
Noname manuscript No.
(will be inserted by the editor)

Comparative evaluation of platforms for parallel Ant Colony
Optimization

Ginés D. Guerrero · José M. Cecilia · Antonio Llanes · José M. Garćıa ·
Martyn Amos · Manuel Ujaldón

Abstract The rapidly growing field of nature-inspired

computing concerns the development and application of

algorithms and methods based on biological or physical

principles. This approach is particularly compelling for

practitioners in high-performance computing, as natu-

ral algorithms are often inherently parallel in nature (for

example, they may be based on a “swarm”-like model

that uses a population of agents to optimize a function).

Coupled with rising interest in nature-based algorithms

is the growth in heterogenous computing; systems that

use more than one kind of processor. We are therefore

interested in the performance characteristics of nature-

inspired algorithms on a number of different platforms.

To this end, we present a new OpenCL-based imple-

mentation of the Ant Colony Optimization algorithm,

and use it as the basis of extensive experimental tests.

We benchmark the algorithm against existing imple-

mentations, on a wide variety of hardware platforms,

Ginés D. Guerrero
National Laboratory for High Performance Computing, Uni-
versity of Chile (Chile).
E-mail: gguerrero@nlhpc.cl

José M. Cecilia, Antonio Llanes
Computer Science Department, Universidad Católica San
Antonio de Murcia (Spain).
E-mail: {jmcecilia, allanes}@ucam.edu

José M. Garćıa
Computer Engineering Department, University of Murcia
(Spain).
E-mail: jmgarcia@ditec.um.es

Martyn Amos
School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University (UK).
E-mail: m.amos@mmu.ac.uk

Manuel Ujaldón
Computer Architecture Department, University of Malaga
(Spain).
E-mail: ujaldon@uma.es

and offer extensive analysis. This work provides rigor-

ous foundations for future investigations of Ant Colony

Optimization on high-performance platforms.

Keywords Heterogeneous Computing, Ant Colony

Optimization, CUDA, OpenCL, APU, GPU.

1 Introduction

Algorithms inspired by natural processes are gaining

increasing acceptance, and are now used in a wide va-

riety of application domains [28]. Many nature-inspired

methods (such as the genetic algorithm [16], or particle

swarm optimization [20]) are population-based, meaning

that they maintain a collection of individual solutions

which evolves or is modified as the computation pro-

ceeds. This structure naturally lends itself to paralleli-
sation, and many parallel versions of such algorithms

now exist [1].

One nature-based method that is proving to be in-

creasingly popular is ant colony optimization (ACO) [8,

10,13]. This algorithm is based on foraging behaviour

observed in colonies of real ants, and has been applied

to a wide variety of problems, including vehicle rout-

ing [32], feature selection [6] and autonomous robot

navigation [15]. The method generally uses simulated

“ants” (i.e., mobile agents), which first construct tours

or paths on a network structure (corresponding to so-

lutions to a problem), and then deposit “pheromone”

(i.e., signalling chemicals) according to the quality of

the solution generated. The algorithm takes advantage

of emergent properties of the multi-agent system, in

that positive feedback (facilitated by pheromone depo-

sition) quickly drives the population to high-quality so-

lutions.

The original ACO method (called the Ant System

[11]) was developed by Dorigo in the 1990s, and this



2 Ginés D. Guerrero et al.

version (or slight variants thereof, such as the MAX-

MIN Ant System (MMAS) [31]) is still in regular use

[5,19,21]. Parallel versions of the Ant System have been

developed [7,23,30,33] (see also [26] for a survey), and,

in recent work, we present a graphics processor unit

(GPU)-based version of ACO that, for the first time,

parallelizes both main phases of the algorithm (that is,

tour construction and pheromone deposition) [3,4].

The original version of our algorithm was developed

for the CUDA (Compute Unified Device Architecture)

platform1, which offers easy access to the parallel pro-

cessing capabilities of GPUs (thus facilitating so-called

“GPGPU” or “general purpose GPU” computation).

