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Abstract In classical distributed systems, each process has a unique identity. Today, 
new distributed systems have emerged where a unique identity is not always possible 
to be assigned to each process. For example, in many sensor networks a unique identity 
is not possible to be included in each device due to its small storage capacity, reduced 
computational power, or the huge number of devices to be identified. In these cases, 
we have to work with anonymous distributed systems where processes cannot be 
identified. Consensus cannot be solved in classical and anonymous asynchronous 
distributed systems where processes can crash. To bypass this impossibility result, 
failure detectors are added to these systems. It is known that Q is the weakest failure 
detector class for solving consensus in classical asynchronous systems when a majority 
of processes never crashes. Although AQ was introduced as an anonymous version of 
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Q, to And the weakest failure detector in anonymous systems to solve consensus when 
a majority of processes never crashes is nowadays an open question. Furthermore, AQ 
has the important drawback that it is not implementable. Very recently, AQ' has been 
introduced as a counterpart of Q for anonymous systems. In this paper, we show 
that the AQ' failure detector class is strictly weaker than AQ (i.e., AQ' provides less 
information about process crashes than AQ). We also present in this paper the first 
implementation of AQ' (hence, we also show that AQ' is implementable), and, finally, 
we include the first implementation of consensus in anonymous asynchronous systems 
augmented with AQ' and where a majority of processes does not crash. 

Keywords Failure detectors • Consensus • Anonymity • Fault tolerance • 
Anonymous omega 

1 Introduction 

From a theoretical and practical point of view, we are accustomed to define and use 
distributed systems where each process has a unique identity (we can call it classical 
distributed systems). However, new distributed systems have emerged where a unique 
identity is not always possible to be assigned to each process. For example, in many 
sensor networks, a unique identity is not possible to be included in each device due 
to its small storage capacity, reduced computational power, or the huge number of 
devices to be identified [1,18]. In all these cases, we have to work with distributed 
systems where processes have no identity. Hence, we can use anonymous systems 
where processes are not identifiable because all of them are coded identically (i.e., 
processes have no identity, and there is no way to distinguish among them). 

Another important context where anonymity is very important is when the users' 
privacy is involved [16]. In this case, identification is not possible without something 
that breaks the symmetry. 

On the other hand, one of the most important coordination problems in distributed 
computing is consensus [13]. The consensus problem says that in a system where a 
set of values are proposed, only one of them can be decided. Consensus cannot be 
solved in anonymous (and classical) asynchronous systems when even one process 
may crash [20]. To bypass this impossibility result, failure detectors are added to these 
anonymous asynchronous systems [6,8]. 

A failure detector is a distributed device that provides information about process 
crashes [13]. It is well known that Q is the class of failure detectors that provides the 
minimum information about process crashes (i.e., it is the weakest failure detector) 
for solving consensus in classical asynchronous systems when a majority of processes 
never crashes [12]. AQ was introduced as an anonymous version of Q [6].1 Roughly 
speaking, AQ states that eventually only a single process identifies itself as the leader 
of all non-crashed processes. Nevertheless, to find the weakest failure detector class to 
achieve consensus in anonymous systems when a majority of processes never crashes 
is still an open question [8]. Furthermore, AQ has the important drawback that it is 

A£2 was first proposed by Bonnet and Raynal in the preliminary DISC 2010 conference paper [7]. 
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not implementable in anonymous systems [6]. Hence, any algorithm that implements 
consensus with Af2 is not implementable. 

Very recently, AQ' has been introduced as a new counterpart of Q for anonymous 
systems [10]. Roughly speaking, AQ' states that eventually a set L of non-crashed 
processes will permanently identify themselves as leaders, and all these leader 
processes eventually will know the size of L (i.e., \L\). 

Related work One of our main goals in this paper is to present the first implementation 
of the AQ' failure detector [10]. This failure detector is important because it is weaker 
than other classes of failure detectors [5,6]. In [6], the anonymous classes AP, AQ 
and AS are introduced. They are the anonymous counterparts of the classes of perfect 
failure detector P [13], eventual leader failure detector Q [12], and quorum failure 
detectors S [15], respectively. In the paper [11], another slightly different anonymous 
version of S denoted AS' is introduced. In [5], the authors present the failure detector 
AP which is the anonymous counterpart of the perfect failure detector P when the 
membership of the system is unknown. With respect to the implementability, Afi 
has the drawback that is not implementable even in anonymous synchronous systems 
[6]. If the membership is unknown, AP is not implementable either (applying similar 
techniques than in [22]). 

In [19], a distributed model where the system is a collection of anonymous finite-
state agents is presented. A protocol is self-stable if it does not require initialization 
to work, and it is always able to recover from temporary failures. In that paper [19], it 
is shown that self-stabilizing eventual leader election is impossible to achieve in such 
systems. To circumvent this result, they enrich the system with the failure detector Q1 
When an agent invokes f2 ? this failure detector returns the information of whether or 
not one or more processes are working as leaders. The information returned by Q ? may 
be incorrect by a finite period of time, but eventually Q ? will always provide accurate 
information. The authors show in [19] that in this system augmented with Ql it is pos­
sible to achieve self-stabilizing eventual leader election in rings and complete graphs. 

Failure detectors are important because they can help to solve important problems 
in distributed computing. One of the most important problems is consensus [13]. Con­
sensus in anonymous systems is introduced for first time in [5]. In it, the authors 
solve consensus with a majority of processes that never crashes and using the failure 
detector AP. They show that It + 1 is the lower bound on the number of rounds to 
achieve consensus (t is the maximum number of crashed processes, and all processes 
must know this value of t). In [17], consensus in anonymous systems with differ­
ent synchrony assumptions is also solved (that is, they assume that the system is 
not totally asynchronous but with partial synchrony). In the technical report [11], an 
algorithm is presented using the failure detector {A£2', AS') to solve consensus in 
anonymous systems where all processes are interconnected using FIFO reliable links 
(hence, their anonymous system is stronger than the system we present in this paper). 
Nevertheless, their solution allows to solve consensus even if a majority of processes 
crashes. 

