
ar
X

iv
:1

20
3.

07
40

v1
 [

cs
.D

C
]

 4
 M

ar
 2

01
2

Resource Availability-Aware Advance Reservation for

Parallel Jobs with Deadlines

Bo Lia,∗, Yijian Peia, Bin Shenb, Hao Wua, Min Hea, Jundong Yanga

aSchool of Information Science and Engineering, Yunnan University, Kunming 650091,

China
bSchool of Electrical and Information Engineering, Wuhan Institute of Technology,

Wuhan 430073, China

Abstract

Advance reservation is important to guarantee the quality of services of jobs
by allowing exclusive access to resources over a defined time interval on re-
sources. It is a challenge for the scheduler to organize available resources
efficiently and to allocate them for parallel AR jobs with deadline constraint
appropriately. This paper provides a slot-based data structure to organize
available resources of multiprocessor systems in a way that enables efficient
search and update operations, and formulates a suite of scheduling policies
to allocate resources for dynamically arriving AR requests. The performance
of the scheduling algorithms were investigated by simulations with different
job sizes and durations, system loads and scheduling flexibilities. Simulation
results show that job sizes and durations, system load and the flexibility of
scheduling will impact the performance metrics of all the scheduling algo-
rithms, and the PE WorstF it algorithm becomes the best algorithm for
the scheduler with the highest acceptance rate of AR requests, and the jobs
with the FirstF it algorithm experience the lowest average slowdown. The
data structure and scheduling policies can be used to organize and allocate
resources for parallel AR jobs with deadline constraint in large-scale com-
puting systems.

Keywords:
multiprocessor, advance reservation, data structure, scheduling algorithm,
deadline

∗Corresponding author
Email address: libo@ynu.edu.cn (Bo Li)

Preprint submitted to Simulation Modelling Practice and Theory September 3, 2018

http://arxiv.org/abs/1203.0740v1

1. Introduction

Grid-like massive Internet computing platforms have emerged as an essen-
tial infrastructure for scientific and commercial applications and made it pos-
sible for ”flexible, secure, coordinated resource sharing among dynamic col-
lections of individuals, institutions, and resources”[1]. In order to guarantee
the QoS of Grid applications in such environments, advance reservation(AR)
is incorporated into many Grid systems, such as GARA[1], Nimrod/G[2]
and G-QoSM[3], and many mainstream parallel scheduler, such as Maui[4],
load sharing facility(LSF)[5] and protable batch system(PBS)[6]. Advance
reservation makes the execution of grid jobs more predictable by reserving a
particular resource capability over a defined time interval on local resources,
and has been widely used for many kinds of jobs, such as single processor
jobs[7], parallel jobs[8], mixed-parallel applications[9], co-allocation jobs[10],
bag-of-tasks[11], and workflow[12]. Advance reservation has been an impor-
tant area of interest in the Grid community.

In order to reserve resources in such AR systems, a user must submit a
request to the system by specifying a set of parameters such as number of
processing elements needed,ready time, duration and deadline. For such an
AR request, the job cannot start until its ready time and it must be com-
pleted by its deadline. Upon receiving such an AR request, it’s the task of
the scheduler to decide if there are sufficient available resources such that the
request can be completely executed within the interval of its ready time and
deadline. Considering that there are so many resources and optional alloca-
tions to check in a large-scale computing system, it’s quite a challenge for the
scheduler to organize available resources efficiently and to allocate resources
for dynamically arriving AR requests appropriately: the scheduling proce-
dure itself will impact the ability and efficiency of the scheduler to manage
resources and to schedule a great number of jobs with various requirements,
and the scheduling decision will also impact the performance perceived by
users and service providers. For users, the fraction of AR requests accepted
by the scheduler and the turnaround time are important measures of how
well their service requests are treated[13, 14]. For clusters, the acceptance
of new reservations will fragment a continuous range of resource into pieces,
and thus reduce the potential scheduling opportunities and results in lower
utilization[15, 16]. The key challenges here lies in two aspects: (1) to de-

2

velop efficient data structure to organize available resources for AR requests
in a way that enables efficient search and update operations; (2) to develop
a group of scheduling algorithms or policies that improve the performance
perceived by users and providers.

In the literature, many data structures(such as array[17], linked-list[18],
trees[19, 17, 20] and queues[21, 22]) and scheduling algorithms([23, 15, 24,
20]) have been proposed for advance reservations and widely studied. How-
ever, these data structures and scheduling algorithms are only suitable for
single- or multi-processor AR jobs with immediate deadline constraint. For
such kind of AR jobs, they must be scheduled to run at their ready time and
their deadlines are immediate(i.e., deadline=ready time+duration). How-
ever, if the AR requests are not strictly asked to begin to run at their ready
times, they can begin to run at any time within its ready time to its latest
start time(i.e., =deadline-duration). Such kind of AR request is more general
than those with immediate deadlines, and makes it more flexible and compli-
cated for the scheduler to organize available resources, to control admission
and to schedule. As a result, all those existing data structures and schedul-
ing algorithms for AR requests with immediate deadlines are not suitable for
these with general deadlines.

Up to now, only few researches have been done for AR jobs with general
deadlines. In [25] and [7, 26], the authors investigated the problem of how to
allocate a single-channel(or single-processor) AR job with general deadline
constraint to n single-processor servers. In those works, because each job
only needs to be reserved on a single-processor server, it is not necessary
to allocate more than one idle intervals across multiple servers for them
simultaneously, thus all the algorithms in those works only considered the
temporal constraint, without considering the scheduling of AR jobs with
more than one resources simultaneously.

