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Abstract This work analyzes a new and very subtle
kind of security threat that can affect large scale cloud-
based IT service infrastructures, by exploiting the com-

putational resources of their component data center in
order to waste as much energy as possible. The con-
sequence of these threats range from increased costs in

the energy bill, to penalization for exceeding the agreed
quantity of green house gases (GHG) emissions, up to
complete denial of service caused by electrical outages

due to power budget exhaustion.

We analyzed the different types of such attacks with
their potential impacts on the energy consumption, mod-

eled their behavior and quantified how current energy-
proportional technologies may provide attackers with
great opportunities for raising the target facility emis-

sions and costs. These efforts resulted in a simple model
with some parametric reference values that can be used
to estimate the impact of such attacks also in presence

of very large infrastructures containing thousands or
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1 Introduction

The Cloud Computing paradigm is experiencing an as-
tonishing success within the IT arena due to its extreme
effectiveness and flexibility in providing computing and

storage resources according to a self-service, on-demand
and pay-per-use scheme [50][1]. In order to support such
services on an Internet scale, a large number of data

centers and computing farms distributed throughout
the world, need to share their resources and cooper-
ate to provide the ever growing number of their users

with an adequate amount of runtime and storage facili-
ties. However, with the success of Cloud Computing,
the consolidation of IT infrastructures in very large

data centers is introducing several critical scalability
and manageability issues related to the growing elec-
trical power demand of the involved hardware facilities

and cooling systems. These are the most critical fac-
tors affecting both the operational cost and the carbon
footprint of cloud-related data centers, thus worsening,

on a large scale, the problem of global warming. Fur-
thermore, together with the alarming rise in the elec-
trical power needed to ensure the correct operation of

the above data centers, there is an equally dramatic in-
crease in security problems affecting the large scale dis-
tributed infrastructures built starting from them, which

usually consolidate hundreds of thousands of servers
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with other auxiliary facilities such as cooling, storage

and network communication, and support millions of
concurrent e-commerce transactions and Web queries
per day. In this scenario, the demand for efficient meth-

ods for preventing, detecting and mitigating intrusions
and other hostile activities, leading to the development
of complex analysis techniques and attack countermea-

sures, resulted in a simultaneous improvement in the
cleverness and effectiveness of attack strategies and tools,
also characterized by the exploitation of new attack tar-

gets and goals that are very different from the tradi-
tional ones that essentially involve the availability or
performance of the data center elements providing spe-

cific services as well as the confidentiality or integrity of
data stored or transmitted on/by them. These new at-
tack targets and aims are mainly inspired by the critical

energy/power-related issues affecting large data centers
operating within cloud infrastructures and strive to ex-
ploit weaknesses in power-saving and management fa-
cilities in order to increase the energy consumption of

entire farms, by causing significant increase in their en-
ergy bills/operational costs and hence financial dam-
ages to the involved service providers. In the worst

cases, these attack strategies may also cause service
disruptions due to the exhaustion of data center power
budgets leading to power outages, or overheating result-

ing in automatic protection-driven shutdown of many
devices.

Until now, security and energy efficiency have been

two completely separated research areas with no (or, at
the best, minimal) contact points and common issues.
In this work, that extends the preliminary studies pre-

sented in [38], we explore an intersection area between
these two fields by addressing a new energy-related se-
curity perspective that may become an ordinary matter

over the next years. Therefore, in considering future
security challenges, we cannot disregard the energy-
efficiency of the involved targets by carefully under-

standing and managing in a joint way both the energy-
related requirements/constraints and the underlying se-
curity strengths and weaknesses. Accordingly, we ana-

lyzed and evaluated the impact of common network-
based denial of service (DoS) attacks on the energy
consumption of modern data center infrastructures by

highlighting their troublemaking potential in terms of
financial damages (due to the additional energy costs
introduced) and service disruption on poorly dimen-

sioned farms.

2 The Critical Role of Power Demand in Cloud

Infrastructures

Modern large scale IT service infrastructures, usually
based on the cloud paradigm, are built by aggregating

through the Internet several huge data center farms,
distributed throughout the world and sometimes owned
by different organizations, but operating in a fully co-

ordinated way as a unique federated entity. Each of
these data centers contains a large number of com-
puting and mass-memory devices (usually servers and

disk arrays) providing computing and storage capabil-
ities to users’ tasks/demands incoming from the In-
ternet. All these devices are interconnected through

high speed and low-latency local area network (LAN)
switches (usually 10Giga Ethernet or Infiniband). Every
server has a processing capacity, depending essentially

on the number of cores and/or processors, whereas the
capacity of storage arrays, often organized into stor-
age area networks (SANs) depends on the number and

the size of the disk devices they contain. The power
demand in these data center farms is mainly originated
by the above computing, storage and LAN devices (also

known as the runtime system), where servers are the
most energy-hungry elements. There are different kind
of servers, ranging from small ones with computing ca-

pabilities comparable to personal computers to large
supercomputers or special purpose servers optimized
for specific tasks such as Web servers and database

management, each characterized by its specific power
demand and energy-efficiency degree, often supported
by specific energy-proportional architectures [4] making

power consumption depending on their real operating
load [48]. The CPU contributes to most of the server
power consumption, ranging from 25% to 55% of the

overall one, depending on the server architecture, fol-
lowed by memory and networks interfaces [16], [4]. On
the other hand, disks, motherboard and fans consume

less energy (see Table 1).

