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Abstract—As the number of cores increases in current and
future chip–multiprocessor (CMP) generations, coherence proto-
cols must rely on novel hardware structures in order to scale
in terms of performance, power, and area. Systems that use
directory information for coherence purposes are currently the
most scalable alternative.

This paper studies the important differences between the
directory behavior of private and shared blocks, which claim for
a separate management of both types of blocks at the directory.
We propose the PS directory, a two-level directory cache that
keeps the reduced number of frequently accessed shared entries
in a small and fast first-level cache, namely Shared cache, and
uses a larger and slower second-level Private cache to track the
large amount of private blocks. Entries in the Private cache do
not implement the sharer vector, which allows important silicon
area savings.

Speed and area reasons suggest the use of eDRAM technology,
much denser but slower than SRAM technology, for the Private
cache, which in turn brings energy savings. Experimental results
for a 16-core CMP show that, compared to a conventional
directory, the PS directory improves performance by 14% while
reducing silicon area and energy consumption by 34% and 27%,
respectively. Also, compared to the state-of-the-art Multi-Grain
Directory, the PS directory apart from increasing performance, it
reduces power by 18.7%, and provides more scalability in terms
of area.

I. INTRODUCTION

As the number of cores increases in both current and

future shared-memory chip–multiprocessor (CMP) genera-

tions, coherence protocols must scale to sustain performance.

Directory–based coherence is the commonly preferred ap-

proach over snoop–based coherence, because the former keeps

track of cached blocks to avoid the use of broadcast messages.

Two main design choices have been used in both research

proposals [9], [18] and commercial processors [4], [8], [26]

to implement CMP directories: Duplicate Tags and Sparse

Directories.

Duplicate-tag based directories keep track of all cached

blocks without invalidating any of them due to directory

space constraints, thus without hurting the cache performance.

Nevertheless, this approach may become prohibitive even

for a relatively small number of cores because of the high

energy consumed by the highly associative lookups, which
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are required to build the sharer vector on each directory

access. On the other hand, sparse directories use a cache–

like structure, referred to as directory cache, to keep track of

the cached blocks. In this approach, when a directory entry is

evicted, all copies of the tracked block in the processor caches

are invalidated, even if the block is being used by the processor

so rising the so–called coverage misses. Mainly due to power

reasons (i.e. low associativity degree), sparse directories are

the preferred design choice for a medium to high number of

cores.

Each entry of a conventional directory cache mainly stores

the owner of the block and the sharer vector, whose size grows

linearly with the number of cores. As a consequence, it is

expected that directories in future CMP generations will have

important on–chip area and leakage overheads [34]. Therefore,

large many-core CMPs demand for directory designs that

scale in terms of area and power. Several attempts have

addressed these issues by focusing on reducing (shortening

or compressing) the sharer vector length [1], [6], [7], [22].

The directory cache proposed in this work follows a differ-

ent approach and is based on the different behaviors exhibited

by cache blocks in parallel workloads. We found that shared

and private blocks present important differences from the

directory cache point of view, which translate to different

directory cache requirements (e.g., number of ways, cache

size, or access time). Most of the accessed blocks are private

[9], [35] and each of them uses an entry in the directory cache.

But these blocks do not require coherence actions, that is,

the sharer vector field is not used at all, which implies the

entry size could be reduced for most of the directory entries.

Moreover, since private entries will not be accessed again

after the block is fetched, their access time does not affect

system performance. On the other hand, most of the directory

accesses concentrate on a reduced number of entries that track

shared blocks, which require low associativity as shown in

Section II-A. So, most of the accesses to the directory could be

solved by looking up a reduced number of ways and therefore

bringing power savings.

This paper proposes the PS (Private Shared) directory, which

relies on empirical findings on the block behavior from the

directory cache perspective. The PS directory consists of two

independent caches, referred to as Private cache and Shared

cache, each one tuned to the behavior exhibited by each block

type. The Shared cache is designed with much less entries and

associativity than a typical directory cache, attending to the

low fraction of expected shared blocks. Reducing associativity

yields to significant energy savings for an important amount of

directory lookups. Due to its low access latency, it can resolve
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indirections early. Moreover, most indirections are solved by

this small cache. In contrast, the Private cache implements a

larger number of entries and associativity, but its entries do

not include the sharer vector field, thus enabling scalability.

Directory entries from the Private cache can be moved from

the Private cache to the Shared cache at run–time in case the

tracked block becomes shared.

The PS directory can be implemented in typical SRAM (6T

cells) technology. Nevertheless, in order to address power and

area scalability for a high number of cores we also study the

benefits of using eDRAM technology [20], which has been

already used to implement large caches in recent commercial

processors like the IBM Power7 [13]. SRAM technology is

used for speed to implement the small fast Shared cache with

low associativity while eDRAM is used for area and power in

the much larger Private cache, in which access time is not a

concern.

The proposal has been compared against a conventional

directory with the same number of entries and the state-of-

the-art Multi-Grain Directory. Experimental results for a 16-

core CMP show that, compared to the conventional directory,

the PS directory improves performance by 14% due to the

separate treatment of private and shared blocks, while reducing

area by 26.35%. In addition, when eDRAM technology is

considered, this reduction is as high as 33.98%. In terms

of energy, the PS directory allows energy savings by 27%

with SRAM technology. On the other and, when compared

to the Multi-Grain Directory, the PS directory allows power

savings by 18.7% and speedups the performance by 16.7%

while requiring less silicon area. Concerning scalability, the

PS directory is able to reduce up to 84.3% the area required

by the conventional directory cache for a 1024–core system

with the same number of entries.

This paper presents two major contributions with respect to

existing directory proposals:

• We propose a sparse directory scheme which provides

scalability in terms of area and energy, which is the major

shortcoming of sparse directories.

• The proposed directory presents minimal performance

degradation with respect to a perfect directory.

In short, the proposal achieves similar performance as the

duplicate tags approach, but with a feasible implementation for

future many core CMPs that provides major energy gains. A

short and preliminary version of this approach can be found in

[30]. This paper refines the proposal and evaluates it in greater

detail.