Not only in anonymous message-passing systems the consensus problem is solved, 
but also several solutions are presented in the literature to achieve consensus in anony­
mous shared memory systems [3,4,9,14]. In all of them, consensus is implemented in 
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an anonymous shared memory system bounding the step complexity (i.e., the number 
of shared memory accesses) to 0(n) by each invocation on a read/write operation, 
being n the number of processes of the system. In [9] and [14], the failure detector 
AQ [6] is used to solve consensus and there is no bounds in the number of crashed 
processes. In [9], the shared memory is formed by atomic multi-writer and multi-reader 
registers, and in [14], these shared memory is made up by the weak set object (this 
object is a set from which values are never removed). In [4], the authors implement 
consensus in an anonymous shared memory where no processes can crash and where 
the shared memory is implemented using atomic registers (namely, Q (log n) is the 
number of atomic registers needed to solve consensus). In [2] and [3], the anonymous 
shared memory is built by objects denoted adopt-commit [21]. In [2], consensus is 
solved for the probabilistic-write model. The algorithm presented is formed by an 
adopt-commit object to detect agreement, and by a conciliator object to guarantee the 
agreement not deterministically but with some probability. In [2], the step complex­
ity is O(logm), being m the different values that processes can propose. In [3], the 
solution is improved to 0{n). 

Our contribution In this paper, we show that AQ' is strictly weaker than AQ (i.e., 
AQ' provides less information about process crashes than AQ). We also present the 
first implementation in the literature of AQ' (hence, we also show that AQ' is imple-
mentable). It is worth noting that this implementation is communication efficient (i.e., 
eventually only leader processes send messages). Finally, it is included in this paper 
the first implementation of consensus in anonymous asynchronous systems enriched 
with AQ' and where a majority of processes does not crash. Therefore, we also show 
in this paper that consensus with this new and weaker version of Q for anonymous 
systems AQ' is also implementable. 

This paper is organized as follows. The model of the anonymous distributed system 
is presented in Sect. 2. The failure detector AQ' is presented in Sect. 3, and consensus 
using AQ' can be found in Sect. 4. It is noteworthy that in Sect. 3.2, we prove that 
AQ' is weaker than the traditional definition of anonymous omega failure detector 
AQ. Finally, we present the conclusions in Sect. 5. 

2 Anonymous system AS 

AS is a message-passing system formed by a finite set IJ = {/?j}j=1 „ ofnprocesses 
fully interconnected by links. Each process pi e IJ uses the primitive broadcast to 
send a message to every process pj e IJ. This primitive, denoted by broadcast {m), 
sends a copy of message m through each link. 

Processes are executed by taking steps. A process crashes when it stops taking 
steps. We assume that crashes are permanent. We say that process pi is correct in 
a run if it does not crash, and faulty if pi crashes. We denote by Correct the set 
of correct processes, and by Faulty the set of faulty processes. We denote by / the 
maximum number of processes that may crash in a run. We consider that if some 
process pi crashes while the primitive broadcast (m) is invoked by pi, a copy of the 
message m can be delivered to any unknown subset of processes (including the empty 
subset). 
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For analysis, we assume that time advances at discrete steps. We also assume a 
global clock whose values are the positive natural numbers, but processes cannot 
access it. We use the notation x e N to indicate an instant of time. 

Processes are anonymous [6]. Then, processes have no identity, and there is no 
way to differentiate between any two processes of the system (i.e., processes have no 
identifier and execute the same code). 

A failure detector FD is a distributed device with a local module FDi for each 
process pi e IJ. A failure detector FD returns information related with faulty processes 
each time that a process pi invokes its module FDi • The addition of a failure detector 
FD in a system S (denoted by S[FD]) allows to solve a certain problem P that it 
is impossible to overcome in S alone. According to the type and the quality of the 
information about crashed processes, several classes of failure detectors have been 
proposed [23,24]. 

3 AQ' failure detector class 

We introduce in this section the algorithm AAQ> to implement the failure detector AQ1 

in anonymous partially synchronous systems (see Fig. 1). This algorithm has a nice 
property: communication efficiency. That is, in every run, there is a time after which 
only leader processes broadcast messages. 

3.1 Definition of ASl' 

The AQ' [10] failure detector provides each process pi e IJ with two output variables 
leader i and quantity\. LetL (resp., NL) be the subset of correct processes such that 
eventually their variable leader = true (resp., leader = false) permanently. We 
say that a correct process pi is an eventually leader process (for shorten, a leader) if 
Pi e L, and an eventually non-leader process (for shorten, a non-leader) if pi e NL. 
A failure detector of class AQ' [10] satisfies that: 

1. Every correct process is either an eventually leader process, or an eventually non-
leader process. 

2. There is at least one eventually leader process in the system. 
3. There is a time after which every eventually leader process pi has quantityi = \L\ 

permanently, being L the set of eventually leader processes in the system. 

More formally, the definition of AQ' is the following. Let leader? and quantity? 
be the variables leaderi and quantityi provided by AQ' at time x. Let L = [pi e 
Correct: 3x: Vr' > x, leader? = true}, andM, = [pi e Correct: 3x : Vr' > x, 
leader? = false}. In each run R of the system, any failure detector of class AQ1 

must satisfy the following three properties: 

1. (LUNL = Correct) A(LHNL = 0). 
2. L ^ 0. 
3. 3x: Vr' > r, Vpi e L, quantity? = \L\. 

Note that there is not a time after which a correct process pk e NL must have in 
quantityk the number of leaders \L\ of the system. 



E. Jimenez et al. 

3.2 A Si' is strictly weaker than A Si 

First, we define AQ [6]. Let us consider that each process pi e IJ has a boolean variable 
k. Every failure detector of class AQ satisfies that eventually: (1) there is a correct 
process pi that has // = true permanently, and (2) every correct process pj other 
than pi has lj = false permanently. More formally, 3x, 3pi e Correct: Vr' > x, 
VPj ¥= Pi ^ Correct, lj = true and lr, = false. 