Despite the fact that existing data structures and algorithms have been
widely used for AR requests, they are not suitable for parallel AR jobs
with general deadlines in large-scale multiprocessor systems. In this paper,
we investigated the problem of how to manage and allocate multiprocessor
resources for parallel AR jobs with general deadline constraint. Different
from existing data structures and scheduling policies designed for scheduling
single-processor deadline-constraint AR jobs to n single processor servers, or
for scheduling parallel AR jobs with immediate deadlines to a multiprocessor
system, in this work we proposed a new data structure and scheduling poli-
cies to organize the availability of resources in a large-scale multiprocessor

3

system and to allocate them appropriately for parallel AR jobs with general
deadline constraint. The main contribution of this work include:

• Proposed a new data structure to organize available resources efficiently
in multiprocessor systems for single- or multiple-processor AR requests
with immediate or general deadline constrains;

• Proposed a set of operations for the data structure to enable efficient
search and update operations;

• Proposed a set of scheduling policies for the data structure to allocate
resources for AR requests, and investigated their performance via sim-
ulation. New scheduling policies can be added into the data structure
flexibly.

The rest of this paper is organized as follows. We discuss related work
in Section 2 and describe the model for scheduling parallel AR jobs with
general deadlines in a multiprocessor system in Section 3. In Section 4 we
introduce a slot-based data structure to organize the availability of resources
in a way that enables efficient adding, deleting and searching operations. In
Section 5 we provide a suite of scheduling algorithms for parallel AR requests
with general deadline constraint and present a comprehensive performance
evaluation study of the algorithms by simulations, and we conclude the paper
in Section 6.

2. Related work

Many data structures and scheduling algorithms have been proposed
for advance reservations. Most of them are suitable for AR requests with
immediate deadlines, and only few of them were specifically designed for
AR requests with general deadlines. For AR request with immediate dead-
lines, such data structure as array[17], linked-list[18], trees[19, 17, 20] and
queues[21, 22] have already been widely studied. These data structures are
primarily used for admission control and focused on finding out whether it’s
feasible for the scheduler to accept an AR request to start at a definite time
and keep on running for a given period. In [22] the author presents a good
summary and comparison of them when they are used for single- or multi-
processor AR jobs with immediate deadline constraint. However, they are
not specifically designed for AR requests with general deadline constraint.

4

Based on existing scheduling theory and algorithms for jobs with or with-
out deadlines, some variants of scheduling algorithms for jobs with advance
reservations have been studied in Grid-like systems[23, 15, 24, 20] and their
impact on the users and the systems were investigated in terms of turnaround
time, slowdown, or utilization.

Different from existing plentiful researches for AR requests with imme-
diate deadlines, only few works have been done for AR jobs with general
deadlines. In [25],the problem of how to reserve optical bursts on wavelength
channels whose bandwidth may become fragmented with idle intervals was
proposed. By using concepts from computational geometry,the author maps
each idle interval and each burst as a point on a two-dimensional plane,then
the points for idle intervals were organized into a search tree and several al-
gorithms,such as Min-SV, Max-SV, Min-Ev, Max-EV and Best-fit,were pro-
posed for reserving bursts with and without fiber delay lines. Based on
the concept and algorithms in [25], in [7, 26] the author adapted them for
scheduling single-processor AR jobs with general deadline constraint to n
single-processor servers. In those works, because each job only needs to be
reserved on a single-processor server, it is not necessary to allocate more
than one idle intervals across multiple servers for them simultaneously, thus
all the algorithms in those works only considered the temporal constraint,
without considering the scheduling of AR jobs with more than one resources
simultaneously. Moreover, for different scheduling policies in [7, 26], the data
structure used for storing the availability information of the resources and
the method for finding out the appropriate interval are different. This lim-
its the flexibility of the data structures to support new scheduling policies.
In contrast, the data structure proposed in this paper can support different
scheduling policies flexibly, without changing the data structure itself and
the method of finding appropriate resources for the requests.

3. Problem description

The computing environment is a parallel system, e.g., clusters or mas-
sively parallel processing machines, consisting of a group of space-shared
processing elements {PE1, PE2, ..., PEn}, with the total number of n. For
simplicity, we assume the PEs are homogeneous. Each machine has a local
resource management system capable of supporting advance reservations for
local or external jobs. Figure 1 shows an example schedule of a parallel AR
job with general deadline constraint. Assume the request of the AR job ar-

5

rives at t0. The request asks the scheduler to allocate PEs during the ready
time and the deadline so as the job can run for its duration. On receiving
this request, the scheduler will evaluate whether they are enough resources
available for the job so as to meet its deadline. If so, the scheduler will al-
locate and reserve them for the job; otherwise,the request will be declined.
Moreover, if there are more than one allocations that can satisfy the request
at the same time, only one of them will be chosen based on some criteria or
policies.

In this paper, each AR request with deadline is characterized by a five-
parameter tuple (ta, tr, tdu, tdl, npe), where:

1. ta is the arrival time of the request;

2. tr(≥ ta) is the ready time, i.e., the earliest start time of the job. When
tr > ta is permitted, advance reservations are supported by the sched-
uler; Otherwise, only immediate reservations are permitted;

3. tdu is the duration of the job, i.e., the amount of time needed by the
job when running on current cluster;

4. tdl(≥ tr + tdu) is the deadline, i.e., the latest time by which current
job must be completed. If tdl = tr + tdu, the deadline is immediate
and we refer to this problem as scheduling with immediate deadline. If
tdl ≥ tr + tdu, the deadline is general and we refer to this problem as
scheduling with general deadline; and

5. npe is the number of PEs required by the request.

In Figure 1, at t0, there are respectively two running jobs(job1 and job2)
and one reserved job(job3) on the cluster. The scheduler can try to allocate
the job to start at any time from the ready time (i.e., t2) to the latest start
time, i.e., t7(= tdl − tdu), and then check whether there are enough PEs for
the job to begin to run at the selected start time for tdu.

In this paper, we assume all AR jobs arrive dynamically and they are
non-preemptive and non-malleable, i.e., they must run till completion once
they start execution and their requirements on resources, such as the number
of PEs, can not be changed. Compared with preemptive and malleable AR
jobs[15], such kind of non-preemptive and non-malleable AR jobs are more
difficult to tackle for the scheduler. It appears to be NP-complete to schedule
them under deadline constraint even for very restricted cases, and there are
not optimal online scheduling algorithms for them[27]. In order to schedule
this kind of AR jobs, heuristics are left for the scheduler.