The rest of the paper is organized as follows. Section II

analyzes the behavior of shared and private blocks and dis-

cusses the main technology reasons that led us to do this

work. Section III describes the assumed baseline proces-

sor. Section IV presents the proposed approach. Section V

describes the simulation environment. Section VI analyzes

the performance, area and energy consumption. Section VII

discusses the related work. Finally, Section VIII presents some

concluding remarks.

II. MOTIVATION

This section focuses on the two main pillars that support

this work. First, the behavior of shared and private blocks

is analyzed, showing key observations that guided us to the

final design. Second, the key technology issues that enable the

proposed design to scale are discussed.

A. Analyzing the Behavior of Private and Shared Blocks from

the Directory Point of View

The PS directory relies on the fact that private and shared

blocks present different behavior from the directory point of

view, which can be outlined in four key observations and one

finding. As explained below, these five key points advocate to

organize directory caches in two independent structures, one

for tracking private blocks and the other for shared blocks.

• Observation 1: Directory entries keeping track of private

blocks do not require the sharer vector field.

• Observation 2: Most data blocks in parallel workloads

are private.

According to these two observations, the Private cache

should be designed narrower and taller than the Shared cache,

that is, with shorter entries but with higher number of them.

Due to the smaller entry size in the Private cache important

area savings can be achieved, especially for systems with a

large number of cores, thus offering scalability. Notice that

the larger the Private cache is (in comparison with the Shared

cache), the more area savings can be obtained, thanks to the

missing sharer vector field.

• Observation 3: Most directory hits concentrate on shared

entries.

• Observation 4: Almost all directory entries for private

blocks are accessed only once.

These observations emphasize that private blocks access the

directory either when they are not stored in the processor cache

(e.g., the first access to a block or invalidations due to directory

evictions) or when a write-back is performed (e.g., due to

space constraints in the processor cache). The first case will

cause a directory miss, while the second case will hit in the

private directory cache and will invalidate the corresponding

entry. On the other hand, shared entries are accessed more

times due to several cores accessing the same block. Thus,

most directory hits are due to shared blocks. According to this

reasoning, the PS directory scheme accesses the Shared cache

first so preventing likely useless accesses to the Private cache

(which has higer associativity), which will result in energy

savings.

Figure 1 depicts the number of directory entries hits (dif-

ferentiating between shared and private) per kilo instructions

committed, varying the number of ways in the directory

cache and keeping constant the number of sets1. Two bench-

marks, Barnes from the SPLASH-2 benchmark suite [31] and

Blackscholes from PARSEC [5], have been used to illustrate

these observations.

As can be seen in Figure 1(a), the number of hits in entries

tracking shared blocks is about 5× larger than that in entries

1Experimental conditions are defined in Section VI.
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Figure 1. Number of hits to private and shared entries per kilo instruction in a conventional directory.
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Figure 2. Number of evictions of private and shared entries per kilo instruction in a conventional directory and its effect on performance.

tracking private blocks in Barnes. Entries of private blocks are

only looked up again in case a block is replaced either from the

directory or from the processor cache, and then asked again by

the processor. In both cases, the directory entry is removed,

thus when the corresponding private block is looked up in

the directory, a miss will occur. Private entries are scarcely

accessed in spite of being the number of them much larger

than that of shared entries. Results for Blackscholes (1(b))

show minor differences for higher number of ways because

the number of directory evictions is noticeably reduced in

this benchmark as the directory capacity increases. With a

lower number of evictions, the number of L1 coverage misses

will also decrease. Hence the directory will be accessed less

frequently. These results suggest that while shared blocks

should have a reduced directory access time for performance,

this time is not so critical for private blocks. Keeping this

observation in mind, we study the potential benefits of using

a power and area aware technology to implement the private

cache.

• Finding 1: Shared directory entries have much less

associativity requirements than private directory entries.

To quantify the proper associativity degree, we ran experi-

ments with a conventional (or single–cache) directory varying

the number of ways. We identified and quantified the number

of evicted directory entries that cause subsequent misses in the

processor caches, and classified them into private and shared

according to the type of the block that was being tracked.

Then, the effect of both block types on performance was

measured. Misses in the processor caches that occur due to a

directory entry eviction will be referred to as coverage misses

as also done is some recent works [9], [24].

We found that private and shared entries have different as-

sociativity requirements. Figure 2 illustrates the results for two

different workloads. Results reveal that the number of evicted

shared blocks provoking coverage misses slightly varies with

the number of ways, while the number of private blocks

drops dramatically. The number of evicted private blocks is

really high for a low associativity degree, which translates to

significant performance degradation.

Assuming a typical LRU replacement policy and taking into

account that entries in the directory tracking private blocks are

not accessed again, entries tracking a private block work out

like a FIFO policy, which means that, in absence of locality,

the impact of private blocks on performance mainly depends

on the number of ways available to them. The larger the

number of ways is, the longer the time for each entry in the

directory cache.. If it is too low, it is likely that the block will

be forced to leave the processor cache, even though it is still

being used, thus increasing the number of coverage misses.

On the other hand, with higher number of ways, we give them
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more chances before eviction. It can be observed that around 8

ways is enough to stabilize the number of evictions of private

blocks as well as the system performance.

Based on these results, the Private cache will be designed

with around 8 ways (see Section V for further details), whereas

the Shared cache will implement a lower number of ways (i.e.,

2 ways), since the impact of shared blocks on performance

mainly depends on their access locality and are not benefited

from such a large complexity.

B. Dealing with Scalability in Future CMPs

CMP systems must be designed to accommodate specific

area and power budgets. Both technological constraints repre-

sent major design concerns since they prevent future manycore

CMPs from scalability with future increasing core counts.

Power consumption is mainly distributed between cores and

large on-chip cache memories in current designs. Caches

occupy a large percentage of the on-chip area to mitigate

the huge penalties of accessing the off-chip main memory.

Giving more silicon area and power to the cache hierarchy and

related structures (e.g. directory caches) leaves less space and

power for cores, which could force CMP designs with simpler

cores so yielding to lower performance, especially harmful for

single-threaded applications [19].

