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Abstract Traffic analysis is an essential part of capacity planning, quality of
service assurance and reinforcement of security in current telecommunication net-
works. Traffic volume increases with network speed and the analysis of large traffic
traces is computationally intensive. The paper presents, for the first time ever, a
flow extraction software that allows to obtain complex TCP-aware flow records
at 4.4 Millions of packets per second in a single GPU. Such TCP flow records
include number of retransmissions and duplicates per flow, whose calculation is
very challenging to obtain at high-speed. Our software significantly increases the
processing performance of the recently proposed high-speed sniffers based on com-
modity hardware and demonstrates the advantages of applying massively parallel
processing devices for traffic analysis.

1 Introduction and problem statement

A great variety of services are being offered on top of the Internet Protocol (IP),
which is inherently best effort. This calls for network monitoring and traffic anal-
ysis in order to ensure quality of service and perform capacity planning. Besides,
traffic analysis plays a fundamental role in network security.

In the past, network traffic volume was small enough to be managed with a
sniffer device. Nowadays, the traffic volume is huge and the sniffers have evolved
to sophisticated systems that not only perform packet capture at line rate but also
take care of storing and processing the captured packets. In this light, flow record
extraction is nowadays a common functionality in network monitoring systems.
Note that a network flow is a sequence of packets sharing the same five-tuple,
namely: IP source and destination addresses, source and destination ports and IP
protocol. Collecting and inspecting traffic at flow level is essential as data is more
aggregated and the resulting dataset is smaller than the packet trace itself. Then,
once the time interval, hosts, protocols or ports of interest have been identified, the
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corresponding packets from the trace can be extracted and analyzed. Furthermore,
there are flow collectors deployed in network management centers that collect
flow records from different network segments and perform flow record correlation
for Quality of Service (QoS) purposes, or issue alarms whenever an anomalous
condition happens. We propose a GPU-enabled system can act as a flow record
generator for such systems.

The most common flow record standards are Netflow [1] and IPFIX [2]. Each
flow record typically includes the source and destination IP addresses (possibly
with MAC addresses as well), flow size (both in bytes and packets), duration, and
other relevant parameters such as the number of TCP RST (reset) flags detected.
Such parameters have different computational requirements. For example, the flow
size can be easily calculated by aggregating all the packet sizes in a flow, sequen-
tially as they appear in the trace, even if they are out of order. However, the
processing requirements are very stringent when it comes to compare fields from
many different packets in the trace.

In this paper, we focus on the TCP performance parameters which are more
challenging in terms of processing than other communication protocols. Precisely,
this is the case for packet duplicates and TCP retransmissions. The concept of TCP
retransmissions is well-known: whereby a TCP sender retransmits unacknowledged
packets after a timeout period expires. In turn, a packet duplicate may appear
in a trace because the same packet inbound to the Virtual Local Area Network
(VLAN) is eventually transmitted outbound from the VLAN. If the whole VLAN
is captured then a packet copy will be generated, for example, when a Switched
Port Analyzer (SPAN) port of the whole VLAN is set up. However, chances are
that the packet is not a byte-per-byte duplicate, but the same packet with its
TTL field decremented by one. This is the case of traffic sniffing at both ends of
an intermediate router, namely with a layer 3 hop in between. We call the former
a ”switching” duplicate and the latter a ”routing” duplicate [3]. We only deal with
switching duplicates in this paper.

We note that the percentage of packets retransmitted per TCP connection is a
relevant statistic because the more retransmissions the worse the quality of service,
specially for bulk data transfers. On the other hand, it is extremely important to
detect duplicates in the trace. If not, severe bias may be introduced in typical
traffic statistics such as flow size and duration.

The detection of both TCP retransmissions and duplicates is a very demanding
task in terms of processing, as many different packets must be compared to one
another. Actually, packets may arrive out of order and the potential duplicate
or retransmission may be located totally out-of-sequence. To complicate matters,
this task requires a ping-pong buffer that temporarily stores the packets (or the
packet fields of interest) from a given flow in order to compare them, the larger
the buffer the more the accuracy. Fortunately, such comparison task is well suited
for parallelization, as every packet has to be compared with its neighbors in the
same TCP connection.

On the other hand, the use of GPUs facilitates the adoption of ad-hoc hardware
for traffic capture and analysis. The research community has paid attention to the
utilization of flexible and cost-aware solutions based on commodity hardware [4],
in contrast to FPGA-based approaches [5] and other commercial solutions [6].
The advantages of using commodity hardware are twofold. First, the amount of
investment involved in the purchase of specialized hardware exceeds in several
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orders of magnitude the price of commodity hardware-based solutions. Second,
it provides more flexibility to adapt to any network operation and management
task as well as to make the network maintenance easier. As an example of this,
we highlight the special interest that software routers have recently awakened [7,
8, 9]. Moreover, the utilization of commodity hardware presents other advantages
such as benefiting from energy-saving policies already implemented in PCs, better
availability for hardware component updates and flexibility in the implementation
of novel measurement techniques.

Precisely, there have been many efforts to improve the packet capturing capa-
bility to 10 and 40 Gbps. However, the issue of how to process the traffic, namely
how to extract the statistics of interest from the traffic trace, has not deserved the
same attention. If the traffic volume is large, it turns out that the processing bot-
tleneck is significant, specially for statistics that involve the comparison of fields
from many different packets in the trace, as noted before.

We note that the packet capturing capabilities are usually based in Receive
Side Scaling techniques that basically divert the incoming traffic through sepa-
rate hardware queues, which are subsequently handled by different CPU cores in
parallel [10]. By distributing the traffic between different queues, the throughput
per queue decreases, thus alleviating the load per core in the packet capture. As
a result, as much as 14.7 Millions of Packets per Second (Mpps) can be captured,
which is the case for a fully utilized 10 Gbps unidirectional link with minimal-size
packets (64 bytes).