However, although it laid the foundations for general

GPU-based computing, CUDA is proprietary to Nvidia,

one of the dominant manufacturers in the GPU mar-

ket. With that in mind, an alternative open standard

was developed, which became known as OpenCL (Open

Computing Language) [29]. This standard provides a

common language, programming interfaces and hard-

ware abstractions over a wide range of devices (CPUs,

GPUs and other accelerators), and has contributed sig-

nificantly to the growth of heterogeneous computing [2].

Importantly, OpenCL offers portability across combina-

tions of operating system, GPU and other processors,

which, in turn, have their own hardware costs and per-

formance characteristics. It is therefore possible to write

a portable, parallel algorithm for a specific problem,

which may be run on a hardware/software combination

that meets multiple constraints (cost, performance, and

so on).

With that in mind, we present a new OpenCL-based

version of our ACO algorithm, which may be run on a

variety of platforms (from laptops to high-end servers).

Our aim is to demonstrate how such an implementation

may be used as the foundation for high-performance,

portable ACO-based solutions. We benchmark our al-

gorithm on a range of platforms and give an analysis

about its scalability on high-end platforms.

The paper is organized as follows: in Section 2 we

briefly describe our ACO-based algorithm and the pro-

cess of migrating it to OpenCL. We then present the

results of experimental investigations in Section 3, of-

fer some analysis in Section 4, and then conclude in

Section 5 with a brief discussion of our findings.

2 ACO algorithm

Our ACO-based solution to the Travelling Salesman

Problem (TSP) is described in detail in [3,4], so here

1 Full technical details at
http://docs.nvidia.com/cuda/index.html

we simply give a brief overview in order to highlight

specific issues arising from the migration to OpenCL.

The TSP is a well-known NP -hard optimization

problem, and is often used as a standard benchmark

for heuristic algorithms [18]. Indeed, it was the first

problem to be solved using ACO [11], and our own

work is a natural development of this. Briefly, the TSP

involves finding the shortest (“cheapest”) round-trip

route that visits each of a number of “cities” exactly

once. In what follows, we address the symmetric TSP

on n cities, which may be represented as a complete

weighted graph, G, of n nodes, with each weighted edge,

ei,j , representing the inter-city distance di,j = dj,i be-

tween cities i and j. The ACO algorithm for TSP uses a

number of simulated “ants” (or agents), which perform

distributed search on a graph. Each ant moves on the

graph until it completes a tour, and then offers this tour

as its suggested solution. In order to achieve this latter

step, each ant deposits “pheromone” on the edges that

it visits during its tour. The quantity of pheromone

deposited, if any, is determined by the quality of the

solution relative to those obtained by the other ants.

Pheromone levels on each edge “evaporate” over time

(i.e., they are gradually reduced), in order to prevent

the algorithm from being locked into sub-optimal solu-

tions.

While building a tour, each ant probabilistically

chooses the next city to visit based on two different

sources of information: (1) heuristic information, ob-

tained from inter-city distances, and (2) the pheromone

trail, which facilitates indirect communication between

ants via their environment (a process known as stig-

mergy [9]). The combination of local search and global

signalling enables a process of directed positive feed-

back, by which the population quickly converges to a

high-quality solution to the problem. The main body of

the algorithm therefore has two main phases: (1) tour

construction, and (2) pheromone deposition.

During tour construction, a number of ants build

tours in parallel. Ants are initially placed at random,

and they then repeatedly apply a probabilistic action

choice rule in order to decide which city to visit next.

Pheromone deposition occurs once all ants have con-

structed their tours; first, the pheromone levels on all

edges are reduced by a constant factor (in order to sim-

ulate evaporation), and then pheromone is deposited

on edges that ants have included in their tours (the

precise amount for each edge in a particular tour being

inversely proportional to the tour’s length). In this way,

edges that are used by many ants (and which are part of

short tours) receive more pheromone, and are therefore

more likely to be selected by ants in subsequent rounds



Platforms for parallel ACO 3

(thus implementing the positive feedback process that

we have already described).