Many efforts have been carried out in both the industry

and academy to deal with power and area focusing on the

cache subsystem, including processor caches, off-chip caches

and directory structures. Regarding the latter structures, di-

rectory caches have been proven to provide effectiveness and

scalability, both in terms of power and area, for a small

to medium number of cores. However, these design issues

must be properly faced by future systems since the pressure

on achieving good cache performance increases with the

core count. There are two main ways to tackle these issues:

architectural solutions to achieve a good tradeoff among per-

formance, area and power, and mingling disparate technologies

in a power and/or area aware design. Both ways can be applied

independently or together, as proposed in this work.

This paper presents architectural innovations to track sepa-

rately private and shared blocks in two independent directory

caches. The main aim of this two-cache approach is to tailor

each cache structure to the requirements of each block type

with architectural solutions. In addition, alternative technolo-

gies can be used for implementing the different caches. For

instance, a power aware technology can be used for one cache

while a fast technology can be employed for the other one.

The cache hierarchy has been typically implemented with

SRAM technology (6 transistors per cell) which incurs in im-

portant power and area consumptions. A few years ago, tech-

nology advances have allowed to embed DRAM (eDRAM)

cells in CMOS technology [20]. An eDRAM cell integrates

a trench DRAM storage into a logic circuit technology.

Table I highlights the main properties of these technologies

regarding the design issues addressed in this work. Compared

to SRAM, eDRAM cells have both less power consumption

and higher density but lower speed. Because of the reduced

speed, eDRAM cells have not been used in manufactured

Table I
COMPARING TECHNOLOGICAL FEATURES OF SRAM VERSUS EDRAM.

Technology Density Speed Power

SRAM low fast high

eDRAM high slow low

first-level high-performance processor caches. In short, both

technologies present diverse features regarding density, speed,

and power.

These CMOS compatible technologies have been used both

in the industry and the academia to implement processor

caches. For instance, in some modern microprocessors [13],

[27], [28] SRAM technology is employed in L1 processor

caches while eDRAM cells are used to allow huge storage

capacity in last level caches. Regarding academia, some re-

cent works [29], [32] mingle these technologies in several

cache levels. In short, both technologies properly combined

at different (or even the same) cache structures can be used to

address speed, area, and power in the cache subsystem.

In this paper, and to the best of our knowledge, this is the

first time that both technologies are combined to implement

the directory cache. We use SRAM for speed in the frequently

accessed Shared cache while eDRAM is employed for power

and area savings in the much larger Private cache. Therefore,

scalability and performance are provided by design thanks to

the joined use of architectural techniques and the choice of

the appropriate technology for each cache structure.

III. BASE ARCHITECTURE

A tiled CMP architecture consists of a number of replicated

tiles connected by a switched direct network. Different tile

organizations are possible so, to focus the research, this work

assumes that each tile contains a processing core with primary

caches (both instruction and data caches), a slice of the

L2 cache, and a connection to the on-chip network. Cache

coherence is maintained at the L1 caches. In particular, a

directory-based cache coherence protocol is employed with

a directory cache storing coherence information. Both the L2

cache and the directory cache are shared among the different

processing cores but they are physically distributed among

them, that is, it is implemented as a NUCA architecture [14].

Therefore, a fraction of accesses to the L2 cache is sent to

the local slice while the rest is serviced by remote L2 slices.

In addition, L1 and L2 caches are non-inclusive, that is, some

blocks stored in the L1 caches may not have an entry in the L2

cache (but in the directory). Figure 3 shows the organization

of a tile (left side) and a 16-tile CMP (right side), which is

used as baseline for experimental purposes.

IV. THE PS DIRECTORY SCHEME

The main goal of the proposed approach is to take advantage

of the different behavior exhibited by shared and private

directory entries to design scalable directory caches while, at

the same time, improving their performance. Figure 4 depicts

the proposed two-level organization consisting of the Private
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Figure 3. Organization of the tile assumed in this work and a 4×4 tiled CMP.

Figure 4. Private-Shared directory organization.

cache and the Shared cache. As previously exposed, the Private

cache is designed with narrower entries since they do not

require the sharer vector and with a larger number of entries

because of the expected high number of private blocks. On the

other hand, the Shared cache has a reduced number of entries,

thus the sharer vector is only implemented in a small fraction

of directory entries.

When an access to a memory block misses in the processor

cache, it is looked up on the directory for coherence mainte-

nance. Then, if the access results in a directory miss, the block

is provided by the corresponding NUCA slice (or by the main

memory) to the processor cache, and an entry is allocated in

the directory cache to track that block. In the PS directory

this entry is allocated in the Private cache since the block is

held at this point of time by a single cache. Then, the core

identifier is stored in the owner entry field.

On subsequent accesses to that memory block by the same

processor, it will find the block in its L1 cache, so no additional

access to the directory cache will be done. On the other hand,

when that block is evicted from the processor cache, two main

actions are carried out: i) the data block is written back in

the NUCA cache, and ii) the directory cache is notified in

order to invalidate the entry of that block (stored in the Private

cache). Thus, a subsequent access to that block will result in a

directory cache miss. This means that the Private cache access

time does not affect the performance of private blocks since

these blocks are provided directly to cores by the NUCA cache

time

L2 NUCA access time

Shared cache

  acc. time

Private cache

  acc. time

hit: - start indirection to the owner

      - proceed to invalidate 

Figure 5. Parallel access of the Shared cache and the NUCA cache. Private
cache is only accessed on a miss in the Shared cache.

or main memory.

If a block tracked by the Private cache is accessed by a

core other than the owner, the block becomes shared and its

entry is moved to the Shared cache updating the sharer vector

accordingly. From then until eviction, coherence of this block

is tracked in the Shared cache. That is, the proposal allows

only unidirectional movements from the Private to the Shared

cache. Bidirectional transfers of entries among both caches

have been also explored but the extra hardware cost does not

justify the scarce benefits.

