min(s,;t,) mod 2=0
(sy;t

min(sy;t,) —1; otherwise

max(sy;t,) +1; maz(sy,;t,) mod 2 =nmod 2
T, =
! max(sy;ty) +2; otherwise

Where variables ry, ro, r3 and r4 correspond to the right-most column
number of Ry, the left-most column number of Ry, the bottom row number of

17

R3, and the top row number of R4, respectively. Then a processor can identify
its subrectangular by comparing its coordinates with these four variables.
In case (F1') and (F2'), the boundary adjustment can be done by simply
decrementing Ry, Ry, R3 or R, or incrementing R3 or Ry.

The trisecting phase is also parallelized in a similar manner. In the fol-
lowing we describe how we parallelized the horizontal trisecting, in two cases
when R(m,n) is evenxodd (or oddxodd) and when it is evenxeven. In case
R(m,n) is evenxodd or oddxodd, every processor simultaneously calculate
the following two variables:

I = min(sy;t,) min(s,;t,) mod 2 =0

~ \min(sy;t,) +1 min(s,;t,) mod 2#0
max(sy;ty,) max(s,;t,) mod 2 =0
max(sy;t,) —1 max(s,;t,) mod 20

Where variables | and r correspond to the bottom row number of R
(resp. RL), and the top row number of Rf (resp. Rg), respectively.

In case R(m,n) is evenxeven, every processor simultaneously calculate
the following two variables:

[= min(sy;t,) min(s,;t,) mod 2 =0
min(sy;t,) +1 min(sy;t,) mod 2#0
) max(sy;ty) max(s,;t,) mod 2 # 0
~ \max(sy,;t,) —1 maz(s,;t,) mod 2 =0

A similar method can be used to parallelize the vertically trisecting.
After peeling and trisecting, all processors in the same subrectangles simulta-
neously construct either a longest path, Hamiltonian path or cycle according
to the pattern associated with the subrectangle. For constructing a Hamil-
tonian path in a rectangular grid graph, we use the constant-time algorithm
of [3]. For constructing a Hamiltonian cycle in an even-sized rectangle, we
use the constant-time algorithm of [4] in which every processor computes its
successor in the cycle. This algorithm is given in Algorithm (4.1}, see Figure
T6/(a) .

For constructing a longest path, parallel algorithms can be easily devel-
oped for each different pattern shown in Figure[I6[(b), (c¢). As two examples,
for constructing a longest path between vertices (2,1) and (m — 1,n) in an
oddxodd rectangular grid graph R(m,n), and vertices (m—1,1) and (n—1,1)
in an even xeven rectangular grid graph R(m,n). We have developed the sim-

18

ple algorithms Algorithm [4.2 and [4.3] respectively. The algorithms for other
patterns can be derived in the similar way.

Then combining phase is parallelized as follows. The two processors at
the two endpoints of a corner edge in a Hamiltonian cycle ¢; check whether
a neighboring Hamiltonian cycle ¢y exists or not. If ¢y exists, then their
successors are changed to the adjacent processors in cy. Similarly, the two
processors at the endpoints of a corner edge in the longest path P in R also
check the existence of the adjacent edge in the Hamiltonian cycle C', and
change their successors. Thus, the combining phase can be parallelized in
constant steps without inter-processor communication.

[e]

[e]

(a) (b)

Figure 16: (a) A Hamiltonian cycle in R(4,7), (b) and (c) two patterns of longest path in
R5(5, 5) and R5(8, 6)

Algorithm 4.1 The Hamiltonian cycle parallel algorithm for an even-sized
rectangular grid graphs
procedure LongestPathR(m,n)

1: for each processor (z,y) in R(m,n) do in parallel

2: if y =1, then successor (z,y) < (v + 1,y)

3: elseif (y = 2, z is odd and = # 1) or (y = n and z even), then successor
(ﬂi',y) A (33‘ - 173/)

4: slesif z is even and y < n, then successor (z,y) +— (z,y + 1)

5: else x is odd and y < n, then successor (z,y) +— (z,y — 1)

5. Conclusion and future work

We presented a linear-time sequential algorithm for finding a longest path
in a rectangular grid graph between any two given vertices. Since the longest
path problem is NP-hard in general grid graphs |11}, it remains open if the

19

Algorithm 4.2 The longest path parallel algorithm for odd xodd rectangular
grid graphs

procedure LongestPath(Rs(ms,ns), s, t)

for each processor (z,y) in Rs(ms,ns) do in parallel

if rt=1and y=1or x =m and y = n, then successor (z,y) <— nill
elseif y is odd and = < m, then successor (z,y) +— (z + 1,y)

slesif y is odd and x = m, then successor (z,y) +— (z,y + 1)

elseif y is even and x > 1, then successor (z,y) +— (x — 1,y)

else y is even and x = 1, then successor (z,y) «— (z,y + 1)

Algorithm 4.3 The longest path parallel algorithm for evenxeven rectan-
gular grid graphs

procedure LongestPath(Rs(ms, ns), s, t)

: for each processor (z,y) in R5(ms,ns) do in parallel

if x =m and y = 1, then successor (z,y) <— nill

elseif (y is odd and x = m), (y is even and x = 1) or (y = n and z is even)
then successor (z,y) «— (z,y — 1)

slesif (y is odd and z < m), (y =n — 1 and z is even), (y = n and x is odd)
then successor (z,y) «— (x + 1,y)

elseif y is even and x > 1 then successor (z,y) +— (z —1,y)

elseif y = n — 1 and z is odd then successor (z,y) +— (z,y + 1)

20

problem is polynomially solvable in solid grid graphs. Based on the sequential
algorithm a constant-time parallel algorithm is introduced for the problem,
which can be run on every parallel machine.

