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Abstract

Compared to Beowulf clusters and shared-memory machines, GPU and FPGA are emerging

alternative architectures that provide massive parallelism and great computational capabilities.

These architectures can be utilized to run compute-intensive algorithms to analyze ever-enlarging

datasets and provide scalability.

In this paper, we present four implementations of K-means data clustering algorithm for different

high performance computing platforms. These four implementations include a CUDA

implementation for GPUs, a Mitrion C implementation for FPGAs, an MPI implementation for

Beowulf compute clusters, and an OpenMP implementation for shared-memory machines. The

comparative analyses of the cost of each platform, difficulty level of programming for each

platform, and the performance of each implementation are presented.
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1. Introduction

The demand for performance – speed of computing – is never decreasing. The ever-

increasing data size demands faster machines to process and analyze them [1]. Hardware

accelerators such as Field Programmable Gate Array (FPGA) and Graphics Processing Unit

(GPU) have emerged lately as promising technology drivers [2]. On the other hand, APIs

such as MPI (Message Passing Interface) and OpenMP have traditionally provided a

software-oriented approach.
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This paper focuses on four implementations for the K-means data-clustering algorithm,

using four different architectures, and provides a performance comparison for these differing

implementations. Section 2 reviews the research and background work in GPU, FPGA and

reconfigurable computing, MPI, OpenMP, and data clustering algorithms. Section 3

describes our research design for parallel algorithms for the four different architectures.

Section 4 presents the design considerations for each of the parallel algorithms. Section 5

contains experimental results and discussion. Conclusions and future work are discussed in

Section 6.

2. Background

2.1. Graphics Processing Unit (GPU) for General Purpose Computing with CUDA

The flexibility and performance demands have made GPUs change from the very specific

graphics accelerator to more general purpose computing device. Compared to CPUs, the

floating-point computational capabilities and the memory bandwidth of GPUs are

approximately one order of magnitude greater [3]. Modern GPUs are cheap and ubiquitous.

Many applications have shown orders of magnitude better performance than CPU

computation. Recently, GPUs have been used to accelerate various non-graphics

applications in many scientific areas that include bioinformatics, fluid mechanics, physics

etc.

NVIDIA provides a programming tool called Compute Unified Device Architecture

(CUDA) for programming GPUs. CUDA uses C-style syntax and it’s an extension to C

programming language. A typical program that uses GPUs has a host portion that runs on

CPUs and device portion that are composed of kernels, which run on GPUs. The host

portion controls the overall flow of the whole program and also controls the transfer of the

data between GPUs and CPUs.

Our research attempted to gain insight on how data mining applications perform on GPU by

implementing a classic data-clustering algorithm on it.

2.2. FPGA and Reconfigurable Computing

Chip-level integration of different types of electronics makes possible processors that

combines computing, interconnect, and storage [4]. FPGA represents an emerging

technology for computing platforms where vector processors and superscalar processors are

connected through low-latency, high-bandwidth fabric, all within a single system [5]. The

circuit elements of an FPGA are prefabricated, having been packaged and tested. Both the

connections and the cells within an FPGA are programmable to achieve different logic

functions. A typical programmable element of an FPGA chip consists of logic elements,

programmable inter-connect points, and programmable switches, where a switch can realize

various connections among the signals entering it. The cells are usually organized in a row-

wise or grid-wise manner [6]. The general approach is to exploit FPGA’s flexibility, e.g.

configuring as many adders as a specific application may require per cycle, as versus the

fixed number of adders provided in a typical CPU. Processing elements built from FPGAs,

instead of ASICs (for Application-Specific Integrated Circuits), can be programmed for

specific tasks. Orders-of-magnitude performance improvements have been observed on
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some workloads over the use of conventional scalar microprocessors in large-scale parallel

simulations [7]. The SGI white paper identified areas where FPGA-based reconfigurable

computing system may be of value [8]: offloading of computation, data I/O with DMA,

graphics and digital media (including DSP), and image recognition, among others. These are

in addition to the traditional benefits already available from FPGA, i.e. new algorithms can

be quickly prototyped and alterations made and evaluated in hardware. Our research

attempted to build subroutines based on the emerging hybrid FPGA reconfigurable

computing systems to enable the development of distributed clustering algorithms to help us

better understand complex physical processes involving spatial structures across multiple

scales. The work exploited the power of FPGAs in a reconfigurable supercomputer for

enhanced performance and scalability.