As attractive and cost-effective commodity hardware solutions may be, we note
that the fundamental limitation lies in the number of cores. In fact, most available
solutions [11, 12, 13] consume up to 12 cores for a line rate of 10 Gbps and typically
8 cores just for the packet capture, all of them with a very high utilization. Most
importantly, we note that this is the number of cores occupied per network interface.
Typically, there are several active interfaces per probe because several network
segments have to be measured concurrently and some packet tracking analysis
between them may be performed, i.e. cores are highly utilized for capturing and
there is little processing capacity left for processing packets. Furthermore, not
only the number of cores involved is important for the traffic processing but also
the availability of memory and hard disk. Concerning memory, we note that the
processing cores consume memory for packet capturing, because large buffers are
needed to absorb the peaks. In terms of hard disk, we note that the drives are
typically loaded due to packet storing at high-speed.

In this paper, we study how to obtain TCP flow records by means of massive
parallel programming in GPUs, which is a packet processing task typically handled
by CPU cores not devoted to packet capturing. We focus on the traffic parameters
within a flow that are computationally hard to obtain, such as retransmissions
and duplicates. The main advantage is that the GPU increases the processing
density of the commodity hardware, namely it does not fully utilize additional
cores. Furthermore, the throughput obtained is around 4.4 Mpps in a single GPU.
This suffices for a real traffic scenario of 10 Gbps with an average packet size of
500 bytes, which translates into an approximate rate of 2 Mpps. Furthermore, the
GPU also increases the memory density of the commodity hardware due to the
internal memory, which can be used to absorb peaks at higher rates.

Our findings show that the GPU processing power matches that of a four-
core CPU system working in parallel assuming linear scalability from the single-
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core solution as basis. In a highly dense commodity hardware system such cores
can be re-used for other packet or flow-record processing tasks, such as to run
anomaly detection routines. Overall, the commodity hardware system processing
capabilities are greatly enhanced and the resulting GPU-enabled system becomes
a real workstation for traffic processing at very high speed, beyond mere traffic
capturing and storing.

The paper is structured as follows. First, we introduce the state of the art and
explain what we mean by duplicate and retransmission, in order to understand this
important part of our parallel processing algorithmics. Then, the parallel algorithm
in-depth description, along with implementation details, follows. Afterwards, we
present the performance evaluation, both in terms of accuracy and throughput.
Finally, we present the conclusions and future work. Nevertheless, before we pro-
ceed with the technical agenda, let us briefly present some introductory material
about GPUs, for the sake of completeness.

2 State of the art

2.1 GPU architecture and programming model

A GPU (Graphics Processing Unit) is a hardware for graphic rendering which can
be found nowadays almost on every PC and also in some smartphones or tablets.
Due to its massively parallel architecture, the GPUs can run trillions of instructions
per second for both graphical and non-graphical applications. A GPU that is used
for non-graphical applications is commonly known as GPGPU (General-Purpose
Graphics Processing Unit). As it is done in the literature, we will use the the
term GPU to refer to GPGPU. The performance reached by GPUs makes this
hardware amenable for High Performance Computing (HPC) clusters [14]. In fact,
some supercomputer vendors have included GPUs inside their parallel computer
blades. An example can be the SGI UV and the Cray XK7 supercomputer, which
both include NVIDIA GPUs. Additionally, GPUs have been also used in other
research articles about network traffic classification [15, 16] mainly focusing on
pattern matching and security.

There are many different GPU architectures and models, NVIDIA and AMD
being the most popular. Much research and testing have been performed to evalu-
ate which technology gives a higher performance [17]. Given that NVIDIA’s CUDA
language provides, in general, a higher abstraction level than other GPU-oriented
languages, we have opted to use NVIDIA and its CUDA programming technology.

Typically, GPU devices are external to the CPU. CPU and GPU connect and
communicate through PCIe (Peripheral Component Interconnect Express), which
entails memory copies from the host to the GPU. This fact can make a GPU very
inefficient if the data copy takes much time compared to the processing time. The
NVIDIA’s GPU architecture consists of a large number of SP cores (Streaming
Processors), grouped into SMs (Streaming Multiprocessors). The SPs are small
processors able to perform integer operations and simple-precision floating-point
operations. The SM also contains double-floating point units, several registers, a
level 1 cache and a shared memory. Each SM shares these resources among its SP
cores. In a similar way, every SM shares a L2 cache and the global memory between
the others SMs. In the NVIDIA’s Fermi architecture we can find up to 16 SMs
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each with 32 SP cores [18]. In the newer Kepler architecture, it is possible to find
up to 15 SMs each with 192 SP cores and 64 DPUs (double-precision units) [19].
Figure 1 shows an overall design of a NVIDIA GPU architecture.
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Fig. 1 NVIDIA GPU General Architecture

The CUDA programing model enables the use parallel functions that are exe-
cuted on the GPU, which are called CUDA kernels. Each kernel can be executed
in parallel with other kernels if the device has the required resources available.
Such kernel is launched on a grid, that is composed by a set of blocks (which can
be defined as 1, 2 or 3-dimensional). Each block is composed by a set of threads
(that can be also defined as 1, 2 or 3-dimensional). In turn, each thread runs on
a SP processor and each block is executed on a SM. Due to the architecture pre-
viously explained, different threads within the same block can share memory very
efficiently (without having to access global memory).