References

1]

2]

[7]

8]

[9]

A. Bjorklund and T. Husfeldt, Finding a path of superlogarithmic
length, STAM J. Comput., 32(6):1395-1402, 2003.

R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff, A.
J. M. van Gasteren and W. H. J. Feijen, On computing a longest path
in a tree, Information Processing Letters, 81(2):93-96, 2002.

S. D. Chen, H. Shen and R. Topor, An efficient algorithm for construct-
ing Hamiltonian paths in meshes, J. Parallel Computing, 28(9):1293-
1305, 2002.

S. D. Chen, H. Shen, R. W. Topor, Efficient parallel permutation-based
range-join algorithms on meshconnected computers, in: Proceedings of

the 1995 Asian Computing Science Conference, Pathumthani, Thailand,
Springer-Verlag, 225-238, 1995.

R. Diestel, Graph Theory, Springer, New York, 2000.

H. N. Gabow and S. Nie, Finding long paths, cycles and circuits, 19th
annual International Symp. on Algorithms and Computation (ISAAC),
LNCS, 5369:752-763, 2008.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness, Freeman, San Francisco, 1979.

V. S. Gordon, Y. L. Orlovich and F. Werner, Hamiltonian properties of
triangular grid graphs, Discrete Math., 308 (2008) 6166-6188.

G. Gutin, Finding a longest path in a complete multipartite digraph,
SIAM J. Discrete Math., 6(2):270-273, 1993.

21

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Islam, H. Meijer, Y. Nunez, D. Rappaport and H. xiao, Hamiltonian
Circuts in Hexagonal Grid Graphs, CCCG, (2007) 20-22.

A. Ttai, C. Papadimitriou and J. Szwarcfiter, Hamiltonian paths in grid
graphs, STAM J. Comput., 11(4):676-686, 1982.

D. Karger, R. Montwani and G. D. S. Ramkumar, On approximating
the longest path in a graph, Algorithmica, 18(1):82-98, 1997.

F. Keshavarz-Kohjerdi, A. Bagheri and A. Asgharian-Sardroud, A
Linear-time Algorithm for the Longest Path Problem in Rectangular
Grid Graphs, Discrete Applied Math., 160(3): 210-217, 2012.

F. Keshavarz-Kohjerdi and A. Bagheri, Hamiltonian Paths in Some
Classes of Grid Graphs, Journal of Applied Mathematics, accepted.

W. Lenhart and C. Umans, Hamiltonian Cycles in Solid Grid Graphs,
Proc. 38th Annual Symposium on Foundations of Computer Science
(FOCS "97), 496-505, 1997.

K. Loannidou, G. B. Mertzios and S. Nikolopoulos, The longest path
problem is polynomial on interval graphs, Proc. of 34th Int. Symp. on
Mathematical Foundations of Computer Science, Springer-Verlag, Novy
Smokovec, High Tatras, Slovakia, 5734:403-414, 2009.

F. Luccio and C. Mugnia, Hamiltonian paths on a rectangular chess-
board, Proc. 16th Annual Allerton Conference, 161-173, 1978.

G. B. Mertzios and D. G. Corneil, A simple polynomial algorithm for
the longest path problem on Cocomparability Graphs, J. Comput. Sci.,
Submitted 2010.

B. R. Myers, Enumeration of tours in Hamiltonian rectangular latice
graphs, Mathematical Magazine, 54(1) (1981), 19-23.

M. Nandi, S. Parui and A. Adhikari, The domination numbers of
cylindrical grid graphs, Applied Mathematics and Computation, 217(10)
(2011) 4879-4889.

A. N. M. Salman, Contributions to Graph Theory, Ph.D. Thesis, Uni-
versity of Twente, (2005).

22

[22] R. Uehara and Y. Uno, On Computing longest paths in small graph
classes, Int. J. Found. Comput. Sci., 18(5):911-930, 2007.

23] C. Zamfirescu and T. Zamfirescu, Hamiltonian Properties of Grid
Graphs, SIAM J. Math., 5(4) (1992) 564-570.

[24] Z. Zhang and H. Li, Algorithms for long paths in graphs, Theoretical
Comput. Sci., 377(1-3):25-34, 2007.

[25] W. Q. Zhang and Y. J. Liu, Approximating the longest paths in grid
graphs, Theoretical Computer Science, 412(39): 5340-5350, 2011.

23

	1 Introduction
	2 Preliminary results
	3 The sequential algorithm
	4 The parallel algorithm
	5 Conclusion and future work

