
Eventual election of multiple leaders for solving
consensus in anonymous systems

Ernesto Jimenez1,2 • Sergio Arevalo1 •
Carlos Herrera3 • Jian Tang1

Abstract In classical distributed systems, each process has a unique identity. Today,
new distributed systems have emerged where a unique identity is not always possible
to be assigned to each process. For example, in many sensor networks a unique identity
is not possible to be included in each device due to its small storage capacity, reduced
computational power, or the huge number of devices to be identified. In these cases,
we have to work with anonymous distributed systems where processes cannot be
identified. Consensus cannot be solved in classical and anonymous asynchronous
distributed systems where processes can crash. To bypass this impossibility result,
failure detectors are added to these systems. It is known that Q is the weakest failure
detector class for solving consensus in classical asynchronous systems when a majority
of processes never crashes. Although AQ was introduced as an anonymous version of

1 Universidad Politecnica de Madrid, Madrid, Spain
2 Prometeo, Quito, Ecuador
3 Escuela Poliecnica Nacional, Quito, Ecuador

E. Jimenez et al.

Q, to And the weakest failure detector in anonymous systems to solve consensus when
a majority of processes never crashes is nowadays an open question. Furthermore, AQ
has the important drawback that it is not implementable. Very recently, AQ' has been
introduced as a counterpart of Q for anonymous systems. In this paper, we show
that the AQ' failure detector class is strictly weaker than AQ (i.e., AQ' provides less
information about process crashes than AQ). We also present in this paper the first
implementation of AQ' (hence, we also show that AQ' is implementable), and, finally,
we include the first implementation of consensus in anonymous asynchronous systems
augmented with AQ' and where a majority of processes does not crash.

Keywords Failure detectors • Consensus • Anonymity • Fault tolerance •
Anonymous omega

1 Introduction

From a theoretical and practical point of view, we are accustomed to define and use
distributed systems where each process has a unique identity (we can call it classical
distributed systems). However, new distributed systems have emerged where a unique
identity is not always possible to be assigned to each process. For example, in many
sensor networks, a unique identity is not possible to be included in each device due
to its small storage capacity, reduced computational power, or the huge number of
devices to be identified [1,18]. In all these cases, we have to work with distributed
systems where processes have no identity. Hence, we can use anonymous systems
where processes are not identifiable because all of them are coded identically (i.e.,
processes have no identity, and there is no way to distinguish among them).

Another important context where anonymity is very important is when the users'
privacy is involved [16]. In this case, identification is not possible without something
that breaks the symmetry.

On the other hand, one of the most important coordination problems in distributed
computing is consensus [13]. The consensus problem says that in a system where a
set of values are proposed, only one of them can be decided. Consensus cannot be
solved in anonymous (and classical) asynchronous systems when even one process
may crash [20]. To bypass this impossibility result, failure detectors are added to these
anonymous asynchronous systems [6,8].

A failure detector is a distributed device that provides information about process
crashes [13]. It is well known that Q is the class of failure detectors that provides the
minimum information about process crashes (i.e., it is the weakest failure detector)
for solving consensus in classical asynchronous systems when a majority of processes
never crashes [12]. AQ was introduced as an anonymous version of Q [6].1 Roughly
speaking, AQ states that eventually only a single process identifies itself as the leader
of all non-crashed processes. Nevertheless, to find the weakest failure detector class to
achieve consensus in anonymous systems when a majority of processes never crashes
is still an open question [8]. Furthermore, AQ has the important drawback that it is

A£2 was first proposed by Bonnet and Raynal in the preliminary DISC 2010 conference paper [7].

Eventual election of multiple leaders for solving...

not implementable in anonymous systems [6]. Hence, any algorithm that implements
consensus with Af2 is not implementable.

Very recently, AQ' has been introduced as a new counterpart of Q for anonymous
systems [10]. Roughly speaking, AQ' states that eventually a set L of non-crashed
processes will permanently identify themselves as leaders, and all these leader
processes eventually will know the size of L (i.e., \L\).

Related work One of our main goals in this paper is to present the first implementation
of the AQ' failure detector [10]. This failure detector is important because it is weaker
than other classes of failure detectors [5,6]. In [6], the anonymous classes AP, AQ
and AS are introduced. They are the anonymous counterparts of the classes of perfect
failure detector P [13], eventual leader failure detector Q [12], and quorum failure
detectors S [15], respectively. In the paper [11], another slightly different anonymous
version of S denoted AS' is introduced. In [5], the authors present the failure detector
AP which is the anonymous counterpart of the perfect failure detector P when the
membership of the system is unknown. With respect to the implementability, Afi
has the drawback that is not implementable even in anonymous synchronous systems
[6]. If the membership is unknown, AP is not implementable either (applying similar
techniques than in [22]).

In [19], a distributed model where the system is a collection of anonymous finite-
state agents is presented. A protocol is self-stable if it does not require initialization
to work, and it is always able to recover from temporary failures. In that paper [19], it
is shown that self-stabilizing eventual leader election is impossible to achieve in such
systems. To circumvent this result, they enrich the system with the failure detector Q1
When an agent invokes f2 ? this failure detector returns the information of whether or
not one or more processes are working as leaders. The information returned by Q ? may
be incorrect by a finite period of time, but eventually Q ? will always provide accurate
information. The authors show in [19] that in this system augmented with Ql it is pos­
sible to achieve self-stabilizing eventual leader election in rings and complete graphs.

Failure detectors are important because they can help to solve important problems
in distributed computing. One of the most important problems is consensus [13]. Con­
sensus in anonymous systems is introduced for first time in [5]. In it, the authors
solve consensus with a majority of processes that never crashes and using the failure
detector AP. They show that It + 1 is the lower bound on the number of rounds to
achieve consensus (t is the maximum number of crashed processes, and all processes
must know this value of t). In [17], consensus in anonymous systems with differ­
ent synchrony assumptions is also solved (that is, they assume that the system is
not totally asynchronous but with partial synchrony). In the technical report [11], an
algorithm is presented using the failure detector {A£2', AS') to solve consensus in
anonymous systems where all processes are interconnected using FIFO reliable links
(hence, their anonymous system is stronger than the system we present in this paper).
Nevertheless, their solution allows to solve consensus even if a majority of processes
crashes.