2.3. Message-Passing Interface (MPI)

MPI [9] represents the specification of an API that allows computers to communicate with

each other. It is widely used in computer clusters for parallel programming.

2.4. Open Multi-Processing (OpenMP)

OpenMP [10] is an Application Programming Interface (API) that was developed to support

threaded-based multi-platform shared memory programming. The main features of this

shared-memory programming model include: 1. All threads have access to the same,

globally shared memory, 2. Data can be shared or private. 3. Shared data is accessible by all

threads, 4. Data transfer is transparent to programmers, 5. Synchronization takes place

implicitly [11].

2.5. Simple K-means Algorithm

In statistics and machine learning, K-means clustering is a method of cluster analysis which

aims to partition n observations into K clusters in which each observation belongs to the

cluster with the nearest mean. It is similar to the expectation-maximization algorithm for

mixtures of Gaussians in that they both attempt to find the centers of natural clusters in the

data. Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional

real vector, K-means clustering aims to partition this set into K partitions (where K < n) as S
= {S1, S2,…, Sk} to minimize the within-cluster sum of squares [12].

3. Research Design

3.1. Parallel K-means Algorithm for GPUs

To achieve the best performance on GPU, the memory usage is a big part of consideration

when designing an algorithm to run on GPU. Because the data transfer between the host

memory and the device memory is expensive, we should try to avoid unnecessary memory

transfer between the host memory and device memory as much as possible. There is a

memory hierarchy in GPU and each memory level has a different speed. We should consider

the memory access pattern of k-means algorithm and try to make the global memory access

coalesced and the shared memory access with no or fewer bank conflict. For the data that are

used often and stored on global memory, copying them to the shared memory can achieve

much better performance.
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There are two major computational parts in the simple K-means clustering algorithm, i.e. a

distance calculation part to calculate the distance between each data point to each cluster

center then searching the minimum distance between a data point to the cluster centers, and

a cluster center updating part that calculates the new distance based on the data points that

are assigned to a cluster center to find the new cluster center. For the distance calculation

part, it fits the GPU architecture very well because there is no data dependence between

calculating difference distances and searching the minimum distance for each data point so it

can achieve the best speed-up. For the cluster center updating part, we need to sum up all the

objects that belong to the same cluster center, if one thread is assigned to one data point,

then all the threads that correspond to the data points that belong to the same cluster center,

there will be a data dependence between these threads. If we assign one thread to sum up all

the objects that belong to the same cluster center, then there will be no data dependence

between threads. Since there are more data points than cluster centers, the cluster updating

part achieves some speed-up but not as much as the distance calculation part.

There are other GPU implementations of K-means clustering, which include GPUMiner [13]

and GUCAS-CU-Miner [14]. GPUMiner uses bitmap to represent the membership of data

objects to clusters. Our method uses a parallel counting method to sum the number of

objects in a cluster, which needs less storage space than bitmap storage but achieves similar

performance. CU-Kmeans is the parallel implementation of k-means clustering algorithm on

GPU in the GUCASCU-Miner system. It has three kernels that are Cluster label update,

Centroid update, and Centroid movement detection. The Cluster label update and Centroid

update kernels are quite similar to the corresponding kernels of our implementation.

However, our implementation has a different centroid movement detection method. Their

method uses the square error between old and new centroids but our method detects the

membership change.

3.2. Parallel Algorithm with MPI

The MPI algorithm is based on the classical single program multiple data (SPMD)

processing model, and it is assumed that the entire data sets are evenly partitioned among a

given number, a.k.a. system size, of single-core processing nodes. These nodes form a

subset or entirely a distributed memory cluster computer.