Table 1 Energy consumption breakdown of a low-end server

Component Avg Power Consumption

CPU [21] 80 W
Memory [20][23] 36 W
Motherboard [16] 25 W

Disk subsystem [27] 12 W
Fans [16] 10 W

Network Interface [44] 2 W

However, a significant amount of the whole energy

required for data center operations (about 48% accord-
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ing to [15]) is also drained by the so-called auxiliary or

support subsystems such as the HVAC (heating, venti-
lation and air conditioning, summing up to 38%), UPS
(uninterruptible power supply, with about 8-9%) and

lighting/surveillance facilities. While the more sophis-
ticated data centers are usually able to implement more
efficient cooling strategies, their stricter resiliency and

availability requirements imply the use of redundant
high-capacity UPS equipment, resulting, in turn, in a
higher power demand. The power usage effectiveness

(PUE) index, defined by the Green Grid [47], measures
the energy-efficiency of an entire data center as the ratio
of the total amount of power used by the whole facil-

ity to the power delivered to the computing equipment
alone. A PUE value of 2 is the current average [48],
meaning that the impact of HVAC and UPS doubles

the runtime subsystem’s energy requirements, by ab-
sorbing as much energy as the computing and storage
resources themselves.

It has been estimated that the worldwide data cen-
ters electrical power demand amounts to about 26 GW,
corresponding to about 1.4% of the global electrical

energy consumption, with a growth rate of 12% per
year [22], [9]. At the state of the art, a medium-sized
5,000-square-foot data center is characterized by an av-

erage daily energy demand of 27 MWh [15], as much
as 9,000 houses at full load. Consequently, the cost of
the electrical energy needed to power the data centers

becomes one of the main items to be taken into ac-
count when estimating their operational expenditures
(OPEX). As a simple reference, the annual power cost

for US data centers ranges as high as 3.3 billion dol-
lars [15] and the yearly energy bill for a medium-sized 2
MW data center with a 50% base-load energy consump-

tion could be as high as US$ 604,000 in the US, about
US$ 1,112,000 in the UK and about US$ 1,375,000 in
Germany [2] (due to the differences in price of power).

In Spain, the Barcelona Supercomputing Center (con-
sidered a medium-sized data center) consumes 1.2 MW,
as much power as a town of 1,200 houses [26], and pays

every year more than 1 million Euros just for the en-
ergy bill [40]. For this reason, the farm owners usu-
ally negotiate their contracts with the electrical energy

providers according to a flat-rate payment model, where
a fixed fee is due for any consumption under a previ-
ously established usage threshold, regardless of the ac-

tual cost or consumption, and an additional (typically
high) proportional price per KW is required only when
the power drawn exceeds such threshold. By properly

negotiating such usage threshold, both data center own-
ers and electrical companies are shielded from fluctua-
tions in the energy demand/offer, and cloud operators

can achieve significant financial savings if they care-

fully estimate their energy consumption profile by con-

sidering that in modern energy-efficient server equip-
ment the energy consumption increases proportionally
with the load (apart from the fixed energy consump-

tion which accounts for about 50% of servers full oper-
ational power [16]). The typical load in data centers is
not constant over time but characterized by high uti-

lization periods (e.g., limited in some peak hours of the
day) followed by often long low utilization periods (e.g.,
during the night). In particular, it has been observed

that the load fluctuations are almost predictable within
certain fixed time periods (e.g., day-night, months or
years) and resemble a pseudo-sinusoidal trend [3], [28].

These considerations drive the data center analysts in
dimensioning the above flat usage threshold as low as
possible, just sufficiently higher than the average de-

mand observed in the above trends, in order to avoid
additional prices due to exceeding the flat-rate thresh-
old and simultaneously reduce their recurrent expenses.
This implies that any unforeseen increment in the data

center energy consumption exceeding the flat-rate us-
age threshold may have devastating effects on its oper-
ational costs.

3 A New Perspective in DoS Attacks

Denial of Service (DoS) attacks are an ever increasing
menace for corporate and government organizations do-

ing their core business activities through the Internet.
The main targets of these attacks include all the avail-
able resources at both the runtime (computing power,

memory buffers, disk drives) and network (communica-
tion protocols and interface bandwidth) service layers
with the final effect of the total disruption or degrada-

tion of such services. The hostile activities are usually
performed throughout a network connection and orig-
inated by machines scattered throughout the Internet.

Countermeasures may be complex and of limited effec-
tiveness, since it is very difficult to distinguish between
a genuine and a malicious connection/service request

and thus apply the filtering rules/policies needed se-
lectively to block the hostile traffic. By affecting the
servers, the storage systems and the Internet connec-

tions of the victim sites, the attackers may be able to
prevent any access to cloud services such as Web-based
applications or virtual machines providing online bank-

ing, e-commerce, computing services, etc. [30]. Often,
in order to increase the attack power and make the re-
action even more difficult, a huge number of remotely

controlled machines can be used as the origin of mul-
tiple simultaneous attacks against a single target or a
whole organization. This type of menace is also known

as Distributed Denial of Service (DDoS) attack.