Not only in anonymous message-passing systems the consensus problem is solved,
but also several solutions are presented in the literature to achieve consensus in anony­
mous shared memory systems [3,4,9,14]. In all of them, consensus is implemented in

E. Jimenez et al.

an anonymous shared memory system bounding the step complexity (i.e., the number
of shared memory accesses) to 0(n) by each invocation on a read/write operation,
being n the number of processes of the system. In [9] and [14], the failure detector
AQ [6] is used to solve consensus and there is no bounds in the number of crashed
processes. In [9], the shared memory is formed by atomic multi-writer and multi-reader
registers, and in [14], these shared memory is made up by the weak set object (this
object is a set from which values are never removed). In [4], the authors implement
consensus in an anonymous shared memory where no processes can crash and where
the shared memory is implemented using atomic registers (namely, Q (log n) is the
number of atomic registers needed to solve consensus). In [2] and [3], the anonymous
shared memory is built by objects denoted adopt-commit [21]. In [2], consensus is
solved for the probabilistic-write model. The algorithm presented is formed by an
adopt-commit object to detect agreement, and by a conciliator object to guarantee the
agreement not deterministically but with some probability. In [2], the step complex­
ity is O(logm), being m the different values that processes can propose. In [3], the
solution is improved to 0{n).

Our contribution In this paper, we show that AQ' is strictly weaker than AQ (i.e.,
AQ' provides less information about process crashes than AQ). We also present the
first implementation in the literature of AQ' (hence, we also show that AQ' is imple-
mentable). It is worth noting that this implementation is communication efficient (i.e.,
eventually only leader processes send messages). Finally, it is included in this paper
the first implementation of consensus in anonymous asynchronous systems enriched
with AQ' and where a majority of processes does not crash. Therefore, we also show
in this paper that consensus with this new and weaker version of Q for anonymous
systems AQ' is also implementable.

This paper is organized as follows. The model of the anonymous distributed system
is presented in Sect. 2. The failure detector AQ' is presented in Sect. 3, and consensus
using AQ' can be found in Sect. 4. It is noteworthy that in Sect. 3.2, we prove that
AQ' is weaker than the traditional definition of anonymous omega failure detector
AQ. Finally, we present the conclusions in Sect. 5.

2 Anonymous system AS

AS is a message-passing system formed by a finite set IJ = {/?j}j=1 „ ofnprocesses
fully interconnected by links. Each process pi e IJ uses the primitive broadcast to
send a message to every process pj e IJ. This primitive, denoted by broadcast {m),
sends a copy of message m through each link.

Processes are executed by taking steps. A process crashes when it stops taking
steps. We assume that crashes are permanent. We say that process pi is correct in
a run if it does not crash, and faulty if pi crashes. We denote by Correct the set
of correct processes, and by Faulty the set of faulty processes. We denote by / the
maximum number of processes that may crash in a run. We consider that if some
process pi crashes while the primitive broadcast (m) is invoked by pi, a copy of the
message m can be delivered to any unknown subset of processes (including the empty
subset).

Eventual election of multiple leaders for solving...

For analysis, we assume that time advances at discrete steps. We also assume a
global clock whose values are the positive natural numbers, but processes cannot
access it. We use the notation x e N to indicate an instant of time.

Processes are anonymous [6]. Then, processes have no identity, and there is no
way to differentiate between any two processes of the system (i.e., processes have no
identifier and execute the same code).

A failure detector FD is a distributed device with a local module FDi for each
process pi e IJ. A failure detector FD returns information related with faulty processes
each time that a process pi invokes its module FDi • The addition of a failure detector
FD in a system S (denoted by S[FD]) allows to solve a certain problem P that it
is impossible to overcome in S alone. According to the type and the quality of the
information about crashed processes, several classes of failure detectors have been
proposed [23,24].

3 AQ' failure detector class

We introduce in this section the algorithm AAQ> to implement the failure detector AQ1

in anonymous partially synchronous systems (see Fig. 1). This algorithm has a nice
property: communication efficiency. That is, in every run, there is a time after which
only leader processes broadcast messages.

3.1 Definition of ASl'

The AQ' [10] failure detector provides each process pi e IJ with two output variables
leader i and quantity\. LetL (resp., NL) be the subset of correct processes such that
eventually their variable leader = true (resp., leader = false) permanently. We
say that a correct process pi is an eventually leader process (for shorten, a leader) if
Pi e L, and an eventually non-leader process (for shorten, a non-leader) if pi e NL.
A failure detector of class AQ' [10] satisfies that:

1. Every correct process is either an eventually leader process, or an eventually non-
leader process.

2. There is at least one eventually leader process in the system.
3. There is a time after which every eventually leader process pi has quantityi = \L\

permanently, being L the set of eventually leader processes in the system.

More formally, the definition of AQ' is the following. Let leader? and quantity?
be the variables leaderi and quantityi provided by AQ' at time x. Let L = [pi e
Correct: 3x: Vr' > x, leader? = true}, andM, = [pi e Correct: 3x : Vr' > x,
leader? = false}. In each run R of the system, any failure detector of class AQ1

must satisfy the following three properties:

1. (LUNL = Correct) A(LHNL = 0).
2. L ^ 0.
3. 3x: Vr' > r, Vpi e L, quantity? = \L\.

Note that there is not a time after which a correct process pk e NL must have in
quantityk the number of leaders \L\ of the system.