6

job2

n2

job1

n1

job3

n3

AR

n

N

1

ready time deadline

timet9t2 t4 t6 t8t1 t3

PE

AR

n

AR

n

AR

n

t7t0 t5 t10

Figure 1: An example of reserving processing elements for a new advance reservation
request with general deadline constraint. Assume the new AR request arrives at t0, when
there are 2 running jobs(job1 and job2) and one reserved job(job3), and the AR request
needs n processing elements and should be processed within its ready time(t2) and its
deadline(t9). Four feasible allocation for the AR request are illustrated.

In the scheduling, both of the procedure to decide and the decision itself
made by the scheduler are important. Because there are so many PEs and
optional start times to check, the scheduling procedure itself will impact the
ability and efficiency of the scheduler to manage a large-scale distributed
resources and to schedule a great number of jobs with various requirements,
and the scheduling decision will also impact the performance perceived by
users and service providers. In the following sections, an efficient data struc-
ture and operations, and a suite of scheduling strategies will be proposed to
manage and allocate resources for AR requests with deadline.

4. Data Structure and operations

Similar to the variable slot data structure in [28], for each cluster, we
represent the resources allocated for each running or reserved job as an rect-
angle and record the availability of a cluster as a set of {time, PEs} pairs,
where time means at which the state(i.e., busy or idle) of the PEs change,
and PEs means the identities of the PEs who are busy at time. If PEs is
null(ø), it means at that time all busy PEs recorded in the previous time slot
are set free.

In order to record and manage the identity of PEs occupied in every
time period, a linked list-based data structure AvailRectList was proposed.

7

When a new job is allocated with it start time(ts), it end time(te) and its
PEs(PEjob), the records within the interval [ts, te) will be updated by adding
PEjob to their PEs, inferring that PEjob will be used by the job from ts
to te. Accordingly, when the job is completed, PEjob will be released and
subtracted from the records within ts to te. In this way, at any time, the PEs
already occupied for running or reserved jobs are known, and we can check
for the availability of PEs in any given time interval.

Additionally, to simplify the process of querying the time slots at which
the states of PEs change and the availability of PEs, an auxiliary sorted set-
based structure, TimeSet, was used. As the records in AvailRectList change,
TimeSet will be updated synchronously.

In order to support advance reservations with deadline, the data structure
needs to perform three basic operations: adding an allocation, deleting an
allocation and searching for available allocations for AR requests.

4.1. Adding and deleting an allocation

Before adding an allocation, we assume a search operation(see Subsec-
tion 4.2) has already been done and the start time(ts), the end time(te)
and the PEs of the job(PEjob) have already been allocated. The adding
operation is described in Algorithm addAllocation(ts, te, PEjob). The core
of this operation is to update the records in the interval [ts, te) by adding
PEjob to their PEs. If AvailRectList is empty or the earliest time of the
records is greater than te, just need to add {ts, PEjob} and {te, ø} into Avail-
RectList ;Otherwise,we should find all records in the interval [ts, te) and up-
date their PEs by adding them with PEjob(line 4-5). After updating, it is
possible that the PEs of the record of ts or te become the same as that of the
record of the time slot just before, or that ts is the earliest time slot and the
PEs of the record of ts are null. In such cases, the records of ts and/or te are
redundant and should be cleaned((line 7). When a job finishes, a deleting
operation deleteAllocation(ts, te, PEjob) is called immediately. It applies to
the same principle as adding a new one but to update the records in the
interval [ts, te) by subtracting PEjob from their PEs.

The complexity of the addAllocation() or the deleteAllocation() operation
is analyzed as follows. Suppose there are n records in AvailRectList. For
the addAllocation() or the deleteAllocation() operation, we need to update
the records within [ts, te). Assume there are n′ records within [ts, te) and k
PEs will be updated in each record. It will take O(n′ ∗ logn) time to find n′

time slots by searching TimeSet, take O(n) time to find the record for each

8

Algorithm 1: addAllocation(ts,te,PEjob)

1 if AvailRectList is empty OR T imeSet.first > te then
2 AvailRectList.addall({ts,PEjob},{te,ø});
3 else
4 find all records within [ts, te) in AvailRectList;
5 update the PEs of the records found by adding them with PEjob;

6 end
7 clean possible redundant records;

Algorithm 2: deleteAllocation(ts,te,PEjob)

1 find all records within [ts, te) in AvailRectList;
2 update the PEs of the records found by subtracting them with PEjob;
3 clean possible redundant records;

time slot in the linked list and O(k) time to update k PEs for each record.
After updating the records of ts and te, it will take O(1) time to remove them
if they are redundant. Thus the overall complexity of finding and updating
n′ records will take O(n′ ∗ (n+ k + logn)) time.

4.2. Search feasible allocation

When a new AR request arrives, this operation is performed to check
whether there are enough PEs to be allocated for the job. If so, the operation
will choose and return the identities of allocated PEs and the start time for
the job; Otherwise, it will return null, inferring that there are not enough PEs
for the request. This operation is defined as findAllocation(tr , tdu, tdl, npe, policy)
and is shown in Algorithm 3, where policy is the scheduling policy used to
choose available PEs and runtime intervals for the request(see Section 5).
If AvailRectList is empty, the operation will allocate the request to start at
tr and allocate n PEs for it(line 2-3); Otherwise, the operation will search
for feasible start times(line 5), get the maximum availability rectangle of ev-
ery start time(line 6-9) and add them into availRect ; If finally availRect is
not empty, inferring there are feasible allocations for the request, the oper-
ation will choose an appropriate start time and allocate PEs for the request
according to the scheduling policy(line 11).