Regarding timing, directory caches are typically accessed

in parallel with the NUCA cache. On a directory hit, the

data block can be provided either by the NUCA cache or

by a remote processor cache (i.e. the owner). In case that the

data block must be provided by a remote processor cache, the

NUCA access is canceled. Analogously, the PS directory could

access both directory cache structures simultaneously, however

since most directory accesses concentrate on shared blocks,

the PS scheme only accesses the Shared cache in parallel

with the NUCA slice. This way provides major energy savings

with minimal performance penalty. Figure 5 depicts this design

choice. Depending on the protocol, specific coherence actions

can start as soon as a hit rises in the Shared cache; for

instance, read requests can be forwarded to the owner of the

block, or invalidation requests can be issued to the caches

sharing the block in case of write requests. On a miss in the

Shared cache, the Private cache is accessed. As mentioned,

this access could be also performed in parallel with the

Shared cache but at expenses of power while bringing minimal

benefits on performance. On a miss in this cache, which is the

most frequent case, there will be no energy or performance

gains or penalties by accessing both directory structures in

parallel instead of sequentially, since both structures have to

be accessed and the sum of their access time is still lower

than the NUCA access time that is accessed in parallel. The

main difference appears on a Private cache hit. By accessing

both directory structures in parallel the directory access time

would be slightly reduced on a private directory hit, but at the

expense of higher and unnecessary energy consumption on

a shared directory hit. Since hits on the shared directory are

more frequent, making this access sequential was the preferred

design choice.

Figure 6 summarizes the actions carried out by the directory

controller on a coherence access, which works as follows:
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Access to Shared Cache

Hit? Access to Private Cache
N

Hit?

Y

Y N

Update the Private Cache Entry

Update coherence information

      (owner  and/or sharers)

Begin

Fetch block from the NUCAMove the entry contents to 

the Shared Cache

End

Figure 6. Directory controller flow-diagram.

• When a coherence request reaches the directory, the

directory controller looks up first the Shared cache since

it is more likely that the access results in a hit in this

cache due to the higher fraction of accesses to shared

entries. On a hit, the controller updates (if needed) the

sharer vector, performs the associated coherence actions,

and cancels the NUCA access (depending on the block

state). On a miss in the Shared cache, the controller

looks up the Private cache. This sequential timing has,

on average, negligible impact on performance since most

directory accesses are to shared blocks, and most accesses

to private blocks provide the block from the NUCA

cache.

• A hit in the Private cache means that the block is shared

because another core already has a copy of it in its cache.

The processor that accessed it the first time will not access

the directory again because its cache already holds the

block, unless a data cache or directory eviction occurs and

then the entry will miss in the directory again. Hence, the

directory entry is moved to the Shared cache. This way

ensures that entries for private blocks are retained in the

Private cache while shared entries are filtered and moved

to the Shared cache.

• On a directory miss, the corresponding block entry is

allocated in the Private cache to keep track of the missing

block. As there is no coherence information stored for

that block in the two directory caches, then the block is

not being currently cached by any processor. Thus, the

block is assumed to be private to the core accessing it and

the owner information (requesting processor) is updated

with the core identifier.

• In the proposed implementation, when an entry is re-

placed from any of both directory caches it leaves the di-

rectory after performing the corresponding invalidations,

and no movement to the other cache is allowed.

The proposal reduces area by design with respect to con-

ventional caches implemented with the same number of entries

since directory entries in the Private cache are much narrower.

In addition, power is also reduced by accessing smaller cache

structures sequentially. Nevertheless, the use of two indepen-

dent organizations with different design goals, speed for the

Shared and capacity for the Private, suggests that using specific

technologies addressing these design issues could provide the

proposal further energy and area savings.

Table II
SYSTEM PARAMETERS

Memory Parameters

Cache hierarchy Non-inclusive

Cache block size 64 bytes

Split L1 I & D caches 64KB, 4-way (256 sets)

L1 cache hit time 2 cycles

Shared single L2 cache 512KB/tile, 8-way (1024 sets)

L2 cache hit time 2 (tag) and 6 (tag+data) cycles

Single directory cache 256 sets, 4 ways (same as L1)

Single directory cache hit time 2 cycles

Memory access time 160 cycles

Network Parameters

Topology 2-dimensional mesh (4x4)

Routing technique Deterministic X-Y

Flit size 16 bytes

Data and control message size 5 flits and 1 flit

Routing, switch, and link time 2, 2, and 2 cycles

Low-leakage technologies or transistors with low leakage

currents could be used in the Private cache, whose number

of entries is much higher and its access time is not critical

for performance. This work explores the use of eDRAM tech-

nology in the Private cache which provides, as experimental

results show, important area and leakage savings.

V. SIMULATION ENVIRONMENT

The proposed cache scheme has been evaluated with full-

system simulation using Virtutech Simics [16] along with

the Wisconsin GEMS toolset [17], which enables detailed

simulation of multiprocessor systems. In order to evaluate

systems with higher number of cores (see Figure 9), we have

implemented a Pintool [15] that simulates both the base system

and the behavior of our PS directory scheme. The intercon-

nection network has been modeled using GARNET [3], a

detailed network simulator included in the GEMS toolset.

We simulate a 16-tile CMP architecture like the described

in Section III. The values of the baseline system parameters

used in the evaluation are shown in Table II. We used the

CACTI 6.5 tool [21] to estimate access time, area requirements

and power consumption of the different cache structures for a

32nm technology node.

Different configurations for the PS directory have been

evaluated with a 1× coverage ratio if not stated a different

ratio. This ratio indicates the number of directory entries per

processor cache entry. For instance, in the 1× ratio, each

directory cache slice has the same amount of entries as an

L1 cache (i.e. 1×). Two PS directory configurations have

been evaluated varying its shared-to-private ratio (1:3 and 1:7),

that is, the number of entries in the Private cache is three

and seven times greater, respectively, than that of the Shared

cache. These two directory configurations have been chosen

for comparison purposes, because they have the same number

of entries (computed as the sum of entries in both directory
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caches) as the conventional directory cache. Additionally, we

perform a sensitivity study with lower coverage ratios for our

PS directory in order to show the significant reduction in

directory area and power that it can achieve without degrading

application performance (Section VI-C).

Table III shows the access time and characteristics of

the studied directory structures. The first row, labeled as

single cache, refers to the conventional single-cache approach

(sparse directory) used as baseline. Then, two different PS

architectures are presented. Values for the Private cache were

calculated both for SRAM and eDRAM technologies and for

different coverage ratios. Since, CACTI provides latencies in

ns, we rounded these values to obtain an integer number of

processor cycles. The L2 cache access time was assumed

to be 6 cycles, and the remaining access times were scaled

accordingly. Notice that eDRAM latency is much longer than

SRAM latency.