4 Energy-Oriented Denial of Service Attacks

3.1 Network Bandwidth Exhaustion DoSes

DoS attacks against the network connectivity aim at
exhausting the available bandwidth on the Internet con-

nection interfaces through the generation of an extremely
large number of packets or service requests directed
to the target site. Typically, these packets are ICMP

or UDP ECHO packets, forcing the target system to
generate a corresponding reply traffic in the opposite
direction, but in principle they may be anything [10]

flooding the network connection with service or connec-
tion requests (e-mails, HTTP requests, etc.). Another
very dangerous network attack is the SYN flood one,

overloading a target victim with a large quantity of ini-
tial TCP connection attempts but preventing the com-
pletion of the three-way handshake process leading to
successful connection establishment. This results in ex-

hausting, with bogus “half-open” connections, the max-
imum number of simultaneous connections on the vic-
tim machine but also in bandwidth exhaustion on the

involved network interfaces, in presence of an high sus-
tained SYN transmission rate. Finally, also very aggres-
sive network or port scan activities toward the cloud’s

exposed address space may have the adverse effect of
completely saturating the Internet connection band-
width of the associated sites, in particular when stealth

scanning strategies, not easy to detect and filter in tran-
sit, are used.

3.2 Processing Power Exhaustion DoSes

Alternatively, the computing resources available on the
target sites can be saturated by overwhelming them
with a large amount of CPU-intensive requests, such

as continuous transaction attempts on HTTP, HTTPS
or any kind of server operating through the network.
For example, a randomized HTTP requests flood can

be used to exhaust the available communication chan-
nels on a target victim Web server [46]. In addition,
also the CPU may be overloaded by cryptographic op-

erations when HTTPS or any kind of SSL-empowered
services are targeted. For example, by using the attack
described in [14], a malicious Web client can coerce a

Web server, reached through an SSL connection, in per-
forming expensive RSA decryption operations until its
CPU load reaches 100%.

Furthermore, several vulnerabilities in Web Services
(WS) technologies [24], [25], [35] that exploit the XML
verbosity and the complex parsing process of the SOAP

message body are available. For example, the process-
ing of a large number of name-space declarations, over-
size prefix names or name-space URIs, and very deeply

nested XML structures/tags), can exhaust most of the

computational resources of the target systems (mainly

CPU and memory) according to a technique known as
coercive parsing. The same effect can be achieved by
pointing to a bogus external schema location provid-

ing a large or malicious payload (malformed schemes
leading to coercive parsing). In addition, attackers can
exploit a WS security vulnerability allowing encryption

to be used almost anywhere within a SOAP message
without any robust schema validation, so that the CPU
capacity may be overloaded by introducing a large num-

ber of nested encrypted header blocks within a single
SOAP message. That is, an oversize security header of
a SOAP message can cause the same effects of an over-

size payload, where as a further adverse effect, a chained
encrypted key can lend to high memory and CPU ca-
pacity consumption. Some possible solutions could be

the adoption of anomaly detection techniques such as
the ones proposed in [18][36]Palmieri2010737 and [37].
Nevertheless, the energy-related attacks are very diffi-
cult to be detected since they are very simple and easy

to implement, but extremely difficult to stop because
there is no way to distinguish between legitimate and
illegitimate requests and hence no way to filter such

traffic.

Finally, the more subtle and recent processing power
attacks are those ones that exploit algorithmic defi-

ciencies in many common data structures, protocols
and tools characterizing networked applications. For
example, a long list of technologies, including PHP,

ASP.NET, Java, Python, Ruby, Apache Tomcat, Apache
Geronimo, Jetty and Glassfish, as well as Google’s open
source JavaScript engine V8 are known to be vulnera-

ble to DoS attacks exploiting the hash table structures
they use. In detail, these attacks strive to find a suffi-
cient number of collisions in the involved hashing algo-

rithms, causing worst-case behavior in the above appli-
cations’ hash table usage [13]. The effects on the target
hosts may vary from an increased workload to complete

collapse due to total CPU capacity exhaustion.

3.3 Disk Hardware Solicitation DoSes

Also traditional or more recent disk drives may be the
indirect target of DoS attacks, performed through the
interfaces provided by the various available network

file systems (e.g., NFS, CIFS, AFS or SAMBA) or file
servers (FTP, FSP, RPC tools, etc.) by overwhelm-
ing the drive hardware with a huge number of differ-

ent randomized read/write requests on always different
files, by frustrating as much as possible the effect of
buffer caches or disk scheduling algorithms. This may

have the effect of introducing a significant burden on
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the mechanical components of magnetic drives, by re-

ducing their effectiveness and lifetime, together with
the overall drive performance. Also, the more recent
non-mechanical devices such as the solid state drives

(SSD) can be affected by attacks that, by soliciting their
NAND-based memorization hardware cells with multi-
ple continuous write operations, reduce both the device

performance and its lifetime (by reaching the limit of
re-write operations supported on the same cell).

3.4 The New Menace: Energy-Related DoSes

The above DoS activities can become more effective

against large scale organizations, such as cloud service
providers, by simultaneously exploiting new, more sub-
tle, objectives and attack scenarios, soliciting propor-

tional electric power consumption as well as energy ef-
ficiency and power management features on the high-
est possible number of servers operating on the tar-

get sites. Simply stated, these attacks leverage hard-
ware components on server equipment experiencing the
maximum energy demand gaps between busy and idle

operational states. The hostile activities consist in gen-
erating the maximum possible workload on the target
components, by always keeping them 100% busy so that

they can never enter low power usage states (usually
implying an average 22% reduction in power usage),
and thus forcing them to continuously operate at their

near-maximum frequency/speed, voltage and tempera-
ture (this also reduces their lifetime). In such a way,
since in modern server systems the energy demand is

tightly related to all the above operating features, also
the electric power absorbed is maximized, with the ob-
vious consequences on the involved data centers’ oper-

ational expenses and PUE (since also HVAC effective-
ness is reduced by unnecessary overheating). In such a
scenario, the most critical components from the power

absorption perspective are CPU and memory since the
relevancy of disks in the overall server’s power budget
is strictly related to the presence of a significant num-

ber of these devices. Anyway, overloading the server’s
hard disks with millions of read or write operations by
forcing them to constantly operate at their maximum

sustained transfer rate or to continuously spin up and
down the hard disks spindle engines is another effective
way of draining more and more system power.