Notably, any time slot in the interval [tr, tdl] may be an optional start
time for the request. This makes it a hard work to check the availability

9

rectangles of resource related to these start times. To simplify this operation
and to minimize the possible fragmentation of resources resulting from AR
allocations, in the operation of line 5, it’s suggested to check existing time
slots only in the interval [tr, tdl] and new ones generated by deducting these
existing time slots with tdu. For every optional start time ts, the operation
gets free PEs(i.e., PEfree), in the interval [ts, ts + tdu). This can be done by
iterating through AvailRectList. If the number of free PEs is not less than
nPE, indicating ts is a feasible start time, and the operation will find the
maximum availability rectangle containing PEfree and the interval [ts, ts +
tdu)(line 7). Finally, after constructing availability rectangles for all feasible
start times, the operation will choose one of them according to policy, and
return the appropriate start time and njob PEs for the request.

Algorithm 3: findAllocation(tr,tdu,tdl,njob,policy)

1 if AvailRectList is empty then
2 Let the job to run at tr and allocate n PEs for it;;
3 return {tr, IDs of the n PEs};

4 else
5 find all feasible start times {ST} within [tr, tdl − tdu];
6 foreach element ts in ST do
7 find the maximum availability resource rectangle

{Tbegin, Tend, PEfree} of ts;
8 availRect.add({ts, Tbegin, Tend, PEfree});

9 end
10 if availRect is not empty then
11 choose the appropriate ts and njob PEs according to policy

from availability resource rectangles, and return
{ts, IDs of the njob PEs};

12 else return null;

13 end

The complexity of findAllocation() is as follows. If AvailRectList is
empty, the request will be allocated to run at tr immediately. This will take
O(1) time; Otherwise, we can sort the linked list into sorted array list(this will
take O(nlogn)), and assume there are p feasible start times within [tr, tdl].
For each feasible start time, assume there are u free PEs in its maximum
availability rectangle and v neighboring records should be checked to deter-

10

mine the maximum availability rectangle, it will take O(u ∗ v). After getting
the maximum availability rectangle of each feasible start time, the informa-
tion of the rectangles will be used to build a priority queue(O(p)), in which
the selected rectangle according to policy will always be in the root(O(1)).
Finally, a group of njob free PEs will be chosen from the selected rectangle
with u free PEs and allocated to the request(O(njob ∗ logu)). Overall, the
complexity of searching and allocating resources for the request will take
O(p ∗ u ∗ v + nlogn+ njob ∗ logu+ p).

The following example illustrates a typical application of these opera-
tions in Figure 1. At t0, there are two running jobs and one reserved job.
Assume the running jobs begin to run at t0 and the records in AvailRectList
are {t0, n1 + n2 PEs},{t1, n1 PEs},{t3, ø},{t8, n3 PEs} and {t10, ø}. The
following steps illustrate the actions of the above operations.

(1)When a new AR request {t2, t4 − t2, t9, n} arrives, the scheduler calls
findAllocation(t2, t4 − t2, t9, n, policy) to find available start times and free
PEs for the job. Theoretically, it’s optional for the AR job to start at any
time slots within from the ready time t2 to the latest start time t7. However,
we only choose t2,t3,t6 and t7 as feasible start times and neglect any other
slots. In this way, we can simplify the searching operation and lower the
influence of AR requests on fragmenting resources.

(2)Fortunately, there are enough free PEs for the AR request to begin
to run at any of the four start times, and findAllocation() will calculate
the maximum availability rectangle for every start time and choose one of
them for the AR request. For t2,the number of free PEs within the interval
[t2, t4) are N − n1, and the beginning slot and ending slot of the maximum
availability rectangle with N −n1 free PEs are t1 and t8. For t3, the number
of free PEs within the interval [t3, t5) are N , and the beginning slot and
ending slot of the maximum availability rectangle with N free PEs are t3
and t8. In this way,we can get the numbers of free PEs and the beginning
slots and ending slots of the maximum availability rectangles of t6 and t7
respectively. Assume policy is PE Worst Fit(see Section5) and t3 is chosen
as the start time and n PEs will be allocated for the request, the operation
will return {t3, n PEs}.

(3)After getting the start time and PEs for the AR request, the sched-
uler will call addAllocation(t3, t5, n PEs) to add the reservation into Avail-
RectList. At first,the adding operation updates {t3, ø} to {t3, n PEs}, and
inserts {t5, ø} into AvailRectList. Because{t1, n1 PEs} is the exactly pre-
vious record of {t3, n PEs} in AvailRectList and the n1 PEs of t1 are the

11

same as the n PEs of t3, {t3, n PEs} will be merged with {t1, n1 PEs} and
removed from AvailRectList .

(4)At t1, job2 finishes, and deleteAllocation(t0, t1, n2PEs) will be called
to subtract n2 PEs from the records within the interval [t0, t1). The original
record of t0 will change from {t0, n1+n2 PEs} to {t0, n1PEs}, and the origi-
nal record of t1, i.e., {t1, n1 PEs}, will be merged with the new {t0, n1PEs}
and then be removed. Finally the remaining records in AvailRectList are
{t1, n1PEs}, {t5, ø}, {t8, n3 PEs} and {t10, ø}.

5. Scheduling algorithms

If there are more than one allocations that can satisfy the request at the
same time, the scheduler will choose one of them based on some criteria.
Considering feasible start times themselves and their maximum availability
rectangles, we have developed following scheduling strategies to control the
allocation of resources for AR requests.

First Fit(FF): the job is allocated to run at the earliest feasible start time.

PE Best Fit(PE B): the job is allocated to run at the feasible start time
with the minimum number of free PEs.

Duration Best Fit(Du B): the job is allocated to run at the feasible start
time, the availability rectangle of which has the minimum duration.

PE-Duration Best Fit(PEDu B): the job is allocated to run at the start
time, the availability rectangle of which has the minimum production
of the number of free PEs and the duration.