E. Jimenez et al.

3.2 A Si' is strictly weaker than A Si

First, we define AQ [6]. Let us consider that each process pi e IJ has a boolean variable
k. Every failure detector of class AQ satisfies that eventually: (1) there is a correct
process pi that has // = true permanently, and (2) every correct process pj other
than pi has lj = false permanently. More formally, 3x, 3pi e Correct: Vr' > x,
VPj ¥= Pi ^ Correct, lj = true and lr, = false.

A failure detector class X is strictly weaker than class Y in system S if (a) there
is an algorithm that emulates the output of a failure detector D' of class X in the
system S augmented with a failure detector D of class Y (denoted by S[D]), and (b)
the opposite is not true (i.e., there is no algorithm that emulates the output of a failure
detector D' of class Y in the system S augmented with a failure detector D of class
X).

Then, we now prove that AQ' is strictly weaker than AQ with the following two
cases.

Lemma 1 Class AQ' can be obtained from AS\AQ\

Proof Let D be any failure detector of class Af2. Let D' be an emulated failure
detector with the following algorithm. Each process pt sets D'.quantity\ = 1, and
permanently updates D''.leader•; with the value of D.k.

From definition of A£2, eventuallyasinglecorrectprocess/?/has Z)./ea<ier/ = true
permanently, and every correct process pj other than pi has D.leaderj = false
permanently. Hence, pi belongs to L, and the rest of correct processes belong to NL
(Condition 1 of AS2'). Then, \L\ = 1, and, hence, L ^ 0 (Condition 2 of AS2'). Finally,
process/?/ has D'.quantityi = \L\ = 1 permanently (Condition 3 of A£2'). Therefore,
D' is a failure detector of class AQ'. •

Lemma 2 Class AQ cannot be obtained from AS\AQ'\

Proof Let D be a failure detector of class AQ' with a run R where the following six
points are preserved: (1) the number of processes is greater than one, \IJ\ > 1, (2)
all processes are correct, Correct = IJ, and all of them are leaders, L = Correct,
(3) from the beginning of the run, D.leaderi = true and D.quantityi = \Correct\
permanently in each process pi [note that this is one of the possible outputs of AQ1

by previous points (1) and (2)], (4) all processes execute in R the same deterministic
code at the same speed in lock step, broadcasting each message m at the same time,
(5) the delay of m is the same in every link, and, hence, m will be received by every
process in the same step of the execution, (6) if two messages m and m' are received
in the same step, both messages will be delivered in the same order in every process.

Let us assume, by the way of contradiction, that AQ can be deterministically
obtained from AQ' in all runs. Then, we construct a run R as described above. Then,
because the six points of R and because processes have no identity, there is no way
to distinguish among all correct processes in R deterministically, and it is impossi­
ble to break this symmetry. Thus, every process pi either outputs D'.li = true or
D'.li = false in R. Therefore, it is impossible to output D'.li = true in a single
correct process pi, and D' .lj = false in every correct process pj other than pi in all

Eventual election of multiple leaders for solving...

executions (which contradicts the properties of Af2). Hence, a failure detector D' of
class AQ cannot be obtained from AS[D]. a

Theorem 1 Af2' is strictly weaker tlianAQ.

Proof It derives directly from Lemmas 1 and 2. •

3.3 Anonymous partially synchronous system APSS

Let APSS be a system like AS but with the following particular features. Links are
eventually timely. A link between processes pi and pj is eventually timely if there is
an (unknown) stabilization time Tst after which if process pi sends a message at time
t >Tst, this message is delivered without errors to pj in a bounded time t' <t + A,
being A an unknown but finite time. Messages sent by pi at time t" < Tst (i.e., before
the global stabilization time) can be lost or delivered to pj after a finite time greater
th<mt" + A.

We consider that the number of processes that may crash in the system APSS is at
most n — \ (i.e., / < n - 1).

Processes are partially synchronous in the sense that the time to execute a step by
a process pt is an unknown positive but bounded time.

3.4 The algorithm A-ASI' in APSS

We present in Fig. 1 an algorithm to implement the AQ' failure detector in the system
APSS. In every run, AAQ> eventually elects a set of leaders among all correct processes
of the system APSS. This algorithm has a nice property: communication efficiency.
That is, in every run, there is a time after which only leader processes broadcast
messages.

The description of the algorithm AAQ> of Fig. 1 is the following. A correct process
Pi is one of the leader processes if the condition of line 15 of Task 1 is ever satisfied,
and hence, leader•* contains true forever. Note that this is so because after line 1 there
is no line in Tasks 1 and 2 of Fig. 1 where leader•; is set to false again.

In Task 1, each leader process pi broadcasts heartbeat messages (HB, seqi) per­
manently, being seqi its number of sequence (lines 5-8). A process pi waits a time
timeouti (line 9) after which it checks how many acknowledgments it has received
(lines 10-16). If process pi is a leader process, it stores in reci the set of messages
(ACK_HB, s, s') received with s < seqi < s' (line 11). Note that rect, when this
line 11 is executed, can return messages that had been received before line 7 is exe­
cuted. Hence, quantityH has the number of these acknowledgments contained in rect

(line 12). If process pi is not a leader process, it stores in reci the set of new messages
(ACK_HB, —, —) received since its latest execution of line 14. If it does not receive
any acknowledgment message, then process pt becomes a leader (line 15).

In Task 2, each leader process pi uses the variable next_acki to know the next
number of sequence s of the acknowledgment message (ACK_HB, s, -) that process
Pi has to broadcast. Initially, next_acki «- 1 (line 2). When a leader process pt

E. Jimenez et al.

Init:
(1) timeouti <— 1; leaderi <— false; seqi <— 0:
(2) nextuacki <— 1; quantityi <— 0;
(3) start Tasks 1 and 2.