However, in order to correctly quantify the damag-
ing potential of an energy-oriented DoS attack launched
throughout the network, we have not only to concen-

trate our attention on the most power demanding de-
vices, but we have to consider all the available energy-
sensible ones, that is, those whose energy consump-

tion strongly varies with the network-generated traf-

fic load. Among these components, network interface

cards (NICs) need a specific attention because, depend-
ing on their implementation features, an increased load
on them also implies a cascaded load on CPU and mem-

ory.
Unexpectedly, also the existence of security tools

can be sometimes exploited as an opportunity for very

subtle types of energy-oriented attacks. In fact, while
being essential to ensure the system integrity, such tools,
that continuously monitor the server activity, have of-

ten a significant impact on their CPU/memory/disk us-
age and hence on the overall power consumption [6].
In many tightly-managed farms, for example, most of

the servers have at least an anti-virus/malware tool in-
stalled on them, usually scanning on-the-fly any con-
tent trying to be stored locally. Since such scanning ac-

tivity is strongly CPU and I/O-intensive, causing sig-
nificantly long periods of both CPU and disk load, a
disruptive energy-aware attack can be orchestrated by
choosing a specific, eventually legitimate content, trig-

gering the anti-virus reaction in order to waste a great
amount of CPU power, and having the malicious con-
tent massively delivered to the target by a large number

of different origins. Analogously, also e-mail spam can
be exploited for energy-oriented attacks to relay servers
running anti-spam software in order to identify and fil-

ter out unwanted messages, since these tools usually
eat great amounts of CPU and memory resources, apart
from the network saturation effects introduced by unso-

licited e-mail messages [29]. An energy-oriented attack
could then increase the footprint on a target mail server
by simply increasing the amount of spam addressed to

it.
Finally, properly crafted computer worms and tro-

jans can gain, by exploiting system vulnerabilities and

backdoors, the ability to run malicious code directly on
the target nodes. In these cases, such malicious entities
can trick the operating system kernel or some appli-

cation binary code so that a lot of additional energy
is needed for their execution, while continuing to work
correctly from the users’ perspective.

4 Modeling and Evaluating the Impact of

Energy-Oriented Attacks

Any successful energy-oriented attack maximizes the

overall server’s power consumption and harshly solic-
its its hardware components, while presenting to both
its users and administrators the appearance that the

system is operating normally, with the possible excep-
tion of an increased CPU, disk or network activity. In
contrast to a successful DoS attack, a successful energy-

oriented attack can be stealthy, thriving on the cumu-
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lative result of low-rate activities sustained over a long

time. Side effects that can flag the presence of these
subtle menaces include legitimate user requests being
served slowly, CPU fan turning on while the server is

performing some action that does not normally cause
the fan to come on, the operating system becoming less
interactive than usual, the network losing part of its

speed/responsiveness and the hard drive spinning up
immediately after a spin down.

In this section we focus on these specific menaces

by modeling and analyzing their impact on the individ-
ual server’s energy consumption, in order to obtain, if
possible, some reference measurements and infer from

them the fundamental properties and evolution trends,
that can be used as a general framework to estimate the
effects of energy-oriented DoSes on large scale cloud in-

frastructures of various sizes.
In doing this we set up a very simple measurement

testbed realized by using a small single processor server,
manufactured by HP, and equipped with a quad-core/8

thread (2.00 GHz/thread), Intel i7 64 bits CPU, 8 Gb
DDR3 SDRAM, a 7200 rpm 500 GB HD and a Gigabit
Ethernet interface connected to the LAN. Such server,

that is used as the target for all the attacks, runs the
Linux operating system and has its input power con-
stantly monitored through a SCT-013-000 (Beijing Yao-

Huadechang Electronic Co., Ltd) non-invasive AC split-
core current sensor clip, driven by an Arduino Mega
2560 control board, collecting all the power usage mea-

surements (1 sample/sec). Several Linux-based laptop
PCs, connected via Gigabit Ethernet to the same LAN
are used to launch the individual attacks against the

aforementioned measurement station.

4.1 Bandwidth Exhaustion Energy-Oriented Attacks

The first device/component that can be solicited in

network-based DoS attacks is the NIC, and this also
holds with energy-oriented attacks. In all the NIC im-
plementations supporting Low Power Idle (LPI) [19] or

Adaptive Link Rate (ALR) [11] technologies, the en-
ergy consumption depends on the actual transmission
rate/load. In detail, with LPI, the interface switches

from full speed to low power mode when it is not used.
The power consumption during such low power mode
is about 10% of the power required when operating at

its maximum rate [41]. ALR, on the other hand, pro-
vides the ability to dynamically modify the link rate
according to the real traffic needs in order to reduce

the power consumption. Clearly, the disruption of these
attack schemes depends on how much power the device
consumes in maximum speed mode with respect to low

power mode; such a gap may be as high as 90% between

idle and full load states for higher speed interfaces [12].

Such dependency on the current interface load can be
easily observable by looking at the measured energy
consumption profile on the target monitored station

when attacked respectively by a SYN flood (Fig. 1) or
an ICMP flood (Fig. 2).