A failure detector class X is strictly weaker than class Y in system S if (a) there 
is an algorithm that emulates the output of a failure detector D' of class X in the 
system S augmented with a failure detector D of class Y (denoted by S[D]), and (b) 
the opposite is not true (i.e., there is no algorithm that emulates the output of a failure 
detector D' of class Y in the system S augmented with a failure detector D of class 
X). 

Then, we now prove that AQ' is strictly weaker than AQ with the following two 
cases. 

Lemma 1 Class AQ' can be obtained from AS\AQ\ 

Proof Let D be any failure detector of class Af2. Let D' be an emulated failure 
detector with the following algorithm. Each process pt sets D'.quantity\ = 1, and 
permanently updates D''.leader•; with the value of D.k. 

From definition of A£2, eventuallyasinglecorrectprocess/?/has Z)./ea<ier/ = true 
permanently, and every correct process pj other than pi has D.leaderj = false 
permanently. Hence, pi belongs to L, and the rest of correct processes belong to NL 
(Condition 1 of AS2'). Then, \L\ = 1, and, hence, L ^ 0 (Condition 2 of AS2'). Finally, 
process/?/ has D'.quantityi = \L\ = 1 permanently (Condition 3 of A£2'). Therefore, 
D' is a failure detector of class AQ'. • 

Lemma 2 Class AQ cannot be obtained from AS\AQ'\ 

Proof Let D be a failure detector of class AQ' with a run R where the following six 
points are preserved: (1) the number of processes is greater than one, \IJ\ > 1, (2) 
all processes are correct, Correct = IJ, and all of them are leaders, L = Correct, 
(3) from the beginning of the run, D.leaderi = true and D.quantityi = \Correct\ 
permanently in each process pi [note that this is one of the possible outputs of AQ1 

by previous points (1) and (2)], (4) all processes execute in R the same deterministic 
code at the same speed in lock step, broadcasting each message m at the same time, 
(5) the delay of m is the same in every link, and, hence, m will be received by every 
process in the same step of the execution, (6) if two messages m and m' are received 
in the same step, both messages will be delivered in the same order in every process. 

Let us assume, by the way of contradiction, that AQ can be deterministically 
obtained from AQ' in all runs. Then, we construct a run R as described above. Then, 
because the six points of R and because processes have no identity, there is no way 
to distinguish among all correct processes in R deterministically, and it is impossi­
ble to break this symmetry. Thus, every process pi either outputs D'.li = true or 
D'.li = false in R. Therefore, it is impossible to output D'.li = true in a single 
correct process pi, and D' .lj = false in every correct process pj other than pi in all 
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executions (which contradicts the properties of Af2). Hence, a failure detector D' of 
class AQ cannot be obtained from AS[D]. a 

Theorem 1 Af2' is strictly weaker tlianAQ. 

Proof It derives directly from Lemmas 1 and 2. • 

3.3 Anonymous partially synchronous system APSS 

Let APSS be a system like AS but with the following particular features. Links are 
eventually timely. A link between processes pi and pj is eventually timely if there is 
an (unknown) stabilization time Tst after which if process pi sends a message at time 
t >Tst, this message is delivered without errors to pj in a bounded time t' <t + A, 
being A an unknown but finite time. Messages sent by pi at time t" < Tst (i.e., before 
the global stabilization time) can be lost or delivered to pj after a finite time greater 
th<mt" + A. 

We consider that the number of processes that may crash in the system APSS is at 
most n — \ (i.e., / < n - 1). 

Processes are partially synchronous in the sense that the time to execute a step by 
a process pt is an unknown positive but bounded time. 

3.4 The algorithm A-ASI' in APSS 

We present in Fig. 1 an algorithm to implement the AQ' failure detector in the system 
APSS. In every run, AAQ> eventually elects a set of leaders among all correct processes 
of the system APSS. This algorithm has a nice property: communication efficiency. 
That is, in every run, there is a time after which only leader processes broadcast 
messages. 

The description of the algorithm AAQ> of Fig. 1 is the following. A correct process 
Pi is one of the leader processes if the condition of line 15 of Task 1 is ever satisfied, 
and hence, leader•* contains true forever. Note that this is so because after line 1 there 
is no line in Tasks 1 and 2 of Fig. 1 where leader•; is set to false again. 

In Task 1, each leader process pi broadcasts heartbeat messages (HB, seqi) per­
manently, being seqi its number of sequence (lines 5-8). A process pi waits a time 
timeouti (line 9) after which it checks how many acknowledgments it has received 
(lines 10-16). If process pi is a leader process, it stores in reci the set of messages 
(ACK_HB, s, s') received with s < seqi < s' (line 11). Note that rect, when this 
line 11 is executed, can return messages that had been received before line 7 is exe­
cuted. Hence, quantityH has the number of these acknowledgments contained in rect 

(line 12). If process pi is not a leader process, it stores in reci the set of new messages 
(ACK_HB, —, —) received since its latest execution of line 14. If it does not receive 
any acknowledgment message, then process pt becomes a leader (line 15). 

In Task 2, each leader process pi uses the variable next_acki to know the next 
number of sequence s of the acknowledgment message (ACK_HB, s, - ) that process 
Pi has to broadcast. Initially, next_acki «- 1 (line 2). When a leader process pt 
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Init: 
(1) timeouti <— 1; leaderi <— false; seqi <— 0: 
(2) nextuacki <— 1; quantityi <— 0; 
(3) start Tasks 1 and 2. 

Task 1: 
(4) while true do 
(5) if (leaderi) then 
(6) seqi <— se<K + 1; 
(7) broadcast(HB, seqi) 
(8) end if; 
(9) wait until timeouti units: 
(10) if (leaderi) then 
(11) let reci b e the set of (ACK.HB, s, s') 

received such that s < seqi < s'-
(12) quantityi <— |»*eci 
(13) else 
(14) let reci be the set of new (ACK.HB, -, -) 

received: 
(15) if (reci = 0) then leaderi *— true end if 
(16) end if 
(17) end while. 