Task 1:
(4) while true do
(5) if (leaderi) then
(6) seqi <— se<K + 1;
(7) broadcast(HB, seqi)
(8) end if;
(9) wait until timeouti units:
(10) if (leaderi) then
(11) let reci b e the set of (ACK.HB, s, s')

received such that s < seqi < s'-
(12) quantityi <— |»*eci
(13) else
(14) let reci be the set of new (ACK.HB, -, -)

received:
(15) if (reci = 0) then leaderi *— true end if
(16) end if
(17) end while.

Task 2:
(18) upon reception of message (HB^s^)

such that (sj; > next-acki) do:
(19) if (leaderi) then
(20) broadcast(AGK-HB, nextuacki, s^);
(21) nextjicki <— s^ + 1
(22) end if.

(23) upon reception of message (AGK_HB, s^, s'k)
such that (sj; < seg^) do:

(24) if (leaderi) then timeouti <— timeouti + 1 end if.

Fig. 1 The algorithm JK^QI in the system APSS (code for process p;)

receives a message (HB,Sk) not previously acknowledged (i.e., ^ > next_acki)
(line 18), it broadcasts a message (ACK_HB, next_acki, Sk) which acknowledges (in
only one message) all heartbeat messages with the number of sequence in the range
[nextjicki, Sk] (line 20).

A leader process pi may broadcast heartbeat messages (HB, seqi) faster than the
time that another leader process pk broadcasts messages (ACK_HB, Sk,s'k) with Sk <
seqi. In this case, process pi will receive outdated acknowledgment messages, and
timeouti will be incremented in one unit (lines 23-24). Then, leader process pi will
slow down its heartbeat broadcasting speed because it increases the time that it is
waiting at line 9.

3.5 Correctness of A-ASI' in APSS

We now present the formal proofs to show that AAQ1 implements Af2' in APSS.

Eventual election of multiple leaders for solving...

The following lemma shows that there is a time after which every correct process
Pi has leaderi = x permanently. This value x is either true or false.

Lemma 3 For each run, (L U NL = Correct) A (L n NL = 0).

Proof Let us consider, by contradiction, that there is a run with a correct process pt

such that pi £ L and pi £ NL. Then, by this hypothesis of contradiction, there is
some correct process pi such that leaderi is changing its boolean value infinitely
often. However, process pi initially has leaderi = false (line 1), and it only may
change to true once (when the condition of line 15 is satisfied). Note that there is no
line in Tasks 1 and 2 of Fig. 1 where leaderi is set to false again. Hence, we reach
a contradiction. Therefore, every correct process pi either pi e L or pi e NL, and
hence, (LUNL = Correct) A(LCINL = 0). •

Let 7> be the time when every faulty process p/ has crashed, and all messages
(HB, -) and (ACK_HB, —) broadcast by p/ have already been delivered or lost.

We prove in the following lemma that at least one correct process pc eventually has
leaderc = true permanently.

Lemma 4 For each run, L ^ 0

Proof By contradiction, let us consider that there is a run such that L = 0. Note that
in Fig. 1 if process pi changes from leaderi = false (line 1) to leaderi = true (line
15), leaderi will never change to false again. So, if the hypothesis of contradiction
holds, there is no process that broadcasts messages (HB, —) and (ACK_HB, —) after
TF, because leader = false in all correct processes (lines 5-8 and lines 19-22). Note
that the maximum number of faulty processes in the system is n — 1 (i.e., / < n — 1).
Then, after 7>, at least one correct process pc will execute leaderc «- true because
it has not received any message since its latest execution of line 14, and recc is empty
(lines 14-15). Therefore, we reach a contradiction because at least a correct process
pc has leaderc = true permanently, and hence, for each run, L ^ 0. •

Let it- be the sth iteration of process pi. This iteration is formed by all operations
from line 4 to line 17 of Task 1 of Fig. 1 executed by process pi for the sth time.

We show in the following lemma that eventually each leader process pi has in
reci, when it executes line 11, one (and only one) message (ACK_HB, s, s') with
s < seqi < s' from every leader process pj.

Lemma 5 In each run, given processes Pi e L and pj e L, there is an iteration it-"
such that Vsb > sa process pi has in reci exactly one message (ACK_HB, s, s') with
s < Sb < s' of process pj when process pi executes line 11 at iteration it-b'.

Proof Note that, after executing leaderi «- true of line 15, correct process pi e L
broadcasts messages (HB, Si) permanently, increasing in one unit the value of the
sequence number Si at each iteration it-'.

Let us define a time 7] such that 7] > Tst, and process pi and process pj are already
leaders. Then, leader process pi will be broadcasting messages (HB, Si) permanently
at each iteration it-' with an increasing number of sequence Si, such that after time 7]

E. Jimenez et al.

we know that all these heartbeat messages will be received by leader process pj e L.
So, we also know that process pj after time 7] + A will broadcast acknowledgment
messages (ACK_HB, Sj, s',) permanently with increasing values of Sj and s',, being
Sj < sL Note that process pj broadcasts one (and only one) message (ACK_HB, s', s")
in response to all messages (HB, Si) received from all leaders, s' < si < s", (lines
18-21).

Let us consider the following sequence of iteration numbers s\ < S2 • • • < sa- Let
(ACK_HB, sj, -) be the first acknowledgment message broadcast by pj after time
7}. Then, for the iteration it-2, there is a message (ACK_HB, s, s') with s < S2 < s'
broadcast by process pj and delivered at process pi at most A units of time after being
broadcast. Note that (ACK_HB, s, s') with s < si < s' can be the same message for
several consecutive iterations.

Note that if in an iteration it}*, with sx > s\, when leader process pi executes line
11, it has not received the message (ACK_HB, s, sr) with s < sx < s' from process
Pj, then, each time this happens, timeouti will be incremented when this message
(ACK_HB, s, sr) with s < sx < s' is finally received (lines 23-24). This is so because
seqi will be greater than sx.