3.3. Parallel Algorithm with OpenMP

Our OpenMP algorithm, while based on the SPMD model also, is implemented on a shared-

memory system in a thread-based manner. All the threads are aware of the entire data sets

being processed. Due to the nature of the OpenMP API, locking of globals is implicitly

handled by the optimizing compiler by way of the #pragma syntax.

3.4. Parallel Algorithm with FPGA

Our approach is to develop a parallel simple K-means clustering algorithm applicable to

hybrid FPGA-based reconfigurable computing systems. The objectives are: (1) preliminarily

characterize the RASC system; (2) develop a scalable and cost-effective algorithm; and (3)

evaluate the developed algorithm for performance, extensibility and scalability. The

evaluation involved two platforms, as described in the next two sections.
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3.4.1. Evaluation Platform A: the MVP Simulator—The MVP simulator is a program

provided by Mitrion C SDK. It simulates the real hardware executing of an application.

Since it is time consuming to synthesize an application to the FPGA hardware, it is

necessary to use the simulator when developing an application. The MVP simulator

generates the exact results as FPGA hardware does when running an application. It is just

simulated on a CPU so it takes much longer to run an application than running on a real

FPGA hardware.

3.4.2. Evaluation Platform B: the RASC System—For this work we used the SGI

Altix 4700, a RASC shared-memory computing cluster equipped with at least 2 FPGA units

capable of uploading “processing kernels” specified in a Mitrion C source program [15].

The system used for our work contains 24 dual-CPU nodes of Intel Itanium processors,

making the system effectively a 48-node 64-bit shared memory machine of reconfigurability

to be provided by the FPGA units. However, it is noted that since the FPGA units currently

emulate floating-point operations and data representations, developers generally dispatch

integer “kernels” to the FPGA and resort to the CPU nodes for floating-point tasks. The

CPU nodes are also responsible as host processors, which take care of the I/O and

initialization work for most applications.

4. Parallel Simple K-means Algorithms

4.1. Parallel Implementation with CUDA

To maximum the parallel execution for K-means data clustering algorithm, we designed our

algorithm so that for the distance calculation part, each thread is assigned to calculate one

distance between one data point and one cluster center. For the minimum distance searching

part, each thread is assigned to find the minimum distance to cluster centers for each data

point. For the cluster center updating part, we assign each thread to calculate a new cluster

center by summing up all the objects that belong to this cluster based on the minimum

distance. A different design for the cluster center updating part is to assign one thread to

each data point. Even though this design generates more parallel executing by having more

threads, but this requires the summing up operation to be atomic so there is no race

condition between threads. For compute compatibility less than 1.3, CUDA does not support

atomic operations for double-precision floating- point numbers and other workarounds just

make this cluster center updating perform poorly. Also having one thread to work on just

one data point may not keep the thread busy enough if the dimension of the data points is

not large enough, which means there are not enough computing operations for each thread to

work on.

Compared to the high bandwidth of device memory located on GPU, the data transfer

between the host memory and the device memory is expensive, we designed our algorithm

to only transfer data twice between the host memory and the device memory. The first time

is to transfer the data points from host memory to device memory and the second time is to

transfer the final cluster centers and the membership from the device memory to the host

memory.
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There is a memory hierarchy in GPU and each memory level has a different speed. We

designed our K-means data-clustering algorithm so that the global memory access is

coalesced and there is no or fewer bank conflict when using the shared memory. Since the

shared memory is much faster than the global memory, for the data that are used often and

stored on global memory, copying them to the shared memory can achieve much better

performance.

The CUDA code for the major loop of k-means data-clustering algorithm is shown in Figure

1. This major loop contains three kernel functions that are executed on GPU. These three

kernel functions calculate the distance between data point and cluster centers, search the

minimum distance to find the closest cluster center, sum up the membership change, and

update the cluster center separately. The membership change summing kernel function is

executed on GPU with a tree-like reduction technique. The CUDA code for the distance

calculation kernel function is shown in Figure 2. In this kernel function, the shared memory

was used to store the data points that are shared between the threads in a block.