2.1 Original CUDA implementation

We first briefly review the main characteristics of CUDA

[24], for the benefit of readers who are unfamiliar with

the programming model. CUDA is based on a hierarchy

of abstraction layers; the thread is the basic execution

unit; threads are grouped into blocks, each of which run

on a single multiprocessor, where they can share data on

a small but extremely fast memory. A grid is composed

of blocks, which are equally distributed and scheduled

among all multiprocessors. The parallel sections of an

application are executed as kernels in a SIMD (Sin-

gle Instruction Multiple Data) fashion, that is, with all

threads running the same code. A kernel is therefore

executed by a grid of thread blocks, where threads run

simultaneously grouped in batches called warps, which

are the scheduling units.

We now consider the implementation of each phase

of the algorithm. The “traditional” task-based paral-

lelism approach is based on the observation that ants

run in parallel while searching for the best tour [4] (that

is, parallelism is expressed at the level of individual

ants). Within the basic model, each ant is associated

with an individual thread, but this approach has three

main drawbacks:

1. Low degree of parallelism. Because the number

of ants used is generally a (linear) function of the

problem size, the number of threads required is gen-

erally too low to fully exploit the resources of the

GPU.

2. Control dependencies. Warp divergences (a situ-

ation where threads take different control-flow paths)

can often arise when ants check the so-called tabu

list - the record of cities already visited. Put simply,

different threads in a warp may need to do different

things, depending on which cities the different ants

have visited, and this is expensive.

3. Irregular memory access. Because the ACO al-

gorithm is inherently stochastic, this can produce

an unpredictable memory access pattern. This pre-

vents the GPU from taking advantage of caching

schemes and other techniques for reducing memory

access latency.

In previous work, we developed an alternative ap-

proach that places more emphasis on data parallelism

[3]. We now briefly describe this algorithm, in order to

establish the differences between the CUDA and OpenCL

implementations.

When an ant makes a decision on which city to visit

next, it must calculate heuristic information, as previ-

ously described. The heuristic information available to

any one ant at a given time is the same, regardless of

which ant is making the query, so it makes sense to

separate out the computation of heuristic values into a

separate heuristic info kernel, which is then executed

prior to tour construction. Transition probabilities are

stored in a two-dimensional choice matrix, which is used

to inform “roulette wheel” (Monte Carlo) selection by

each ant.

In the tour construction kernel, each ant is associ-

ated with a thread block, such that each thread rep-

resents a city (or cities) that the ant may visit. This

avoids the problem of warp divergences, and enhances

data parallelism, as all threads within a block may co-

operate. The degree of parallelism improves by a factor

of 1 : w, where w is the number of CUDA threads per

block.

Finally, the pheromone kernel performs evaporation

and deposition, as described earlier. Evaporation is

straightforward, as a single thread can independently

lower each entry in the pheromone matrix by a con-

stant factor. Deposition is more problematic, as each

ant generates its own private tour in parallel, and will

eventually visit the same edge as another ant. In or-

der, therefore, to prevent race conditions, we require

the use of CUDA atomic operations when accessing the

pheromone matrix.

The efficiency of a parallel implementation is also af-

fected by the types of operation on which it relies; in our

code, scatter/gather operations [17] predominate (i.e.,

those which either write or read a large number of data

items). As Table 2 reflects, the vast majority of opera-

tions are of the “gather” type; algorithms of this type

are memory bounded and amenable to optimization via

methods such as coalescing (Nvidia GPUs) and the use

of SSE vector instructions (Intel CPUs). A comparative

study [22] of these optimisations reveals similar impact

on performance across platforms, which suggests that

the experimental sections of the current paper will not

suffer too much from platform-specific biases.

2.2 OpenCL migration

In this Section we briefly describe various issues that

arose during the migration from CUDA to OpenCL.

The foundations of OpenCL are based on the CUDA

threading model, but with differences in terms of nam-

ing schemes and identifiers. We therefore used source-

to-source translation in order to migrate our CUDA-

based kernels to OpenCL. This mapping requires in-

depth knowledge of both application programming in-



4 Ginés D. Guerrero et al.

terface (API) models, as it is considerably more com-

plex than simple instruction conversion. Also, OpenCL

is still relatively young compared to CUDA, and does

not provide the same functionality offered by its more

mature partner.