To obtain the best performance, the programmer must ensure that the thread
execution time may not diverge in excess, as this would create serialization of
execution between threads of the same block. The programmer must take into
account the total number of threads and its distribution between blocks. Further-
more, the programmer should also consider the amount of shared memory used
by each thread and other possible architectural considerations. Figure 2 depicts
how the CUDA programming model is organized. More information about CUDA
programming model can be found in [20].
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2.2 GPU-based network processing

As it turns out, no previous work was found that deals with flow record extraction
using GPUs, but there are a few references on processing network traffic with
GPUs.

Interestingly, we note that [11] investigated the use of GPUs for high-speed
packet routing. The GPU is used to implement high-speed routing and pattern
matching for anomaly detection, with excellent results. Even though the paper
does not provide flow extraction (all the processing is performed at the packet
level only) it demonstrated that the packets can be swiftly relayed from the CPU
to the GPU at very high-speed (40 Gbps with small 64 bytes size packets).

On the other hand, in [21] authors show how to use a GPU for packet filtering
using the Berkeley Packet Filter (BPF). A performance comparison with a CPU
was carried out and the CPU turned out to be actually faster. In this case, the
data copy to the GPU did not pay off for the speedup achieved by the filtering
process.

Other authors have focused on flow record extraction using FPGAs [22, 23,
24, 25]. This is a completely different technology that allows to obtain an im-
pressive line rate but at the expense of a much larger development time and cost.
Interestingly, none of the authors provide statistics for the number of TCP retrans-
missions and duplicates in the flow record. This is because FPGAs lack memory
space, which is essential to detect retransmissions and duplicates.
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NetGPU is a framework designed to assist in traffic analysis using GPUs with
CUDA. Both the design and implementation are described in [26] and the code
is available under free software license in Google Code [27]. This framework pro-
vides capabilities to read packets from several sources using PacketFeeders. Then,
packets are distributed by an analyzer routine to several analysis processes, which
are in charge of processing the packet in order to extract the desired statistics in
the GPU. Then, the framework user implements the analysis routine to process
the packets.

The framework defines buffers of fixed size for the packets. Some of these
buffers can be joined before the data is sent to the GPU for processing. Actually,
the framework documentation does not specify if there is a limit to the number of
packets that can be accumulated. On the other hand, we note that even though
this framework is interesting for packet processing it is not maintained at the
present time and no performance figures are reported.

Since we employ hash tables to match packets with their corresponding re-
transmission or duplicate in the GPU, let us briefly review the optimized hash
library cudpp by [28] and discuss the limitations for our current work. Such hash
table has a high performance and achieves the insertion rate of 5 million key-value
pairs in 35.7 ms and the access time to all such pairs is 15.3 ms. To achieve this
performance the hash table is implemented as a mix of sparse perfect hashing and
cuckoo hashing, which makes use of the faster shared memory in the GPU to speed
up its creation.

The high performance of this hash table implementation is mainly due to the
use of a 32-bit key and value, namely:

(i) Both the key and value can be written to memory in the same atomic access.
(ii) Small-size keys and values allows to employ the fast shared memory, which

is also very scarce, to speed up the creation of the table by means of cuckoo
hashing.

However, we do require larger keys and values for the detection of retransmis-
sions and duplicates. More specifically, the key must be 128 bits long and the value
uses 192 bits, as will be discussed in the implementation section. This prevents
the adoption of the cudpp hash table. Furthermore, the variant of the algorithm
described in the paper [28] would not yield the desired performance increase. We
note that the larger key and value impede the use of the GPU’s shared memory,
and this is key to obtain fast cuckoo hashing.

2.3 Packet duplicates and TCP retransmissions

As noted in the previously, the estimation of retransmissions and duplicates within
a TCP flow is demanding in terms of processing requirements. In this section we
analyze how to estimate the count of retransmissions and duplicates in a flow. We
note that there is tradeoff between performance and accuracy, namely it is not
possible to detect all retransmissions and duplicates and keep line-rate operation
at the same time.

We consider that a TCP segment containing data is a retransmission if the
following TCP header fields are found in a previously arrived segment in the
traffic stream: source and destination IP addresses, source and destination TCP
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ports and TCP sequence number. In what follows, such array will be called a
five-tuple.

The above definition entails that only five-tuples have to be compared to detect
retransmissions, thus saving memory space in the GPU, which is scarce compared
to the host memory. However, we do note that some retransmissions will not be
detected (false negatives). Furthermore, some segments can be mistakenly detected
as a retransmission (false positives). We will carefully review what are the false
negative and false positive cases and come up with an algorithm that minimizes
the occurrence of false positives. In the next section, we will perform a trace-driven
analysis to quantify the overall accuracy of our algorithms.

In what follows, we refer to TCP segments by their transmission order. Based
on the analysis of the TCP protocol we present a taxonomy of the of the situations
where false negative may arise:

(i) When an already sent TCP segment suffers fragmentation at the TCP level,
only the first fragment is detected as a retransmission because the other
fragments have different sequence numbers.

Seq=1 Length=10

Seq=1 Length=5

 

Seq=6  Length=5

Detected

Not detected

(1)

(2)

(3)

Fig. 3 TCP segmentation

In Figure 3 segment 1 is divided into two segments, 2 and 3. Then, segment
2 is detected as a retransmission but not segment 3 as it features a different
sequence number that was not seen before in the traffic stream.

(ii) When two or more already sent segments are joined together only the first
segment is considered a retransmission.
In Figure 4 segments 1 and 2 are combined into segment 3, but segment
2 is not detected as a retransmission because its sequence number has not
appeared before in the traffic stream.