Different from PE B,DU B or PEDU B that tries to choose feasible
start time the availability rectangle of which has the minimum number of
free PEs, duration or production, we can also construct their corresponding
maximum versions, i.e., the PE Worst Fit (PE W) algorithm, the Du-
ration Worst Fit (Du W) algorithm and the PE-Duration Worst Fit
(PEDu W) algorithm.

In practice, it’s possible that more than one feasible start times have the
same availability rectangle. For example, in Figure 1, t3 and t6 have the same
availability rectangle, which has N free PEs within t3 and t8. In such cases,
if the maximum availability rectangle was chosen for the request, the earliest

12

feasible start time will be chosen, so as to shorten the waiting time of the
job. e.g., in Figure 1, t3, instead of t6, will be chosen by the scheduler when
Du B or PE W is used.

6. Performance evaluation

In order to verify the data structure and its operations, and to evaluate
the performance of the scheduling strategies, we implemented the data struc-
ture and its operations in a discrete event-driven simulator, applied these
strategies to schedule AR requests, and analyzed their performance metrics.

The simulator is implemented on the basis of SimJava[32], which is a
process based discrete-event simulation package for Java and is originally de-
veloped by University of Edinburgh. For its accuracy in simulation, SimJava
is widely used to build simulators in many researches. A SimJava simulation
is a collection of entities each running in its own thread and they are con-
nected together by ports and can communicate with each other by sending
and receiving events. A central system class controls all the entities, ad-
vances the simulation time, and delivers the events. In our simulator, we
implemented a hierarchal architecture to model cluster or grid-like comput-
ing environments and to evaluate the operation and performance of different
resource management strategies. The simulator includes entities such as
meta-users, meta-schedulers and multiprocessor systems. A meta-user is re-
sponsible for generating AR requests and submit them to the job queue of
the meta-scheduler, and the meta-scheduler links to multiprocessor entities
and manages their availability information via the data structure proposed
in this paper and allocate resources according to the scheduling policies. In
a multiprocessor entity, a local scheduler entity and multiple processing el-
ement entities were created and they are responsible for processing the AR
request submitted by the meta-scheduler.

6.1. Simulation environments

For experiments based on discrete event-based simulation, a workload is
needed to drive the simulation. However, there are not any workload traces
about advance reservation can be used in this paper directly. In this paper,
the LANL-CM5 in Parallel Workload Archive[30] and the Feitelson-Lublin
model[31] were considered to generate AR jobs with deadline constraints.
The LANL-CM5 is a 1024-node Connection Machine CM-5 system and pro-
cessors are allocated only in powers of 2, with the minimal partition size

13

and the maximal partition size being 32 and 1024 processors respectively. In
experiments, the distributions and parameters used in the Feitelson-Lublin
model to generate workload were set according to the LANL-CM5 values in
[31],following models and parameters were used to control the generating of
jobs:

(1)The combined model of arrival process in the Feitelson-Lublin model
and its parameters for LANL-CM5 were used to control the arrival of jobs.

(2)The two-stage uniform distribution with parameters ULow,UMed,UHi
and Uprob was used to control the sizes of jobs generated. In this distri-
bution,all jobs are parallel,i.e.,the probability for serial jobs are 0, and their
sizes are power of 2,with the minimal size of 32(i.e.,ULow=4.5), the maximal
size of 1024(i.e.,UHi=10) and Uprob = 0.82. For the original LANL-CM5
log,UMed is 7. In order to control the sizes of the jobs generated, UMed was
set to be 5, 6, 7, 8, and 9 individually in experiments. As UMed changes
from 5 to 9, the mean size of jobs increases.

(3)Runtime is an important characteristic of a rigid job. In the Feitelson-
Lublin model, the hyper-Gamma distribution was used to model runtimes
and a group of parameters were verified to be appealing and representative
for each and all workloads. Although the resulting runtimes in this model
are discrete, the distribution of which is very different from the distribution
of sizes and spans a very large range of values. In the interest of efficient
computability and representability, we made minor modifications for this
model to only generate runtime values of 60, 300, 900, 1800, 3600 and 10800.
The distribution of these new runtime values were determined by comparing
the distribution of estimated runtimes in the original LANL-CM5 records and
the distribution of runtimes generated in the model. Moreover, as the size and
the runtime of a job are correlated, when UMed changes,the distributions of
sizes and runtimes will change. In this way, we can evaluate the performance
of different scheduling algorithms as the distributions of sizes and runtimes
of jobs change.

By using the the LANL-CM5 workload and the Feitelson-Lublin model,
we can generate a series of jobs, each with arrival time, size and duration.
In order to add deadline and advance reservation constraints to the resulting
jobs, two factors were used:

• artime factor(≥ 0): is used to control the period between the arrival
time ta and the ready time tr of an AR request. The period is defined as
artimefactor∗U [0, 1]∗tdu, where U [0, 1] is a random number uniformly

14

distributed in [0, 1].. This parameter is set based on [33].

• deadline factor(≥ 0): is used to control the job’s deadline, which is
defined as tr + (1+ deadlinefactor ∗U [0, 1]) ∗ tdu. If this factor is zero,
the deadline is immediate, i.e., tdl = tr + tdu; Otherwise, the deadline
is general, i.e., tdl ≥ tr + tdu.

With these parameters, we can generate jobs with deadlines and advance
reservation requests from a workload trace. For AR jobs, as the values of
artime factor and deadline factor increase, the flexibility of scheduling will
increase, and the resource competition between AR jobs will be alleviated.
Based on the influence of these parameters on AR jobs, these factors were
combined together as {artime factor,deadline factor}, and five pairs of values,
i.e., {1, 1},{2, 2},{3, 3},{4, 4} and {5, 5}, were used to generate low-, middle-
and high-flexibility AR jobs.

In order to generate workloads with different distribution of inter-arrival
times and further to investigate the performance of strategies under different
system load, arrival factor(af in short) is defined and used as follows: for
a job in a given workload with arrival time ts0, its new arrival time will be
ts0/arrivalfactor. In this way, we can control the arrival of jobs and thus
control system load. In experiments, af = 1 is set as default.