Let sa be the iteration number where for the first time the value of timeouti will be
greater than time Trepiyj =2A+ (pj, being A the maximum time to deliver a message
from pj to pi, and where (pj is the maximum time that process pj takes to execute
lines 18-22.

Now, let us assume, by contradiction, that there is an iteration it\h, with Sb > sa,
such that when leader process pi executes line 11 at this iteration its

i
b, it has not

received the message (ACK_HB, s, s') with s < Sb < s' from process pj. Note
that in this iteration process pi broadcasts the message (HB,Sb), and waits until
timeouti > Trepiyj because this time is never decreased in the algorithm. Then, when
process pi executes line 11 at this iteration itf, either (a) will receive one message
(ACK_HB, s, sr) with s < Sb < s' from process pj, or (b) has already received one
message (ACK_HB, s, s') with s < Sb < s' from process pj in response to a faster
leader.

Thus, for every iteration it\h with Sb > sa, exactly one message (ACK_HB, s, s')
with s < Sb < s' from process pj will be received by process pi when it executes line
11 at its

i
b. Hence, we reach a contradiction and the claim of the lemma follows. •

This theorem proves that AAQ> is communication efficient. Note that in the worst
case all correct processes are in L.

Theorem 2 In the algorithm of Fig. 1, there is a time after which only processes in L
broadcast messages permanently.

Proof From Lemma 3 and definition of 7>, we can observe in the algorithm of Fig. 1
that eventually after 7> only correct processes are alive and all broadcast and delivered
messages belong to these correct processes. Then, if a correct process pi broadcasts a
message {HB, —) or (ACK_HB, -) , it must have leaderi = true (lines 5-8 and lines
19-22, respectively). So, if this case happens, it has already executed leaderi «- true
of line 15. Finally, note that if process pi changes from leaderi = false (line 1) to
leaderi = true (line 15), this variable leaderi will never change to false again, and

Eventual election of multiple leaders for solving...

hence, pi is in L. Therefore, there is a time after which only processes in L broadcast
messages permanently. •

Theorem 3 The algorithm of Fig. 1 implements the failure detector AQ' inAPSS.

Proof From Lemmas 3 and 4, Conditions 1 and 2 of AQ' are preserved in each run.
From Theorem 2 and Lemma 5, in each run, every process pi e L eventually has
reci = L permanently when it executes line 11, and hence, quantityt = \L\ (line 12).
Thus, Condition 3 of AQ' is also preserved in each run. Therefore, the algorithm of
Fig. 1 implements the failure detector AQ' in a system APSS. a

4 Consensus with Aii'

We introduce in this section the algorithm Aeons to implement consensus in anonymous
asynchronous systems augmented with the failure detector A£2', and with a majority
of correct processes (see Fig. 2).

The consensus problem [13] specifies that all processes that take a decision have to
decide the same value v, and this value v has to be proposed by some process. More
formally, the definition of consensus for anonymous systems is the following.

4.1 Definition of consensus

In each run, every process of the system proposes a value, and has to decide a value
satisfying the following three properties:

1. Validity Every decided value has to be proposed by some process of the system.
2. Termination Every correct process of the system eventually has to decide a value.
3. Agreement Every decided value has to be the same value.

4.2 Anonymous asynchronous system AAS

Let AAS be a system such as AS but with the following particular features. Links
are reliable. A link between processes pi and pj is reliable if every message sent
by pi is delivered once to pj without errors in an unknown, positive and unbounded
time.

We consider that a majority of processes are correct in this system (i.e., / < n/2).
Each process pi initially has no information about any other different process p}

of IJ (i ^ j) except that the size of the system is n and / < n/2. In other words, in
every run, process pi only knows that of n processes at least the majority of them are
correct, but it does not know who they are or the exact number of them.

As we have mentioned in the introduction, it is impossible to solve consensus in
anonymous asynchronous systems. To avoid this result, failure detectors are included.
We denote by AAS[A£2'~\ the anonymous asynchronous system defined in this section
augmented with the failure detector AQ'.

E. Jimenez et al.

4.3 The algorithm A^ons \aAAS[A$l']

We present in Fig. 2 an algorithm to solve consensus in AAS[A£2'~\. This algorithm is an
adaptation of the leader-based consensus algorithm of [8] to the case in which multiple
leaders coexist in the anonymous system. The changes between both algorithms are
mainly focused in the phase PHO where the failure detector is used. Every process p,
uses the while sentence of Task 1 to execute asynchronous rounds permanently (lines
4-24). Each round is formed by three phases: PHO, PHI and PH2. Process pi uses
the variable r; to know the number of the round that it is executing. The variable est,
contains the value proposed by pi in round r; to be decided. Note that initially est.

function p r o p o s e ^) :
Init:
(1) r; <— 0; esti <— vf,
(2) start Tasks 1 and 2.

Task 1:
(3) while true do
(4) r i ^ n + 1:

% phase PHO
(5) li <— D.leaderi]
(6) if (li) then broadcast(PH0, true, ri, esti) end if:
(7) wait until

(7-a) ((li ^ D.leaderi)
V

(7-b) ((h) A (D.quantityi (PHO, true, ri, —) received)
V

(7-c) ((PHO, false, r,,-) received)):
(8) if ((PHO, -, n, -) received) then
(9) esti <— min{estfc : (PHO, —, ri, est^) received}
(10) end if;
(11) broadcast^PHO, false, ri, esti)•

% phase PHI
(12) broadcast^PHI ,r,,est,);
(13) wait until (PHI, r;,—) received

from > ra/2 processes:
(14) if (all (PHI, ri, est) received : esti = est) then
(15) agreei <— true else agreei <— false
(16) end if;

% phase PH2
(17) broadcast^PH2, rt, esti, o-g^eei):
(18) wait until (PH&, r;, —, —) received

from > ra/2 processes;
(19) if ((PH&, ri, est, true) received) then
(20) esti <- est
(21) end if
(22) if (all (PH&, n, est, true) received) then
(23) broadcast(DECIDE, est,); return(esti)
(24) end if
(25) end while.