(iii) When TCP Keep-alive segments (segments without data) are captured the
first one is not considered as a retransmission because its sequence number
was not seen before in the traffic stream. An example is shown in Figure 5.
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Seq=1 Length=5

Seq=6 Length=5

Seq=1 Length=10

Detected

Not detected

(1)

(2)

(3)

Fig. 4 Joined segments

Seq=1 Length=5

Seq=5 Length=1

(Keep-alive)

Seq=5 Length=1

(Keep-alive)Detected

Not detected

(1)

(2)

(3)

Fig. 5 TCP Keep-alive

(iv) Segments with common data.
In Figure 6, a segment with sequence number equal to 11 and length equal
to 5 was lost between segments 1 and 3. Afterwards, the lost segment was
retransmitted (4) with more data, and it should be considered a retrans-
mission because of the overlapped retransmitted data. However, it cannot
be detected because the sequence number was not seen before in the traffic
stream.

The latter cases constitute a small percentage of all the retransmissions, as will
be shown in the performance evaluation section. On the other hand, chances are
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Seq=1 Length=10

Seq=16 Length=10

Seq=11 Length=10Not detected

Seq=11 Length=5

Seq=11

Seq=16

Overlapped data

(1)

(2)

(3)

(4)

Fig. 6 Common data

that a non-retransmitted segment is tagged as retransmission, namely a false posi-
tive, if the connection is reused (reincarnation) and some segments are transmitted
with the same sequence number than others in the previous connection.

Even though these cases are not frequent, we further reduce the probability of
a false positive by setting a maximum time between retransmissions, beyond which
the potential retransmission will be discarded. As a result, our algorithm does not
require knowledge of the ISN (Initial Sequence Number), which is normally used
to detect reincarnations. In any case, we will provide a throughout performance
evaluation in Section 4, that includes an estimation of the percentage of false
negatives and positives.

Concerning duplicates, we note that the five-tuple must be equal between
two segments, just like a retransmission, but additionally the IP packet identi-
fier (IPID) must be equal. As explained in the introduction section, we only take
into account the switching duplicates [3].

For each flow exported, we obtain other parameters than the number of re-
transmissions and duplicates, such as a counter for the number of SYN, FIN and
RST flags and also for the number of segments that announce a TCP window size
equal to zero but do not have the RST flag set. This is useful to detect congestion
in the receiver side (receiver’s window is exhausted). Note that the RST segments
are not included in such counter because typically a RST segment announces zero
window size to stop the transmitter on purpose. Namely, the RST flag does not
indicate congestion at the receiver.

Lastly, the flow size in bytes and duration are obtained by means of the se-
quence numbers and timestamps of the SYN and FIN segments. This is a usual
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technique which has also been used in other works [29]. Note that if two different
connections, possibly from a reincarnation, have the same source and destination
IP address and TCP ports, then it is not possible to associate each segment to
each particular connection. To prevent biased data we do not provide this counter
if more than one SYN or FIN per connection are detected. In the datasets we have
considered, this only happens in 0.84% of the existing flows.

3 Algorithmic design and implementation

This section describes the operation and implementation of the proposed algorithm
to: detect retransmissions and duplicates; count SYN, FIN and RST flags, and
zero-window announcements; and set the timestamp and sequence number of SYN
and FIN segments. For simplicity, the serial-CPU version is described first. Then,
the multi-thread version and the real-time packet capture and processing version
will be presented. Note that both versions rely on GPU computing for duplicate
and retransmission detection, but they differ on the way work is distribute on the
CPU side.

3.1 GPU + serial-CPU implementation

The algorithm takes as input the traffic source, the obtains the TCP flow data
and, finally, dumps the results to a file. This process is shown in Figure 7.

We distinguish the following steps:

1. Fetching the packets: The data for each TCP segment is read from a traffic
source and stored in the Host segment list.

2. Copying to the GPU: The data for each TCP segment is copied from the Host
segment list to the GPU segment list. These two buffers are identical.

3. Inserting into the segment hash table: The data from the TCP segments is
inserted into the GPU segment hash table. Then, the number of retransmissions
for each segment is calculated.

4. Inserting into the flow hash table: The segment data in the GPU segment hash
table is inserted in the GPU flow hash table to obtain the number of segments
and retransmissions for each connection.

5. Copying to the host: The data for each flow is copied from the GPU flow hash
table to the Host flow hash table. Both buffers are identical.

6. Copying to sort buffer: The Host flow hash table is read in order to copy the
occupied buckets to one of the two Host sorting buffers.

7. Sorting and writing: When a Host sorting buffer is full the flows are sorted by
its four-tuple and the full buffer is written to a Result file.

8. Combining results: A secondary process reads all the ordered Result files and
generates a Combined results file. A Min heap is used so that only one flow
from each file needs to be in memory at any time.

To minimize the use of GPU memory only certain fields of the TCP segment
are copied to the Host segment list, namely:

– Source and destination IPs.
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– Source and destination ports.
– Sequence number.
– Timestamp.
– Payload size.
– IP identifier.
– Internal flags about the type of segment.
– TCP flags.

Among those fields, only source and destination IPs and TCP ports plus TCP
sequence number are used to build the key assigned to each segment. The hash
distribution policy uses this key value to distribute the data among the table’s
entries using the MurmurHash2 hash function. The rest of the fields will be stored
on each table entry.
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Fig. 8 Hash table structure

From the point of view of the GPU, the first stage of the algorithm performs
the insertion of TCP segments into a hash table (Figure 8) implemented inside
the GPU using the five-tuple as the key. Then, the segments are read from the
source file in blocks with a size that decreases the number of collisions, and copied
to the global GPU memory. After that, the kernel to find retransmissions and
duplicates is launched in the GPU (FindRetransmissionsKernel). This kernel uses
one warp per block (32 threads) and a block per segment. The reason for this
kernel configuration is to avoid deadlocks caused when part of the threads in a
SIMT processor are locked in a branch that must be unlocked by the remaining
threads in the other branch. This also presents the benefit of doing coalescent
accesses to memory.