While the additional consumption introduced by a

SYN flood is definitely less uniform and valuable in size,
due to its lower impact on the interface bandwidth (as
compared to the other attack that is significantly more

aggressive), the ICMP flood achieves an abrupt increase
(and fall at the end) with an almost uniform consump-
tion difference profile (about 11.3 W) with only some

slight intermittent fluctuations during the attack, even-
tually due to the effect of hardware buffering mecha-
nisms at the interface level. However, in presence of a

huge number of servers the effectiveness of the attacks
wasting a lot of communication bandwidth is implic-
itly limited by the availability of the capacity on the
upstream connection to the Internet, that assumes the

role of a bottleneck also for the attack itself.
In order to model the NIC energy demand incre-

ment during bandwidth exhaustion attacks, we have to

differentiate between the behavior of LPI or ALR inter-
faces. The energy consumption of a LPI network inter-
face (such as the Energy-Efficient Ethernet compliant,

EEE) is given by:

ELPI = Pidle (1− tload) + Pactive tload, (1)

where the power demand in idle mode Pidle is about
10% of the power in active mode Pactive and tload is the

time share percentage in which the interface is being
used.

Alternatively, in ALR, the network interface is al-

ways active, but the line rate is dynamically selected
to best fit the traffic rate [42]. As an example, a 1000
Mbps ALR interface can slow down to 10 or 100 Mbps
when the corresponding traffic rate is required, thus

saving energy. In this case, energy consumption of an
ALR network interface is given by:

EALR =
∑

i∈{10,100,1000}

P(i) t(i) (2)

where P(i) is the power consumption of the interface

working at link rate i ∈ {10, 100, 1000} Mbps and t(i)
is the time spent at line rate i.

Therefore, both LPI and ALR network interfaces

consume according to their instantaneous line rate, and
network-based attacks are aimed at increasing the work-
ing rate of the interfaces for the longest possible amount

of time, that means also reducing the overall interface
idle time.

In the LPI case, let’s consider a parameter α ∈ [0, 1]

that models the percentage of time spent by the LPI
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Fig. 1 SYN flood attack energy consumption.
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Fig. 2 ICMP flood attack energy consumption.

interface in active mode, and let the corresponding av-
erage power consumption be PLPI

avg = αPactive + (1 −
α)Pidle, then the additional energy consumption in-

duced by an attack of duration td on a LPI interface
is given by:

∆ELPI
N = (Pactive − Pavg) td

= ((1− α)Pactive + (α− 1)Pidle) td.

(3)

Analogously, in the ALR case, let’s consider the
weights α(i) ∈ [0, 1] :

∑
i∈{10,100,1000}

αi = 1, modeling

the percentage of time spent by the ALR interface at
each link rate i, then the average power consumption

of an ALR interface is described by:

PALR
avg =

∑
i∈{10,100,1000}

P(i) α(i). (4)

Therefore, by starting from Eq. (4) and assuming

that an attack succeeds to raise the interface line rate at

its maximum, then the additional energy consumption
introduced by an attack of duration td is given by:

∆EALR
N = (P(1000) − PALR

avg ) td

= ((1− α(1000))P(1000) − α(100) P(100)+
−α(10) P(10))td.

(5)

4.2 CPU Exhaustion Energy-Oriented Attacks

The most critical component, in terms of power de-
mand, is the CPU/memory subsystem whose energy
consumption is known to scale linearly with its utiliza-

tion and frequency [16], [31]. Since the goal of energy-
oriented attacks aimed at exhausting computing capac-
ity is to maximize the power consumption by keeping

the CPU and memory on the target system as busy
as possible, these attacks generate across the network
a large number of “tricky” service request subtracting

most of the resources to the legitimate ones and letting
the CPUs working at their maximum speed and oper-
ating frequency. In order to quantify the effects of these

menaces, we attacked the measurement station with a
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Deeply-Nested XML WS resource exhaustion scheme,

which exploits the XML message format by inserting
10000 nested XML tags in the message body until (al-
most immediately) the CPU is fully committed to pro-

cess the malicious messages [17]. We can observe from
Fig. 3 a sharp increase in energy consumption of about
20W, sustained almost uniformly for the whole dura-

tion of the attack and immediately falling to the base-
line demand value after its termination. It should be
considered that this attack, differently from the flood-

based ones, requires a significantly lower bandwidth on
the Internet connection, and hence can affect a much
larger number of victim servers simultaneously, with a

really increased effectiveness in presence of a large num-
ber of targets.

In order to stress DRAM usage we also used a buffer
overflow vulnerability on the ApacheWeb-server to force
the continuous execution of a huge number of random

read and write operations on very large arrays located
in memory, with the effect of generating a large quan-
tity of cache misses and hence maximizing the physi-

cal accesses to power-hungry DRAM hardware. Since
this attack scheme also introduces a significant impact
on CPU activity, the measurable effects are almost the

same as reported in the previous experiment (see Fig. 3),
and hence not shown for space reasons. Furthermore,
differently from the previous one, such attack requires

specific vulnerabilities to be present on the target ma-
chine and the complete compromise of the machine it-
self.