4.2. Parallel Implementation with MPI

In the MPI algorithm, the whole data points are evenly partitioned and each partition is

distributed to a processor. The cluster centers are broadcasted to each processor from

processor 0. Each processor calculates the distance between the data points in its partition

and the cluster centers. Using this distance, each processor determines which cluster center

is closest to each data point and then assigns this data point to the cluster center. Then all the

data points are summed for each cluster center by called the MPI all reduction function and

then the new cluster centers are calculated. Figure 3 shows the code that’s run on each MPI

process and how the cluster centers are updated and synchronized between MPI processes.

4.3. Parallel Implementation with OpenMP

The parallel simple K-means algorithm using OpenMP looks very similar to the sequential

version, especially when the atomic OpenMP pragma is used. Figure 4 shows the code for

the distance calculation and cluster center update portion of the algorithm.

4.4. Parallel Implementation with FPGA

The Mitrion Virtual Processor has been developed for the purpose of allowing software

developers to benefit from FPGA-based software acceleration, without having to deal with

the complexities of hardware design [13]. This is achieved by way of a hardware abstraction

layer (HAL) that serves as the interface between the high-level code and the hardware. The

language environment, Mitrion C, provides traditional C-like compiler directives and tools

for selecting either the simulator or the actual hardware for executing the target application.

In this Section we detail the design of the parallel K-means algorithm to be adapted for

RASC.

Such adaptation must consider the processing flow of the parallelized algorithm, the data

dependencies if any between the interim results (from different processes), the actual

hardware organization, and finally implementation with the Mitrion C code. Our approach

included all of these design considerations. As shown in the following subsections, the
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parallel K-means algorithm was coded in Mitrion C and executed in the MVP simulator

first. Then a relatively minor header change was introduced into the developed code, along

with a different make file, to create the executable for the RASC cluster.

4.4.1. Data Path Diagram—Figure 5 shows the data flow in a parallel computation. This

data path diagram shows how the data are transferred in each iteration of the parallel K-

means clustering algorithm. This data path diagram is a sub-graph of the overall data path

diagram for the whole program. In this diagram, the purple nodes are inputs and outputs of

this sub-graph. The grey nodes are the waiting nodes that are currently not performing any

operations due to lack of data. Since this diagram was captured right before the program

starts to execute, all the nodes are grey nodes besides the inputs and outputs. The data path

diagram can show the dynamics of the data flow and when a parallel application is running,

the nodes can change their colors to show what status they are in.

4.4.2. Design Considerations—There are two major steps in the K-means clustering

algorithm: assign observations to the cluster and calculate the new cluster centers based on

the assignment of the observations. When assigning observations to the cluster, there are two

steps of calculations that should be done: calculate the Euclidian distance between each

observation to each cluster and find the cluster center that is closest to the observation based

on the distance calculated in the first step. The distance calculating part can be full

parallelized since each distance is independent of any other distances. As long as there is

enough processing element, each processing element can calculate one or more distances

between one observation and one cluster center. Since there is no data dependence between

each observation to find the closest cluster center for this observation, this step can be

calculated in parallel for each observation.

To calculate the new cluster centers, all observations belong to the same cluster are summed

and then divided by the total number of observations in the cluster along each dimension.

For this step, there is no data dependence between each cluster, which means each new

cluster center can be calculated in parallel. Usually the number of observations belong to a

cluster can be big for some clusters, which means the summation calculation part can be

accelerated provided a parallel summation can be implemented.

Since the cluster centers could change between consecutive iterations of the outermost loop

of the algorithm, there is data dependence between iterations of the most outer loop. This

means the outermost loop cannot be parallelized.

5. Results and Discussion

5.1. GPU results and discussion

We did two experiments using GPU implementation to see how our GPU implementation

algorithm performs. First, we used different number of data points and measured the

speedup of the GPU implementation compared to the sequential version. Second, we

measured the execution time of the GPU implementation when the data size remains the

same, but the number of clusters is different. The execution time measured is the wall-clock
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time, which includes CUDA memory copy, CUDA memory allocation, and CPU and GPU

time all together.