On the other hand, each block executes the steps shown in Listing 1.



14 Paula Roquero et al.

Listing 1 Segment insertion algorithm

f o r seg in s e g m e n t l i s t :
i f seg == any o f the prev ious n segments :

seg . d u p l i c a t e = true ;
seg hash = hashFun ( seg .5− tup l e ) ;
s eg bucket = seg hash % s e g h a s h t a b l e . s i z e ;
whi l e seg i s not i n s e r t e d :

i f s eg bucket . used == f a l s e :
s eg bucket . used = true ;
s eg bucket .5− tup l e = seg .5− tup l e ;
i f seg . d u p l i c a t e == true :

s eg bucket . dup count = 1 ;
e l s e :

s eg bucket . dup count = 0 ;
seg bucket . o r i g i n a l f o u n d = 1 ;

seg bucket . f l a g c o u n t = seg . f l a g c o u n t ;
e l s e i f seg .5− tup l e == seg bucket .5− tup l e :

i f seg . d u p l i c a t e == true :
s eg bucket . dup count += 1 ;

e l s e i f s eg bucket . o r i g i n a l f o u n d == 1 :
seg bucket . r e tx count += 1 ;

e l s e :
s eg bucket . o r i g i n a l f o u n d = 1 ;

seg bucket . f l a g c o u n t += seg . f l a g c o u n t ;
e l s e :

s eg bucket = ( seg bucket + 1) % s e g h a s h t a b l e . s i z e ;

Due to the fact that the segments to be analyzed are split into more than one
memory block, it is necessary to design a mechanism to detect retransmissions and
duplicates in two adjacent memory blocks. To detect retransmissions, once a new
block is loaded into the hash table, only the segments from the next block with a
five-tuple already present in the hash table are inserted. Then, results are saved,
the hash table is emptied and the remaining segments in the block are inserted
normally. This process is shown in Figure 9. To detect duplicates, a buffer is used
to save the last n segments of a block. Then the first n segments of the next block
are compared to the previous stored segments in the buffer.

We note that such techniques eliminate border effects that happen whenever
a duplicate or retransmission is present at the beginning of a memory block and
the corresponding original packets are located at the end of the previous block.
However, it does not provide cure against false negatives produced if the original
packet is in the previous block but not at the end.

A different hash table is used for flow-related information, using source and
destination IPs and TCP ports as key to the table. The values stored in this table
are:

– Number of segments in this flow.
– Number of retransmission in this flow.
– Number of duplicates in this flow.
– TCP flag counters.
– Timestamp.
– SYN and FIN sequence numbers.
– SYN and FIN timestamps.
– Payload size of the FIN segment.
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Fig. 9 Insertion

The counters of segments, retransmissions, duplicates, flags (SYN, RST, FIN)
and zero-window announcements are increased with each segment belonging to the
flow. Such counters are stored in a single 4-byte variable, using only one byte per
counter. This is done to reduce the hash table bucket size and thus improve GPU
memory usage. In the performance evaluation section we will discuss the benefits
of this technique in terms of accuracy. To calculate the duration and length of
each flow, the sequence numbers and timestamps of the SYN and FIN segments
must be stored. The FIN data size is also stored to calculate the total flow size.
The drawback of this approach is that when several SYN or FIN flags are found
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in a flow, the length and duration cannot be calculated accurately, so the data is
set as invalid, as noted before.

Another important design consideration is that the GPU memory is not large
enough to combine all the segments from long-lived flows, so a CPU post-processing
is necessary to combine all the data from a flow. The flow data is copied from GPU
to host, where the data is accumulated until a buffer is full. By using two different
buffers we note that results can be copied in one buffer while the other buffer is
being sorted.

Once the data is back to the CPU, it traverses a min heap, which is imple-
mented to get the smallest quadruples among the sorted files and aggregate the
flow data when the quadruples are equal—adding the number of packets, retrans-
missions, duplicates and flow registers. The CPU thread uses then the sequence
numbers and timestamps of the SYN and FIN segments to calculate the length
and duration of each flow. The final result is a file with all the connection data
sorted by quadruple starting with the smallest one. The whole process is shown in
Figure 7.

3.2 GPU + multi-CPU implementation

Now that the basic algorithm has been explained as a serial process in the host, the
real implementation using pthreads will be described. The use of pthreads increases
the performance mainly because the GPU is calculating retransmissions while the
host reads more packets from file. The program uses 4 threads synchronized with
mutexes. Such threads read from file, insert segments, copy results to a buffer and
write sorted results to disk. The threads are synchronized to protect the memory
in each pipeline stage that appears in Figure 7. Note that, although there are 4
concurrent threads, the average number of used cores is 1.5.