Task 2: 
(18) upon reception of message (HB^s^) 

such that (sj; > next-acki) do: 
(19) if (leaderi) then 
(20) broadcast(AGK-HB, nextuacki, s^); 
(21) nextjicki <— s^ + 1 
(22) end if. 

(23) upon reception of message (AGK_HB, s^, s'k) 
such that (sj; < seg^) do: 

(24) if (leaderi) then timeouti <— timeouti + 1 end if. 

Fig. 1 The algorithm JK^QI in the system APSS (code for process p;) 

receives a message (HB,Sk) not previously acknowledged (i.e., ^ > next_acki) 
(line 18), it broadcasts a message (ACK_HB, next_acki, Sk) which acknowledges (in 
only one message) all heartbeat messages with the number of sequence in the range 
[nextjicki, Sk] (line 20). 

A leader process pi may broadcast heartbeat messages (HB, seqi) faster than the 
time that another leader process pk broadcasts messages (ACK_HB, Sk,s'k) with Sk < 
seqi. In this case, process pi will receive outdated acknowledgment messages, and 
timeouti will be incremented in one unit (lines 23-24). Then, leader process pi will 
slow down its heartbeat broadcasting speed because it increases the time that it is 
waiting at line 9. 

3.5 Correctness of A-ASI' in APSS 

We now present the formal proofs to show that AAQ1 implements Af2' in APSS. 
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The following lemma shows that there is a time after which every correct process 
Pi has leaderi = x permanently. This value x is either true or false. 

Lemma 3 For each run, (L U NL = Correct) A (L n NL = 0). 

Proof Let us consider, by contradiction, that there is a run with a correct process pt 

such that pi £ L and pi £ NL. Then, by this hypothesis of contradiction, there is 
some correct process pi such that leaderi is changing its boolean value infinitely 
often. However, process pi initially has leaderi = false (line 1), and it only may 
change to true once (when the condition of line 15 is satisfied). Note that there is no 
line in Tasks 1 and 2 of Fig. 1 where leaderi is set to false again. Hence, we reach 
a contradiction. Therefore, every correct process pi either pi e L or pi e NL, and 
hence, (LUNL = Correct) A(LCINL = 0). • 

Let 7> be the time when every faulty process p/ has crashed, and all messages 
(HB, -) and (ACK_HB, —) broadcast by p/ have already been delivered or lost. 

We prove in the following lemma that at least one correct process pc eventually has 
leaderc = true permanently. 

Lemma 4 For each run, L ^ 0 

Proof By contradiction, let us consider that there is a run such that L = 0. Note that 
in Fig. 1 if process pi changes from leaderi = false (line 1) to leaderi = true (line 
15), leaderi will never change to false again. So, if the hypothesis of contradiction 
holds, there is no process that broadcasts messages (HB, —) and (ACK_HB, —) after 
TF, because leader = false in all correct processes (lines 5-8 and lines 19-22). Note 
that the maximum number of faulty processes in the system is n — 1 (i.e., / < n — 1). 
Then, after 7>, at least one correct process pc will execute leaderc «- true because 
it has not received any message since its latest execution of line 14, and recc is empty 
(lines 14-15). Therefore, we reach a contradiction because at least a correct process 
pc has leaderc = true permanently, and hence, for each run, L ^ 0. • 

Let it- be the sth iteration of process pi. This iteration is formed by all operations 
from line 4 to line 17 of Task 1 of Fig. 1 executed by process pi for the sth time. 

We show in the following lemma that eventually each leader process pi has in 
reci, when it executes line 11, one (and only one) message (ACK_HB, s, s') with 
s < seqi < s' from every leader process pj. 

Lemma 5 In each run, given processes Pi e L and pj e L, there is an iteration it-" 
such that Vsb > sa process pi has in reci exactly one message (ACK_HB, s, s') with 
s < Sb < s' of process pj when process pi executes line 11 at iteration it-b'. 

Proof Note that, after executing leaderi «- true of line 15, correct process pi e L 
broadcasts messages (HB, Si) permanently, increasing in one unit the value of the 
sequence number Si at each iteration it-'. 

Let us define a time 7] such that 7] > Tst, and process pi and process pj are already 
leaders. Then, leader process pi will be broadcasting messages (HB, Si) permanently 
at each iteration it-' with an increasing number of sequence Si, such that after time 7] 
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we know that all these heartbeat messages will be received by leader process pj e L. 
So, we also know that process pj after time 7] + A will broadcast acknowledgment 
messages (ACK_HB, Sj, s',) permanently with increasing values of Sj and s',, being 
Sj < sL Note that process pj broadcasts one (and only one) message (ACK_HB, s', s") 
in response to all messages (HB, Si) received from all leaders, s' < si < s", (lines 
18-21). 

Let us consider the following sequence of iteration numbers s\ < S2 • • • < sa- Let 
(ACK_HB, sj, - ) be the first acknowledgment message broadcast by pj after time 
7}. Then, for the iteration it-2, there is a message (ACK_HB, s, s') with s < S2 < s' 
broadcast by process pj and delivered at process pi at most A units of time after being 
broadcast. Note that (ACK_HB, s, s') with s < si < s' can be the same message for 
several consecutive iterations. 

Note that if in an iteration it}*, with sx > s\, when leader process pi executes line 
11, it has not received the message (ACK_HB, s, sr) with s < sx < s' from process 
Pj, then, each time this happens, timeouti will be incremented when this message 
(ACK_HB, s, sr) with s < sx < s' is finally received (lines 23-24). This is so because 
seqi will be greater than sx. 

Let sa be the iteration number where for the first time the value of timeouti will be 
greater than time Trepiyj =2A+ (pj, being A the maximum time to deliver a message 
from pj to pi, and where (pj is the maximum time that process pj takes to execute 
lines 18-22. 