The process of setting up a device for kernel execu-

tion differs substantially between CUDA and OpenCL.

The APIs for context creation and data copying use

different conventions for mapping the kernel onto the

device processing elements, which may substantially af-

fect the programming effort required to code and debug

a parallel application. CUDA provides several libraries

to enhance the functionality of its API. For example,

our ACO algorithm uses the CURAND library [25] to

generate pseudo-random numbers. This library is not

directly implemented in OpenCL, where the main alter-

native is an implementation of the RANLUX pseudo-

random number generator, called RANLUXCL 2. Un-

fortunately, we found this library to be fairly wasteful

in terms of memory, so we decided to implement our

own, taking a C counterpart as a departure point [14].

3 Experimental results

In this Section we give the results of extensive compar-

ative evaluations of ACO-based solutions to the TSP

on different CPU, APU and GPU platforms. The un-

derlying hardware platforms we tested are specified in

Table 1.

For validation purposes, we use a baseline compari-

son with the sequential ANSI C code provided in [12].

The experimental setup (in terms of hardware/software)

is listed in Table 3. We run our three ACO implementa-

tions (ANSI C, CUDA and OpenCL) on selected bench-

mark TSP instances from the well-known TSPLIB li-

brary [27]. All instances are defined on a complete graph,

and distances are given as integers. Table 4 specifies the

instances used; they were selected in order to ensure a

representative sample, from “small” to “medium” and

“large” (for reasons of practicality, we test only the

high-end platforms on pr2392; these results are used

for the later scalability analysis). Importantly, we note

that our methods solve all instances to optimality; for

the purposes of this paper, we are less interested in the

quality of solutions produced, so in order to ensure a

fair comparison we use instances that are solvable to

optimality by our implementations as described in [3].

For all runs, we set the ACO parameters according

to the values recommended in [12]; α = 1, β = 2, ρ =

0.5, and m = n, meaning that the number of ants,

m, is equal to the number of cities, n. We run each

2 See https://bitbucket.org/ivarun/ranluxcl/

algorithm for 1000 iterations, and average timings over

1000 runs. CUDA times are obtained with a block size

of 128 threads, and OpenCL local size is also set to 128.

Before discussing the results of our experiments,

we consider several issues with respect to performance.

Firstly, APUs are much more limited in terms of ther-

mal design power, as they must also include the CPU.

This means that execution units will need to be re-

moved in order to keep power consumption down. Sec-

ondly, because the APU is a cost-effective solution, it

does not have its own dedicated global memory, but in-

stead it relies on an emulated global memory located

in system memory. While this is good for performance

when transferring data directly between the CPU and

GPU, it means that it will also suffer in terms of overall

bandwidth, as even low-end GPUs have more memory

bandwidth.

We present a summary of our results in Figure 1.

For each row (i.e., each platform, or hardware/software

combination), we show execution times averaged over

the small (top bar) and medium/large (bottom bar) in-

stances. Note that times are measured in milliseconds

(ms), and represent the elapsed time for a single iter-

ation of the platform-specific algorithm, averaged over

100 runs of 1000 iterations each (as opposed to the av-

erage run time for the whole algorithm). We focus on

the average time for a single iteration precisely because

we are interested in the overall kernel performance on

each platform, so this fine-grained approach gives us

the insights that we require.

4 Analysis

We now give an analysis of the performance of each

category of hardware platform.

4.1 Desktop PCs

Beginning with the E-350 APU, we see that the CPU

does not perform particularly well. This is expected,

based on the architecture’s emphasis on power con-

sumption over performance for this consumer market.

However, when moving to the GPU we see that, for

small problem instances, it actually scales better in

terms of overall computational time than the FirePro

V8800 for the same base architecture.