In experiments, following two metrics were used to evaluate the perfor-
mance of different scheduling strategies:

(1)Acceptance rate: is the percentage of reservations that are accepted
because their requirements can be satisfied, which indicates the ability to
accommodate AR request.

(2)Average slowdown: the slowdown of an AR job is the response time of
the job normalized by the running time, i.e., (waiting time+runtime)/runtime,
where waiting time is the difference between the ready time and the actual
start time. This measures how much slower the job ran due to conflicts with
other competing jobs and it seems more reasonable than the waiting time
to capture the user’s expectation that a job’s waiting time will be propor-
tional to its runtime. Average slowdown is the average value of slowdowns of
all accepted AR jobs, which indicate how well the scheduling algorithm can
satisfy the user’s expectations on the execution of the job.

6.2. Experimental results

In experiments, we investigated the performance of the scheduling strate-
gies against different job sizes and durations, different arrival factors and dif-

15

ferent {artime factor,deadline factor} values.For each experiment, 104 jobs
were submitted to the scheduler for the results, and we have obtained 95%
confidence intervals for them.

6.2.1. Results for different job sizes and durations

Figure 2 and Figure 3 present the acceptance rate and the average slow-
down of different scheduling strategies for workloads with different UMed
values respectively. In experiments, arrival factor is 1 and {artime fac-
tor,deadline factor} is {3, 3} as default. As shown in Figure 2, when UMed
changes from low to middle and high, the acceptance rates of all strategies
decrease gradually. This result is in agreement with intuition: as UMed
increases, the mean size and the mean duration of jobs increase, thus de-
manding more resources to accommodate them and intensifying competition
of available resources between jobs.

In Figure 2, there are three groups of algorithm with almost identical be-
havior: PE W and Du B, PEDu B and PEDu W , and PE B and Du W .
Among them, except the PE B algorithm and the Du W algorithm, all
other four strategies outperform FF. Moreover, the PE W algorithm and
the Du B algorithm in the first group perform much better than FF and
clearly become the best strategies for all UMed values. Notably, except for
the almost identical behavior of PEDu B and PEDu W , the performance of
PE B and PE W , and Du B and Du W are quite different. Based on this
results, we cannot draw a deterministic conclusion that PE-based strategies
are better or worse than duration-based ones, or best fit-based strategies are
always better or worse than equivalent worst fit-based ones. This can be
explained by the fact that, for an idle period of resource,the influences of the
number of its PEs and its duration on accommodating new jobs are different.

Now turn to Figure 3, which plots the average slowdown of different
strategies for workload with different UMed values. When UMed changes
from low to middle and high, the average slowdown of all strategies increase
in general. This can be explained by the fact: as UMed increases, the mean
size and the mean duration of jobs increase. For a new job,no matter under
which algorithm, it will experience a longer waiting time before execution. As
we can see, the jobs with FF experience the lowest average slowdown. This
can be easily explained that FF always chooses the earliest feasible period
and thus minimizing the waiting time of jobs. For the other strategies, the
performance of PE W and Du B, and PE B and Du W are similar again
as in Figure 2. However, the performance of PEDu B and PEDu W are

16

surprisingly different.

55%

60%

65%

70%

75%

80%

85%

90%

95%

5 6 7 8 9
UMed

A
cc

ep
ta

n
ce

 r
at

e

FF

PE_B

PE_W

Du_B

Du_W

PEDu_B

PEDu_W

Figure 2: Acceptance rate vs job size control parameter UMed

6.2.2. Results for different system load

In both [31] and the aforementioned experiments,UMed is typically set
to 7. In following experiments, we will investigate the performance of the
strategies against different arrival factor values with UMed=7 and {artime
factor,deadline factor}={3, 3}.

Figure 4 and 5 illustrate the acceptance rate and the average slowdown
of the strategies as arrival factor changes from 0.5 to 1.5, in step of 0.25.As
expected, as the value of arrival factor increases, acceptance rates and slow-
downs of all strategies degrade in both Figures.This agrees with the fact that
as the value of arrival factor increases, the number of AR requests submitted
within a given period will increase,thus the competition of resources among
jobs will intensify,and the acceptance rate will decrease. For accepted AR
requests, they also tend to experience longer waiting time,for there will be
more jobs allocated in their expected execution periods as the value of arrival
factor increases.

By comparing the results in Figure 2 and 4 and the results in Figure 3
and 5 respectively,it can be seen clearly that the relative performance of the
scheduling algorithms in both experiments are similar. Based on the results

17

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

5 6 7 8
UMed

S
lo

w
d

o
w

n

9

FF PE_B
PE_W Du_B
Du_W PEDu_B
PEDu_W

Figure 3: Slowdown vs job size control parameter UMed

in Figure 2-5, we can conclude that job sizes and durations and system load
will impact the performance metrics of all the scheduling algorithms and the
performance perceived by the users clearly: as job sizes and durations and
system load increase, the acceptance rate and the average slowdown for all
algorithms will degrade, and AR jobs will experience lower acceptance rate
and higher waiting time.

6.2.3. Results for different scheduling flexibilities

Figure 6 and 7 present the acceptance rate and average slowdown of differ-
ent scheduling algorithm when the values of {artime factor,deadline factor}
change. As shown in Figure 6, when the values of {artime factor,deadline
factor} change from low to middle and high, the acceptance rates of PE W ,
Du B and PEDu B increase almost linearly. This behavior indicates that
their acceptance ability are stable throughout the range of flexibilities con-
sidered in this study.However, the performance improvements of other four
strategies are not stable, especially at {4, 4}, indicating that they are sensitive
to the degree of scheduling flexibility. Among all strategies, PE W become
the best algorithm again with the highest acceptance rate. It presents better
performance than Du B as the flexibility of scheduling increases and defeats
other strategies easily throughout the range of values.