Now, let us assume, by contradiction, that there is an iteration it\h, with Sb > sa, 
such that when leader process pi executes line 11 at this iteration its

i
b, it has not 

received the message (ACK_HB, s, s') with s < Sb < s' from process pj. Note 
that in this iteration process pi broadcasts the message (HB,Sb), and waits until 
timeouti > Trepiyj because this time is never decreased in the algorithm. Then, when 
process pi executes line 11 at this iteration itf, either (a) will receive one message 
(ACK_HB, s, sr) with s < Sb < s' from process pj, or (b) has already received one 
message (ACK_HB, s, s') with s < Sb < s' from process pj in response to a faster 
leader. 

Thus, for every iteration it\h with Sb > sa, exactly one message (ACK_HB, s, s') 
with s < Sb < s' from process pj will be received by process pi when it executes line 
11 at its

i
b. Hence, we reach a contradiction and the claim of the lemma follows. • 

This theorem proves that AAQ> is communication efficient. Note that in the worst 
case all correct processes are in L. 

Theorem 2 In the algorithm of Fig. 1, there is a time after which only processes in L 
broadcast messages permanently. 

Proof From Lemma 3 and definition of 7>, we can observe in the algorithm of Fig. 1 
that eventually after 7> only correct processes are alive and all broadcast and delivered 
messages belong to these correct processes. Then, if a correct process pi broadcasts a 
message {HB, —) or (ACK_HB, - ) , it must have leaderi = true (lines 5-8 and lines 
19-22, respectively). So, if this case happens, it has already executed leaderi «- true 
of line 15. Finally, note that if process pi changes from leaderi = false (line 1) to 
leaderi = true (line 15), this variable leaderi will never change to false again, and 
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hence, pi is in L. Therefore, there is a time after which only processes in L broadcast 
messages permanently. • 

Theorem 3 The algorithm of Fig. 1 implements the failure detector AQ' inAPSS. 

Proof From Lemmas 3 and 4, Conditions 1 and 2 of AQ' are preserved in each run. 
From Theorem 2 and Lemma 5, in each run, every process pi e L eventually has 
reci = L permanently when it executes line 11, and hence, quantityt = \L\ (line 12). 
Thus, Condition 3 of AQ' is also preserved in each run. Therefore, the algorithm of 
Fig. 1 implements the failure detector AQ' in a system APSS. a 

4 Consensus with Aii' 

We introduce in this section the algorithm Aeons to implement consensus in anonymous 
asynchronous systems augmented with the failure detector A£2', and with a majority 
of correct processes (see Fig. 2). 

The consensus problem [13] specifies that all processes that take a decision have to 
decide the same value v, and this value v has to be proposed by some process. More 
formally, the definition of consensus for anonymous systems is the following. 

4.1 Definition of consensus 

In each run, every process of the system proposes a value, and has to decide a value 
satisfying the following three properties: 

1. Validity Every decided value has to be proposed by some process of the system. 
2. Termination Every correct process of the system eventually has to decide a value. 
3. Agreement Every decided value has to be the same value. 

4.2 Anonymous asynchronous system AAS 

Let AAS be a system such as AS but with the following particular features. Links 
are reliable. A link between processes pi and pj is reliable if every message sent 
by pi is delivered once to pj without errors in an unknown, positive and unbounded 
time. 

We consider that a majority of processes are correct in this system (i.e., / < n/2). 
Each process pi initially has no information about any other different process p} 

of IJ (i ^ j) except that the size of the system is n and / < n/2. In other words, in 
every run, process pi only knows that of n processes at least the majority of them are 
correct, but it does not know who they are or the exact number of them. 

As we have mentioned in the introduction, it is impossible to solve consensus in 
anonymous asynchronous systems. To avoid this result, failure detectors are included. 
We denote by AAS[A£2'~\ the anonymous asynchronous system defined in this section 
augmented with the failure detector AQ'. 
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4.3 The algorithm A^ons \aAAS[A$l'] 

We present in Fig. 2 an algorithm to solve consensus in AAS[A£2'~\. This algorithm is an 
adaptation of the leader-based consensus algorithm of [8] to the case in which multiple 
leaders coexist in the anonymous system. The changes between both algorithms are 
mainly focused in the phase PHO where the failure detector is used. Every process p, 
uses the while sentence of Task 1 to execute asynchronous rounds permanently (lines 
4-24). Each round is formed by three phases: PHO, PHI and PH2. Process pi uses 
the variable r; to know the number of the round that it is executing. The variable est, 
contains the value proposed by pi in round r; to be decided. Note that initially est. 

function p r o p o s e ^ ) : 
Init: 
(1) r; <— 0; esti <— vf, 
(2) start Tasks 1 and 2. 

Task 1: 
(3) while true do 
(4) r i ^ n + 1: 

% phase PHO 
(5) li <— D.leaderi] 
(6) if (li) then broadcast(PH0, true, ri, esti) end if: 
(7) wait until 

(7-a) ((li ^ D.leaderi) 
V 

(7-b) ((h) A (D.quantityi (PHO, true, ri, —) received) 
V 

(7-c) ((PHO, false, r,,-) received)): 
(8) if ((PHO, -, n, -) received) then 
(9) esti <— min{estfc : (PHO, —, ri, est^) received} 
(10) end if; 
(11) broadcast^PHO, false, ri, esti)• 

% phase PHI 
(12) broadcast^PHI ,r,,est,); 
(13) wait until (PHI, r;,—) received 

from > ra/2 processes: 
(14) if (all (PHI, ri, est) received : esti = est) then 
(15) agreei <— true else agreei <— false 
(16) end if; 

% phase PH2 
(17) broadcast^PH2, rt, esti, o-g^eei): 
(18) wait until (PH&, r;, —, —) received 

from > ra/2 processes; 
(19) if ((PH&, ri, est, true) received) then 
(20) esti <- est 
(21) end if 
(22) if (all (PH&, n, est, true) received) then 
(23) broadcast(DECIDE, est,); return(esti) 
(24) end if 
(25) end while. 