Looking closely at the numbers, the E-350 APU,

which is outclassed by factors of 37 and 17 for compu-

tational power (execution resources × clock speed) and

memory bandwidth respectively, manages to only per-

form at roughly 1/10th the speed. We attribute this

to the APU’s ability to quickly transfer data to and



Platforms for parallel ACO 5

Table 1: Summary of hardware features for the CPUs, APUs and GPUs used during our experimental survey.

(a) Processors found in high-end servers.

CPU GPU GPU
Release date Q4 2009 Q4 2009 Q1 2010
Codename Intel Westmere Nvidia Fermi ATI Cypress
Commercial model Xeon E5620 Tesla C2050 FirePro V8800
No. cores @ speed 4 @ 2.4 GHz - -
No. stream processors - 448 @ 1.15 GHz 1600 @ 925 MHz
L2 cache size 12 MB. 768 KB. 512 KB.
DRAM memory size 16 GB. 3 GB. 2 GB.
DRAM type DDR3 GDDR5 GDDR5
Memory bus width 128 bits 384 bits 256 bits
Memory clock 1066 MHz 2 x 1.5 GHz 4 x 1.15 GHz
Memory bandwidth 17 GB/s 144 GB/s 147.2 GB/s

(b) Processors found in desktop PCs.

CPU on APU GPU on APU
Release date Q1 2010 Q1 2010
Codename AMD Llano ATI Redwood
Commercial model E-350 ATI HD 6310
No. cores @ speed 2 @ 1.6 GHz -
No. stream processors - 80 @ 492 MHz
L2 cache size 2 x 512 KB. -
DRAM memory size 4 GB. (shared) 4 GB. (shared)
DRAM type DDR3 DDR3
Memory bus width 64 bits 64 bits
Memory clock 1066 MHz 1066 MHz
Memory bandwidth 8.5 GB/s 8.5 GB/s

(c) Processors found in laptops.

CPU on APU GPU on APU GPU
Release date Q2 2011 Q2 2011 Q1 2011
Codename AMD Llano ATI Redwood ATI Redwood
Commercial model A6-3420 Radeon HD 6520 Radeon HD 6650M
No. cores @ speed 4 @ 1.4 GHz - -
No. stream processors - 320 @ 400 MHz 480 @ 600 MHz
L2 cache size 4 MB. - -
DRAM memory size 4 GB. (shared) 4 GB. (shared) 1 GB. (exclusive)
DRAM type DDR3 DDR3 DDR3
Memory bus width 64 bits 64 bits 128 bits
Memory clock 1333 MHz 1333 MHz 900 MHz
Memory bandwidth 10.6 GB/s 10.6 GB/s 14.4 GB/s

Table 2: Characterization of the stages involved in our ACO implementation on GPUs.

Algorithm stage Operator Key features CUDA kernel
Generation of choice info array Gather Data parallelism fully exploited choice info

Tour construction Gather Optimized via choice info array Next tour

Tabu list update Scatter Optimized via an array in register file Next tour

Pheromone evaporation Scatter Concurrent updates, no queries Pheromone

Pheromone deposit Gather Single update using atomic operations Pheromone

Table 3: Software resources used for each hardware platform in our experimental study.

Target hardware Software tools
Intel Xeon CPU gcc compiler, 4.3.4 version with the -O3 flag set
Nvidia Tesla GPU CUDA compilation tools, release 4.0
ATI FirePro GPU Software Suite 8.85.7.2 and OpenCL runtime v831.4
AMD APUs and dedicated GPUs AMD’s APP SDK 2.6, Catalyst driver 11.12, OpenCL runtime version 793.1

from the CPU to the GPU. However, as the input size

increases this advantage disappears, as raw computa-

tional throughput and bandwidth become more impor-

tant than latency. Comparing these results to the Tesla

C2050 GPU, the APU is at an even greater disadvan-

tage, due to its VLIW architecture (compared to the

scalar and compute-oriented architecture of the C2050).

This should change, however, with AMD future gener-

ations of APUs, which consider a GPU based on their

newly-released Graphics Core Next (GCN) architecture.

GCN greatly improves computational throughput, by

moving scheduling from the compiler to the hardware.