18

70%

75%

80%

85%

90%

95%

0.5 0.75 1 1.25 1.5

Arrival factor

A
cc

ep
ta

n
ce

 r
at

e

FF

PE_B

PE_W

Du_B

Du_W

PEDu_B

PEDu_W

Figure 4: Acceptance rate vs arrival factor with UMed=7

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.5 0.75 1 1.25 1.5

Arrival factor

S
lo

w
d

o
w

n

FF PE_B
PE_W Du_B
Du_W PEDu_B
PEDu_W

Figure 5: Slowdown vs arrival factor with UMed=7

19

Figure 7 presents the average slowdowns of strategies with different schedul-
ing flexibilities. As the scheduling flexibility increase, the average slowdowns
of all strategies increase, which agrees with the intuition that the more flexi-
bility an AR request has in scheduling, the longer the waiting time and larger
slowdown will be. Moreover, the relative performance of the curves are simi-
lar to the others observed earlier: FF is always the one with smallest values
of slowdown by allocating AR jobs to run as early as possible.

75%

80%

85%

90%

1,1 2,2 3,3 4,4 5,5
{artime factor,deadline factor}

A
cc

ep
ta

n
ce

 r
at

e

FF PE_B
PE_W Du_B
Du_W PEDu_B
PEDu_W

Figure 6: Acceptance rate vs {artimefactor, deadlinefactor} with UMed=7

7. Conclusions and discussions

In this paper,we discuss about the scheduling model and algorithms for
parallel AR jobs with deadline. We proposed a new data structure and a
set of operations to organize the availability of multiprocessor systems for
single- and/or multiple-processor advance reservation requests with imme-
diate or general deadline constrains in a way that enables efficient search
and update operations, formulated a suite of scheduling policies for the data
structure to allocate resources for AR requests, and investigated their per-
formance via simulation. Based on a comprehensive performance evaluation
study of the scheduling policies with simulation, it’s shown that job sizes

20

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

{1,1} {2,2} {3,3} {4,4} {5,5}

{artime factor,deadline factor}

S
lo

w
d

o
w

n

FF PE_B

PE_W Du_B

Du_W PEDu_B

PEDu_W

Figure 7: Slowdown vs {artimefactor, deadlinefactor} with UMed=7

and durations, system load and the flexibility of scheduling will impact the
performance metrics of all the scheduling algorithms. Among them, the
PE Worst F it algorithm becomes the best algorithm for the scheduler with
the highest acceptance rate of AR requests, and the jobs with the First F it
algorithm experience the lowest average slowdown. The simulator and the
simulations verified that the data structure, its operations and the schedul-
ing policies are efficient and effective in such computing environments, and
can be used in practice. Moreover, because the data structure can support
different scheduling policies in a flexible way, other scheduling policies can
be easily integrated in the system.

In the research of the data structure,its operations and the scheduling
policies, we assume that the resources are homogeneous and the jobs are
rigid. However, They can be extended to support heterogeneous resources
and malleable jobs in the future. If the system is heterogeneous,i.e., the ca-
pacities of the resources in the system are not the same, we can standardize
the capacities of the resources and the requirements of the jobs by using
a ’standard’ resource. In this way, the capacity of each resource and the
requirement of each job are described by referring to the standard resource,
and we can organize the ’standardized’ capacities of the resources in the data

21

structure, and allocate ’standardized resources’ for the jobs with ’standard-
ized’ requirements. On the other hand, for malleable jobs, their requirements
on the number of PEs and durations are not fixed. If a malleable job’s re-
quirement of the number of PEs changes, its duration will change along.
However, in the findAllocation(tr, tdu, tdl, njob, policy) algorithm in SubSec-
tion 4.2, the number of PEs(i.e., njob) and the time-related constraints(i.e.,
tr,tdu,tdl) are rigid. To support malleable jobs, the malleable requirements
on the number of PEs and time-related parameters of a job should be ’trans-
lated’ into a group of rigid ones, then those rigid parameters can be used to
find resources for the jobs by using the findAllocation(tr, tdu, tdl, njob, policy)
algorithm. Additionally, some new criteria should be designed to choose an
allocation for the malleable job among the group of rigid parameters. How to
’translate’ the requirements of a malleable AR job with deadline constraint
into a group of rigid parameters is also a problem to be considered. In the
future, we plan to investigate the problems for heterogeneous resources and
malleable jobs in more detail.

Acknowledgements

This research is supported in part by the Natural Science Foundation of
China under grant number 60663009, the Training Programme Foundation
for Young Key Teachers of Yunnan University and the Research Foundation
of Yunnan University under grant number 2009F30Q. Also we would like
to thank the reviewers for their valuable suggestions and comments on this
paper.

References

[1] I. Foster, M. Fidler, A. Roy, V. Sander, L. Winkler, End-to-end quality
of service for high-end applications, Computer Communications 27 (14)
(2004) 1375–1388.

[2] R. Buyya, D. Abramson, J. Giddy, Nimrod/g: An architecture for a
resource management and scheduling system in a global computational
grid, in: Proceedings of the 4th International Conference/Exhibition
on High Performance Computing in the Asia-Pacific Region, 2000, pp.
283–290.

22

[3] R. Al-Ali, O. Rana, D. Walker, S. Jha, S. Sohail, G-qosm: Grid service
discovery using qos properties, Computing and Informatics 21 (4) (2002)
363–382.

[4] D. Jackson, Q. Snell, M. Clement, Core algorithms of the maui sched-
uler, in: Job Scheduling Strategies for Parallel Processing, Springer,
2001, pp. 87–102.

[5] Platform computing corporation.
URL http://www.platform.com

[6] B. Bode, D. Halstead, R. Kendall, Z. Lei, D. Jackson, The portable batch
scheduler and the maui scheduler on linux clusters, in: Proceedings of
the 4th Annual Linux Showcase and Conference, 2000, pp. 1–9.

[7] C. Castillo, G. Rouskas, K. Harfoush, Online algorithms for advance
resource reservations, Journal of Parallel and Distributed Computing
DOI: 10.1016/j.jpdc.2011.01.003.