For completeness sake, we also studied the effects of

a slow DoS attack against a traditional Web server, us-
ing minimal bandwidth and with no side effects on un-
related services and ports. For this purpose we used the

Slowloris scheme [43], trying to keep open the highest
possible number of connections to the target Web server
and hold them open for the maximum possible time,

until the Web server connection resources are totally
exhausted. This is accomplished with partial requests
to the target server, by sending multiple HTTP headers

without completing any request. The maximum concur-
rent connection pool will be saturated by denying any
additional connection attempts. While completely shut-

ting down the involved server, the above attack gener-
ates a certain amount of additional computing burden
but does not completely exhaust the available CPU ca-

pacity. The consequent effects on the server’s energy
consumption are considerably lower than the ones ob-
servable in the previously presented attacks, but how-

ever appreciable (with an increase slightly greater than
4W), as shown in Fig. 4. Such phenomenon highlights
the strong dependencies of servers’ energy consumption

from the computing and DRAM memory load.

When modeling the impacts of these types of at-

tacks, we have to consider that modern CPUs, in order
to minimize their energy consumption during idle or
low usage periods, dynamically adapt their operating

frequency f accordingly to the current load: lower fre-
quency requires a lower voltage, which will consume less
energy.

Let fmin and fmax be respectively the minimum

and the maximum operating frequency of a CPU; then,
the required CPU voltage V (f) at frequency f will be
approximately given by:

V (f) = Vmax
f

fmax
, (6)

where Vmax is the maximum operating voltage re-
quired at frequency fmax. The power consumption of a

modern CPU can be represented [31] as a function of
the operating frequency f , given by:

P (f) =
1

2
C V (f)2 Af. (7)

In the above formula, C and A are constants de-
pending on the specific CPU technology, namely ag-
gregated load capacity and activity factor respectively.

From Eq. (6), we can observe that the voltage V (f)
scales linearly with the frequency f , and from Eq. (7)
that the power consumption of the CPU scales quadrat-

ically with the voltage (and thus cubically with the fre-
quency).

Therefore, the attack will try to increase the operat-

ing frequency in order to consume more energy. Consid-
ering that the average CPU utilization in data centers’
servers is only about 30% [5], [8], [16], we can estimate

the average additional energy consumption introduced
by a CPU-based DoS attack as:

∆EC = [P (fmax)− P (f30%)] td (8)

where td is the duration of the attack and f30% is the

frequency corresponding to the 30% load. Thus, the en-
ergy increase depends only linearly on the attack dura-
tion but is proportional to the difference of the squares

of the maximum voltage and the normal operating volt-
age. In other words, the intensity of the attack is more
critical than its duration. As an example, a short-lived

strong attack can be as effective as a long-lived, lower
intensity one.

4.3 Disk Solicitation Energy-Oriented Attacks

Differently from CPUs, hard disks have mechanical mov-
ing parts (here we do not consider solid state drives),

which considerably affects their energy consumption.
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Fig. 3 Deeply-Nested XML attack energy consumption.
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Fig. 4 Slowloris attack energy consumption.

Apart from the mechanical movements, the energy con-

sumption of a disk depends on the number of read/write
operations on it and on the involved transfer rates.
Attacks that try to add additional stress on the disk

hardware by forcing the continuous execution of a huge
number of physical read and write operations may have
significant but intermittent effects (presumably due to

the file system buffer caching mechanisms causing not
all the disk access request to correspond to physical disk
operations) on the server’s overall energy demand, that

gradually decays after the attack termination. This can
be observed from Fig. 5 referring to the scenario of a
SMB networked file system operating on the target ma-

chine, solicited by an ad-hoc application running on a
portable PC remotely mounting the SMB volume. A
typical read operation at the maximum rate rmax con-

sumes approximately Pread = 10µJ/block or 2.5µJ/kB,
and a typical write operation requires about the same
power [34]. If the current transfer rate r varies between

[rmin, rmax], then a read/write operation at rate r will
consume:

P (r) = wrPop, (9)

where Pop is either Pread or Pwrite and

wr =
r

rmax
(10)

is the scaling factor depending on the transfer rate r.

The energy consumption of a disk is given by the

sum of the mechanical power consumption depending
on the angular velocity ω and the logic power consump-
tion depending on the involved operation and transfer

rate.

P (ω, r) =
K2ω2

R︸ ︷︷ ︸
mechanic

+DrwrPop︸ ︷︷ ︸
logic

(11)

In Eq. (11), K is a motor voltage constant, R is the mo-
tor resistance andDr is the operation demand (kB) [49].

Thus, the disk power consumption depends on the square
of the angular velocity ω and linearly on the transfer
rate r. Also, the mechanical part is much more prone to

faults with respect to logic circuits. Therefore, an attack
aimed at forcing sparse, high data rate operations on
the disk will have the maximum disruption and induce

the highest energy consumption. Let Pavg and Pmax be
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Fig. 5 Disk hardware solicitation attack energy consumption.

respectively the average and the maximum power con-
sumption of a disk, then the additional required energy

during a disk-based DoS attack is given by:

∆ED = (Pmax − Pavg) td (12)

In recent times, the evolution of solid state memory

technologies is allowing high performance storage archi-
tectures to partially fill the performance gap between
traditional hard disk drive technology and RAM, over-

taking historical limitation in terms of latency, transfer
times and costs/sustainability. Thus the storage sys-
tems in many new generation cloud data centers are

starting to be equipped with a certain (growing) per-
centage of high performance solid state disk (SSD) de-
vices.

Besides ensuring much better response times SSDs

are inherently more energy-efficient than their mechan-
ical drives counterparts, since they do not require mov-
ing parts, by storing data on flash chips that contains, in

a single package, multiple NAND memory dies in a 3D
die stacking. However, even though SSDs don’t have to
spin and move a mechanical read head to locate data

and thus the concept of latency and seek disappears,
they also exhibit a variable power draw depending on
their usage, also if, at the state of the art, their power
demand is not energy-proportional but only depends

on the operating state (active, idle) or on the specific
operation involved (read, write).