4.2 Laptop computers

Moving to the A6-3420M APU, we see very similar re-

sults as with the E-350 APU. Here, our integrated GPU

(iGPU) has roughly 3 times the amount of computa-

tional resources, but only 1/4 more bandwidth. This is

evident in the scaling of the algorithm, as we go from

200 ms. with the E-350 APU to 148 ms. with the iGPU,

a near exact scaling of the bandwidth advantage that

the iGPU possesses.

As we increase the size of the problem instance, we

then see that performance becomes constrained more by

computational resources than by bandwidth. Our sim-



6 Ginés D. Guerrero et al.

Table 4: TSP instances used in our study.

Small dataset Medium/Large dataset
Graph name d198 a280 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392
Number of cities 198 280 318 442 783 1002 1173 1291 2392
Best tour length 15780 2579 42029 50778 8806 259045 56892 50801 378032

Fig. 1: Summary of experimental results. X axis shows each platform, Y axis (logarithmic plot) shows execution

time (ms) for one iteration. Bars are ordered from smallest (Left) to largest (Right) instances.

plest comparison is to the A6-3420M’s dedicated GPU

(which has 2.25 times the computational power), where,

as the input size increases, the difference between the

two solutions approaches this limitation. This shows

that, while the memory system influences ACO perfor-

mance, computational resources become the dominat-

ing factor in overall performance. For PCI-express 2.0,

the maximum bandwidth (unidirectional) is 8 GB/s,

while using zero copy the APU is able to reach nearly

16 GB/s. If this had been taken into account, the re-

sults for the APU and dedicated GPUs would in fact

be much closer, as this type of workload/data transfer

is playing to the APU’s strength.

Ending with the dedicated GPU (dGPU), we see

a similar speedup increase, just as we did for the E-

350 and A6-3420M APUs. Again, for small input sizes,

latency and bandwidth are much more important than

the computational abilities of the device, as there are

fewer threads to interleave in order to hide memory

accesses. This is visible in the dGPU, which has 7 and 2

times the amount of computational power and memory

bandwidth as the E-350 APU, while performing just

over twice as quickly for the d198 dataset.

As we increase the complexity of the workload, we

again see that memory bandwidth becomes a less im-

portant issue, and computational power becomes the

main contributing factor for overall performance. Com-

paring once again to the Tesla C2050, the APU solution

does not perform as well as we had hoped.

4.3 High-end platforms

High-end processors usually cover large-scale applica-

tions, and our performance analysis emphasises scala-

bility. Table 5 shows the behaviour of the execution time

when the problem size increases. We compare execution

times on small, medium and large instances, and obtain

the coefficient or multiplier which separates them. The

larger this coefficient is for a given processor, the poorer

the degree of scalability.



Platforms for parallel ACO 7

Table 5: Scalability on high-end-platforms depending on hardware and programming methods. FirePro behaves

better on larger problem instances, followed by Tesla using OpenCL (with CUDA very close), and finally Xeon

using C.

Scalability → Short range Mid range Long range
Time(pr2392)/ Time(rat783)/ Time(pr2392)/

Language/API HW platform Time(rat783) Time(d198) Time(d198)
C CPU Xeon 31.24x 82.30x 2571.46x
CUDA GPU Tesla 24.43x 45.74x 1117.88x
OpenCL GPU Tesla 24.16x 44.83x 1083.52x
OpenCL GPU FirePro 22.70x 17.09x 388.12x

Looking at those numbers, we see that when com-

paring Tesla versus FirePro (GPUs running the same

OpenCL code), Tesla is 1.5x-2x faster, but FirePro scales

better. Also, comparing languages on the same Tesla

hardware, CUDA is 1.15x-1.20x faster, but OpenCL

scales slightly better. Finally, comparing GPU results

with numbers on the CPU, the GPU is faster and scales

better: The speed-up factor ranges 9x-15x on four small

data sets, 17x-20x on four medium data sets, and finally

21.5x on the large data set.