The relationship between the speedup and different number of data points is shown in Figure

6. Each data point has 10 dimensions and the number of clusters was fixed to be 256. When

the number of data points is small, only a small portion of the GPU processors is utilized,

and thus the speedup is small, as the number of data points increases, more and more GPU

processors can be utilized and we thus observed more speedup. When the number of data

points increased to a certain point, all GPU processors are utilized and the speedup is not

increasing anymore. From Figure 4 we can conclude that our GPU implementation scales

very well with the dataset size.

The relationship between the speedup and different number of clusters is shown in Figure 7.

In this experiment, each data point has a dimension of 10 and the number of data points is

fixed at 65536. The speedup increased as the number of clusters increases. This is because

when the number of clusters is small, not all GPU processors can be utilized and when the

number of clusters increases, more and more GPU processors can be utilized and thus the

speedup increases. The speedup will stop to increase when all GPU processors are utilized.

From Figure 5 we can conclude that our GPU implementation scales very well with the

number of clusters when the number of data points is fixed.

For our GPU implementation, the running time was measured on a machine that has an

AMD Phenom II Quad-core 3.0GHz processor and 8G RAM. The GPU used is NVIDIA

Tesla C2050, which has 448 GPU cores and 3GB device memory. Tesla C2050 graphics

card is attached to this machine, which runs Ubuntu 10.04 LTS server operating system.

5.2. MPI Results

To see the scalability of the MPI implementation, we ran the MPI program with a data set

that contains 20000 data points (each data point is has 10 dimensions) and then measured the

execution time of the MPI program with different number of processors. We set the number

of clusters to be 100. The execution time used with different number of processors is plotted

in Figure 8. We obtained this result using an Apple Xserve cluster with 24 compute nodes.

Each compute node of the cluster had two 2.3GHz CPUs and 4GB RAM. The MPI

implementation was compiled using the MPI library MPICH 1.2.6 library.

We performed a comparison between the sequential version and the MPI version. The

speed-up with different computing nodes is shown in Figure 9. This figure shows a very

good scalability of the MPI implementation when the number of processors increases.

5.3. OpenMP Results

We used the same data set as running MPI implementation to measure OpenMP

implementation. The machine that we used to run the OpenMP implementation is a Linux

box that has two quad-core Operon processors running at 2.3GHz. Figure 10 shows the

running time of the OpenMP implementation when different number of threads is used. This

figure shows a good scalability of the algorithm when the number of threads increases.
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5.4. FPGA Results

5.4.1. Mitrion MVP Simulations—We have run the parallel K-means clustering program

that we developed on the MVP simulator. We used a data set for image processing as the

input. This data set contains 17692 observations and each observation has a dimension of 9.

We have run the program with different number of clusters and then compared the results

(cluster centers and membership of each observation) with those of the sequential program

and we found there is no difference between the two execution results. This proved the

correctness of our parallel K-means data-clustering algorithm.

Since the MVP simulator simulates the parallel program by running it sequentially, it is

difficult to measure the actually scalability of our parallel K-means clustering algorithm on

the MVP simulator, but it is very necessary to run a program on the MVP simulator before

deploying and running it on the real FPGA hardware.

In our simulation runs, an input image data file, which contains 17692 data points and each

data point is 9 dimensional, was used, and our parallel K-means algorithm was configured to

generate 4, 8, 16, 32 and 64 clusters during separate executions. The simulator was run on

an Apple Macbook laptop with a dual core Intel processor (2.0GHz). Figure 11 shows the

executing time vs. number of clusters obtained from these runs. In this figure, the unit of the

executing time is millisecond (ms).

5.4.2. SGI Altix 4700 Executions—The results from the RASC cluster conformed

largely to those obtained from the MVP simulations. However, due to long time taken to

register and upload the stream data and code before execution, the overall performance was

somewhat reduced by this overhead.

Unlike the MVP simulation environment, on the RASC Altix 4700 cluster the compilation,

linking, registering and data streaming needed to be performed in multiple phases. This was

necessary to enable the allocation of hardware resources (i.e. configuration) including global

and local RAMs. The complexity of hardware allocation is noted as a design tradeoff for the

ease of programming in the high-level C-like language. As such, the “latency” in completing

a computation run was increased.