Task 2:
(26) upon reception of (DECIDE, v) do:
(27) broadcast(DECIDE,v); return(t;).

Fig. 2 The algorithm Aeons for solving consensus in the system AAS[A£2'] where is known that a majority
of processes are correct (process pi's code)

Eventual election of multiple leaders for solving...

contains the value vi, that is, the proposal of process pi (line 1). The boolean variable
agreei allows process pi to indicate whether it knows that a majority of processes has
the same value in esti in round r*. The boolean variable k is used to know whether
process pi is a leader process in round r*.

In phase PHO, the goal is to reach a round r after which every leader process pj has
the same value v in estj in each next round r' > r. To know if a process pi is a leader
process in a round x, it stores in k the boolean value of leaderj returned by the failure
detector Z> of class AQ' (line 5). If it is a leader, process pi broadcasts a message
CP//0, true, x, esti) (line 6), and waits to receive a number D.quantityi of messages
(.P//0, true,x, -) (line 7-b). Note that this value quantity i, returned by the failure
detector D of class AQ', is eventually the number of all leader processes if process pt

is a leader process (Case 3 of A£2'). After that, a process pi sets in est; the minimal
value of all received messages of phase PHO (lines 8-10), and broadcasts a message
{PHO, false, x, esti) (line 11). This latter message allows non-leader processes to finish
waiting in line 7-c in round x. Note that there is an unknown time t' after which the
value leaderi returned by D stabilizes (by definition ofAQ'). Before this time t', a
process pi can believe that it is a leader in round x because k = true, but D.leader
may change to false in the same round x. To avoid being blocked forever in the wait
sentence of line 7, the failure detector is checked permanently to know if the value
of k changes with respect to D.leaderi while it is waiting in phase PHO (line 7-a).
Similarly, the value D.quantityi is also checked permanently to eventually know the
exact number of leader processes in this round x.

In PHI, the goal is that processes can check whether in a round r each process p}

of a majority of processes has the same value v as the proposed value (i.e., estj = v).
To do so, each process pi broadcasts in round x a message (PHI, x, esti) (line 12),
checking whether it receives the same value est in all messages (PHI, x, est) from
a majority of processes, and esti = est (line 14). If this happens, agreei «- true.
otherwise, agreei «- false (lines 14-16).

In PH2, the goal is that a process pi can decide a value v in a round r. If this happens,
v has to be always the unique possible value to be decided by any other process p}

in any of the next rounds r' > r. To do so, each process pi broadcasts, in a round x,
a message (PH2, x, esti, agreei) and waits to receive a message (PH2, x, —, —) from
a majority of processes (lines 17-18). Note that, due to phase PHI, given any two
received messages (PH2, x, estj, true) and (PH2, x, estk, true), the proposed value in
this round x has to be the same (i..e, estj = estk). Hence, if the fourth parameter of
some received message is true, process pi establishes est as the value to be decided
in x or in a next round (lines 19-21). On the other hand, if in all these messages
the fourth parameter is true, process pi decides in this round x the value est of all
received messages (PH2, x, est, true), and broadcasts a message (DECIDE, esti) with
its decision (lines 22-24).

4.4 Correctness of A^ons in AAS[ASi']

We define a round r as the set of sentences that every process pi executes while it has
n =r.

E. Jimenez et al.

Lemma 6 Validity: for each run, every decided value has to be proposed by some
process of the system.

Proof Let us use induction on the number of rounds r to show that when a process /?;
finishes a round in a run, it holds in its variable esti a value proposed by some process.
For simplicity, we assume round r = 0 as base of our induction. Clearly, the claim
holds since the variable esti of process /?; is initialized with its own proposed value
vi (line 1). Induction hypothesis: Let us assume that the claim is true for round r = k.
Then, for every process /?; that finished round k, the value held in variable esti, when
r; = k, was proposed by some process. Stepr = k + 1: We now show that the claim
also holds in round r = k+l. For every process /?; that finished round k, the variable
esti can be changed in round k + l with the proposed value est broadcast in phase
PHO by some process (lines 8-10). After that, the variable esti can only be changed
with proposed values est broadcast by processes in phase PHI (line 14) and PH2 (line
20). Then, the claim is also held in this step r = k + 1. Therefore, it is shown by
induction that when a process /?; finishes round r it holds in its variable esti a value
proposed by some process.

Thus, if a process /?; finishes a round and decides esti = v when it executes line 23,
this value v was proposed by some process. On the other hand, if/?; decides v executing
Task 2, this value v was also proposed by some process because it is broadcast when
line 23 is executed. So, for each run, every decided value has to be proposed by some
process of the system. •

Observation 1 If some correct process does not wait forever at line 7 of a round r,
then no other correct process will wait forever at line 7 of this round r.

Proof If a correct process /?; reaches line 11, it broadcasts a message {PHO, false.
r, esti) that makes the condition of line 7-c true for every other correct process (recall
that links are reliable). •

We say that a process /?; changes its leading state if the value of /; is changed.

Observation 2 If a correct process changes its leading state after executing line 5 of
round r, then no correct process will wait forever at line 7 of this round r.

Proof If a correct process changes its leading state after executing line 5 of round r,
then the condition of line 7-a becomes true and it unblocks. Then, from Observation 1,
every other correct process stops waiting at line 7 of this round r. •

Observation 3 If any correct process waits forever at line 7 of a round r, then the
condition of line 7-b evaluates to false forever for every correct process.

Proof Otherwise, some correct process would stop waiting and, from Observation 1,
every other correct process would stop waiting at line 7 of round r. •

Lemma 7 No correct process waits forever at line 1.