5 Conclusions

In this paper we presented a comprehensive performance

review of different platforms for Ant Colony Optimiza-

tion, an emerging and fast-growing nature-inspired al-

gorithm. We discussed the translation of our previous

algorithm from CUDA to OpenCL, and highlighted cer-

tain issues that may be faced by other practitioners in

future. We then performed a performance analysis of

three variants of the ACO algorithm, using the Travel-

ling Salesman Problem as a benchmark, and focussed

on issues of scalability.

In general, GPUs are superior to CPUs on the high-

end segment: they yield twenty times faster execution

on large problem instances. The GPU-CPU difference

is similar on desktops and laptops, 10-20x in favor of

GPUs. At an early stage of its evolution, the APU offers

a low-cost platform, without powerful computational

units nor swift memory data paths. Our results demon-

strate that these two issues have a severe impact on

performance.

The growth of heterogeneous systems represents a

solid trend in modern systems, and we believe that fu-

ture work on Ant Colony Optimization in this domain

can benefit from the promising insights into scalability

demonstrated by our experimental study.

Acknowledgements This work is jointly supported by the
Fundación Séneca (Agencia Regional de Ciencia y Tecnoloǵıa,

Región de Murcia) under grant 15290/PI/2010, by the Span-
ish MEC and European Commission FEDER under grant
TIN2012-31345, by the UCAM under grant PMAFI/26/12,
by the Junta de Andalućıa under Project of Excellence P12-
TIC-1741 and by the supercomputing infrastructure of the
NLHPC (ECM-02). We also thank NVIDIA for hardware do-
nation under CUDA Teaching Center 2011-14, CUDA Re-
search Center 2012-14 and CUDA Fellow 2012-14 Awards.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel meta-
heuristics: recent advances and new trends. International
Transactions in Operational Research 20(1), 1–48 (2013).
DOI 10.1111/j.1475-3995.2012.00862.x

2. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik,
J.M., Storaasli, O.O.: State-of-the-art in heterogeneous
computing. Scientific Programming 18(1), 1–33 (2010)

3. Cecilia, J.M., Garcia, J.M., Nisbet, A., Amos, M.,
Ujaldón, M.: Enhancing data parallelism for ant colony
optimization on GPUs. Journal of Parallel and Dis-
tributed Computing 73(1), 42–51 (2013)

4. Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A.,
Amos, M.: Parallelization strategies for ant colony opti-
misation on GPUs. In: Proceedings of the 2011 IEEE In-
ternational Symposium on Parallel and Distributed Pro-
cessing, pp. 339–346. IEEE (2011)

5. Chang, R.S..S., Chang, J.S..S., Lin, P.S..S.: An ant algo-
rithm for balanced job scheduling in grids. Future Gen-
eration Computer Systems 25(1), 20–27 (2009). DOI
10.1016/j.future.2008.06.004

6. Chen, Y., Miao, D., Wang, R.: A rough set approach to
feature selection based on ant colony optimization. Pat-
tern Recognition Letters 31(3), 226–233 (2010). DOI
10.1016/j.patrec.2009.10.013

7. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Paral-
lel ant colony optimization on graphics processing units.
Journal of Parallel and Distributed Computing 73(1),
52–61 (2013). DOI 10.1016/j.jpdc.2012.01.003

8. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony opti-
mization. Computational Intelligence Magazine, IEEE
1(4), 28–39 (2006)

9. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms
and stigmergy. Future Generation Computer Systems
16(8), 851–871 (2000)

10. Dorigo, M., Di Caro, G.: Ant colony optimization: A new
meta-heuristic. In: Proceedings of the 1999 Congress
on Evolutionary Computation (CEC’99), pp. 1470–1477.
IEEE Press (1999)



8 Ginés D. Guerrero et al.

11. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Opti-
mization by a colony of cooperating agents. IEEE Trans-
actions on Systems, Man and Cybernetics B 26(1), 29–41
(1996)

12. Dorigo, M., Stutzle, T.: Ant Colony Optimization. Brad-
ford Company (2004)

13. Dorigo, M., Stützle, T.: Ant colony optimization:
overview and recent advances. In: Handbook of meta-
heuristics, pp. 227–263. Springer (2010)