5.5. Discussion on the Results

The results show very good scalability of each implementation. Even though each

implementation shows scalability, the cost of the hardware is different. With the same

number of processing units, the cost of GPU and FPGA is much less than that of a computer

cluster or a shared-memory machine.

The performance of each implementation was measured on the assumption that the datasets

fit in the memory of each platform. For instance, for the GPU implementation, all the data

objects are loaded to the GPU device memory before the computation starts. If the size of

the data objects exceeds the total memory of the device memory of GPU, the program will

report an error of not enough memory. The performance of the GPU implementation

increases with the size of data objects until enough threads are kept busy, after that point, the

performance will decrease because of the overhead of thread dispatching.
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From the perspective of the difficulty of programming, the development time for FPGA has

been greatly reduced with the help of Mitron C, but the process of putting the image into the

FPGA box still takes several hours for the platform we used. OpenMP is the easiest one

because of the implicit parallelization of the compiler. MPI has a mature library that can be

used to do reduction and many other basic parallel computing. Table 1 summarizes the pros

and cons of each implementation based on the cost and the programming difficulty levels of

the platforms.

6. Summary and Future Work

This paper presented our work in the parallelization of the classic simple K-means clustering

algorithm for four different architectures. The MPI implementation running on a computer

cluster and the OpenMP implementation running on a shared memory computer are

traditional approaches. The GPU implementation and the FPGA implementation are newer

approaches using new architectures. We measured the execution time for each parallel

implementation and compared the performance of each implementation with the sequential

version using the same data set. Each parallel implementation has demonstrated various

levels of performance increase depending on the platform the implementation was designed

for. We also measured the scalability of each implementation on a data set with different

data points or with different number of clusters. Each implementation scales very well as the

data points increases or as the number of clusters increases.

Our CUDA implementation, the computation task of all the points belonging to the same

cluster is assigned to one CUDA thread, this scheme can be approved to achieve more

balanced workload and scalability. With the Dynamic Parallelism support of the GK110

architecture [16], the computation task assigned to a thread can be parallelized and thus

improve the scalability and balance the workload better.

For future work, we would like to explore additional data clustering algorithms that are

frequently used as “processing primitives” for various scientific applications. Doing so

provides us opportunities of gaining insight into the adaptability of the GPU and RASC

FPGA systems for problems that are currently beyond reach with traditional parallel

processing approaches and tools.

Given that the GPU is typically used for floating-point computation and FPGA for integer-

based computation, it would be interesting to investigate the potential of their

complimentary roles in tackling a complete application. Further more, as new languages and

libraries become available, the authors would like to explore the benefits of paring FPGA,

GPU and CPU in a holistic way. To the domain experts, ultimately such systems should

become transparent, with a middleware-like layer addressing the access and scheduling for

the entire computation load.
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Figure 1.
CUDA code for the major loop of K-means data-clustering algorithm
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Figure 2.
CUDA code of the distance calculation kernel for K-means data-clustering algorithm
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Figure 3.
Code for MPI implementation
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Figure 4.
Code for OpenMP implementation
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Figure 5.
Mitrion C data path diagram for parallel K-means clustering algorithm
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Figure 6.
Speedup vs. dataset size of GPU implementation
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Figure 7.
Speedup vs. number of cluster centers of the GPU implementation
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Figure 8.
Execution time vs. number of processors of the MPI implementation
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Figure 9.
Speedup vs. number of processors of the MPI implementation
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Figure 10.
Execution time vs. number of threads of the OpenMP implementation
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Figure 11.
Execution time vs. number of clusters of the FPGA implementation on MVP simulation
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Table 1

Comparison of the four platforms for parallel programming

Platform Pros Cons

GPU Low cost Device memory is limited

FPGA Low cost Lack high-level programming language support

MPI Mature library, programming is easier than GPU and FPGA High cost

OpenMP Medium cost, programming is easy The total number cores is limited
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