A key finding (as discussed in Section II-A) is that private

blocks are more benefited from higher number of ways than

shared blocks. This finding suggests that the Private cache

should implement higher associativity degree. Based on this

finding, the baseline design proposes a 6-way Private cache

(two ways over the conventional baseline cache). However,

for a fair comparison, the associativity of the Shared cache

is lowered to only 2-ways (i.e. two ways less than the con-

ventional one). Notice that, considering both cache structures,

the average number of ways per set matches that of the

conventional cache, but skewed to the Private cache in the

PS directory.

Apart from comparing the PS directory with a conventional

directory cache with as many entries as the sum of the

Private and the Shared caches, the PS directory has been also

compared against the recently proposed Multi-Grain Directory

(MGD) scheme [33]. MGD uses different entry formats of

same length and tracks coherence at multiple different granu-

larities in order to provide scalability. Each MGD entry tracks

either a temporarily private memory region, or a single cache

block with any number of sharers. By using a single entry

instead of using one entry per block in the private region, the

coherence directory size can be reduced. Region entries rely

on a presence vector to indicate which blocks of the region

are allocated in the private L1 cache. On a directory miss,

a region entry is allocated in the directory. When a second

private cache tries to access a block from a private region, the

appropriate bit in the region’s presence vector is reset and a

block entry is allocated in the directory. Block entries work the

same way as they do in conventional sparse directories. In the

presented results, the associativity of the MGD is 4 ways as in

our baseline directory cache, the memory interleaving is 1KB,

and the number of entries is 0.5× that of the conventional and

PS directories. This coverage ratio has been chosen for the

MGD as suggested by their authors with the aim of providing

scalability in terms of area and power by grouping blocks in

regions.

We evaluate the aforementioned directory schemes with a

wide range of scientific applications. Barnes (16K particles),

FFT (64K complex doubles), Ocean (514×514 ocean), Ra-

diosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Radix (512K

keys, 1024 radix), Raytrace (teapot –optimized by removing

locks for unused ray ids–), Volrend (head), and Water-Nsq

(512 molecules) are from the SPLASH-2 benchmark suite

[31]. Blackscholes (simmedium) and Swaptions (simmedium)

belong to PARSEC suite [5]. The experimental results reported

in this work correspond to the parallel phase of the evaluated

benchmarks.

VI. EXPERIMENTAL EVALUATION

A. Performance

This section analyzes the performance of the proposed PS

directory for a 16-tile CMP compared to the conventional

sparse directory and to a multi-grain directory (MGD). The

performance of the directory cache must be addressed because

it may significantly affect the system performance. Effectively,

every time a directory entry is evicted, invalidation messages

are sent to the corresponding processor caches for coherence

purposes. These invalidations will cause coverage misses upon

a subsequent memory request to those blocks, therefore im-

pacting on the final performance.

Figure 7(a) shows the L1 MPKI (Misses per KiloInstruc-

tion) classified in 3C (i.e., cold or compulsory, capacity

and conflict), Coherence, and Coverage. As observed, the

PS directory cache is able to remove most coverage misses

caused by a single cache or sparse directory approach with

the same number of entries (by 84.2% and 68.2% for 1:7

and 1:3 private-to-shared ratios, respectively). Essentially, this

reduction in coverage misses comes from removing conflict

misses in the directory cache, which are mainly caused by

private directory entries, as shown in Section II-A. Therefore,

by adding two additional ways to the Private cache (at the

cost of reducing the number of sets, so the number of entries

remains the same) most directory conflict misses can be

avoided. To illustrate where benefits come from, lets study

the 1:3 ratio. This ratio provides the same number of sets as

the Shared and as the Private cache, with 2-way and 6-way

associativity, respectively. In other words, this PS organization

has exactly the same number of sets as the 4-way single cache,

and on average, the same number of ways per set. Thus, this

scenario clearly shows that critical private sets are efficiently

handled by the PS scheme. To sum up, performance benefits

mainly come from identifying that the private entries suffer

from conflict misses and selectively adding associativity to

specific structures depending on the requirements of the type

of the entries.

The MGD directory reduces the L1 coverage misses by

3.2% with respect to the single conventional directory. Notice

that the MGD is able to reduce the number of coverage misses

with half the number of entries than the sparse directory.

Nevertheless, this reduction is much lower than the one

achieved by the PS directory.

An observation that can confuse the reader is that, in certain

applications, by reducing the number of misses, the number of

executed instructions rises. This is a side effect that can occur

in multi-core systems, like the one studied in this work, when

running parallel workloads. The main reason is due to spin-

waiting instructions. More precisely, in parallel workloads,
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Table III
DIRECTORY LATENCIES

1× Latency

Directory cache # Ways # Sets 1× 0.5× 0.25× 0.125×

Single cache 4 256 2 2 2 -

Shared dir 1:3 2 128 2 2 2 2

Private dir 1:3 SRAM / eDRAM 6 128 2 / 4 2 / 4 2 / 3 2 / 3

Shared dir 1:7 2 64 2 2 2 2

Private dir 1:7 SRAM / eDRAM 7 128 2 / 4 2 / 4 2 / 3 2 / 3
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due to synchronization instructions (e.g., barriers) some cores

(the faster ones) have to wait for the slower ones to reach

the synchronization point. This causes additional spin-waiting

instructions that hit the cache and affect the MPKI values

by further reducing them. Moreover execution times do not

benefit from it. Some examples of this occurrence is Barnes,

where the PS directory increases the instructions executed by

10% and Ocean, where MGD increases instructions executed

by 2% and shows a lower MPKI although it slightly increases

the number of misses.

Performance of a multilevel directory cache can be defined

as the number of coherence requests that find the required

coherence information in the directory, that is, as the overall

directory hit ratio regardless of the directory structure that

provides such information. Figure 7(b) presents the accesses

to each PS directory cache classified in misses and hits. In

case of a hit, it is also classified in the directory structure that

currently has the entry (Private or Shared caches).

Notice that, as expected by design, the Private cache shows

on average a poor hit ratio despite the much higher number of

entries (3× and 7× times the entries of the Shared cache),

and most directory hits concentrate on the Shared cache,

which corresponds to the smaller and faster directory structure.