Figure 10 shows the threads involved in the execution, linking the tasks with
the steps described in section 3.1. The description follows, from left to right in the
figure:

i The first thread executes steps 1 and 2 of the data flow. This thread reads
segments from the trace file or network, filters them and stores the necessary
fields in the host segment list. Once the GPU has processed all the segments
from the previous block, the segments are copied from host memory to the
GPU segment list. The copy is asynchronous, so new segments can be read
concurrently with the copy.

ii The second thread executes steps 3, 4, and 5 of the data flow. This thread
waits until the data in the GPU segment list is made available by the first
thread. When the data is available the repeated segments are inserted into the
GPU segment hash table and the data is joined for each flow in the GPU flow
hash table. Once the segments in the GPU segment hash table are not longer
needed, the table is emptied and the remaining segments in the GPU segment
list are inserted. A mutex that prevents the beginning of the copy from the first
thread is unlocked once the data in the GPU segment list is no longer needed.
Before continuing, the thread waits in a mutex until the previous flow data in
the host flow hash table has been copied to the host sort buffer. Then, the data
is copied from the GPU flow hash table to the host flow hash table and other
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Fig. 10 Time diagram showing pthreads

mutex is unlocked so the third thread can start copying the current data to
the host sort buffer. Finally, the GPU connection hash table is emptied.

iii The third thread executes step 6 of the data flow. This thread waits in a mutex
until there are results available in the host connection hash table, then copies
the data to the host sort buffer and unlocks the mutex that allows copying
more results from the GPU to the host. When the host sort buffer has enough
data, a mutex is unlocked so the fourth thread can sort the results. Meanwhile
this thread can copy the results to other different host sort buffer so the sorting
does not become a bottleneck.

iv The fourth thread executes step 7 of the data flow. This thread waits in a
mutex until the host sort buffer is full, sorts the results and writes them to the
result file. Then another mutex is unlocked so the host sort buffer can be used
again to store results.



18 Paula Roquero et al.

3.3 Obtaining the data from the network

To process packets directly from network no changes are necessary. The HP-
CAP custom driver, capable of capturing and storing traffic at 10 Gbps has been
used [30] for this purpose. This driver provides simple framework that allows in-
stantiating user-level network processing applications that can benefit from its
high-throughput design. Traffic consumers can attach to the driver and analyze or
store the traffic concurrently. Note that the speed of the system is that of the slow-
est consumer. Furthermore, the driver includes several internal buffers to shape
traffic peaks for the consumers. However, after some tests to evaluate the perfor-
mance, it was discovered that the driver’s buffer was filled during the copy. This
issue was due to the data copy to the GPU, which was synchronous (the CPU was
blocked during the copy). To solve this problem, asynchronous functions to copy
data to the GPU were used. As a result, packets can be copied to the GPU at any
time while being received, thus avoiding blocking.

4 Performance evaluation

We evaluated the software in a computer with a 12 core Intel Xeon X5650, 70 GB
of memory, a nVidia Tesla C2075 and an Intel 82599 10Gb Ethernet card. We
used this computer because it was the only one with access to production data
and not running a critical system. The GPU is similar to the nVidia Tesla M2070,
which is approved for use in our production servers.

First, we evaluate the accuracy of the algorithms, by taking several traffic
traces as inputs and comparing results with a ground-truth serial program which
was has been proven not to generate neither false positives nor false negatives
for the retransmission and duplicate detection. Note that this program is oriented
to obtain as accurate as possible, being its performance damaged in return. The
flows that showed discrepancy between our GPU and ground-truth analysis were
analyzed by means of Wireshark tool to find the divergence. Once the accuracy
level was established we focused on the overall throughput.

4.1 Datasets

Table 1 Capture file info

Trace Packets
TCP

Segments
Data

Segments
Switching
duplicates

Retx

A 188,423 161,913 89,081 41,426 1,691
B 88,423 61,990 35,360 0 1,686
C 100,000 99,923 53,721 41,426 5
D 200,000,000 167,000,000 109,000,000 - 346,060
E 310,000,000 258,000,000 168,000,000 - 536,393

Regarding datasets, in Table 1 the traces used for evaluation along with its
relevant information are presented. In the case C file, the dataset has been used
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for testing accuracy in duplicate detection. On the other hand, B file has been
used for testing accuracy in retransmission detection. Dataset A consists of the
merge of the two previous traces and has been used to test the accuracy of both
duplicates and retransmission detection. The large dataset D has been used to
carry out random sampling of connections in order to determine the root cause
of inaccuracies in retransmissions’ detection, as will be explained later. Finally, E
dataset has been used to measure the time spent in each phase of the pipeline.

4.2 Duplicates/retransmissions classfication accuracy

Regarding detection of duplicates, we note that neither false positives nor negatives
were observed. We recall that a VLAN SPAN port produces duplicates, which will
be separated by the transit time through the router, that is typically very small.
Then, original and duplicate packets are close together in the trace, thus falling
either into the same memory block or in the border between subsequent blocks. As
a result, duplicates can be easily detected by the GPU. The same does not apply
to retransmissions, which are the focus of the next section.

Concerning TCP retransmissions, Table 2 shows the ratio of false negatives,
that is, flows with true retransmissions not detected by the GPU . for each of
the dataset files. Table 3 shows the same parameter, false negatives, regarding
the total number of packets. Importantly, flows without ISN were not considered
due to limitations on the benchmarking program as this data is required to detect
retransmissions. This is the case for flows with missing SYN packets, possibly due
to a capture error. We note that a TCP connection requires both SYNs from the
client and server in order to be established.

Table 2 False negatives (flows)

A B C D
Flows with re-
transmissions

531 528 3 304,229

Flows with
retransmissions
(ground-truth)

604 601 3 346,060

Flows with
false negatives

73 73 0 41,832

Percentage of
false negatives

12.09% 12.15% 0% 12.09%

Conversely, Table 4 shows the ratio of false positive flows, that is, flows with
false retransmissions detected by the GPU. Similarly, Table 5 shows the ratio of
false positives regarding the total number of packets for each dataset.