[8] D. Nurmi, R. Wolski, J. Brevik, Probabilistic Reservation Services for
Large-Scale Batch-Scheduled Systems, IEEE Systems Journal 3 (1)
(2009) 6–24.

[9] K. Aida, H. Casanova, Scheduling mixed-parallel applications with ad-
vance reservations, Cluster Computing 12 (2) (2009) 205–220.

[10] C. Castillo, G. Rouskas, K. Harfoush, Resource co-allocation for large-
scale distributed environments, in: Proceedings of the 18th ACM inter-
national symposium on High performance distributed computing, 2009,
pp. 131–140.

[11] Y. Lee, A. Zomaya, Rescheduling for reliable job completion with the
support of clouds, Future Generation Computer Systems 26 (8) (2010)
1192–1199.

[12] T. Cucinotta, K. Konstanteli, T. Varvarigou, Advance reservations for
distributed real-time workflows with probabilistic service guarantees, in:
IEEE International Conference on Service-Oriented Computing and Ap-
plications, 2009, pp. 1–8.

23

http://www.platform.com
http://www.platform.com

[13] B. Li, D. Zhao, Performance impact of advance reservations from the
grid on backfill algorithms, in: Grid and Cooperative Computing, 2007.
GCC 2007. Sixth International Conference on, IEEE, 2007, pp. 456–461.

[14] Q. Snell, M. Clement, D. Jackson, C. Gregory, The performance impact
of advance reservation meta-scheduling, in: Job Scheduling Strategies
for Parallel Processing, Springer, 2000, pp. 137–153.

[15] S. Naiksatam, S. Figueira, Elastic reservations for efficient bandwidth
utilization in LambdaGrids, Future Generation Computer Systems
23 (1) (2007) 1–22.

[16] M. Margo, K. Yoshimoto, P. Kovatch, P. Andrews, Impact of reserva-
tions on production job scheduling, in: Job Scheduling Strategies for
Parallel Processing, 2008, pp. 116–131.

[17] L. Burchard, Analysis of data structures for admission control of ad-
vance reservation requests, IEEE Transactions on Knowledge and Data
Engineering 17 (3) (2005) 413–424.

[18] Q. Xiong, C. Wu, J. Xing, L. Wu, H. Zhang, A linked-list data struc-
ture for advance reservation admission control, Networking and Mobile
Computing (2005) 901–910.

[19] T. Wang, J. Chen, Bandwidth tree-a data structure for routing in net-
works with advanced reservations, in: 21st IEEE International Perfor-
mance, Computing, and Communications Conference, 2002, pp. 37–44.

[20] W. Nie, M. Panahi, K. Lin, A Flexible Schedule Reservation Scheme for
Real-Time Service-Oriented Architecture, in: 12th IEEE International
Conference on Commerce and Enterprise Computing, IEEE, 2010, pp.
1–8.

[21] R. Brown, Calendar queues: A fast o (1) priority queue implementa-
tion for the simulation event set problem, Communications of the ACM
31 (10) (1988) 1220–1227.

[22] A. Sulistio, U. Cibej, S. Prasad, R. Buyya, Garq: An efficient scheduling
data structure for advance reservations of grid resources, International
Journal of Parallel, Emergent and Distributed Systems 24 (1) (2009)
1–19.

24

[23] M. Netto, K. Bubendorfer, R. Buyya, Sla-based advance reserva-
tions with flexible and adaptive time qos parameters, Service-Oriented
Computing–ICSOC 2007 (2010) 119–131.

[24] P. Balakrishnan, T. Somasundaram, SLA enabled CARE resource bro-
ker, Future Generation Computer Systems 27 (3) (2010) 265–279.

[25] J. Xu, C. Qiao, J. Li, G. Xu, Efficient burst scheduling algorithms in op-
tical burst-switched networks using geometric techniques, IEEE Journal
on Selected Areas in Communications 22 (9) (2004) 1796–1811.

[26] C. Castillo, G. Rouskas, K. Harfoush, On the design of online scheduling
algorithms for advance reservations and qos in grids, in: IEEE Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2007,
2007, pp. 1–10.

[27] M. Pinedo, Scheduling: theory, algorithms, and systems, Springer Ver-
lag, 2008.

[28] L. Kunrath, C. Westphall, F. Koch, Towards advance reservation in
large-scale grids, in: Third International Conference on Systems, 2008,
pp. 247–252.

[29] L. Bo, Z. Dongfeng, S. Bin, Simulating platform for grid computing with
reservations, Journal of System Simulation 18 (z2) (2006) 373–376.

[30] D. Feitelson, Parallel workloads archive.
URL http://www.cs.huji.ac.il/labs/parallel/workload.

[31] U. Lublin, D. Feitelson, The workload on parallel supercomputers: mod-
eling the characteristics of rigid jobs, Journal of Parallel and Distributed
Computing 63 (11) (2003) 1105–1122.

[32] SimJava.
URL http://www.dcs.ed.ac.uk/home/hase/simjava/

[33] F. Heine, M. Hovestadt,O. Kao,A. Streit,On the impact of reservations
from the grid on planning-based resource management,Computational
Science–ICCS 2005,155–162.

25

http://www. cs. huji. ac. il/labs/parallel/workload.
http://www. cs. huji. ac. il/labs/parallel/workload.
http://www.dcs.ed.ac.uk/home/hase/simjava/
http://www.dcs.ed.ac.uk/home/hase/simjava/

	1 Introduction
	2 Related work
	3 Problem description
	4 Data Structure and operations
	4.1 Adding and deleting an allocation
	4.2 Search feasible allocation

	5 Scheduling algorithms
	6 Performance evaluation
	6.1 Simulation environments
	6.2 Experimental results
	6.2.1 Results for different job sizes and durations
	6.2.2 Results for different system load
	6.2.3 Results for different scheduling flexibilities

	7 Conclusions and discussions