Remember that each hit in the Private cache refers to a private

block that becomes shared. Although the 1:7 ratio could seem

to have a Shared cache too small, it provides on average better

results than the 1:3 ratio reducing the number of accesses to

the directory. Ratio 1:3 and ratio 1:7 reduce the number of

accesses to the directory by 37.9% and by 45.1%, respectively,

while the MGD directory only reduces this number by 1%.

Reducing both the number of coverage misses in the pro-

cessor caches and the access latency to the directory cache

translate into improvements in execution time as shown in

Figure 8. This figure compares the performance of the studied

directory schemes with that of a perfect directory cache. A

directory cache is referred to be perfect when it does not

incur in performance degradation, that is, there are no coverage

misses. Therefore, a perfect directory cache provides the same

performance as a duplicate tags approach but it offers more

scalability. Nevertheless, unlike the proposed scheme, there

is no realizable implementation of a duplicate tag approach.

Benchmarks with high coverage miss values (i.e. Radix or

Blackscholes) are the ones that benefit the most from our

proposal or similar ones like MGD. The higher the reduction

of coverage misses, the shorter the execution time. Compared

to the single directory cache, the PS directory reduces ex-

ecution time on average by 13.6% and 11.1% for the 1:7

and 1:3 shared-to-private ratios, respectively. Compared to the

perfect cache, the Single cache increases the execution time

on average by 22.3%, yielding in some case to unacceptable

performance (e.g. by 60% in Radix). However, performance

drops of this proposal with respect to the perfect cache are by

6.4% and 2.9% for the ratios 1:3 and 1:7, respectively.

The small reduction of coverage misses achieved by MGD

also brings, on average, small performance gains (by 3.9%)

over the conventional single-cache directory. Compared to the

PS directory, the MGD presents a slow-down of 11.6% and

16.7% considering the 1:3 and 1:7 ratios, respectively. This is

due to the fact that shared blocks are more frequently accessed

at the directory; thus, a shared cache with shorter access time

can positively impact on cache miss latency.

To study the scalability of the proposal, we compare the

cumulative L1 misses, that is the number the directory accesses

(the lower the better), of the considered directory schemes with

16 and 64 cores. Figure 9 shows the results normalized with

respect to the L1 misses of the single directory with 16 cores.

As observed, when increasing the number of cores from 16 to

64, the single directory increases its L1 misses (i.e., the amount

of directory accesses) by 44.8%. An interesting observation is

that PS configurations with 64 cores present less L1 misses

(by 4.2% and 18% for ratios 1:3 and ratio 1:7) than a single

directory with four times less cores. The reason behind this

is, as explained before, the important reduction in coverage

misses that the proposal achieves. Hence, we can conclude

that the PS directory is able to scale in performance better

than more conventional schemes, mainly due to the different

treatment of block types, which brings significant reductions

in coverage misses.

In short, results present the PS directory as a simple and

effective design, which is able to reach performance close to
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a perfect directory with reduced hardware complexity.

B. Area and Energy Analysis

This section shows how the PS directory is able to reduce

area and energy consumption while increasing performance.

Table IV shows the area required for different PS schemes

and the single directory cache. Both SRAM and eDRAM

technologies (as stated in the Private (Tech.) column) have

been considered for the Private cache design, while the smaller

Shared cache is always implemented with fast SRAM tech-

nology. As expected, all the PS configurations are able to

reduce area, even those entirely implemented with SRAM

technology. In particular, compared to the single cache, the

PS configurations with SRAM Private caches save by 18.51%

and 25.48% of area for 1:3 and 1:7 shared-to-private ratios,

respectively. These savings come because the Private cache

does not include the sharer vector field. In addition, when

eDRAM technology is considered, these reductions grow up

to 25.02% and 33.12% for 1:3 and 1:7 shared-to-private ratios,

respectively.

Figure 10 depicts the required silicon area per-core for the

studied directory configurations. As observed, the single cache

directory and the MGD require more area than any of the

PS configurations. Additionally, their area requirements grow

faster with the number of cores. Notice that in spite of using

half the number of entries of a PS directory, the MGD scales

poorer than the PS directory. The PS directory is able to reduce

by 84.3% (ratio 1:7) and 73.3% (ratio 1:3) the area required

by the conventional directory for a 1024–core system, even

though all of them have the same number of entries. Thus,

Table IV
AREA (IN mm

2
∗ 1000) OF THE DIFFERENT PS CONFIGURATIONS FOR 16

CORES COMPARED WITH THE SINGLE CACHE DIRECTORY.

Directory Shared Private (Tech.) Total Area (%)

Single 19.51 – 19.51 100.00%

PS 1:3 6.40 9.50 (SRAM) 15.90 81.49%

6.40 8.22 (eDRAM) 14.63 74.98%

PS 1:7 3.45 11.08 (SRAM) 14.54 74.52%

3.45 9.60 (eDRAM) 13.05 66.88%
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Figure 10. Scalability analysis in terms of area.

the PS directory overcomes one of the biggest problems that

sparse directories present, namely, their scalability.

On the other hand, the PS directory attacks energy con-

sumption by design, especially leakage, since it uses two

low hardware complexity structures with less storage capacity

than a single conventional directory cache. Figure 11 shows

the total energy consumed during the benchmarks execution,

normalized with respect to the single cache directory. SRAM

technology has been assumed in the Private cache of the PS

directory. We can observe that a PS directory with the same

number of entries as a single cache directory can save around

27% and 20.5% of the energy consumption of the single cache

directory for the 1:7 and the 1:3 ratios, respectively, while

MGD only reduces by 8.9%. This means that a PS directory,

with either 1:3 or 1:7 ratio, is able to improve the multi-

grain scheme in terms of energy. In short, the PS directory

reduces energy consumption by 18.7% with respect to MGD.

Moreover, when taking eDRAM technology in the Private

directory cache into consideration, the savings are as high as

87.3% and 81.3% for the 1:7 and the 1:3 ratios, respectively,

with respect to the single cache directory.