Proof Let us assume, by the way of contradiction, that there is a correct process that
waits forever at line 7 of a round r. Then, every other correct process waits forever

Eventual election of multiple leaders for solving...

too. Otherwise, Observation 1 would not hold. Besides, every correct process keeps
its initial leading state. Otherwise Observation 2 would not hold. Finally, since every
other correct process waits forever, then from Observation 3, the condition of line
7-b evaluates to false forever for every correct process. Since every correct process
keeps its initial leading state, the failure detector of every correct process eventually
computes D.quantity correctly. Since all the correct leader processes execute line 6,
and they are leaders forever from Observation 2, then, eventually, at least one correct
process will receive at least D.quantity {PHO, true, r, —) messages (recall that the
links are reliable), what contradicts the initial assumption, completing the proof. •

Lemma 8 Let pi be a leader process in run R. There is a round r of run R after which
every process pi that finishes phase PHO has esti = esti at the end of phase PHO of
each round r' > r.

Proof Let t be the time in a run R when (a) all faulty processes have crashed and their
broadcast messages have already been delivered, (b) D.leader does not change in any
correct process anymore, and (c) D.quantity does not change in any leader process
anymore. Let r be the largest round in run R reached by any correct process at time
t. Let us consider that this process is pi. From Lemma 7, no process blocks in phase
PHO of this round r. From the assumption that a majority of processes are correct,
no process blocks in phases PHI and PH2 of round r. Then, all leader processes
eventually reach this round r and broadcast {PHO, true, r, est). Hence, we have two
cases:
Case 1 Process pi is a leader process. Its variable D.quantityH has the total number of
leader processes and it receives this number of messages {PHO, true, r, est) (line 7-b).
Then, it sets esti with the minimum value est of all processes. Each leader process
Pi 7̂ Pi will also receive the same messages and will also set in its variable esti the
same minimum value est. After that, process pi broadcasts {PHO, false, r, esti) (line
11). Therefore, variable est of all leader processes have the same value.
Case 2 Process pi is a non-leader process. Each leader process, when finishes
phase PHO, broadcasts {PHO, false, r, est) with the minimum value est of all leader
processes (line 11). Hence, all messages {PHO, false, r, est) received by process pt

have the value est of a same leader process.
Therefore, by the two previous cases, every process pi that finishes phase PHO has

esti with the same value of a leader process at the end of phase PHO of this round
r. Note that after phase PHO, the value in the variable est does not change in the
following two phases of the same round. Then, process pi keeps the same common
value in esti in phases PHI and PH2. Thus, in every round r' > r of a run, every
process pi that finishes phase PHO of r' has esti = esti at the end of this phase PHO,
being pi a leader process. •

Lemma 9 Agreement: for each run, every decided value has to be the same value.

Proof Let us suppose that a process pi decides a value v in the round r of a run, and
a process pj decides a value v' in round r' > r of the same run. Then, this lemma is
true if we show that v = v'.

Let us use induction on the number of rounds r' to show this result. Let us assume
that the base case of our induction is r' = r (both processes pi and pj decide in the

E. Jimenez et al.

same round). If a process pi decides a value v in this round r, it is because a majority
of processes broadcasts (PHI, r, v) and (PH2, r, v, true). Similarly, if a process p}

also decides in this same round r, another (or the same) majority of processes broad­
casts (PHI, r, V) and (PH2, r, V, true). Then, because two majorities has at least one
process in common, v = v'. Hence, the base case is satisfied. Induction hypothesis:
Let us assume that the claim is true until round r' = r+k,k > 1. Then, if a process/?*
decides a value v in round r, every process pj that decides until round r +k holds v in
variable estj. Stepk+1: We now show that the claim also holds in round r' = r+k+l.
Note that if a process decides a value v' in round r + k, this process receives messages
(PHI, r + k, V) and (PH2, r + k, V, true) of a majority of processes. Also note that
if a process that does not decide in round r + k wants to finish this round, it also has
to receive messages (PH2, r + k, —, —) of a majority of processes. Then, at least one
message of this majority has to be (PH2, r + k, V, true). By induction hypothesis,
v' = v. Hence, every process pj that reaches round r+k+l holds in its variable est}

the value v in round r +k. Clearly, if any process pj decides in this round r+k+l,
the value only can be v, hence, the claim is also satisfied for r' = r+k+l. Therefore,
the lemma is shown by induction. •

Lemma 10 Termination: for each run, every correct process of the system eventually
has to decide a value.

Proof From Lemma 8, there is a round r in every run after which every process pi that
finishes phase PHO has esti = esti, being pi a leader process. Then, from Lemma 7
and because a majority of processes never crashes, all received messages in phase
PHI of round r are (PHI, r, esti) and its number is greater than n/2. Hence, process
Pi does not block in phase PHI and all received messages in phase PH2 of round r
are (PH2, r, esti, true), and its number is also greater than n/2. So, every process pt

that finishes phase PH2 in round r can decide. Therefore, every correct process of the
system decides. •

Theorem 1 The algorithm described in Fig. 2 solves the consensus problem in
AAS[Att'].

Proof From Lemmas 6, 9 and 10, validity, agreement and termination properties are
satisfied in every run. •

4.5 Analysis of rounds

A way to consider the costs of an algorithm for consensus in message-passing systems
is to evaluate the number of rounds needed to decide a value. In [5] is shown that
2t + 1 is the lower bound on the number of rounds to achieve consensus (t is the
maximum number of crashed processes). They can determine it exactly because they
use the perfect failure detector for anonymous systems AP. Differently of [5] because
we do not use a perfect failure detector, the maximum number of rounds in Acons for
each run can not be bounded a priori. Therefore, we are going to analyze the extreme
cases. Our algorithm Aeons works in asynchronous consecutive rounds, such that each
round is formed by three phases (PHO, PHI and PH2).

Eventual election of multiple leaders for solving...