First, we note that duplicates are not mistakenly confused with retransmissions
and the other way around, because the dataset with duplicates and retransmissions
shows the same figures than the datasets with only retransmissions and duplicates
respectively. Second, there are very few false positives (less than 0.001%) and
a significant ratio of false negatives. Consequently, we turn our attention to the
evaluation of false negatives. We argue that retransmitted packets are not detected
as they are placed in different consecutive memory blocks sent to the GPU. Thus,
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Table 3 False negatives (packets)

A B C D
Number of re-
transmissions

1,691 1,686 5 1,699,364

Number of
retransmissions
(ground-truth)

1,775 1,770 5 1,786,758

Number of
false negatives

84 84 0 87,414

Percentage of
false negatives

4.73% 4.75% 0% 4.89%

Table 4 False positives (flows)

A B C D
Flows with re-
transmissions

531 528 3 304,229

Flows with
retransmissions
(ground-truth)

531 528 3 346,060

Flows with
false positives

0 0 0 1

Percentage of
false positives

0% 0% 0% 2.89 ∗ 10−6%

Table 5 False positives (packets)

A B C D
Number of re-
transmissions

1,691 1,686 5 1,699,364

Number of
retransmissions
(ground-truth)

1,691 1,686 5 1,786,758

Number of
false positives

0 0 0 20

Percentage of
false positives

0% 0% 0% 1.12 ∗ 10−5%

the retransmissted packet is transferred to the GPU when the original packet is
no longer present. Figure 11 shows the percentage of retransmissions not detected
(regarding the total number of packets) for the D dataset versus the size of the
memory chunk transferred to the GPU.

The figure shows that the detection ratio increases (conversely, the false nega-
tives’ ratio decreases) as the memory block size increases, reaching a lower bound
of around 5%.

4.3 Why some retransmissions are not detected?

In Section 2.3 we noted that some of the retransmissions could not be detected due
to the detection algorithm adopted, which only takes into account the TCP seg-
ment’s five-tuple. We denote such retransmissions by structural retransmissions,
since they cannot be detected whatsoever. However, there are other retransmis-
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Fig. 11 Ratio of undetected retransmissions versus memory block size

sions which are not structural and could not be detected either, given the limited
size of the buffer.

Recall that the packet trace is relayed to the GPU in memory blocks that fit
into the GPU internal memory. If the original packet and retransmission do not
fall within the same or next block then the retransmission cannot be detected.
We denote such retransmissions by split retransmissions, as the connection they
belong to is split into two different memory blocks.

Let A refer to the event that a given retransmission is not detected (i.e. a false
negative) and let Astruct and Asplit refer to the event that a given retransmission
is not detected because it is either structural or split, respectively. Then,

A = Astruct ∪ Asplit (1)

Astruct ∩ Asplit 6= ∅ (2)

and we wish to have an estimation of P (Astruct) and P (Asplit), noting again
that structural retransmissions cannot be detected whatsoever. On the contrary,
split retransmissions could be detected provided that more memory space in the
GPU was available or, alternatively, that the traffic trace is demultiplexed (for
example, by source IP subnetwork) in different GPUs working in parallel. We also
assume that the P (Astruct ∩ Asplit) is very small as it corresponds to the prob-
ability of a structural retransmission that is also split into two different memory
blocks.

In order to isolate split retransmissions from structural retransmissions we
performed a random sampling of flows present in the D dataset as follows. Let N
be the total number of flows in a dataset. Then, we randomly sampled a num-
ber of flows equal to n such that their packets fit within a GPU memory buffer.
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Note that this ensures that undetected retransmissions (false negatives) are all
due to structural retransmissions. Therefore, such sample is valid to obtain the
probability P (Astruct) by means of the estimate p̂, which is equal to the ratio of
retransmissions in the sample.

We note that the confidence intervals for such proportion are given by the
Cochran approximation as follows:

p̂± λα
√
p̂ (1− p̂)
n− 1

N − n
N

− 1

2n
(3)

whereby λα is the corresponding percentile of the standard Gaussian distribu-
tion with significance level α.

A random sample of 100,000 flows with 481,000 retransmissions was used for
the analysis. It was found that 4.31% (confidence interval [4.24, 4.38]) of the re-
transmissions were structural. Note that this is close to the 5.14% ratio obtained
for the 4 GB memory block case and it shows that the probability of split retrans-
missions has a lower bound of around 0.82%, and, as we deem P (Astruct ∩ Asplit)
small it must be close to P (Asplit).

Furthermore, in a typical use case we are only interested in flows with a sig-
nificant number of retransmissions (for example, connections with more than 5
retransmissions and 5% of the packets being retransmitted). In this case, only
0.31% of the flows have this problem. The statistical analysis shows that in 0.3%
(confidence interval [0.25, 0.34]) of the flows, the false negatives were caused by
structural retransmissions. Interestingly, as the number of per-flow retransmissions
grows so does the likelihood of placing them into the same GPU memory block,
which dramatically decreases the probability of split retransmissions.

4.4 Flow records accuracy

In the previous section, we have discussed that memory size is key to improve
accuracy, as the larger the memory size the better chances to fit the original
packet and retransmission in the same memory block. However, memory size is
fixed in the GPU board and cannot be increased arbitrarily. That is why we follow
the approach of compressing both packet and flow records in order to fit as many
packets as possible in the memory block. Thus, a single integer is used to store
four flow registers in order to reduce the hash table bucket size and increase the
accuracy of retransmissions’ detection.