C. Directory Coverage Ratio Analysis

This section evaluates the impact on performance of re-

ducing the directory coverage ratio, that is, the number of

entries in the PS directory cache. As the number of entries is

reduced in the directory cache, a degradation in performance is

expected, but at the same time area and energy consumption

will improve. The ideal directory cache size is the one that

entails negligible impact on performance while at the same

time allows area and energy savings.

Figure 12(a) shows the L1 MPKI (as Figure 7(a)) classified

in 3C, Coherence, and Coverage for different coverage ratios.

As shown, with the only exception of a 0.125× coverage

ratio, the proposal still incurs in less L1 cache misses than

a single conventional directory cache, on average, allowing

a significant reduction in directory cache area. For a 0.125×

coverage ratio the increase in the number of cache misses is

roughly 20%, on average. This increase in coverage misses

translates into a degradation in execution time with respect to

a 1× coverage ratio PS directory. However, with respect to a

single directory, the execution time is still shortened, even for

a 0.125× coverage ratio, as shown in Figure 12(b). Therefore,

if reducing silicon area is a target design goal, which would

be the main reason for a lower coverage ratio, one can opt

for reducing the area overhead of the directory without losing

performance with respect to a conventional directory. The PS

directory is able to improve the performance of a conventional

single directory cache while using 8 times less entries.

Table V shows the area required for different PS schemes

with different coverage ratios2 and the single directory cache.

As expected, all the PS configurations are able to reduce

area, even those with the same number of entries (1×) as

the conventional directory cache. This is due to the fact that

the Private cache does not implement the sharer vector field.

2Results for 0.125× are not shown because CACTI is not able to provide
results for so small caches.
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Figure 11. Normalized energy consumed by the directory with respect to a single-cache directory. eDRAM technology is used in the Private directory cache.
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Figure 12. Normalized performance with respect to a conventional single-cache directory.

When the directory coverage ratio is reduced (0.5× and 0.25×

coverage ratios), area savings significantly increase up to

80, 24% for the 0.25× 1:7 configuration, while still improving

the system performance (as shown previously). Comparing

the results for both shared-to-private ratios, we can see that

configurations with 1:7 ratio are more area efficient since they

are able to reduce area from 12% up to 26% (depending on

the directory coverage ratio) over configurations with 1:3 ratio,

while providing similar performance results.

Table VI shows the energy (dynamic and static) consumed

by the PS directory cache with different coverage ratios and

compared to the 1× single directory cache. As observed,

the 1× and 0.5× PS configurations consume more dynamic

energy per access than the conventional cache, but this is

highly offset by the much lower leakage consumed by the

PS configurations, which is highly reduced even using SRAM

technology in the Private cache. Leakage is reduced from

19% for the SRAM 1× 1:3 configuration up to 86% in the

eDRAM 0.25× 1:7 configuration. Comparing 1:3 and 1:7

shared-to-private ratios, the 1:7 configurations are able to

reduce leakage consumption from 5% up to 15% with respect

to the 1:3 configurations. Taking into account these values,

Figure 13 shows the energy consumed during the execution of

the benchmarks by the PS directory normalized with respect to

the energy consumption by the single-cache directory. Lower

coverage ratios lead to less energy consumed at the cost of

performance degradation.

Figure 14 depicts the area per core scalability for the studied

directory configurations. As observed, the conventional direc-

tory cache exhibits the worst area behavior with significant

area differences with the PS directory configurations. These

differences increase with the number of cores. Even it requires

for 128 cores more area than all the PS configurations with

up to 1024 cores, with the only exception of the PS 1× 1:3
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Table V
AREA (IN mm

2
∗ 1000) OF THE DIFFERENT PS CONFIGURATIONS FOR 16 CORES COMPARED WITH THE 1× SINGLE CACHE DIRECTORY.

Coverage Directory Shared Private (Tech.) Total Area (%)

1× Single 19,51 – 19,51 100,00%
PS 1:3 6,33 9,50 (SRAM) 15,83 81,15%
PS 1:7 3,28 11,08 (SRAM) 14,37 73,65%
PS 1:3 6,33 8,22 (eDRAM) 14,56 74,61%
PS 1:7 3,28 9,60 (eDRAM) 12,88 66,02%

0.5× PS 1:3 3,28 4,80 (eDRAM) 8,09 41,47%
PS 1:7 1,74 4,80 (eDRAM) 6,55 33,60%

0.25× PS 1:3 1,74 3,01 (eDRAM) 4,76 24,39%
PS 1:7 0,84 3,01 (eDRAM) 3,85 19,76%

Table VI
STATIC AND DYNAMIC ENERGY CONSUMPTION OF THE DIFFERENT PS CONFIGURATIONS FOR 16 CORES COMPARED WITH THE 1× SINGLE CACHE

DIRECTORY.

Configurations Pleakage (mW) Eread (pJ)

Coverage Directory Shared Private (Tech.) Total Shared Private (Tech.) Total

1× Single 4,2346 – 4,2346 0,0048 – 0,0048
PS 1:3 1,1877 2,2572 (SRAM) 3,4450 0,0027 0,0028 (SRAM) 0,0055
PS 1:7 0,6404 2,6334 (SRAM) 3,2739 0,0016 0,0032 (SRAM) 0,0049
PS 1:3 1,1877 0,5123 (eDRAM) 1,7001 0,0027 0,0067 (eDRAM) 0,0094
PS 1:7 0,6404 0,5977 (eDRAM) 1,2382 0,0016 0,0078 (eDRAM) 0,0094

0.5× PS 1:3 0,6404 0,4114 (eDRAM) 1,0518 0,0016 0,0035 (eDRAM) 0,0052
PS 1:7 0,3650 0,4799 (eDRAM) 0,8450 0,0010 0,0041 (eDRAM) 0,0052

0.25× PS 1:3 0,3650 0,3276 (eDRAM) 0,6927 0,0010 0,0027 (eDRAM) 0,0037
PS 1:7 0,2181 0,3822 (eDRAM) 0,6003 0,0007 0,0032 (eDRAM) 0,0039
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Figure 13. Normalized energy consumed by the directory with respect to a single-cache directory.
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Figure 14. Scalability analysis in terms of area.

configuration.