Task 2: 
(26) upon reception of (DECIDE, v) do: 
(27) broadcast(DECIDE,v); return(t;). 

Fig. 2 The algorithm Aeons for solving consensus in the system AAS[A£2'] where is known that a majority 
of processes are correct (process pi's code) 
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contains the value vi, that is, the proposal of process pi (line 1). The boolean variable 
agreei allows process pi to indicate whether it knows that a majority of processes has 
the same value in esti in round r*. The boolean variable k is used to know whether 
process pi is a leader process in round r*. 

In phase PHO, the goal is to reach a round r after which every leader process pj has 
the same value v in estj in each next round r' > r. To know if a process pi is a leader 
process in a round x, it stores in k the boolean value of leaderj returned by the failure 
detector Z> of class AQ' (line 5). If it is a leader, process pi broadcasts a message 
CP//0, true, x, esti) (line 6), and waits to receive a number D.quantityi of messages 
(.P//0, true,x, - ) (line 7-b). Note that this value quantity i, returned by the failure 
detector D of class AQ', is eventually the number of all leader processes if process pt 

is a leader process (Case 3 of A£2'). After that, a process pi sets in est; the minimal 
value of all received messages of phase PHO (lines 8-10), and broadcasts a message 
{PHO, false, x, esti) (line 11). This latter message allows non-leader processes to finish 
waiting in line 7-c in round x. Note that there is an unknown time t' after which the 
value leaderi returned by D stabilizes (by definition ofAQ'). Before this time t', a 
process pi can believe that it is a leader in round x because k = true, but D.leader 
may change to false in the same round x. To avoid being blocked forever in the wait 
sentence of line 7, the failure detector is checked permanently to know if the value 
of k changes with respect to D.leaderi while it is waiting in phase PHO (line 7-a). 
Similarly, the value D.quantityi is also checked permanently to eventually know the 
exact number of leader processes in this round x. 

In PHI, the goal is that processes can check whether in a round r each process p} 

of a majority of processes has the same value v as the proposed value (i.e., estj = v). 
To do so, each process pi broadcasts in round x a message (PHI, x, esti) (line 12), 
checking whether it receives the same value est in all messages (PHI, x, est) from 
a majority of processes, and esti = est (line 14). If this happens, agreei «- true. 
otherwise, agreei «- false (lines 14-16). 

In PH2, the goal is that a process pi can decide a value v in a round r. If this happens, 
v has to be always the unique possible value to be decided by any other process p} 

in any of the next rounds r' > r. To do so, each process pi broadcasts, in a round x, 
a message (PH2, x, esti, agreei) and waits to receive a message (PH2, x, —, —) from 
a majority of processes (lines 17-18). Note that, due to phase PHI, given any two 
received messages (PH2, x, estj, true) and (PH2, x, estk, true), the proposed value in 
this round x has to be the same (i..e, estj = estk). Hence, if the fourth parameter of 
some received message is true, process pi establishes est as the value to be decided 
in x or in a next round (lines 19-21). On the other hand, if in all these messages 
the fourth parameter is true, process pi decides in this round x the value est of all 
received messages (PH2, x, est, true), and broadcasts a message (DECIDE, esti) with 
its decision (lines 22-24). 

4.4 Correctness of A^ons in AAS[ASi'] 

We define a round r as the set of sentences that every process pi executes while it has 
n =r. 
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Lemma 6 Validity: for each run, every decided value has to be proposed by some 
process of the system. 

Proof Let us use induction on the number of rounds r to show that when a process /?; 
finishes a round in a run, it holds in its variable esti a value proposed by some process. 
For simplicity, we assume round r = 0 as base of our induction. Clearly, the claim 
holds since the variable esti of process /?; is initialized with its own proposed value 
vi (line 1). Induction hypothesis: Let us assume that the claim is true for round r = k. 
Then, for every process /?; that finished round k, the value held in variable esti, when 
r; = k, was proposed by some process. Stepr = k + 1: We now show that the claim 
also holds in round r = k+l. For every process /?; that finished round k, the variable 
esti can be changed in round k + l with the proposed value est broadcast in phase 
PHO by some process (lines 8-10). After that, the variable esti can only be changed 
with proposed values est broadcast by processes in phase PHI (line 14) and PH2 (line 
20). Then, the claim is also held in this step r = k + 1. Therefore, it is shown by 
induction that when a process /?; finishes round r it holds in its variable esti a value 
proposed by some process. 

Thus, if a process /?; finishes a round and decides esti = v when it executes line 23, 
this value v was proposed by some process. On the other hand, if/?; decides v executing 
Task 2, this value v was also proposed by some process because it is broadcast when 
line 23 is executed. So, for each run, every decided value has to be proposed by some 
process of the system. • 

Observation 1 If some correct process does not wait forever at line 7 of a round r, 
then no other correct process will wait forever at line 7 of this round r. 

Proof If a correct process /?; reaches line 11, it broadcasts a message {PHO, false. 
r, esti) that makes the condition of line 7-c true for every other correct process (recall 
that links are reliable). • 

We say that a process /?; changes its leading state if the value of /; is changed. 

Observation 2 If a correct process changes its leading state after executing line 5 of 
round r, then no correct process will wait forever at line 7 of this round r. 

Proof If a correct process changes its leading state after executing line 5 of round r, 
then the condition of line 7-a becomes true and it unblocks. Then, from Observation 1, 
every other correct process stops waiting at line 7 of this round r. • 

Observation 3 If any correct process waits forever at line 7 of a round r, then the 
condition of line 7-b evaluates to false forever for every correct process. 

Proof Otherwise, some correct process would stop waiting and, from Observation 1, 
every other correct process would stop waiting at line 7 of round r. • 

Lemma 7 No correct process waits forever at line 1. 