An estimation of the energy required by an SSD is
given in the following formula:

ESSD = Pidle Tidle + Pactive Tactive (13)

where Pactive is the power consumption when the SSD

is active, and Tactive is the time spent by the SSD while
satisfying SSD requests whereas Pidle is the power con-
sumption in the idle mode, and Tidle is the sum of all

the idle periods. We have to consider that when in idle

state, an SSD device is not handling any I/O opera-
tion. Ideally, an idle device should not consume any

power but in real world in that idle devices require some
amount of power to be up and running, that however,
should be less than power required by traditional disks.
In order to enhance the I/O performance, operations

are parallelized on multiple flash devices whose NAND
memory chips are organized into multiple channels and
ways. However, as the number of channels, and the de-

gree of parallelism in operations, increases, so does the
instantaneous power consumption. This may cause the
average power usage to actually increase when changing

from traditional disks to highly parallel SSDs, especially
the earlier and cheaper ones, which are known to man-
age in an inefficient way their idle state. Thus, keeping

the device as active as possible (i.e., minimizing Tidle)
is the simplest form of an energy-oriented attack.

Furthermore, due to specific characteristics of the

NAND memory units, no rewrite operations are allowed
on already written locations, so that when an update
is needed, the involved locations have to be erased be-

fore a new data is written on them. Such “erase before
write” behavior implies doubling the operations needed
and hence introduces an additional power burden to any

write access that can be maliciously exploited in energy-
aware attacks based on overloading SSD devices with
large number of writes.

Accordingly, we have to consider that the power
drained in active mode depends on the kind of oper-
ation issued, with the power Pread required by read op-

erations being significantly lower that the one required
for erase (Perase) and rewrite (Pwrite) ones, so that:

Pread ≪ Perase + Pwrite (14)

Thus since the maximum (or worst case) power con-
sumption of a solid state disk Pmax, is the one char-
acterized only by write operations (Pmax = Perase +

Pwrite) then the additional required energy during a
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SSD-based DoS attack is also given by eq. 12 where

Pavg is the average power consumption of the specific
SSD devices involved. A reference estimation for the
above power consumption values (that however are very

NAND flash device-dependent) comes from the models
and hardware details presented in [33][39] and [7].

5 Effects and Consequence of Energy-Related
DoSes

The effects of the previously presented attack types, in

terms of average increment of the energy demand on
the target machine can be immediately appreciated by
observing the chart reported in Fig. 6.

The fundamental consequences that may be associ-

ated to these phenomena are reported in the following.

5.1 Impacts on the Energy Bill

An increase in power consumption will bear an immedi-
ate and sizable financial impact. For the sample 5,000-

square-foot data center with 1000 servers [15], a sus-
tained computing capacity exhaustion energy-oriented
attack (about 20 W for each server, as reported in fig.

6) brings an additional daily consumption of about 480
KWh. Furthermore, if we also consider the cascaded ef-
fect reported in [15] where an additional amount of 1.84

W is added to each Watt drained at the processor level,
due to the combined effects of Power Conversion, Dis-
tribution, UPS and Cooling, a more realistic estimation

will result in a daily increment of about 1,360 KWh.

This increment may have a devastating In presence

of the aforementioned flat supply contracts with an
agreed-upon consumption threshold, where the attack-
ers strive to force the farm resources to behave in a way

resulting in a sustained power consumption excess over
the threshold. Alternatively, also when the cost schemes
per kWh are more traditional, rates may vary for day-

time and nighttime. In these cases, attackers who can
control the energy drawn may cause financial loss, e.g.,
by forcing high consumption rates over the maximum

cost hours.

5.2 Causing Power Outages

Attacks may not only increase energy bills. Sometimes,
their consequences can also include power outages. Power

provisioning strategies in data centers have generally
been designed with the objective of maximizing the
computing and storage capacities, with the power bud-

get being viewed as a constraint [16]. Such strategies

aim at filling the gap between the theoretical maximum

power usage and the current one, in order to deploy
more computing and storage resources within the power
budget. The power draw indicated by manufacturers

in the documentation accompanying their product is a
conservative estimate [32]. Thus, when designing the
power infrastructure, barely considering the nominal

power consumption will leave abundant extra power to
be used when adding or updating components. On the
other hand, if the actual peak power draw closely ap-

proaches the nominal value, the data center is using
its power budget efficiently. However, the risk increases
that fluctuations caused by attacks may cause SLA vi-

olations or, worse, outages due to trying to draw more
power than what is allowed by the physical infrastruc-
ture. Note that successful attacks will depend on quality

and freshness of knowledge about limits, contractual or
physical, and about how close the consumption values
are to critical values.

5.3 Affecting Energy-Saving Mechanisms

Normally, data centers deploy techniques to save en-
ergy. These techniques may be as simple as shutting

down temporarily unused machines or using complex
predictive models to adapt the power draw to the ac-
tual necessity. Energy-saving mechanism, however, may

become powerful weapons in the hands of attackers
who can control, to an extent, the energy consump-
tion. Again, attackers need to know details about the

energy-saving techniques in place. They also need the
ability to estimate critical power draw values at which
these mechanisms operate and how close actual mea-

sured values are to those limits. Then, extra work can
be artificially inserted in the system to make the energy-
saving mechanism ineffective. Note that attackers only

need to increase the power consumption of the mini-
mum amount that will cause the energy-saving system
not to be triggered. Thus, additional activity will be less

likely to be detected than massive workload that satu-
rates the CPU. As a simple example, consider a data
center where servers are put to sleep when they are idle

for a given amount of time. By merely constructing fake
traffic that reaches each of the servers, or all servers si-
multaneously, an attacker may prevent servers to enter

sleep mode even if legitimate activity is low. With a
very low workload added, the energy-saving strategy
may be made useless, impacting the total consumption

significantly.
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Fig. 6 Average increments on power demand for energy-oriented attacks.