As stated in previous section for a 1× coverage configura-

tion, the PS directory is able to reduce by 26, 71% (ratio 1:7)

and 15, 71% (ratio 1:3) the area required by the conventional

directory cache for a 1024–core system using both the same

number of entries. Of course, the area is further reduced

with smaller coverage ratios. In particular, for the 0.5× PS

configurations, the PS directory requires only by 14, 47% (ratio

1:3) and 8, 13% (ratio 1:7) the area required by the single

cache directory, and for the 0.25× PS configurations only

7, 52% (ratio 1:3) and 4, 77% (ratio 1:7) the area required

by the single cache directory.

VII. RELATED WORK

Cache coherence is needed in shared memory systems

where multiple cores are allowed to access the same memory

blocks. This work focuses on directory-based protocols, which
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are the commonly adopted solution for a medium to large

core count. These protocols use a coherence directory to track

which private (e.g. L1) processor caches share each block.

The directory structure is accessed to carry out coherence

actions such as sending invalidation requests to serialize write

operations, or asking a copy of the block to the owner (e.g.

the last processor that wrote it).

Traditional directory schemes does not scale with the core

count, which is the current trend in the microprocessor indus-

try. Thus, implementing directories that scale to hundreds of

cores in terms of power and area is a major design concern.

Directory implementations, both in academia and industry,

follow two main approaches: duplicate-tag directories and

sparse directories.

Duplicate-tag directories maintain a copy of the tags of all

tracked blocks in the lower cache level (e.g. the L1 core cache).

Therefore, this approach does not raise directory induced

invalidations. The sharer vector is obtained by accessing the

highly associative directory structure. This approach has been

implemented in modern small CMP systems [4], [26] and

is the focus of recent research works [23], [34]. The main

drawback of this approach is the required associativity of the

directory structure, which must be equal to the product of

the number core caches by the associativity of such caches.

This means that a directory access requires a 512 associative

search for 64 8-way L1 caches. Duplicate-tag directories are

area–efficient, however, the highly associative structures yield

to a non-scalable quadratic growth of the aggregated energy

consumption [10], so this approach becomes prohibitive for a

medium to large core count.

The high power consumption incurred by duplicate-tag

directories has led some research to focus on providing high

associativity with a small number of ways. Cuckoo Directory

[10] uses a different hash function to index each directory way,

like skew–associative caches. Hits require a single lookup but

replacements require from multiple hash functions to provide

multiple candidates, so giving the illusion of a cache with

higher associativity but at the expense of higher consumption

and latency.

Sparse cache directories [12] are organized as a set-

associative cache like structure indexed by the block address.

Reducing the directory associativity makes this approach more

power–efficient than duplicate–tag directories. Each cache

directory entry encodes the set of sharers of the associated

tracked block. Conventional approaches use a bit vector, that

is, a bit per-core cache, to encode the sharers. In this scheme,

the per-core area grows linearly with the core count and

the aggregated directory area grows quadratically, since the

number of directory structures increases with the number

of cores. Previous research works have focused on reducing

directory area by focusing on the entry size.

To shorten the entry size some approaches use compression

[1], [6], [7], [22]. In [1], [2] a two-level cache directory

is proposed. The first-level stores the typical sharer vector

while the second-level uses a compressed code. When using

compression, area is saved at expenses of using an inexact

representation of the sharer vector, thus yielding to perfor-

mance losses. Hierarchical [11] representation of the sharer

vector has been also used for entry size reduction purposes.

However, hierarchical organizations impose additional lookups

on the critical path so hurting latency. Sparse directories may

reduce area by reducing the number of directory entries but

at the expense of performance since directory evictions force

invalidations at the core caches of the blocks being tracked.

Unlike typical sparse directories, SCD [25] uses different

entry formats of the same length. Lines with one or a few

sharers use a single directory entry while widely shared lines

employ several cache lines (multi-tag format) using hierarchi-

cal bit vectors. This scheme requires extra complexity and ac-

cesses for managing dynamic changes (expanding/contracting)

in the format.

Multi-grain directories (MGD) [33] also uses different entry

formats of same length and tracks coherence at multiple

different granularities in order to achieve scalability. Each

MGD entry tracks either a temporarily private memory region

or a single cache block with any number of sharers. Differently

from the PS directory, this proposal is limited to a range of

directory interleavings (those higher or equal to the size of a

memory region) in order to achieve maximum benefits. MGD

has been evaluated and compared to our PS directory, as shown

in the evaluation section.

Finally, other proposals [9] focus on reducing the number of

entries implemented in the cache directory instead of focusing

on the sharer vector. While this approach does not affect the

performance, it requires modifying the OS, the Page Table,

the processor TLBs and the coherence protocol.

VIII. CONCLUSIONS

This work identifies five key characteristics that clearly

differentiate the behavior of private and shared blocks from

the directory point of view. Based on these observations, we

introduce the PS directory, a directory cache that uses two

different cache structures, each one tailored to one type of

block (i.e., private or shared). The Shared directory cache,

which tracks shared blocks is small, with low associativity and

fast. The Private directory cache is aimed at tracking private

blocks, which are highly dominant in current workloads. This

structure does not store the sharer vector, is larger than the

shared cache, and it is implemented with higher associativity.

Experimental results for a 16-core CMP show that, com-

pared to a single directory cache with the same number

of entries, the PS directory improves performance by 14%

due to the separate treatment of private and shared blocks.

Additionally, directory area is reduced by 26.35% mainly due

to not storing the sharer vector for the private blocks, and by

33.98% when eDRAM technology is considered for the Private

cache. Regarding energy consumption, reductions about 27%

are achieved. Compared to the state-of-the-art MGD scheme,

the PS directory increases the performance by 16.7% and

reduces energy by 18.7%, being also much more scalable

in terms of area. Thus, the proposal provides noticeable

scalability in terms of area and energy with respect to the

single-cache and the MGD directories, while also being able

to surpass a single-cache directory in terms of performance

scalability.
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Finally, we would like to remark that the mentioned ben-

efits are obtained with almost the same performance as the

duplicate tags approach (i.e., perfect directory) but with a

feasible implementation that scales in performance better than

conventional approaches.
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[1] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato, “A new scalable
directory architecture for large-scale multiprocessors,” in 7th Int’l Symp.

on High-Performance Computer Architecture (HPCA), Jan. 2001, pp.
97–106.
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