The best case is when each process knows if it is a leader or a non-leader since
the beginning of the run. That is, (Vpi e L, Wpk e NL, Vr) =>• (lj = true and
l\ = false). Note that this happens if the failure detector D of class AQ' stabilizes
since time x = 0 and returns true or false accurately. Hence, in this best case, a
process decides in the phase PH2 of the first round (line 23). The worst case for a
correct process pt is if when the failure detector stabilizes, it is in the highest round
r' of all processes. In this case, pi has to wait until the rest of processes that form the
majority reach its round r' (line 7). Then, this process pi will decide in the phase PH2
of this round r' (line 23).

5 Conclusion

Anonymous systems are necessary when an identity is not possible in the processes of
the system. Such cases are common, for example, in sensor networks where devices
have constraints in computational power, a small storage capacity, or when there are
a very big number of devices in the system.

The AQ' failure detector [10] has been proposed very recently as a new counterpart
of the omega failure detector for anonymous systems. We prove in this paper that AQ1

is strictly weaker than AQ (which is the previously proposed version of the anonymous
omega failure detector proposed in the literature).

It has been shown in [6] that AQ is not implementable, and we present in this
paper the first implementation of AQ'. Therefore, we prove in this paper that AQ' is
implementable.

Finally, we prove in this paper that consensus can be solved in anonymous asyn­
chronous systems using AQ' when a majority of processes does not crash. Hence, we
also show here that consensus is implementable in anonymous systems.

References

1. Angluin D, Aspnes J, Diamadi Z, Fischer MJ, Peralta R (2006) Computation in networks of passively
mobile finite-state sensors. Distrib. Comput 18(4):235-253

2. Aspnes J (2010) A modular approach to shared-memory consensus, with applications to the
probabilistic-write model. In: Proceedings of 29th symposium on principles of distributed comput­
ing (PODC), pp 460^167

3. Aspnes J, Ellen F (2011) Tight bounds for anonymous adopt-commit objects. In: Proceedings of 23rd
symposium on parallelism in algorithms and architectures (SPAA), pp 317-324

4. Attiya H, Gorbach A, Moran S (2002) Computing in totally anonymous asynchronous shared memory
systems. Inf Comput 173(2):162-183

5. Bonnet F, Raynal M (2011) The price of anonymity: optimal consensus despite asynchrony, crash, and
anonymity. ACM Trans Auton Adapt Syst TAAS 6(4):23

6. Bonnet F, Raynal M (2013) Anonymous asynchronous systems: the case of failure detectors. Distrib
Comput 26(3):141-158

7. Bonnet F, Raynal M (2010) Anonymous asynchronous systems: the case of failure detectors. In:
Proceedings of 24th international symposium on distributed computing (DISC), pp 206-220

8. Bonnet F, Raynal M (2010) Consensus in anonymous distributed systems: is there a weakest failure
detector? In: AINA. IEEE Computer Society, Australia, pp 206-213

9. Bouzid Z, Sutra P, Travers C (2011) Anonymous agreement: the janus algorithm. In: Proceedings of
15th international conference on principles of distributed systems (OPODIS). France, pp 175-190

E. Jimenez et al.

10. Bouzid Z, Travers C (2012) Anonymity, failures, detectors and consensus. In: Proceedings of 26th
international symposium on distributed computing (DISC), pp 427-428

11. Bouzid Z, Travers C (2012) Anonymity, failures, detectors and consensus. Technical report. http://hal.
inria.fr/hal-00723309. INRIA, August 2012

12. Chandra T, Hadzilacos V, Toueg S (1996) The weakest failure detector for solving consensus. J ACM
43(4):685-722

13. Chandra T, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM
43(2):225-267

14. Delporte-Gallet C, Fauconnier H (2009) Two consensus algorithms with atomic registers and failure
detector Q. In: Proceedings of 10th international conference on distributed computing and networking
(ICDCN'09), vol 5408. LNCS, pp 251-262

15. Delporte-Gallet C, Fauconnier H, Guerraoui R (2010) Tight failure detection bounds on atomic object
implementations. J ACM 57(4)

16. Delporte-Gallet C, Fauconnier H, Guerraoui R, Kermarrec AM, RuppertE, Tran-The H (2013) Byzan­
tine agreement with homonyms. Distrib Comput 26(5-6):321-340

17. Delporte-Gallet C, Fauconnier H, Tielmann A (2009) Fault-tolerant consensus in unknown and anony­
mous networks. In: Proceedings of 29th IEEE international conference on distributed computing
systems (ICDCS'09). Canada, pp 368-375

18. Durresi A, Paruchuri V, Durresi M, Barolli L (2005) A hierarchical anonymous communication protocol
for sensor networks. In: Proceedings of international conference on embedded and ubiquitous systems
(EUS'05). LNCS, vol 3824. Springer, Berlin, pp 1123-1132

19. Fischer M, Jiang H (2006) Self-stabilizing leader election in networks of finite-state anonymous agents.
In: Proceedings of 10th international conference on principles of distributed systems (OPODIS).
France, pp 395^109

20. Fischer MJ, Lynch N, Paterson MS (1985) Impossibility of distributed consensus with one faulty
process. J ACM 32(2):374-382

21. Gafni E (1998) Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proceedings
of 17th symposium on principles of distributed computing (PODC), pp 143-152

22. Jimenez E, Arevalo S, Fernandez A (2006) Implementing unreliable failure detectors with unknown
membership. Inf Process Lett 100(2):60-63

23. Raynal M (2009) Failure detectors for asynchronous distributed systems: an introduction. In: Wiley
encyclopedia of computer science and engineering, vol 2, pp 1181-1191

24. Raynal M (2010) Communication and agreement abstractions for fault-tolerant asynchronous distrib­
uted systems. In: Synthesis lectures on distributed computing theory. Morgan & Claypool Publishers

http://hal
http://inria.fr/hal-00723309