5.4 Effects on Operating Temperature and Hardware
Lifetimes

When CPU is overloaded, the clock is constantly kept
at values close to the maximum, and consequently the
chip temperature increases dramatically. The tempera-

ture becomes, therefore, an extremely important factor.
By making temperature increase, an attacker is guar-
anteed to raise the power bill of the victim. The cooling

system will in fact be solicited to cope with the tem-
perature raise, consuming more energy. For this rea-
son, any increment in demand-side energy usage im-

mediately cascades on the the HVAC side, so that in
the medium-sized 5,000-square-foot sample data cen-
ter reported in [15] every Watt of power consumption

increment on the runtime system (processor, memory,
hard disk, etc.) results in approximately 1.07 Watts of
additional power demand for the whole facility. Hence,

thermal attacks bear a close similarity to attacks aimed
at neutralizing energy-saving systems. In fact, the main
goal of a thermal attack is not the saturation of re-

sources, but only to keep the CPU constantly active
with useless instructions/activities. This also prevents
the circuitry to enter low-power or suspend modes, where

clock is reduced and the CPU is allowed to cool, as it
normally does during idle periods until an interrupt is
raised. As a side effect, temperature also influences the

rate of failures in electronic components, with higher
temperatures reducing the component life span. The
expected operating lifetime of a chip will instead dou-

ble if temperature gets lower by 10◦C. Thermal attacks
have, therefore, tremendous potential, especially if they
can be effected a large number of servers over long pe-

riods.

5.5 Exploiting Costs Related to Ecological Footprint

The energy used to power a service infrastructure has a
cost, but also a source, whose features strongly charac-

terize the ecological footprint of the overall infrastruc-
ture itself. Dirty sources such as, for example, fossil-
based fuels, are being discouraged in response to in-

dustry and governmental efforts to promote renewable
sources with low green house gases (GHG) emissions [45].
This is accomplished by introducing an additional car-

bon tax, according to which users pay an additional tax
if they use power derived from sources with high GHG
emissions. As seen before, characteristics of the taxing

and rating system can be exploited by attackers, and
carbon tax is no exception. Many data centers are pow-
ered by an hybrid energy source, i.e., a green one, such

as solar or tidal energy, providing the power needed
during a specific time interval (e.g., during the day) or
within a specific power budget, and a dirty one, that is

active when such budget is exceeded or when the green
source is not available. An attacker that is able to con-
trol and increase the power usage during specific time

intervals or over specific thresholds is also able to raise
the GHG emissions related to the energy consumption
of a facility, so that the victim organization will incur

additional costs, for both the increment in overall power
draw and for the additional tax paid.

5.6 Gaining Information from Power-Management

Infrastructure

Modern infrastructural components for both the power
distribution system and the HVAC system offer ad-

vanced monitoring and control capabilities. While such
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capabilities allow checking the state of power distribu-

tion and cooling systems as well as adapting energy
supply and cooling to the requests, “smart” compo-
nents can be exploited by attackers: they can obtain

a wealth of information about the support systems or
even get control over them. Data that can be of in-
terest to attackers includes, for example, details about

topology, operating conditions, available energy source,
temperature, peaks in the power draw or in tempera-
ture and time needed for the cooling system to respond

to temperature spikes. As previously said, such infor-
mation can be very valuable for attacked effecting a re-
connaissance phase before designing and refining their

weapons. The ability to modify operating parameters
would, of course, mean that attackers may wreak havoc
with the infrastructure. Additional care when regulat-

ing the access to the power infrastructure is, thus, re-
quired in order to achieve an acceptable level of security.

6 Conclusions

DDoS attacks have the potential not only of denying

the service of the target facility, but may be specifi-
cally targeted at incrementing its energy consumption
as well as the associated ecological footprint. Some of

these attacks are non-invasive, very effective and rela-
tively easy to implement, e.g., CPU and network-based
ones, whilst others are more difficult to be put into ac-

tion. An energy-oriented attack does not need to gain
control of the victim system in order to be success-
ful. As an extreme example, forcing a software firewall

or Intrusion Detection/Prevention solution, running on
the target host, to work more would cause an increased
energy consumption without the need of breaking the

system security or having access to legitimate transac-
tions or software interfaces. In any case, the potential
of energy-related attacks should not be underestimated.

In fact, power consumption may be particularly rele-
vant from a side-channel point of view in presence of
an energy-proportional behavior of the target devices.

However, that the adverse effect introduced by energy-
related attacks may significantly depend on the cur-
rent workload of the target systems. As an example, in

presence of an already overloaded system, only a lim-
ited effect on power consumption may be experienced
by introducing additional CPU workload. Finally, from

the detectability perspective, an energy attack is char-
acterized by a more subtle and stealthy nature, since
its damaging effects can be perceived only over a rel-

atively long period of time and, in the meanwhile, no
specific anomalies such as tangible service degradation
may be perceived on the victim hosts. Consequently,

great attention should be given to such menaces, mainly

in presence of large cloud infrastructures empowered by

a large quantity of computing and storage resources.
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