14. Flannery, B.P., Press, W.H., Teukolsky, S.A., Vetterling,
W.: Numerical recipes in c. Press Syndicate of the Uni-
versity of Cambridge, New York (1992)

15. Garcia, M.P., Montiel, O., Castillo, O., Sepúlveda, R.,
Melin, P.: Path planning for autonomous mobile robot
navigation with ant colony optimization and fuzzy cost
function evaluation. Applied Soft Computing 9(3), 1102–
1110 (2009). DOI 10.1016/j.asoc.2009.02.014

16. Goldberg, D.E.: Genetic algorithms in search, optimiza-
tion, and machine learning. Addison-Wesley Professional
(1989)

17. He, B., Govindaraju, N.K., Luo, Q., Smith, B.: Efficient
gather and scatter operations on graphics processors. In:
Proceedings of the 2007 ACM/IEEE Conference on Su-
percomputing, pp. 46–57. ACM (2007)

18. Johnson, D.S., McGeoch, L.A.: The traveling sales-
man problem: A case study in local optimization. In:
J. Lenstra, E. Aarts (eds.) Local Search in Combinatorial
Optimization, pp. 215–310. John Wiley and Sons (1997)

19. Ke, B.R., Chen, M.C., Lin, C.L.: Block-layout design
using max-min ant system for saving energy on mass
rapid transit systems. IEEE Transactions on Intelligent
Transportation Systems 10(2), 226–235 (2009). DOI
10.1109/TITS.2009.2018324

20. Kennedy, J., Eberhart, R.: Particle swarm optimization.
In: Neural Networks, 1995. Proceedings., IEEE Interna-
tional Conference on, vol. 4, pp. 1942–1948. IEEE (1995)

21. Komarudin, Wong, K.Y.: Applying ant system for solving
unequal area facility layout problems. European Journal
of Operational Research 202(3), 730–746 (2010). DOI
10.1016/j.ejor.2009.06.016

22. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D.,
Nguyen, A.D., Satish, N., Smelyanskiy, M., Chennupaty,
S., Hammarlund, P.: Debunking the 100x gpu vs. cpu
myth: an evaluation of throughput computing on cpu and
gpu. In: ACM Intl. Symposium on Computer Architec-
ture, pp. 451–460. ACM (2010)

23. Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Par-
allel ant colony optimization for the traveling salesman
problem. In: Ant Colony Optimization and Swarm Intel-
ligence, pp. 224–234. Springer (2006)

24. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scal-
able parallel programming with cuda. Queue 6(2), 40–53
(2008)

25. Nvidia: (2011). CUDA Toolkit 4.0 CURAND Guide.
http://developer.download.nvidia.com/compute/

DevZone/docs/html/CUDALibraries/doc/CURAND\

_Library.pdf
26. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey

on parallel ant colony optimization. Applied Soft Com-
puting 11(8), 5181–5197 (2011). DOI 10.1016/j.asoc.
2011.05.042

27. Reinelt, G.: TSPLIB - a Traveling Salesman Prob-
lem library. ORSA Journal on Computing 3(4), 376–
384 (1991). Library available at http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/

28. Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural
Computing. Springer (2011)

29. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel
programming standard for heterogeneous computing sys-
tems. Comput Sci Eng 12(3), 66–72 (2010). DOI
10.1109/MCSE.2010.69

30. Stützle, T.: Parallelization strategies for ant colony op-
timization. In: Parallel Problem Solving from Nature
(PPSN V), pp. 722–731. Springer (1998)

31. Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future
Generation Computer Systems 16(8), 889–914 (2000)

32. Yu, B., Yang, Z.Z., Yao, B.: An improved ant colony opti-
mization for vehicle routing problem. European Journal
of Operational Research 196(1), 171–176 (2009). DOI
10.1016/j.ejor.2008.02.028

33. Zhu, W., Curry, J.: Parallel ant colony for nonlinear func-
tion optimization with graphics hardware acceleration.
In: Systems, Man and Cybernetics, 2009. SMC 2009.
IEEE International Conference on, pp. 1803–1808. IEEE
(2009)