However, we note that atomic operations, which must be used to update coun-
ters throughout the GPU code, only work with integers (32 bits) and some of our
registers are 8 bit long, such as the counter of TCP flags per connection. As a
result, we have to account for a possible overflow, which cannot be prevented. In
this section we evaluate the impact in flow records’ accuracy. The file D was used
to compare the differences in the number of flags and zero window announcements
detected by the custom serial and GPU programs. Table 6 shows the number of
records that present differences in these two fields. We note that the accuracy is
remarkable in this case reaching values lower than 0.01%.
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Table 6 Flow records presenting differences in TCP Flags and zero window announcements
(serial versus GPU)

SYN FIN RST Zero window
Total records 54,054 53,971 53,900 54,103
Records with
differences

27 19 122 22

Percentage 0.0005% 0.000352% 0.0026% 0.0004%

4.5 Throughput

For the sake of evaluation, a very large capture file of 1.4 TB was used to minimize
the effects of initialization in the execution time. This file presented a total of
5,242 million TCP packets and 162 million flows with an average duration of 43.72
seconds.
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We note that the throughput may be bounded by the hard disk read speed and
we actually get a 1.1 Mpps if we consider the whole disk and GPU system. This
figure increases to 4.4 Mpps if we remove the disk read latency from the calculation.
Figure 12 shows the percentage of time spent in the different execution stages. Such
stages are:

1. CPU filter: Filter the relevant packets.
2. cudaMemcpy in: Copy the relevant packets from host to GPU.
3. Insert packet: Insert packets in the packet hash table.
4. Insert flow: Insert packets in the flow hash table.
5. cudaMemcpy out: Copy connections from GPU to host.
6. Clear packets: Initialize packet hash table.
7. Clear flows: Initialize flow hash table.

We observe that the packet insertion task takes the longest time. Note that
each packet has to be inserted into the packet hash table and, when using a GPU
with 6 GB of memory, as many as 56 million of packets insertion are due. We
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note that the random access to memory is not well suited for a GPU. The ”Packet
to flow” task also involves a hash table, but the size is smaller because there are
less connections than segments, so the performance penalty is not that significant.
The time taken by the two memcpys was variable even though pinned memory
was used. The experiments were performed with the pcap file E , resulting in
12 executions of each part of the algorithm. This helps reduce the effect of the
variability. It is worth noting that the packet filtering takes a lot of time because
it must be executed for each packet. The filtering phase takes place in the CPU
because it was found that the GPU was slower and yielded a worse accuracy.
Lastly, the two clears empty the packet and connection hash tables for the next
batch.

4.5.1 Comparison with CPU

Fo the sake of performance comparison, the GPU algorithms were rewritten to
run in the CPU. The resulting program runs in a single thread and the number
of threads necessary to achieve the same performance as the GPU is extrapolated
from the run time in a single CPU core. This is the best case scenario for the CPU
solution, as the time lost in thread synchronization is not taken into account.

In Figures 13 and 14 we show that the GPU + CPU solution uses, on average,
1.5 processor cores and 3.7 GB of memory in the host with the default options,
while the CPU solution makes use of 4 processor cores and 7.16 GB of memory to
achieve the same performance and accuracy. As noted in the introduction, this is
a significant saving in terms of cores, which is the bottleneck for traffic capturing
and analysis at 10 Gbps in commodity hardware.

4.5.2 Capturing from network interface card

We have noted that the hard disk read speed is a limiting factor for the overall
system throughput. However, the offline processing of a stored packet traces is not
a real use case for the GPU, which will be typically working with live traffic from
a 10 Gbps network interface card.

In this experiment, we actually assess that the measured throughput of 4.4
Mpps can be achieved when reading packets from the network interface card, i.e.
a use case closer to the operational working environment. To do so, the same
host used for the previous tests was connected to another host in charge of traffic
generation (packet trace replay) at 10 Gbps through a 10 Gbps Ethernet link.
The previously described traffic traces were replayed at different speeds while
measuring packet loss. Using this setup, we achieved a 4 Mpps limit which is
consistent with the analysis presented in the previous sections. We verified that
the throughput was limited by the GPU and not by the driver, which is able to
capture traffic at 10 Gbps.

5 Conclusions and future work

In this paper we have presented, for the first time ever, a GPU-based traffic capture
and analysis system which is able to provide TCP flow records, including the
challenging task of detecting per flow number of duplicates and retransmissions.
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The fundamental breakthroughs to obtain a significant accuracy and speed have
been studied, namely the limited memory size in the GPU board, which impedes
to compare every packet with the previous ones in the trace. Despite of such
constraints, the throughput for a single GPU system reaches a remarkable 4 Mpps
figure. To put this figure into perspective we note that a fully saturated 10 Gbps
link with 64-bytes packets produces 14.7 Mpps. However, a more realistic case
with average packet size of 500 bytes, again in a fully saturated link, produces
around 2 Mpps. We conclude that even though 10 Gbps line rate is not achieved,
the system is fast enough to cope with a typical 10 Gbps link in real operational
conditions, which, in addition to the larger packet size, is not saturated.

However, as important as throughput may be, this is not the most salient
advantage of the proposed system. As it turns out, the major constraint for traffic
capturing and analysis at 10 Gbps in commodity hardware is the number of CPU
cores available in the system. By carefully analyzing the state of the art we have
found that the most commodity hardware systems rely on Receive Side Scaling
(RSS) to demultiplex traffic at the network interface card into several queues, each
of which is attached to a fully dedicated CPU core. The use of GPUs alleviates
the load in terms number of cores occupied in the traffic analysis. We also note
that capturing the traffic only does not suffice for network monitoring: it is the
analysis that matters.

As future work, we plan to achieve line rate by demultiplexing the incoming
traffic stream into several GPUs, but not on a flow-per-flow basis, which demands
a separate and possibly large hash table. Instead, we plan to use simple demul-
tiplexing rules, based on the packet header structure. We also plan to test the
system using more powerful GPUs, comparing the merits of both approaches and
the possibility of combining them to produce a system capable of dealing with
more throughput.
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