Proof Let us assume, by the way of contradiction, that there is a correct process that 
waits forever at line 7 of a round r. Then, every other correct process waits forever 
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too. Otherwise, Observation 1 would not hold. Besides, every correct process keeps 
its initial leading state. Otherwise Observation 2 would not hold. Finally, since every 
other correct process waits forever, then from Observation 3, the condition of line 
7-b evaluates to false forever for every correct process. Since every correct process 
keeps its initial leading state, the failure detector of every correct process eventually 
computes D.quantity correctly. Since all the correct leader processes execute line 6, 
and they are leaders forever from Observation 2, then, eventually, at least one correct 
process will receive at least D.quantity {PHO, true, r, —) messages (recall that the 
links are reliable), what contradicts the initial assumption, completing the proof. • 

Lemma 8 Let pi be a leader process in run R. There is a round r of run R after which 
every process pi that finishes phase PHO has esti = esti at the end of phase PHO of 
each round r' > r. 

Proof Let t be the time in a run R when (a) all faulty processes have crashed and their 
broadcast messages have already been delivered, (b) D.leader does not change in any 
correct process anymore, and (c) D.quantity does not change in any leader process 
anymore. Let r be the largest round in run R reached by any correct process at time 
t. Let us consider that this process is pi. From Lemma 7, no process blocks in phase 
PHO of this round r. From the assumption that a majority of processes are correct, 
no process blocks in phases PHI and PH2 of round r. Then, all leader processes 
eventually reach this round r and broadcast {PHO, true, r, est). Hence, we have two 
cases: 
Case 1 Process pi is a leader process. Its variable D.quantityH has the total number of 
leader processes and it receives this number of messages {PHO, true, r, est) (line 7-b). 
Then, it sets esti with the minimum value est of all processes. Each leader process 
Pi 7̂  Pi will also receive the same messages and will also set in its variable esti the 
same minimum value est. After that, process pi broadcasts {PHO, false, r, esti) (line 
11). Therefore, variable est of all leader processes have the same value. 
Case 2 Process pi is a non-leader process. Each leader process, when finishes 
phase PHO, broadcasts {PHO, false, r, est) with the minimum value est of all leader 
processes (line 11). Hence, all messages {PHO, false, r, est) received by process pt 

have the value est of a same leader process. 
Therefore, by the two previous cases, every process pi that finishes phase PHO has 

esti with the same value of a leader process at the end of phase PHO of this round 
r. Note that after phase PHO, the value in the variable est does not change in the 
following two phases of the same round. Then, process pi keeps the same common 
value in esti in phases PHI and PH2. Thus, in every round r' > r of a run, every 
process pi that finishes phase PHO of r' has esti = esti at the end of this phase PHO, 
being pi a leader process. • 

Lemma 9 Agreement: for each run, every decided value has to be the same value. 

Proof Let us suppose that a process pi decides a value v in the round r of a run, and 
a process pj decides a value v' in round r' > r of the same run. Then, this lemma is 
true if we show that v = v'. 

Let us use induction on the number of rounds r' to show this result. Let us assume 
that the base case of our induction is r' = r (both processes pi and pj decide in the 
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same round). If a process pi decides a value v in this round r, it is because a majority 
of processes broadcasts (PHI, r, v) and (PH2, r, v, true). Similarly, if a process p} 

also decides in this same round r, another (or the same) majority of processes broad­
casts (PHI, r, V) and (PH2, r, V, true). Then, because two majorities has at least one 
process in common, v = v'. Hence, the base case is satisfied. Induction hypothesis: 
Let us assume that the claim is true until round r' = r+k,k > 1. Then, if a process/?* 
decides a value v in round r, every process pj that decides until round r +k holds v in 
variable estj. Stepk+1: We now show that the claim also holds in round r' = r+k+l. 
Note that if a process decides a value v' in round r + k, this process receives messages 
(PHI, r + k, V) and (PH2, r + k, V, true) of a majority of processes. Also note that 
if a process that does not decide in round r + k wants to finish this round, it also has 
to receive messages (PH2, r + k, —, —) of a majority of processes. Then, at least one 
message of this majority has to be (PH2, r + k, V, true). By induction hypothesis, 
v' = v. Hence, every process pj that reaches round r+k+l holds in its variable est} 

the value v in round r +k. Clearly, if any process pj decides in this round r+k+l, 
the value only can be v, hence, the claim is also satisfied for r' = r+k+l. Therefore, 
the lemma is shown by induction. • 

Lemma 10 Termination: for each run, every correct process of the system eventually 
has to decide a value. 

Proof From Lemma 8, there is a round r in every run after which every process pi that 
finishes phase PHO has esti = esti, being pi a leader process. Then, from Lemma 7 
and because a majority of processes never crashes, all received messages in phase 
PHI of round r are (PHI, r, esti) and its number is greater than n/2. Hence, process 
Pi does not block in phase PHI and all received messages in phase PH2 of round r 
are (PH2, r, esti, true), and its number is also greater than n/2. So, every process pt 

that finishes phase PH2 in round r can decide. Therefore, every correct process of the 
system decides. • 

Theorem 1 The algorithm described in Fig. 2 solves the consensus problem in 
AAS[Att']. 

Proof From Lemmas 6, 9 and 10, validity, agreement and termination properties are 
satisfied in every run. • 

4.5 Analysis of rounds 

A way to consider the costs of an algorithm for consensus in message-passing systems 
is to evaluate the number of rounds needed to decide a value. In [5] is shown that 
2t + 1 is the lower bound on the number of rounds to achieve consensus (t is the 
maximum number of crashed processes). They can determine it exactly because they 
use the perfect failure detector for anonymous systems AP. Differently of [5] because 
we do not use a perfect failure detector, the maximum number of rounds in Acons for 
each run can not be bounded a priori. Therefore, we are going to analyze the extreme 
cases. Our algorithm Aeons works in asynchronous consecutive rounds, such that each 
round is formed by three phases (PHO, PHI and PH2). 
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The best case is when each process knows if it is a leader or a non-leader since 
the beginning of the run. That is, (Vpi e L, Wpk e NL, Vr) =>• (lj = true and 
l\ = false). Note that this happens if the failure detector D of class AQ' stabilizes 
since time x = 0 and returns true or false accurately. Hence, in this best case, a 
process decides in the phase PH2 of the first round (line 23). The worst case for a 
correct process pt is if when the failure detector stabilizes, it is in the highest round 
r' of all processes. In this case, pi has to wait until the rest of processes that form the 
majority reach its round r' (line 7). Then, this process pi will decide in the phase PH2 
of this round r' (line 23). 

5 Conclusion 

Anonymous systems are necessary when an identity is not possible in the processes of 
the system. Such cases are common, for example, in sensor networks where devices 
have constraints in computational power, a small storage capacity, or when there are 
a very big number of devices in the system. 

The AQ' failure detector [10] has been proposed very recently as a new counterpart 
of the omega failure detector for anonymous systems. We prove in this paper that AQ1 

is strictly weaker than AQ (which is the previously proposed version of the anonymous 
omega failure detector proposed in the literature). 

It has been shown in [6] that AQ is not implementable, and we present in this 
paper the first implementation of AQ'. Therefore, we prove in this paper that AQ' is 
implementable. 

Finally, we prove in this paper that consensus can be solved in anonymous asyn­
chronous systems using AQ' when a majority of processes does not crash. Hence, we 
also show here that consensus is implementable in anonymous systems. 

References 

1. Angluin D, Aspnes J, Diamadi Z, Fischer MJ, Peralta R (2006) Computation in networks of passively 
mobile finite-state sensors. Distrib. Comput 18(4):235-253 

2. Aspnes J (2010) A modular approach to shared-memory consensus, with applications to the 
probabilistic-write model. In: Proceedings of 29th symposium on principles of distributed comput­
ing (PODC), pp 460^167 

3. Aspnes J, Ellen F (2011) Tight bounds for anonymous adopt-commit objects. In: Proceedings of 23rd 
symposium on parallelism in algorithms and architectures (SPAA), pp 317-324 

4. Attiya H, Gorbach A, Moran S (2002) Computing in totally anonymous asynchronous shared memory 
systems. Inf Comput 173(2):162-183 

5. Bonnet F, Raynal M (2011) The price of anonymity: optimal consensus despite asynchrony, crash, and 
anonymity. ACM Trans Auton Adapt Syst TAAS 6(4):23 

6. Bonnet F, Raynal M (2013) Anonymous asynchronous systems: the case of failure detectors. Distrib 
Comput 26(3):141-158 

7. Bonnet F, Raynal M (2010) Anonymous asynchronous systems: the case of failure detectors. In: 
Proceedings of 24th international symposium on distributed computing (DISC), pp 206-220 

8. Bonnet F, Raynal M (2010) Consensus in anonymous distributed systems: is there a weakest failure 
detector? In: AINA. IEEE Computer Society, Australia, pp 206-213 

9. Bouzid Z, Sutra P, Travers C (2011) Anonymous agreement: the janus algorithm. In: Proceedings of 
15th international conference on principles of distributed systems (OPODIS). France, pp 175-190 



E. Jimenez et al. 

10. Bouzid Z, Travers C (2012) Anonymity, failures, detectors and consensus. In: Proceedings of 26th 
international symposium on distributed computing (DISC), pp 427-428 

11. Bouzid Z, Travers C (2012) Anonymity, failures, detectors and consensus. Technical report. http://hal. 
inria.fr/hal-00723309. INRIA, August 2012 

12. Chandra T, Hadzilacos V, Toueg S (1996) The weakest failure detector for solving consensus. J ACM 
43(4):685-722 

13. Chandra T, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM 
43(2):225-267 

14. Delporte-Gallet C, Fauconnier H (2009) Two consensus algorithms with atomic registers and failure 
detector Q. In: Proceedings of 10th international conference on distributed computing and networking 
(ICDCN'09), vol 5408. LNCS, pp 251-262 

15. Delporte-Gallet C, Fauconnier H, Guerraoui R (2010) Tight failure detection bounds on atomic object 
implementations. J ACM 57(4) 

16. Delporte-Gallet C, Fauconnier H, Guerraoui R, Kermarrec AM, RuppertE, Tran-The H (2013) Byzan­
tine agreement with homonyms. Distrib Comput 26(5-6):321-340 

17. Delporte-Gallet C, Fauconnier H, Tielmann A (2009) Fault-tolerant consensus in unknown and anony­
mous networks. In: Proceedings of 29th IEEE international conference on distributed computing 
systems (ICDCS'09). Canada, pp 368-375 

18. Durresi A, Paruchuri V, Durresi M, Barolli L (2005) A hierarchical anonymous communication protocol 
for sensor networks. In: Proceedings of international conference on embedded and ubiquitous systems 
(EUS'05). LNCS, vol 3824. Springer, Berlin, pp 1123-1132 

19. Fischer M, Jiang H (2006) Self-stabilizing leader election in networks of finite-state anonymous agents. 
In: Proceedings of 10th international conference on principles of distributed systems (OPODIS). 
France, pp 395^109 

20. Fischer MJ, Lynch N, Paterson MS (1985) Impossibility of distributed consensus with one faulty 
process. J ACM 32(2):374-382 

21. Gafni E (1998) Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proceedings 
of 17th symposium on principles of distributed computing (PODC), pp 143-152 

22. Jimenez E, Arevalo S, Fernandez A (2006) Implementing unreliable failure detectors with unknown 
membership. Inf Process Lett 100(2):60-63 

23. Raynal M (2009) Failure detectors for asynchronous distributed systems: an introduction. In: Wiley 
encyclopedia of computer science and engineering, vol 2, pp 1181-1191 

24. Raynal M (2010) Communication and agreement abstractions for fault-tolerant asynchronous distrib­
uted systems. In: Synthesis lectures on distributed computing theory. Morgan & Claypool Publishers 

http://hal
http://inria.fr/hal-00723309

